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We propose an extension of general relativity with two different metrics. To each metric we define a

Levi-Cevità connection and a curvature tensor. We then consider two types of fields, each of which moves

according to one of the metrics and its connection. To obtain the field equations for the second metric we

impose an exchange symmetry on the action. As a consequence of this ansatz, additional source terms for

Einstein’s field equations are generated. We discuss the properties of these additional fields, and consider

the examples of the Schwarzschild solution, and the Friedmann-Robertson-Walker metric.
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During the last decades, experimental achievements in
astrophysics provided us with new insights about our uni-
verse. The more precise our observations have become, the
more obvious also the insufficiency of our understanding
has become. Today’s research in cosmology is accompa-
nied by a group of cosmological problems, which strongly
indicate that our knowledge about the universe is incom-
plete. Most importantly, it is microscopic explanations for
dark matter and dark energy that we are lacking. A lot of
effort has been invested into studies of fields with unusual
equations of states which can account for one or the other
constituent.

In this paper we propose an extension of general rela-
tivity (GR) with fields that experience space-time to have a
metric h different from our usual one g. This causes addi-
tional source terms to Einstein’s field equations that have
properties unlike those of our standard matter. The new
fields do not move according to the Levi-Cevità connec-
tion, but according to a nonmetric, torsion-free connection
derived from the second metric h. To obtain the equations
of motion for the second metric, we propose a symmetry
between both types of matter and the according metrics.

Different versions of bimetric theories and their poten-
tial importance to explaining observational evidence have
previously been investigated in [1–4], and the approaches
in Refs. [5–18] study similar symmetry considerations.

This paper is organized as follows: The general setup
with the two metrics and two types of fields is introduced in
Sec. I. In Sec. II, we define the connections, and in Sec. III
we construct the action for the new sort of fields and couple
it to GR. In Sec.n IV we use the exchange symmetry to
obtain a complete set of equations including those for the
second metric, and then investigate the example of the
Schwarzschild solution, and the Friedmann-Robertson-
Walker (FRW) metric in Secs. Vand VI. After a discussion
of the scenario and its possible observable consequences in
Sec. VII, we conclude in Sec. VIII.

Throughout this paper we use the convention c ¼ @ ¼ 1.
The signature of the metric is ð�1; 1; 1; 1Þ. Small Greek
indices are space-time indices and run from 0 to 3.

I. BIMETRIC THEORY

We consider a bimetric theory with metrics g and h of
Lorentzian signature that define two different ways of
measuring angles, distances, and volumes on a manifold
M. Changing from g to h changes the map from the
tangential space, TM, to the cotangential space, TM�.
Since we then have two ways to raise and lower indices,
we will use a notation with two types of coordinate indices
so we do not spoil the Ricci calculus. For this, we will
denote coordinate indices that are raised and lowered by h
with underlines. In case objects do not carry indices we
underline them in total.
We will further introduce two sorts of matter onM: one

that moves according to the usual [19] metric g and the
measure it implies, and the other one that moves according
to the other metric h. Wewill refer to these fields as g fields
and h fields, respectively; the equations of motions will be
specified in Sec. III. Related, we consider two types of
observers on our space-time, the one made up of h fields
who measures with the metric h, and the other one made of
g fields who measures with metric g. They will have to set
their observations in relation to each other in a consistent
way, much like different observers in special relativity.
As such, we have on the one hand the h observer who

sees a g field with unusual behavior, and on the other hand
the g observer who thinks this field is perfectly normal
matter. The same situation applies for g and h exchanged.
To take this into account we will consider a map Ph, which

is an automorphism on the tensor bundle, and which maps
h fields as the h observer sees them to h fields as the
g observer sees them. Similarly, we have a map Pg, which

maps g fields as the g observer sees them to g fields as the
h observer sees them. These maps conserve the tensor
structure of objects, i.e., a tensor of rank ðr; sÞ is mapped
to a tensor of rank ðr; sÞ, and they are linear in the field’s*sabine@perimeterinstitute.ca
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components. Most importantly, they assign a two-tensor
h�� to the metric h, which we will denote by h, and a two-
tensor g�� to the metric g, which will be denoted by g:

g ¼ PgðgÞ; h ¼ PhðhÞ: (1)

Since these maps are linear, we can write in components

½Ph���½Ph���h�� ¼ h��; (2)

½Pg���½Pg���g�� ¼ g��: (3)

We will in the following refer to these maps as ‘‘pull-
overs.’’ One has to be careful however when pulling ele-
ments over from the one observer to the other. Since the
components of pulled-over tensors are mapped from the
tangential into the cotangential space with a different
metric, the notation of the inverse no longer matches
with the use of indices; that is, the pull-over P�1

h of h��

is not h��g
��g�� (where h�� is the pull-over of h��) but

rather a tensor h�1 with the property that ½h�1���h�� ¼
���. We will try to avoid this by not using the pull-overs as
long as not absolutely necessary (and we will see that we
can rather successfully do so).

The introduction of these pull-overs is an assumption. Its
usefulness lies in enabling us to now chose different coor-
dinate systems for the g and h observers. We could, for
example, apply a change of coordinates only on the h
metric. This would imply an according change in the
pull-over (a multiplication with the inverse of the coordi-
nate transformation), but it would not make it necessary to
also change the coordinate system the g observer has
chosen for his description. The most obvious choice for
the pull-over would just be the identity. We will however
see later that we can not fix these pull-overs, but that they
have to be determined from the field equations and cannot
in general be chosen to be the identity.

We further define a map a that transforms the one metric
into the pull-over of the other

g�� ¼ a�
�a�

�h��: (4)

Since both g and h are symmetric, a is not completely
determined by (4). We fix the remaining 6 degrees of
freedom (dof) by requiring it to be symmetric, i.e.,
g��a�� ¼ a�� ¼ a��. We can pull over a by

a�
� ¼ ½Pg���a��½Ph���; (5)

which then gives the relation

g�� ¼ a�
�a�

�h��: (6)

This pulled-over quantity is also required to be symmetric.
It is further useful to define a combination of a and the
pull-overs that map g to h via

a�
� ¼ a�

�½Ph���; (7)

g�� ¼ a�
�a�

�h��: (8)

And by raising and lowering some indices we also have

g�� ¼ a�
�a��; h�� ¼ a��a��: (9)

In this formulation, the introduced map a is a convenience
and not a dynamical field, since it is defined by relating g to
PhðhÞ. The dynamical quantities are g and h, as well as

both pull-overs Ph and Pg, and possible additional matter

and gauge fields. That means for the variation we have to
keep a fixed. We specify the properties of the field under
variation by requiring

�a�� ¼ 0: (10)

We will see later that this requirement makes for an inter-
esting scenario as it results in quite unusual properties of
the h fields. One can read this off already from Eq. (4).
Demanding (10) to hold will imply that it is the inverse of
the second metric that behaves under variation as the usual
metric. Unlike the problems that one would run into by just
using the inverse metric as a second metric (because one
had to treat a covariant field as a contravariant one), the
approach proposed here by introducing a field that only
behaves under variation as the inverse metric is manifestly
covariant.

II. CONNECTIONS

To g one can define a Levi-Cevità connection in the

usual way that we will denote as ðgÞr. Similarly, one can
define a Levi-Cevità connection to h, and we will denote

this connection as ðhÞr. To both metrics with their con-
nections, one can construct the curvature tensor, the Ricci

tensor, and the curvature scalar that we will denote as ðgÞR
and ðhÞR, respectively. In detail one has

ðgÞ���� ¼ g��ðgÞ����; (11)

ðgÞ���� ¼ 1
2ð@�g�� þ @�g�� � @�g��Þ; (12)

ðhÞ���� ¼ h"�ðhÞ����; (13)

ðhÞ���� ¼ 1
2ð@�h�� þ @�h�� � @�h��Þ: (14)

We can further define a pulled-over derivative for the

h field, which we denote as ðhÞr, by requiring it to be a
torsion-free but nonmetric connection that preserves h.

From ðhÞrh ¼ 0 we then find the connection coefficients

to ðhÞr to be

ðhÞ���� ¼ 1
2½PhðhÞ���ð@�h�� þ @�h�� � @�h��Þ: (15)

As mentioned previously, one should keep in mind that
½PhðhÞ��� is not h�� but the inverse of h��, and further that

the indices on ðhÞ� are lowered and raised with g. From the
above one also finds for h, the determinant of h��,
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@�h ¼ 2hðhÞ����: (16)

One can do a similar construction to pull over ðgÞr to

obtain a derivative ðgÞr, which is not metric with respect

to h but preserves g, i.e., ðgÞrg ¼ 0. This construction of

derivatives now puts a further requirement on the pull-
overs because they have to be compatible with the tensor
structure. So, for an arbitrary tensor A we then have

PhððhÞrAÞ ¼ ðhÞrPhðAÞ; (17)

PgððgÞrAÞ ¼ ðgÞrPgðAÞ: (18)

In components we had, e.g., for A���

½PhððhÞr�A
�
��Þ����� ¼ ðhÞr�½PhðA���Þ����: (19)

Since both connections as well as their pull-overs have to
be torsion free, this implies the pull-overs have to be
integrable and are generated by two vector fields v and w
such that ½Pg��� � W�

� ¼ @�w
�, and ½Ph��� � V�� ¼

@�v
�. The pull-overs thus carry 4 dof each, after requiring

them to be torsion free and metric compatible in the above
described fashion.

However, we will for the variation not assume these
requirements are already fulfilled, as this is in conflict
with the dof we need. As explained previously, the inde-
pendent variables are g and h, each of which has 10 dof.
Since the a’s and a’s do not carry degrees of freedom, the
pull-overs need to carry these 10 dof since a conjunction of
both, the a’s and the pull-overs, relates g to h, as can be
read off from Eq. (8). Therefore, prior to the variation we
can only assume the connections are torsion free, and take
into account metric compatibility after the variation. For
the usual connections, the variation over the connection
together with the torsion-freeness implies metric compati-
bility as usual. For the additional connections, we will here
not explicitly add a term to the action to generate it but
subsequently assume metric compatibility since it seems to
be a desirable feature (though the scenario could be con-
sidered in more generality).

To summarize this section: Each metric defines its own
Levi-Cevità connection, and after pulling them over these
induce two nonmetric connections, which will describe the
motion the g observer assigns to the h fields and vice versa.

III. AND ACTION

Now let us add some physics. Consider we have an
h field that behaves not according to the usual Levi-
Cevità connection, but according to the connection metric
with respect to h, a field that feels angles and distances as
defined by h, not g. For a massless scalar h field, � the

action that gives the equations of motions as the g observer
sees them could look like

S ¼
Z
d4x

ffiffiffiffiffiffiffi�hp
Phðh��ðhÞr��

ðhÞr��Þ; (20)

where h ¼ detðPhðhÞÞ, so we have pulled over the deter-

minant and the measure is appropriately invariant.
For a scalar field the covariant derivative is of course just

the partial one so it does not matter according to which
metric the connection is metric, but in general this will not
be the case. One can construct Lagrangians L for other
types of h fields than scalars in a similar way by replacing
the usual metric with the other one, and the usual Levi-
Cevità connection with the one belonging to the other
metric, and then pulling over. If it was just to make a scalar,
one could consider the density weight to be

ffiffiffiffiffiffiffi�gp
.

However, the relevance of putting
ffiffiffiffiffiffiffi�hp

instead becomes
apparent when one takes the variation over the field and its
connection to obtain the equations of motion (eom). In

order to convert the pull-over of a term ðhÞr�A� into a total

derivative the prefactor needs to be
ffiffiffiffiffiffiffi�hp

and not
ffiffiffiffiffiffiffi�gp

, so

it is compatible with the derivation used in the Lagrangian.
For such a term then to vanish one uses Eq. (16), which
guarantees the validity of Gauss’s law. The resulting eom
are then just

PhððhÞr�ðhÞr��Þ ¼ 0; (21)

which is by definition of the pull-over identical to

ðhÞr�ðhÞr�Phð�Þ ¼ 0: (22)

Since the pull-over is invertible, the eom (21) are also
equivalent to

ðhÞr�ðhÞr�� ¼ 0; (23)

which are the eom the h observer would expect. Now we
add such a field to GR:

S ¼
Z
d4x

ffiffiffiffiffiffiffi�gp ððgÞR=8�GþLÞ þ ffiffiffiffiffiffiffi�hp
PhðLÞ: (24)

Upon variation, the first two terms give just the standard,
and the last term yieldsZ

d4x
�

�h��
ð ffiffiffiffiffiffiffi�hp

PhðLÞÞ�h��; (25)

which we have to rewrite into a variation over g�� so we
can add the terms. We vary (see also Appendix A)

g��h��a
��a	� ¼ �	� (26)

and rewrite into

�h�� ¼ �½a�1�	�½a�1����g	�; (27)

where a�1 is the inverse of a

½a�1�
�a�
 ¼ ��
�: (28)

We put in some pull-overs and their inverse, and rewrite
into a�

� to make the symmetry more apparent. Then, we
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can add all terms together and obtain from the variation
(see Appendix A) of the action the equations

ðgÞR�� � 1

2
g��

ðgÞR ¼ 8�G

�
T�� �

ffiffiffi
h

g

s
a�

�a�
�T��

�
(29)

with the sources

T	� ¼ � 1ffiffiffiffiffiffiffi�gp �L
�g	�

þ 1

2
g	�L; (30)

T �� ¼ � 1ffiffiffiffiffiffiffi�hp �L
�h��

þ 1

2
h��L

¼
�
P�1
h

�
� 1ffiffiffiffiffiffiffi�hp �L

�h��
þ 1

2
h��L

��
��
; (31)

where the last line is only to clarify how the rewriting of the
variation from h to h comes into play.

This change of sign we see appearing here in Eq. (27)
occurs only for the gravitational stress-energy tensor, i.e.,
the source term to Einstein’s field equations since it is a
consequence of taking the variation with respect to the
metric. It does not occur if one derives the kinetic energy
momentum tensor (via Noether’s theorem), neither does
the Lagrangian have a negative kinetic energy term. Since
then the sum as well as the difference of both stress-energy
tensors is conserved, and this means they are separately
conserved; both fields interact only gravitationally. Thus,
despite the presence of negative gravitational masses, there
is no vacuum instability because the kinetic energy of both
sorts of fields remains positive, is conserved as usual, and a
pair production of negative and positive gravitational
masses out of vacuum is not possible.

IV. WITH EXCHANGE SYMMETRY

In the previous section we have only considered the
perspective of the g -observer and the field equations for
the g metric. We have however used that the fields g and h
are not independent. For symmetry reasons, the indepen-
dent variables should be g and h, as well as the two pull-
overs, with which we further obtain g and h via (1). h is

then however related to g via Eq. (4), and g to h via Eq. (6).

Based on this consideration, we add matter fields to GR:
a g field  , and an h field �, and request the action be

symmetric under exchange of g with h, and exchange of
g fields with h fields. This way we obtain

S ¼
Z
d4x

ffiffiffiffiffiffiffi�gp ððgÞR=8�GþLð ÞÞ þ ffiffiffiffiffiffiffi�hp
PhðLð�ÞÞ

þ
Z
d4x

ffiffiffiffiffiffiffi�hp ððhÞR=8�GþLð�ÞÞ þ ffiffiffiffiffiffiffi�gp
PgðLð ÞÞ;

(32)

where the first two terms are varied with respect to g using
Eq. (4) as done in the previous section, the last two terms

with respect to h using Eq. (6), and one should keep in
mind that h ¼ detðPhðhÞÞ � h and g ¼ detðPgðgÞÞ � g.

The eom for the matter fields are the usual ones and their
pull-overs, and the missing field equations for the second
metric take the form

ðhÞR�� � 1

2
h��

ðhÞR ¼ 8�G

�
T�� �

ffiffiffi
g

h

s
a��a

�
�T��

�
; (33)

with the previously defined stress-energy tensors from
Eqs. (30) and (31). Since Eq. (29) contains h rather than
h and Eq. (33) contains g rather than g, the pull-overs are

necessary ingredients. We can make this more apparent by
explicitly putting them into the equations:

ðgÞR�� � 1

2
g��

ðgÞR ¼ T�� � V

ffiffiffi
h

g

s
a�

�a�
�T��; (34)

ðhÞR�� � 1

2
h��

ðhÞR ¼ T�� �W

ffiffiffi
g

h

s
a��a

�
�T��; (35)

where V is the determinant of Ph, andW is the determinant

of Pg (or, to be more precise their absolute values since the

volume element is positive). Note that these equations
would not be invariant under coordinate transformations
for each of the observers separately without the pull-overs,
since the factor h=g was not an invariant in this case.
The virtue of doing this is that we can now choose the

coordinate systems for g and h separately which seems to
be natural. For example, there is no reason to expect that
the coordinate system that one observer would consider
‘‘‘free falling’’ will agree with the other one’s, since they
both move according to different connections. Thus it will
not in general be clear what a gauge condition on the one
metric does to the other one, and it seems more useful to
export this lack of knowledge into the pull-overs.
The field equations (34) and (35) need to fulfill the

contracted Bianchi identities with respect to the matching
Levi-Cevità connection. Since the stress-energy tensor of
the g field is already covariantly conserved with respect to
ðgÞr, and the stress-energy tensor of the g field is similarly

covariantly conserved with respect to ðhÞr, this leaves us
with four equations for the additional source terms con-
stituted of the fields behaving with respect to the nonmetric
connection. After assuming metric compatibility of the
pulled-over connections as explained in Sec. II, these
four equations constrain the remaining 4 dof in the pull-
overs that appear in these terms.
One should note however that the pull-overs will need

additional initial conditions, and unless one imposes fur-
ther symmetry requirements especially their determinants
can be multiplied by an arbitrary constant. One can also
interpret this as there a priori being no way of telling
whether the coupling between the two types of fields and
gravity is equally strong or has an additional prefactor.
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However, instead of introducing additional coupling con-
stants we will leave the constants in the pull-overs and treat
them as parameters of the model that, ideally, have to be
determined by observational constraints. Equation (34) re-
duces to the standard field equations in the limit where the
energy density of the h fields is very small and/or the
determinant of the pull-over is small such that the coupling
is very weak.

To summarize this section: We have 10 components for
each g and h. Eqs. (34) and (35) provide each 10 equations
that are related by the (contracted) Bianchi identities.
These 2 times 4 equations fix the 2 times 4 degrees of
freedom left in Pg and Ph after requiring metric compati-

bility of the pulled-over connections, which leaves us as
usual with 4 degrees of freedom to choose the coordinate
systems for each metric.

V. EXAMPLE I: THE SCHWARZSCHILD METRIC

To obtain a better understanding of the workings, we
consider the case with T � 0, and with only a spherically
symmetric source of usual g fields outside of which there is
vacuum and we thus have the Schwarzschild solution for g.
This solution has one free constant, M, that is the integral
over the energy density of the source. Making the obvious
ansatz of spherical symmetry for h in the same coordinate
system, we find also a Schwarzschild solution with one free
constant to be fixed by integrating over the source term,
and the pull-over can be set to be constant. Since g=h ¼ 1,
we see that the integrational constant is just �McW < 0,
where cW is the determinant of the pull-over. A further
symmetry requirement that the asymptotic limit of h be
just the Minkowski metric �, as is that of h and g, fixes the
pull-over to be the identity and cW ¼ 1. We then have

gtt ¼ �
�
1� 2M

r

�
; grr ¼ �1=gtt;

g�� ¼ r2; g�� ¼ r2sin2�;
(36)

htt ¼ �
�
1þ 2M

r

�
; hrr ¼ �1=htt;

h�� ¼ r2; h�� ¼ r2sin2�;
(37)

and h�� ¼ h��.

One can now compute the connection coefficients ac-
cording to Eq. (15) and obtain the geodesic equations for
an h field in this background of a g source. Since h is just a
Schwarzschild metric with a negative source one sees, e.g.,
by taking the Newtonian limit that an h particle will be
repelled by the g source. It should be emphasized that in
the here presented approach this does not result in contra-
dictions as those pointed out by Bondi [5] since the h
fields do move according to a different connection and
thus the equivalence principle does not apply (see also
Appendix B).

In case the radius of the matter source fell below its
Schwarzschild radius, and we had a black hole geometry
for g, the metric h would not have a horizon (the h fields
are repelled by the source). Note also that this evident
symmetry of the above metrics is not as obvious in every
coordinate system. For example, changing to one of the
more well-behaved systems with e.g. in-/outgoing
Eddington-Finkelstein coordinates will be a nice transfor-
mation for the usual metric g, but completely mess up the
other metric h. The reason is just that for the h observer in-/
outgoing means something different.
As this example shows, the bimetric model is not causal

in the sense that the h-field’s propagation does not need to
lie within the light cone of the standard fields. The hmetric
on the manifold thus describes a global causal structure
that in general will be different from that of the g matter.
Because of the symmetry between both however, the
h-field’s propagation is causal as well if the properties of
a curve’s tangent vector are defined through the respective
metric. Physically, there are then two ways to form closed
timelike curves: The one is through an interaction between
both types of matter which together could carry informa-
tion around a closed timelike curve. Since the interaction
between both types of matter is mediated only by gravity
and very weak, this would be relevant only for curves
going through regions where the gravitational interaction
is strong. The other possibility is through a space-time
structure that allows closed timelike curves, which is
known to be possible in the presence of negative energy
densities [20], even for only small amounts [21]. It remains
an open question though whether these solutions actually
describe natural settings.
It is further worthwhile to point out that the analysis

about stability of the negative mass Schwarzschild black
hole worked out in [22] does not apply to the here dis-
cussed case, since a perturbation of the metric h is related
to that of the usual metric g via the field equations. Since g
is stable as usual, there is no reason to expect any insta-
bilities for the metric that the h observer would measure.
Both types of fields only interact gravitationally, so the

h fields constitute a kind of very weakly interacting dark
matter. Since both kinds of matter repel, one would expect
the amount of h matter in our vicinity to presently be very
small.

VI. EXAMPLE II: FRIEDMANN-ROBERTSON-
WALKER

We have the usual FRW metric for g

ds2 ¼ �dt2 þ a2

1� kr
ðdr2 þ d�2Þ; (38)

and make the ansatz for h

ds2 ¼ �dt2 þ b2

1� kr
ðdr2 þ d�2Þ; (39)
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where k ¼ �1, 0, þ1. To preserve the symmetry of the
FRWmetric, we further expect the pull-overs to only act on
the time coordinate and we have a2=ð1� krÞ ¼ ½PgðgÞ�rr
and b2=ð1� krÞ ¼ ½PhðhÞ�rr. For the sources, we use the

notation

T0
0 ¼ 
; Tii ¼ p; (40)

T 0
0 ¼ 
; Tii ¼ p: (41)

(Here, the indices i, i ¼ 1, 2, 3, and are not summed over.)
The first Friedmann equations for both metrics then are�

_a

a

�
2 ¼ 
�W

�
b

a

�
3

� k

a2
; (42)

� _b

b

�
2 ¼ 
� V

�
a

b

�
3

� k

b2
; (43)

where a dot indicates a derivative with respect to t, and the
conservation laws read

@t

�

�W

�
b

a

�
3



�
þ 3

_a

a

�

þ pþW

�
b

a

�
3ð
þ pÞ

�
¼ 0;

(44)

@t

�

� V

�
a

b

�
3



�
þ 3

_b

b

�

þ pþ V

�
a

b

�
3ð
þ pÞ

�
¼ 0:

(45)

Since the pull-overs here act only on the time coordinate,
the solutions for a and b together with the determinants V
and W then give h and g. For example, if one wanted to

compute the equation of motion for an h photon, one had
htt ¼ �W2 and hrr ¼ b2=ð1� krÞ with which one obtains
the nonmetric connection via Eq. (15).

We will in this present work not attempt to discuss the
solutions of these equations in all generality, but instead we
consider some specific cases of interest. In the following,
cV and cW are positive valued constants.

(1) In the case 
 ¼ 0, W does not appear in the equa-

tions. If 
 is a matter field, i.e., p ¼ 0, then V ¼ cV
is a solution; if 
 is a radiation field, i.e., 
 ¼ 1=3p,
then V ¼ cVa=b is a solution. In this case the V

could be absorbed into the metrics (e.g., by chang-
ing both into comoving coordinates). One should
note that with this choice of sources Eq. (43) does
not have a solution for k ¼ 0, 1. The case for 
 ¼ 0
is similar.

(2) If both 
 and 
 are matter fields then V ¼ cV , W ¼
cW is a solution.

(3) If both 
 and 
 are radiation fields then V ¼ cV ,

W ¼ cW is also a solution.

(4) If 
 is a matter field and 
 is a radiation field then

W ¼ cWb=a and V ¼ cV . Similarly, if 
 is a matter

field and 
 is a radiation field then V ¼ cVa=b and

W ¼ cW . In these cases, it is not possible to set both
W and V to be constant.

(5) If both sources are cosmological constants we have
W ¼ cWðb=aÞ3 and V ¼ cVða=bÞ3. Note that for

certain values of the constants cW and cV the curva-

ture needs to be negative.

As previously mentioned, the pull-overs are only deter-
mined up to constants that have to be specified in the initial
conditions. With a suitable choice of these constants, one
can achieve the additional source term to be negligible.
Though this scenario does not seem particularly compel-
ling, we want to point out that for this reason it is possible
to reproduce standard GR up to small corrections.

VII. CONSEQUENCES AND POSSIBLE
OBSERVABLES

In the previous sections we have studied an extension of
GR in whose framework sources with negative gravita-
tional energy appear in the field equations. These addi-
tional h fields interact only gravitationally with our
standard matter, and thus couple only extremely weakly.
In this section we want to mention some reasons why this
scenario is interesting and worth further examination.
The model we laid out is purely classical. Nevertheless it

is worthwhile to consider the vacuum expectation value of
the stress-energy tensor for quantum fields that are coupled
to the classical background. We will assume that the field
content for both, the g fields and the h fields, is identical
such that we have, e.g., two copies of the standard model.
The vacuum expectation value of these quantum fields is
just proportional to the respective metric. Though the
constant of proportionality is technically seen divergent,
one expects this vacuum energy to be regularized at the
Planck scalemp. This leads one to the well-known problem

that this vacuum energy density is�m4
p, and far too large to

ever allow our universe to form the structures we observe.
If we consider the vacuum solution in the model with

exchange symmetry however, we expect a symmetry be-
tween both metrics. In the case with the maximal number
of space-time symmetries, both would just be the
Minkowski metric. We then have h=g ¼ 1, and the pull-
overs are just the identity. Since the matter content of both
types of fields is identical, this means the source terms in
Eqs. (34) and (35) cancel identically, no matter how large
their values are. This is a consequence of the additional
symmetry. Whether or not this solution is stable or would
run away if the constants did not exactly cancel requires
further investigation. Needless to say, the measured value
of the cosmological constant is not zero, but at least it is
closer to zero than to m4

p.

This bring us to another point to be mentioned, namely,
the extraction of observables from the data, e.g., the high-
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redshift supernovae data or the Wilkinson microwave an-
isotropy probe (WMAP) results. Underlying the data
analysis to obtain constraints on the parameters in the
�CDM model is the usual GR formalism. Unfortunately,
some parts of this formalism cannot be applied in the
model discussed here. For example, to use cosmological
perturbation theory a relevant parameter is the relative size
of perturbations �
=
. Typically, one infers from the
cosmic microwave background (CMB) measurements
that the perturbations at freeze-out were small � 10�5.
This however is the size of perturbations relative to the
observable (usual) matter density. Since we now have an
only gravitationally interacting density contribution that is
negative, and one further would hope for symmetry reasons
that both densities are of the same order of magnitude, the
total gravitating density can be smaller than the observed
one. Then, the relative density fluctuations could be larger.
Besides this, both components of matter repel each other
which is an effect usually not present.

Another feature of the scenario becomes clear from the
previously discussed example of the Schwarzschild metric.
If there was a localized source of negative energy, it would
act as a gravitational lens—but unlike usual matter this
would be a diverging lens since it would repel our (usual)
photons. Such a lensing event would typically lower the
luminosity of the source, an effect that could potentially
add up over distance if the distribution of such sources is
substantial. The detection of a diffractive lensing event
could serve as a smoking gun signal for the here proposed
scenario.

VIII. SUMMARY

We have studied an extension of general relativity with
two metrics, and two sorts of fields. Each field moves
according to the Levi-Cevità connection of one of the
metrics. The new sort of fields only interacts gravitation-
ally with our usual matter. We have coupled these fields to
general relativity. By requiring the action to be symmetric
under exchange of the two metrics, and their fields, we
obtained a model from which we could derive the equa-
tions of motions for the two sorts of fields, as well as the
field equations for both metrics. It turned out that the
additional fields can make a contribution to the gravita-
tional stress-energy tensor with a negative energy density.
We argued that this does not imply a vacuum instability
since the kinetic energies are still strictly positive and
conserved. We further investigated the spherical symmetric
example with a source of usual matter, and we found that
the newly introduced particles would be repelled by this
source. We also derived the Friedmann equations within
this scenario and discussed some general properties of
possible solutions. Finally, we mentioned some possible
consequences for observables, most importantly a diffrac-
tive gravitational lensing effect.

We hope to have shown that the here proposed bimetric
model with exchange symmetry has interesting properties,
and that it can potentially shed light on some so far
unresolved questions in cosmology and astrophysics.
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APPENDIX A

Contracting Eq. (4)

g	� ¼ a	
�a�


h�
 (A1)

with g	� yields

��
� ¼ a��a�


h�
 ¼ a��a�
g��h�
: (A2)

Taking the variation with use of (10) one obtains

a��a�
g���h�
 þ a��a�
h�
�g�� ¼ 0 (A3)

, a��a�
g���h�
 þ g���g�� ¼ 0; (A4)

and after contracting with g�	

�g	� ¼ �a	�a�
�h�
: (A5)

From (A1) one reads off that the inverse of a�
� is

½a�1��
 ¼ a��h�
; (A6)

where

½a�1��
a�
 ¼ ��
�: (A7)

Since a�� is symmetric, so is ½a�1��� and we also have

½a�1�
�a
� ¼ ���: (A8)

We then use (A8) to bring the a’s in (A5) to the other side

�h�� ¼ �½a�1�	�½a�1����g	�: (A9)

If we consider pulling over one of the indices on a�1 with
use of Ph, we obtain

½a�1���½Ph��� ¼ a��h��½Ph���: (A10)

By putting in a pull-over for the index � and its inverse,
and absorbing the pull-overs in the definitions (7) and (8)
we get

½a�1���½Ph��� ¼ a	�h�� ¼ a	�: (A11)

The pull-overs are linear, so we have
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�

�h��
PhðLÞ ¼

�
Ph

�
�L
�h��

��
��

¼ �L
�h��

½Ph���½Ph���:

(A12)

Note that this is not a performance of the variation, but a
rewriting of the derivative with the aim to express the
variation of L in a way that the symmetry becomes more
apparent. We could leave this term in the initial form where
variation is with respect to h�� but we want to make use of
the fact that the form of L is symmetric to the usual
Lagrangian under exchange of g�� with h�� (not h��)

and exchange of the respective covariant derivatives.
With Eqs. (A9) and (A11), we then obtain

�

�h��
PhðLÞ�h�� ¼

�
Ph

�
�L
�h��

��
��
�h��

¼ �L
�h��

½Ph���½Ph����h��

¼ � �L
�h��

½Ph���½Ph���½a�1�	�½a�1���

� �g	�

¼ � �L
�h��

a	
�a�

��g	�; (A13)

with which we return to Eq. (29).

APPENDIX B

If it was not the case that a negative mass particle moved
according to a different covariant derivative, one could
construct the following problem with negative sources in
general relativity: Gravity is a spin-two field. Thus, like
charges attract and unlike charges repel, and a negative
mass particle should be repelled by a positive mass source.
On the other hand, the negative mass particle moves ac-
cording to the geodesic equation which does not know
anything about the particle’s mass—it only knows about
the positive source background. Thus, the negative mass
particle should be attracted to the source as all test parti-
cles. One would then be lead to conclude a negative mass
test particle was attracted and repelled likewise which can
be used to construct all kinds of nonsense.
The reason for this confusion is that the use of the usual

geodesic equation for the negative mass particle is inap-
propriate which one can understand most easily by inter-
preting the covariant derivative as a coupling to the
gravitational field that conserves the total energy of the
particle including the potential energy. For a negative mass
test particle that is repelled instead of attracted, the con-
servation law has to be different since it couples differently
to the background. This is similar to the coupling of
electrons and positrons to the electric field being mediated
by different covariant derivatives.
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