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Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and

Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via

the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to

apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of

5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black

hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral,

dipole, and charged black rings.
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I. INTRODUCTION

Since Hawking proved that a black hole can radiate
particles characterized by the thermal spectrum with the
temperature T ¼ ð1=2�Þ�, where � is the surface gravity
of the black hole, many papers have appeared that correctly
derive Hawking temperature via different methods, such as
the gravity collapsing method [1], the temperature Green
function [2], the path integral [3], the Euclidean action
integral [4], the second quantum method [5], the renormal-
ization energy-momentum tensor [6], and more recently, a
technique called generalized tortoise coordinate transfor-
mation (GTCT) which deals with Hawking radiation of
evaporating black holes [7,8], etc. The study of Hawking
radiation has long been attracting much attention from
theoretical physicists. The reason is partly due to the fact
that a deeper understanding of Hawking radiation may
shed some light on seeking the underlying quantum grav-
ity. And on the other hand, it is the key to making the
second law of thermodynamics consistent in spacetimes
involving black holes.

In recent years, a semiclassical quantum tunneling
method, first put forward by Kraus and Wilczek [9] and
then elaborated by Parikh and Wilczek [10], has already
attracted much attention [11,12]. Here, the derivation of
Hawking temperature mainly depends on the computation
of the imaginary part of the action for the classically
forbidden process of s-wave emission across the horizon.
Normally, there are two approaches to obtain the imaginary
part of the action. One, first used by Parikh and Wilczek
[10] and later broadly discussed in many papers [11,12], is
called the null geodesic method, where the contribution to
the imaginary part of the action only comes from the
integration of the radial momentum pr for the emitted
particles. The other method regarding the action of the
emitted particles should satisfy the relativistic Hamilton-

Jacobi equation, and solving it will yield the imaginary part
of the action [13], which is an extension of the complex
path analysis proposed by Padmanabhan et al. [14]. In the
two tunneling modes, they use the fact that the tunneling
rate for the classically forbidden trajectory from inside to
outside the horizon is given by � ¼ expð� 2

@
ImIÞ, where I

is the classical action of the trajectory to leading order in @.
Where these two methods differ is in how the action is
calculated. Reference [15] has given a detailed comparison
between the Hamilton-Jacobi ansatz and the null geodesic
methods.
Although the tunneling method is shown to be very

robust in successfully deriving Hawking radiation of black
holes and even black rings, most papers have only consid-
ered scalar particle tunneling radiation. In fact, a black hole
can radiate all types of particles at the Hawking tempera-
ture, and the true emission spectrum should contain con-
tributions of both scalar particles and fermions with all
spins. Recently, applications of quantum tunneling meth-
ods to the fermion case have first been presented in
Ref. [16] to correctly describe Hawking radiation of fer-
mions with spin 1=2 via tunneling from Rindler spacetime
and that from the uncharged spherically symmetric black
holes. Later, to further prove the robustness of the fermion
tunneling method, some papers discuss Hawking radiation
of fermions via tunneling from BTZ black holes [17],
dynamical black holes [18], Kerr black holes [19], Kerr-
Newman black holes [20], and more general and compli-
cated black holes [21]. These involved black holes have in
common taking 3- or 4-dimensional spacetimes. For space-
times with different horizon topology and different dimen-
sions, choosing a set of appropriate �� matrices for general
covariant Dirac equations is critical for the fermion tun-
neling method. In 3-dimensional cases, as the Pauli matri-
ces �i (i ¼ 1, 2, 3) behave independently from each other,
we can only introduce the matrices �i to act as �� func-
tions for the covariant Dirac equation [17]. However, for 4-
dimensional spacetimes, we need four independent matri-*jiangqq@iopp.ccnu.edu.cn
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ces to describe the matrices �� well for the Dirac equation,
and a detailed choice for the four matrices ��; see
Refs. [16,18–21]. Then, how does one choose the ��

matrices for 5-dimensional cases? To the best of our
knowledge, five independent matrices should be involved
in our discussion. On the other hand, the horizon topology
also has an important impact on the choice for the matrices
�� [20]. In Secs. II and III, wewill successfully introduce a
set of appropriate matrices �� for the 5-dimensional neu-
tral, dipole, and charged black rings with the horizon
topology S1 � S2 to describe Dirac particle tunneling ra-
diation well.

Black rings in five dimensions have many unusual prop-
erties not shared byMyers-Perry black holes with spherical
topology; for instance, their event horizon topology is S1 �
S2, which is not spherical for the neutral, dipole, and
charged black rings. (Actually, some topological black
holes also have nontrivial topology; see, for example,
[22].) Therefore, it is very interesting to study Hawking
radiation from these black ring solutions. In Ref. [23],
scalar particles via tunneling from black rings have already
been discussed by using the so-called Hamilton-Jacobi
method. And in [24], following a recent hot discussion
on the anomalous derivation of Hawking radiation, the
authors attempt to recover Hawking temperature of black
rings via gauge and gravitational anomalies at the horizon.
However, when reducing the higher dimensional theory to
the effective 2-dimensional theory, they also only consider
the scalar field near the horizon. As far as I know, till now,
there have been no references to report Hawking radiation
of Dirac particles across black rings. So it is interesting to
see if the fermion tunneling method is still applicable in
such exotic spacetimes, and to see how to choose the
matrices �� for the covariant Dirac equation of 5-
dimensional black rings. In this paper, we shall concentrate
on Dirac particle tunneling radiation from 5-dimensional
black rings via the fermion tunneling method. We finally
find, as in the black hole case, fermion tunneling results in
correct Hawking temperatures for the rotating neutral,
dipole, and charged black rings.

The remainder of this paper is organized as follows. In
Sec. II, Hawking radiation of Dirac particles via tunneling
from the 5-dimensional rotating neutral black ring is
studied by improving the fermion tunneling method. To
make an analysis of the rotating dipole and charged black
rings in a more unified form, in Sec. III we deduce a
general 5-dimensional metric from the rotating neutral
black ring, and discuss its Hawking radiation of Dirac
particles. In fact, the involved 5-dimensional metric is
not arbitrarily taken, and after some substitutions, has a
unified form for the rotating neutral, dipole, and charged
black rings (see Ref. [23]). Section III is devoted, once
again, to checking the validity of the fermion tunneling
method for the rotating dipole and charged black rings.
Section IV contains some conclusions and discussions.

II. DIRAC PARTICLE TUNNELING FROM
NEUTRAL BLACK RINGS

In this section, we focus on studying Hawking radiation
of Dirac particles via tunneling from 5-dimensional neutral
black rings. In this paper, black rings involved are only
special solutions of the Einstein-Maxwell-dilaton gravity
model (EMD) in 5 dimensions, and the corresponding
action takes the forms as

S ¼ 1

16�

Z
d5x

ffiffiffiffiffiffiffi�gp �
R� 1

2
ð@�Þ2 � 1

4
e���F2

�
; (1)

where F is a three-form field strength and � is a dilaton.
Black ring solutions of the action (1) have special charac-
teristics: (1) they all have horizon of topology S1 � S2;
(2) there exist three Killing coordinates to determine their
local symmetries; (3) there exist infinitely many different
black ring solutions carrying the same mass, angular mo-
mentum, and electric charge, etc. In this paper, the rotating
neutral, dipole, and charged black rings accompanied by
the action (1) are involved in our discussion. First, we
consider the case of the 5-dimensional neutral black ring.
The neutral black ring in 5-dimensional EMD theory has
been given by [25]

ds2 ¼ �FðyÞ
FðxÞ

�
dt� Cð�; 	ÞR 1þ y

FðyÞ d 
�
2 þ R2

ðx� yÞ2 FðxÞ

�
�
�GðyÞ
FðyÞ d 

2 � dy2

GðyÞ þ
dx2

GðxÞ þ
GðxÞ
FðxÞ d’

2

�
; (2)

where

Fð
Þ ¼ 1þ 	
; Gð
Þ ¼ ð1� 
2Þð1þ �
Þ;

Cð�; 	Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð	� �Þ 1þ 	

1� 	

s
:

The parameters 	 and � are dimensionless and take values
in the range ð0< � � 	 < 1Þ, and to avoid the conical
singularity also at x ¼ 1, 	 and � must be related to each
other via 	 ¼ 2�=ð1þ �2Þ. The coordinates � and  are
two cycles of the black ring, and x and y take the range as
�1 � x � 1 and �1 � y � �1. The constant R has the
dimension of length and, for large thin rings, corresponds
roughly to the radius of the ring circle [26]. The horizon is
located at y ¼ yh ¼ �1=�. The mass of the black ring is
M ¼ 3�R2	=½4ð1� �Þ�, and its angular momentum takes

J ¼ �R3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð	� �Þð1þ 	Þp

=½2ð1� �Þ2�. In addition, the
spacetime contains three Killing coordinates t, ’, and  .
Next, we shall study Dirac particle tunneling from the
above neutral black ring. For simplicity, we take
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Mðx;yÞ¼FðyÞ
FðxÞ

�
1� C2ð�;	Þð1þyÞ2ðx�yÞ2

F2ðxÞGðyÞþC2ð�;	Þð1þyÞ2ðx�yÞ2
�
;

N ðx;yÞ¼�
�

R2

ðx�yÞ2
FðxÞ
GðyÞ

��1
;

N ðx;yÞ¼� Cð�;	ÞRð1þyÞFðyÞðx�yÞ2
C2ð�;	Þðx�yÞ2R2ð1þyÞ2þR2F2ðxÞGðyÞ ;

g  ðx;yÞ¼�C
2ð�;	Þðx�yÞ2R2ð1þyÞ2þR2F2ðxÞGðyÞ

FðxÞFðyÞðx�yÞ2 ;

gxxðx;yÞ¼ R2FðxÞ
ðx�yÞ2GðxÞ ; g’’ðx;yÞ¼ R2GðxÞ

ðx�yÞ2 : (3)

Now the new form of the neutral black ring (2) changes as

ds2 ¼ �Mðx; yÞdt2 þ 1

N ðx; yÞ dy
2 þ g  ðx; yÞðd 

þ N ðx; yÞdtÞ2 þ gxxðx; yÞdx2 þ g’’ðx; yÞd’2:

(4)

At the event horizon of the neutral black ring, the coeffi-
cients in Eq. (3) obviously obey

M ðx; yhÞ ¼ N ðx; yhÞ ¼ 0; N ðx; yhÞ ¼ ��h; (5)

where y ¼ yh is the event horizon of the neutral black ring
and�h is the angular velocity of the black ring at the event
horizon. Throughout this paper, the 5-dimensional space-
time coordinates are always chosen as x� ¼ ðt; y; ’; x;  Þ.

Now we focus on studying Dirac particle tunneling from
the rotating neutral black ring. In curved spacetime, the
Dirac particle motion equation satisfies the following co-
variant Dirac equation:

i�ae�a D���m

@
� ¼ 0; (6)

where D� is the spinor covariant derivative defined by

D� ¼ @� þ 1
4!

ab
� �½a�b�, and !ab

� is the spin connection

corresponding to the tetrad e
�
a . In this paper, we choose the

matrices �a ¼ ð�0; �3; �4; �1; �2Þ for the 5-dimensional
rotating neutral black ring, where

�0 ¼ 0 I
�I 0

� �
; �1 ¼ 0 �1

�1 0

� �
;

�2 ¼ 0 �2

�2 0

� �
; �3 ¼ 0 �3

�3 0

� �
;

�4 ¼ �I 0
0 I

� �
;

(7)

and the �i (i ¼ 1, 2, 3) are the Pauli matrices, which are
given by

�1 ¼ 0 1
1 0

� �
; �2 ¼ 0 �i

i 0

� �
;

�3 ¼ 1 0
0 �1

� �
:

(8)

According to the new form of the rotating neutral black
ring (4), the tetrad field e

�
a can be constructed as

e
�
0 ¼

�
1ffiffiffiffiffiffiffi
M

p ; 0; 0; 0;� N ffiffiffiffiffiffiffi
M

p
�
; e

�
1 ¼ ð0;

ffiffiffiffiffiffiffi
N

p
; 0; 0; 0Þ;

e
�
2 ¼

�
0; 0;

1ffiffiffiffiffiffiffiffiffi
g’’

p ; 0; 0

�
; e

�
3 ¼

�
0; 0; 0;

1ffiffiffiffiffiffiffi
gxx

p ; 0

�
;

e�4 ¼
�
0; 0; 0; 0;

1ffiffiffiffiffiffiffiffi
g  

p
�
: (9)

As Dirac particles take spin 1=2, when measuring spin
along the y direction, there would be two cases. One is the
spin-up case, which shares the same direction as y, and the
other (spin-down) case takes the opposite direction. In the
Pauli matrix �3 representation, they can explicitly be ex-
pressed by the eigenvectors 
"=#, and the corresponding

eigenvalues are 1=� 1. In this paper, we only refer to the
spin field for the upper case (
"). In fact, after the same step

for the spin-down (
#) case, we can also get the same result.

We employ the following ansatz for the Dirac field in the
spin-up case:

�"ðt; y; ’; x;  Þ ¼ Aðt; y; ’; x;  Þ
"
Bðt; y; ’; x;  Þ
"

� �

� exp

�
i

@
I"ðt; y; ’; x;  Þ

�

¼
Aðt; y; ’; x;  Þ

0
Bðt; y; ’; x;  Þ

0

0
BBB@

1
CCCA

� exp

�
i

@
I"ðt; y; ’; x;  Þ

�
: (10)

Substituting the above ansatz (10) for the upper-spinning
state into the covariant Dirac equation (6) and then apply-
ing the WKB approximation and keeping the prominent
terms, we can get the following equations:

B

�
1ffiffiffiffiffiffiffi
M

p @tI" þ
ffiffiffiffiffiffiffi
N

p
@yI" � N ffiffiffiffiffiffiffi

M
p @ I"

�

þ A

�
m� 1ffiffiffiffiffiffiffiffiffi

g’’
p @’I"

�
¼ 0; (11)

B

�
1ffiffiffiffiffiffiffi
gxx

p @xI" þ iffiffiffiffiffiffiffiffi
g  

p @ I"
�
¼ 0; (12)

A

�
1ffiffiffiffiffiffiffi
M

p @tI" �
ffiffiffiffiffiffiffi
N

p
@yI" � N ffiffiffiffiffiffiffi

M
p @ I"

�

� B

�
mþ 1ffiffiffiffiffiffiffiffiffi

g’’
p @’I"

�
¼ 0; (13)

A

�
1ffiffiffiffiffiffiffi
gxx

p @xI" þ iffiffiffiffiffiffiffiffi
g  

p @ I"
�
¼ 0: (14)

In fact, the derivatives of A and B, and the components
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1
4!

ab
� �½a�b� are all of order Oð@Þ and according to the

WKB approximation, have already been neglected for the
above equations. Considering the symmetries of the rotat-
ing neutral black ring, we employ the following ansatz:

I" ¼ �Etþ J þL’þW ðx; yÞ þK; (15)

where E, J , and L are all real constants which, respec-

tively, represent the emitted particle’s energy and angular
momentum corresponding to the angles  and ’, andK is
a complex constant (where we consider only the positive
frequency contributions without loss of generality).
Inserting the ansatz (15) into Eqs. (11)–(14), and expand-
ing the resulting equations near the event horizon of the
black ring, we have

B

� �E þ�hJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞðy� yhÞ

q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ;yðx; yhÞðy� yhÞ

q
@yW ðx; yÞ

�
þ A

�
m� Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g’’ðx; yhÞ
q

�
¼ 0; (16)

B

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gxxðx; yhÞ
p @xW ðx; yÞ þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g  ðx; yhÞ
q J

�
¼ 0; (17)

A

� �E þ�hJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞðy� yhÞ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ;yðx; yhÞðy� yhÞ

q
@yW ðx; yÞ

�
� B

�
mþ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g’’ðx; yhÞ
q

�
¼ 0; (18)

A

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gxxðx; yhÞ
p @xW ðx; yÞ þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g  ðx; yhÞ
q J

�
¼ 0: (19)

Here M;yðx; yhÞ ¼ @yMðx; yÞjy¼yh and N ;yðx; yhÞ ¼
@yN ðx; yÞjy¼yh . Now we carry out an explicit analysis of
the above equations. From Eqs. (17) and (19) we can obtain

@xW ðx; yÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxðx; yhÞ
g  ðx; yhÞ

s
J : (20)

And from Eqs. (16) and (18), one can easily see that the
two equations have a nontrivial solution for A and B if and
only if the determinant of the coefficient matrix vanishes,
so we have

@yW ðx; yÞ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE ��hJ Þ2 þM;yðx; yhÞðy� yhÞðm2 � L2

g’’
Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞN ;yðx; yhÞ

q
ðy� yhÞ

:

(21)

It should be noted that Eq. (20) implies that near the
horizon of the black ring @xW ðx; yÞ has no explicit y
dependence. On the other hand, in Eq. (21) M;yðx; yhÞ
and N ;yðx; yhÞ are both related to the coordinate x, but
their product M;yðx; yhÞ �N ;yðx; yhÞ is independent of x.
So, near the horizon (y ’ yh), @yW ðx; yÞ is independent of
x. Now the function W ðx; yÞ can be separated as
W ðx; yÞ ¼ W ðxÞ þW ðyÞ, which means that near the
horizon of the black ring @xW ðx; yÞ ¼ @xW ðxÞ and
@yW ðx; yÞ ¼ @yW ðyÞ.

The WKB approximation tells us that the tunneling rate
for the classically forbidden trajectory from inside to out-
side the horizon is related to the imaginary part of the
emitted particle’s action across the event horizon. Now our
first job is to find the imaginary part of the action. From
Eq. (15), we find that only W ðx; yÞ and K yield contribu-
tions to the imaginary part of the action. As K is a

complex constant, the focus is on computing W ðxÞ and
W ðyÞ. In fact, after an integration on Eq. (20),W ðxÞmust
be given by a complex constant, so it will yield a contri-
bution to the imaginary part of the action. From Eq. (21)
we get

W �ðyÞ ¼ �i� E ��hJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞN ;yðx; yhÞ

q ; (22)

where the þ=� sign corresponds to outgoing/incoming
solutions. As we all know, the tunneling probability is
proportional to the imaginary part of the action. So when
particles tunnel across the horizon each way, the outgoing
and ingoing rates are, respectively, given by

Pout ¼ exp

�
� 2

@
ImI"

�

¼ exp

�
� 2

@
ðImWþðyÞ þ ImW ðxÞ þ ImKÞ

�
;

Pin ¼ exp

�
� 2

@
ImI"

�

¼ exp

�
� 2

@
ðImW�ðyÞ þ ImW ðxÞ þ ImKÞ

�
:

(23)

Note that any particles can classically enter the horizon
with no barrier, which means the tunneling rate should be
unity for incoming particles crossing the horizon. In our
case, this implies ImW�ðyÞ ¼ �ImW ðxÞ � ImK. If we
set @ to unity, the tunneling probability of Dirac particles
crossing from inside to outside the horizon is naturally
written as
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� ¼ exp½�4 ImWþðyÞ�

¼ exp

�
� 4�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M;yðx; yhÞN ;yðx; yhÞ
q ðE ��hJ Þ

�
; (24)

which results in the expected temperature of the rotating
neutral black ring,

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞN ;yðx; yhÞ

q

4�
¼ 1

4�R

1þ �ffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

	ð1þ 	Þ

s
:

(25)

This result is exactly consistent with that in Refs. [23–
25], which, respectively, present the correct Hawking tem-
perature of the rotating neutral black ring by using the so-
called Hamilton-Jacobi method, the anomalous cancella-
tion method, and the original definition of the surface
gravity. Note that the resulting temperature (25) is only
for Dirac particles with spin-up. For the spin-down case,
taking a manner fully analogous to the spin-up case will
produce the same result, which means both spin-up and
spin-down particles are emitted at the same rate. So, such a
treatment does not lose the generality of the fermion
tunneling method. In addition, the tunneling rate (24) is
derived by neglecting the higher terms about E and J , and
the resulting spectrum is purely thermal. If we consider
energy and angular momentum conservation when parti-
cles are tunneling out of the horizon, the higher terms will
be present in the tunneling rate, and the radiation spectrum
is not thermal, and related to the change of Bekenstein-
Hawking entropy, which was discussed a lot in Refs. [10–
12,23]. In the next section, to further verify the validity of
the application of the fermion tunneling method to black
rings, we additionally take dipole and charged black rings
as examples to discuss the Hawking radiation of Dirac
particles.

III. DIRAC PARTICLE TUNNELING FROM
DIPOLE AND CHARGED BLACK RINGS

In the section, we will discuss Hawking radiation of
Dirac particles via tunneling from dipole and charged
black rings, and we expect to get the correct Hawking
temperatures.

A. Dipole black rings

Dipole black rings share the same action (1) as neutral
black rings, so they physically take many similar character-
istics. The 5-dimensional dipole black ring was first con-
structed in [25]; its metric takes the form

ds2 ¼ �FðyÞ
FðxÞ

�
HðxÞ
HðyÞ

�
N=3

�
dt� Cð�; 	ÞR 1þ y

FðyÞ d 
�
2

þ R2

ðx� yÞ2 FðxÞðHðxÞH2ðyÞÞN=3
�
� GðyÞ
FðyÞHNðyÞd 

2

� dy2

GðyÞ þ
dx2

GðxÞ þ
GðxÞ

FðxÞHNðxÞ d’
2

�
; (26)

where Fð
Þ, Gð
Þ, and Cð�; 	Þ are of the same form as
neutral black rings, andHð
Þ ¼ 1��
 (0 � �< 1). The
dilaton coupling constant is related to the dimensionless
constant N as �2 ¼ ð4N � 4

3Þð0<N � 3Þ. The horizon is

also located at y ¼ yH ¼ �1=�. Taking the limit of� ¼ 0
in Eq. (26), this solution degenerates into neutral black
rings [25]. In suitable limits, dipole black rings also contain
Myers-Perry black holes [27]. The metric (26) takes the
same form as (2), so we can apply the same procedure as in
Sec. II to correctly recover the Hawking temperature of the
dipole black ring. Before that, we take

Mðx; yÞ ¼ FðyÞ
FðxÞ

�
HðxÞ
HðyÞ

�
N=3

�
1� C2ð�; 	Þð1þ yÞ2ðx� yÞ2

F2ðxÞGðyÞ þ C2ð�; 	Þð1þ yÞ2ðx� yÞ2
�
;

N ðx; yÞ ¼ �
�

R2

ðx� yÞ2
FðxÞ
GðyÞ ðHðxÞH2ðyÞÞN=3

��1
; N ðx; yÞ ¼ � Cð�; 	ÞRð1þ yÞFðyÞðx� yÞ2

C2ð�; 	Þðx� yÞ2R2ð1þ yÞ2 þ R2F2ðxÞGðyÞ ;

g  ðx; yÞ ¼ �C2ð�; 	Þðx� yÞ2R2ð1þ yÞ2 þ R2F2ðxÞGðyÞ
FðxÞFðyÞðx� yÞ2

�
HðxÞ
HðyÞ

�
N=3
; gxxðx; yÞ ¼ R2FðxÞ

ðx� yÞ2GðxÞ ðHðxÞH2ðyÞÞN=3;

g’’ðx; yÞ ¼ R2GðxÞ
ðx� yÞ2

ðHðxÞH2ðyÞÞN=3
HNðxÞ ; (27)

which results in the metric (26) taking the same form as
(4). At the horizon, the functions Mðx; yÞ, N ðx; yÞ, and
N ðx; yÞ still satisfy Eq. (5). Now substituting the matrices
�a (7) and the tetrad e

�
a (9) into the covariant Dirac

equation (6) and then adopting the same procedure pre-
sented in Sec. II, one can read out the Hawking tempera-
ture of Dirac particles via tunneling from the dipole black
ring,

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞN ;yðx; yhÞ

q

4�

¼ 1

4�R

�ðN�1Þ=2ð1þ �Þ
ð�þ �ÞN=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

	ð1þ 	Þ

s
: (28)

This result has been identically derived by using the
Hamilton-Jacobi method [23] and the anomalous cancella-
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tion method [24], where particles across the horizon are
only for scalar cases. Note that the dipole black ring
actually contains a gauge field. Here we do not consider
its effect because it is magnetic, and its electric dual
consists of two-form fields that do not couple to point
particles (see Chen and He’s paper in [24]). In the next
subsection, we will further study Hawking radiation of a
rotating black ring with a single electric charge by using
the fermion tunneling method.

B. Charged black rings

In this subsection, we consider Hawking radiation from
black rings with only one electric charge [28]. For black
rings with two or three charges [29], we can take a similar
procedure to get the correct results. The metric of black
rings with a single electric charge can be written in a form
consistent with the neutral and dipole cases as

ds2 ¼ � FðyÞ
FðxÞK2ðx; yÞ

�
dt� Cð�; 	ÞR 1þ y

FðyÞ cosh
2�d 

�
2

þ R2

ðx� yÞ2 FðxÞ
�
�GðyÞ
FðyÞ d 

2 � dy2

GðyÞ þ
dx2

GðxÞ
þGðxÞ
FðxÞ d’

2

�
; (29)

where some tricks are needed to reduce the original metric
of the black ring with a single electric charge to the form of
(29) (refer to Chen and He’s paper in [24]). Here Fð
Þ and
Gð
Þ are defined as before, and Kðx; yÞ ¼ 1þ 	ðx�
yÞsinh2�=FðxÞ, where � is the parameter representing the
electric charge. The metric also has a Killing horizon at
y ¼ yh ¼ �1=�. The dilaton field is e�� ¼ Kðx; yÞ, and
the gauge fields accompanied by the metric are

A t ¼ 	ðx� yÞ sinh� cosh�

FðxÞKðx; yÞ ;

A ¼ Cð�; 	ÞRð1þ yÞ sinh� cosh�

FðxÞKðx; yÞ ;

(30)

with the electric charge Q ¼ 2M sinh2�=ð3ð1þ
4
3 sinh

2�ÞÞ. To do an explicit computation of Hawking

radiation of the black ring, we first introduce the following
substitution:

M ðx; yÞ ¼ FðyÞ
FðxÞK2ðx; yÞ

�
1� C2ð�; 	Þð1þ yÞ2ðx� yÞ2cosh4�

F2ðxÞGðyÞK2ðx; yÞ þ C2ð�; 	Þð1þ yÞ2ðx� yÞ2cosh4�
�
;

N ðx; yÞ ¼ �
�

R2

ðx� yÞ2
FðxÞ
GðyÞ

��1
; N ðx; yÞ ¼ � Cð�; 	ÞRð1þ yÞFðyÞðx� yÞ2cosh2�

C2ð�; 	Þðx� yÞ2R2ð1þ yÞ2cosh4�þ R2F2ðxÞGðyÞK2ðx; yÞ ;

g  ðx; yÞ ¼ �C2ð�; 	Þðx� yÞ2R2ð1þ yÞ2cosh4�þ R2F2ðxÞGðyÞK2ðx; yÞ
FðxÞFðyÞðx� yÞ2K2ðx; yÞ ;

gxxðx; yÞ ¼ R2FðxÞ
ðx� yÞ2GðxÞ ; g’’ðx; yÞ ¼ R2GðxÞ

ðx� yÞ2 ;

(31)

where at the event horizonMðx; yÞ,N ðx; yÞ, and N ðx; yÞ
take the values in Eq. (5). Now the metric (29) has the same
form as (4). In the spacetime, gauge fields (30) couple to
Dirac particles, so we should introduce the following co-
variant Dirac equation:

i�ae
�
a

�
D� þ ie

@
A�

�
��m

@
� ¼ 0: (32)

Taking the same matrices �a and tetrad fields e
�
a as those in

Eqs. (7) and (9) for the black ring, employing the ansatz
(10) for the spin-up Dirac particles, and then expanding the
resulting equation near the horizon yields

B

� �Eþ�hJ þ e�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞðy� yhÞ

q þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ;yðx; yhÞðy� yhÞ

q
@yW ðx; yÞ

�

þA

�
m� Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g’’ðx; yhÞ
q

�
¼ 0; (33)

B

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gxxðx; yhÞ
p @xW ðx; yÞ

þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g  ðx; yhÞ

q ðJ þA ðx; yhÞÞ
�
¼ 0; (34)
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A

� �Eþ�hJ þ e�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞðy� yhÞ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ;yðx; yhÞðy� yhÞ

q
@yW ðx; yÞ

�

�B

�
mþ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g’’ðx; yhÞ
q

�
¼ 0; (35)

A

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gxxðx; yhÞ
p @xW ðx; yÞ

þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g  ðx; yhÞ

q ðJ þA ðx; yhÞÞ
�
¼ 0; (36)

where �h ¼ Atðx; yhÞ þ�hA ðx; yhÞ is the electric
chemical potential at the horizon and �h is the angular
velocity at the horizon. Carrying out a similar analysis of
the neutral black ring, we easily find the tunneling rate of
charged Dirac particles across the horizon of the charged
black ring taking the form as

� ¼ exp

�
� 4�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M;yðx; yhÞN ;yðx; yhÞ
q ðE ��hJ � e�hÞ

�
:

(37)

The Hawking temperature of the charged black ring is then
given by

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M;yðx; yhÞN ;yðx; yhÞ

q

4�

¼ 1

4�Rcosh2�

1þ �ffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

	ð1þ 	Þ

s
: (38)

This result is exactly consistent with the Hawking tem-
perature derived by canceling gauge and gravitational
anomalies at the horizon of the charged black ring (see
Chen and He’s paper in [24]). Here to reduce the higher
dimensional theory to the effective 2-dimensional theory, a
dimensional reduction technique is carried out by using the
scalar field near the horizon of the charged black ring. So,
the resulting Hawking temperature is only for scalar parti-
cles across the horizon. Now we can also conclude that
scalar and Dirac particles can tunnel across the horizon of
black rings at the same Hawking temperature.

IV. CONCLUSIONS AND DISCUSSIONS

Hawking radiation of scalar particles across black holes
or black rings has been discussed a lot via different meth-
ods, such as the recently discussed tunneling method and
the anomalous cancellation method, etc. Hawking radia-
tion of Dirac particles across 3- or 4-dimensional black
holes has also been presented in recent papers via the
fermion tunneling method. In this paper, choosing a set
of appropriate matrices �� for the 5-dimensional neutral,
dipole, and charged black rings, we successfully recover
Hawking temperatures of these black rings via the fermion
tunneling method.
The fermion tunneling method has already been success-

fully applied to derive Hawking radiation of Dirac particles
across stationary back holes [16,17,19–21] and black rings
(as shown in this paper). For a nonstationary black hole,
although [18] has discussed fermion tunneling from
Bardeen-Vaidya and cosmological black holes, there is
no coupling effect between the spin of Dirac particles
and the angular momentum of the black hole in the tunnel-
ing rate. This is because the involved nonstationary black
holes in [18] are of spherical symmetry and have no
angular momentum. So we expect that when Dirac parti-
cles are tunneling from nonstationary black holes with one
or more angular momentum, the spin coupling effect
should be present. This is our next task. In addition, note
that choosing a set of appropriate matrices �� is an im-
portant technique for the fermion tunneling method; other-
wise, we cannot correctly recover the Hawking
temperature that we expected. Finally, it is necessary to
say that, in Secs. II and III, we only considered the case of
Dirac particles with spin-up. In fact, adopting a similar
procedure, we will find the same result for Dirac particles
with spin-down. This means that both spin-up and spin-
down Dirac particles tunnel across the horizon at the same
Hawking temperature [20], and such handling does not
result in loss of generality.
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