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A relation between stress-energy and motion is derived for accelerated Israel layers. The relation, for

layers between two Schwarzschild manifolds, generalizes the equation of state for geodesic collapse. A set

of linked layers is discussed.
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I. INTRODUCTION

Equations of state and boundary matching are two im-
portant tools for developing exact solutions of Einstein’s
field equations. As models have become more physical, the
requirements of strict boundary matching have been re-
laxed by joining two exact solutions across a boundary
layer, matching their metrics on the layer but allowing
jumps in the derivative structure. The Israel junction con-
ditions [1] are often used to make the broader matching and
are widely applied because they provide a simple dynamic
boundary description for a variety of scenarios ranging
from thin shell descriptions [2–5], to shell applications
like bubbles [6–10], walls [11–13], gravastars [14–18],
and extensions of general relativity like dilatons [19] or
Gauss-Bonnet gravity [20,21]. Since their introduction,
Israel layers [1,22] have played an increasingly important
role in gravitational physics. Barrabes and Israel [22]
began their paper with a description of the Israel layer as
a thermodynamic phase boundary, but the initial applica-
tions of Israel layers considered metric matching in dy-
namic collapse processes involving dust shells, null shells,
and cosmic string loops [1,22]. Poisson [23] has summa-
rized some of the early seminal work [1,22,24,25]. As our
knowledge of the variety of astrophysical objects and their
dynamic processes has expanded, Israel layers have be-
come physically interesting in their own right and the
questions that have been investigated for large scale
three-dimensional mass distributions are now being asked
about Israel layers [26–30].

In this paper we investigate the relation between a
layer’s equation of state and its motion. An equation of
state for a layer dropping from rest at infinity on an exterior
Schwarzschild geodesic has been formulated [31], and can
be generalized to include accelerated motions. We develop
the extension and apply it to static and dynamic examples.
The motion input to the geodesic extension is a single
function. In the next section we briefly review the thin
shell formalism used in the rest of the paper and give the
geodesic extension. The applications of the extension are
in Sec. III. Many of the applications use a layer with a
linear equation of state (L-layer), P ¼ a�. The description
of an L-layer has been included in Appendix B. The
accelerated extension singles out several special a values,

a ¼ ð�1=2;�1=4; 0Þ. We show that the a ¼ �1=4 L-layer
is simply related to a geodesic layer. A set of linked
L-layers is described and the other two special a values
are shown to be boundaries for the linked layers.

II. THIN SHELL DESCRIPTION

We consider an Israel layer as a thin shell � between
two Schwarzschild manifolds with exterior mass param-
eter m0 and interior mass parameter M. The spacetime
consists of the two manifolds which join across surface
� (þ =� denotes exterior/interior).

g�abdx
adxb ¼ �ðf�Þdt2 þ ð1=f�Þdr2 þ r2d�2; (1a)

fþ ¼ 1� 2m0=R; f� ¼ 1� 2M=R; (1b)

ds2� ¼ �d�2 þ R2ð�Þd�2: (1c)

The layer is tracked by two observers comoving with the
layer. The observers use r ¼ Rð�Þ and T� ¼ T�ð�Þ to
describe the layers. With this parametrization and with
overdots denoting d=d�, the observers’ velocities and as-
sociated normal vectors are

Ui� ¼ ð _T�; _R; 0; 0Þ; i ¼ t; r; #; ’ (2)

ni� ¼ ð� _R; _T�; 0; 0Þ: (3)

Velocity normalization g�ijUi�U
j
� ¼ �1 implies

ðf�Þ2 _T2� ¼ _R2 þ f�. The jump in f�, _T�, is an important
input to layer motion, and we define

� ¼ �þ � �� (4)

�� ¼ f� _T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ f�

q
: (5)

A. Matter content

The layer has stress-energy content

Sij :¼ �UiUj þ Pðgij þUiUjÞ (6)

with density � and stress P (� P is tension). The stress-
energy content of layers depends on the bounding metrics
and the layer motion. From the Israel conditions [23] we
have
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4�� ¼ ��=R; (7)

8�P ¼ �=Rþ _�= _R; (8)

with the layer mass mL defined by

mL ¼ 4�R2�: (9)

B. Layer motion

Motion parameters _R2 and €R are both important inputs to
the stress-energy structure of the layer,

_R 2 ¼
�
�

2

�
2 þ

�
m0 �M

R�

�
2 þm0 þM

R
� 1; (10)

€R ¼
_�
_R

�
�

4
� ðm0 �MÞ2

�3R2

�
�m0 þM

2R2
� ðm0 �MÞ2

�2R3
:

(11)

The radial components of the 4-accelerations of observers
comoving with the layer (Appendix A) are

_U r� ¼ €Rþ ð1� f�Þ=ð2RÞ: (12)

The radial accelerations are related to a stress-energy sum

4�ð�þ 2PÞ ¼
_�
_R

¼ _Urþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2 � 2m0=R

q � _Ur�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2 � 2M=R

p :

(13)

These relations provide insight about the role of jumps in
the observer accelerations and velocities in defining the
stress energy. It is clear that the stress-energy structure of
the layer and its motion are related so that different as-
sumptions about the motion will produce different equa-
tions of state or, inversely, that an imposed equation of state
will determine the layer motions.

C. The geodesic generalization

A layer starting from rest at infinity and collapsing along
a geodesic in the exterior spacetime has motion parameters

_Rg ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0=R

q
; (14a)

€Rg ¼ �m0=R
2; (14b)

Rgð�Þ ¼ ð2m0Þ1=3½ð3=2Þðc1 � �Þ�2=3: (14c)

The equation of state for the geodesic layer [31] is

�ð1þ 4P=�Þ3 ¼ ð2P=�Þ2 ð1þ 2P=�Þ
�ðm0 �MÞ : (15)

This geodesic equation of state is the limit (� ! 0, A ! 0Þ
of a layer with exterior motion parameters

� ¼ _R2 � 2m0

R
; (16)

A ¼ _Urþ ¼ €Rþm0

R2
; (17)

where A is the radial 4-acceleration of the exterior comov-
ing observer and 1þ � ¼ �2þ. A and � are related by A ¼
_�=ð2 _RÞ. With these parameters, Eq. (13) can be written as

4�ð�þ 2PÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p � Aþ ðM�m0Þ=Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ 2ðm0 �MÞ=Rp :

(18)

In this equation, the motion parameters R, A, and � require
several separate choices to set integration constants. The
stress-energy-motion relation (Appendix C) involving a
single motion function F :¼ AR=ð1þ �Þ is
��ðm0 �MÞð1þ 4P=�Þ3 ¼ ð1þ �Þ3=2ðF� 2P=�Þ2

� ð1þ Fþ 2P=�Þ: (19)

This is the generalization of the geodesic equation of state.
For m0 ¼ M there is no layer and the motion is described
by _RA ¼ 0, � ¼ const. In developing applications of this
equation, one notes that two key inputs are either the ratio
P=� or the value of F. Choosing a static layer ( _R ¼ 0, €R ¼
0) sets the value of F and a general equation of state results.
Choosing P=� selects the motion; for example, the equa-
tions of state P=� ¼ ð�1=4;�1=2; 0Þ are all simplifying
special values for the relation. In the next section we will
examine all three values. We begin with dynamic layers
and consider static layers as a second example.

III. APPLICATION TO NONGEODESIC LAYER
MOTION

A. Dynamic layers: P ¼ �ð1=4Þ�
P ¼ a� ¼ �ð1=4Þ� is singled out by the generalized

stress-energy-motion relation. From Eq. (19), for this equa-
tion of state, one has

F ¼ AR

1þ �
¼ �1=2: (20)

This can be integrated for 1þ � giving

1þ � ¼ C0

R
(21)

withC0 an integration constant. Using the motion function,
A is

A ¼ � C0

2R2
¼ C0

2m0

€Rg: (22)

Layers that have a radial 4-acceleration linearly related to
the geodesic €Rg value will have the P ¼ ��=4 equation of

state. They are L-layers with tension. In the section on
static layers, we will see that a ¼ �1=4 is an excluded
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value for static L-layers. We will also see that a ¼ �1=4 is
an important boundary point for some of them. Note that
there are moving L-layers with tension.

B. Linked dynamic layers

Because of its simplicity, the linear equation of state is
often used in discussing thin shells [6,13,32]. For L-layers
(Appendix B)

� ¼ �caR
�ð1þ2aÞ:

For this �, the motion of the layer is described by Eq. (10)

_R 2 ¼ c2aR
�2ð1þ2aÞ

4
þ ðm0 �MÞ2

c2aR
�4a

þm0 þM

R
� 1: (23)

There is an interesting symmetry in this equation. Over the
positive a range, a ¼ ap, 0 � ap � 1, Eq. (23) describes

the motion. For a ¼ �an, 0 � an � 1, the motion is de-
scribed by

_R 2 ¼ c2aR
�2ð1�2anÞ

4
þ ðm0 �MÞ2

c2aR
4an

þm0 þM

R
� 1: (24)

The substitutions

an ¼ ap þ 1=2; c2an ¼ 4ðm0 �MÞ2=c2ap ; (25)

map these two motion equations into each other. The a
range over which a layer with tension is linked to a layer
with pressure is

1=2 � an � 1 0 � ap � 1=2: (26)

For each negative a ¼ �an in this range, there is a layer
with tension which has the same motion as a layer with
pressure and positive a ¼ ap. The linked layers have the

same _R and €R. ap ¼ 0 and an ¼ 1=2 are the lowest a

values for linked pressure/tension shells and are two of
the values which simplify Eq. (19). For these two values we
have

a ¼ 0: �ðm0 �MÞ�a¼0 ¼ ð1þ �Þ3=2F2ð1þ FÞ (27)

a ¼ �1=2: �ðm0 �MÞ�a¼�1=2

¼ �ð1þ �Þ3=2ðFþ 1Þ2ðFÞ: (28)

The motion functions are

a ¼ 0: F ¼ � c20
R½c20 � 2Rðm0 �MÞ� ;

a ¼ �1=2: F ¼ � 2ðm0 �MÞ
R½2ðm0 �MÞ � Rc2�1=2�

;

and are identical under the linkage. The matter content of
the two layers is different. From Eqs. (27) and (28) we have

�a¼0

�a¼�1=2
¼ � F

1þ F
:

For m0 ¼ M, we would expect no layer to exist and a ¼
�1=2 describes Schwarzschild vacuum.
A missing part of the a range for linked pressure/tension

shells is �1=2< a< 0. There are linked L-layers in this
region but the linked layers both have tension. This linkage
is centered around a ¼ �1=4, one of the special values for
the geodesic extension, describing layers whose radial 4-
accelerations are linearly related to €Rg. Consider two

negative a values, an1 and an2 in the ranges

1=2< an1 � 1=4 1=4 � an2 < 0: (29)

As might be expected from the pressure/tension linking
relations, the relations for these layers are

an1 ¼ �an2 þ 1=2 (30)

c2an1
¼ 4ðm0 �MÞ2=c2an2 : (31)

When a ¼ �1=4, then an1 and an2 coincide.

C. Static layers

Static layers with _R ¼ 0, €R ¼ 0 have motion parameters

�s ¼ �2m0=Rs; As ¼ m0=R
2
s ; (32)

and are, in some sense, the negatives of the geodesic layer
with �s ¼ � _R2

g, As ¼ � €Rg. Using Eqs. (8) and (19) we

have

4P=� ¼ �1þ 1

1� 2M=Rs � 4�Rs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=Rs

p :

(33)

For M ¼ 0 this is the stress-energy-radius relation for
static layers given by Khourami and Mansouri [3], with
their stress and density related to P and � by Pkm ¼ 8�P,
�km ¼ 8��

P ¼ �Rs�
2

1� 4�Rs�
: (34)

This relation is particularly interesting when compared
with the classical van der Waals form for three-
dimensional fluids

P ¼ nRT

V � nb
� a

�
n

V

�
2

with n the number of moles, volume V, gas constant R, and
temperature T. a and b are constants. The denominator of
the first term corrects for a minimum volume available to
the fluid constituents. This can be attributed to a finite size
of the particle constituents or to the existence of a repulsive
core in constituent interactions. The second term accounts
for an attractive long range attraction between constituents
which reduces the stress. For low densities (n=V) the
equation of state describes a perfect fluid, PV ¼ nRT.
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The numerator of Eq. (34) could imply that, for
�Rs� � 1, an Israel layer is a first order polytrope. The
current relativistic polytrope assumes a linear low density
equation of state [33]. The part of the classical
van der Waals equation describing long range interaction
is missing from Eq. (34) but the denominator suggests,
as in the classical equation, there is either a minimum
or a zero. The existence of a minimum value could be
related to the existence of a repulsive core in the interaction
potential between allowed layer constituents. Detailed
models of this possibility will be discussed elsewhere.
Equation (34) also suggests that there are static shells
with tension and pressure with the zero denominator re-
lated to the boundary between the two kinds of stress. At
the zero value the Israel � can be found from the density

4�Rs� ¼ 1; � ¼ �1:

_R ¼ 0 is one of the static shell conditions. From the
definition of �, Eq. (4), we have for an M ¼ 0 static shell

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m0

R

s
� 1:

We see that there are no static shells outside the horizon
corresponding to � ¼ �1. The boundary between the
static linked layers is not static.

The static shell boundaries can be explored using M ¼
0, L-shells as an example. For static L-shells the Israel
radius value is (Appendix B)

Rs ¼ m0

ð4aþ 1Þ2
4að1þ 2aÞ

and the range for physical static radii is �1 � a < 1=2,
0< a � 1. There are linked static shells with tension and
pressure, just as in the dynamic case. For each Rs in the
range 0< a � 1=2, there is an identical radius in the range
�1 � a <�1=2: For example, a ¼ 1=2 and a ¼ �1 have
the same static radius Rs ¼ 9

4m0, as suggested by the link-

ing relation an ¼ ap þ 1=2. The range for static shells

excludes the points a ¼ �1=2 and a ¼ 0. These points
are the moving boundaries of the static layer region. The
boundary between the pressure/tension linked M ¼ 0
static L-layers is a moving layer that is not the dust layer
one might have expected, but the layer linked to dust.

The M � 0 static relation is less easy to interpret in a
van der Waals sense, since the size of the interior mass M
becomes an important parameter

P ¼ �Rs�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M=Rs

p � 4�Rs�

þ M�=2

Rs � 2M� 4�Rs�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rs � 2M

p : (35)

For 4�Rs� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=Rs

p
the equation of state becomes

approximately linear

P � 2M

Rs � 2M
� (36)

and a mixed equation of state results as the effect of M
increases.

IV. CONCLUSION

A general stress-energy-motion relation was derived for
Israel layers between Schwarzschild manifolds. The equa-
tion generalizes the equation of state for layers dropping on
exterior Schwarzschild geodesics. It was used to discuss
the relation between motion and equation of state. The
motion input is a single function of the exterior comoving
observer acceleration and velocity. Using the relation, the
motion of a layer with equation of state P ¼ ��=4 was
shown to be linearly related to geodesic motion.
A set of linked L-layers with a common motion was

described over the parameter range�1 � a � �1=2, 0 �
a � 1=2. In the linked range, each layer with pressure has a
partner layer with tension. There is also a set of linked
shells, both with tension in the range�1=2< a< 0. These
layers coincide for P ¼ ��=4. There are layers in the
range 1=2< a � 1 but they are not linked to physical
layers with tension. Positive a values in this range are
linked to negative values larger than 1. Because the motion
of the linked shells is the same, their motion functions
agree and the new relation can be used to compare den-
sities and pressures.
The stress energy in the Israel formalism is described by

two observers comoving with the layer. As pointed out by
Ipser and Skivie [11,12], the existence of static layers with
tension is related to the accelerations of the comoving
observers. For a static layer, the two observers are hovering
over the layer but must accelerate in order to remain static
with respect to the layer. For L-layers, the radially pro-
jected 4-accelerations given in Eq. (13) are related to the
size of state parameter a

nrþ _Urþ � nr� _Ur� ¼ 4��ð1þ 2aÞ: (37)

This can be used to interpret the relative sizes of _Ur needed
for the two hovering observers. For the M ¼ 0 case, the
interior observer is not accelerated at all and this equation
describes whether the projected 4-acceleration needed by
the exterior Schwarzschild observer points inward or out-
ward. For�1=2< a the observer needs to accelerate away
from the layer, counteracting the gravitational attraction of
the layer and for a <�1=2, the region where there are
static shells with tension, the observer has to accelerate
toward the layer. The repelling nature of layers with ten-
sion has also been discussed by Vilenkin [34].
The applications focused mainly on L-layers because the

P=� structure of the geodesic extension makes this a
simple example to develop with clarity. There are many
interesting questions yet to be studied. Other equations of
state easily could be investigated, for example, a dynamic
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first order polytrope with P ¼ K�2 would have a density

�ð1þ 4K�Þ3 ¼ ð1þ �Þ3=2ðF� 2K�Þ2
�
1þ Fþ 2K�

�ðm0 �MÞ
�
:

Using this equation, the suggestion that low density static
shells are first order polytropes could be explored for
dynamic shells. The general stress-energy-motion equation
has been developed for Schwarzschild but could be a useful
tool in understanding layers bounding other metrics. The
layer linkage discussed here depends on the radial structure
of � in Schwarzschild L-layers. The idea of linkages for
L-layers bounding other metrics in a variety of dimensions
may have broad applications.

APPENDIX A: OBSERVER ACCELERATION

The layer is tracked by two observers comoving with the
layer who agree on the layer metric. The radial 4-
accelerations of these observers are computed from the
4-acceleration

Ai ¼ UaraU
i ¼ Ua@aU

i þ �i
abU

aUb: (A1)

Using

d _R

d�
¼ @ _R

@t

@t

@�
þ @ _R

@r

@r

@�
¼ @ _R

@t
_T þ @ _R

@r
_R

one finds

Ar ¼ d _R

d�
þ

�
m0

R2
f

�
ð _TÞ2 �

�
m0

R2
ð1=fÞ

�
ð _RÞ2: (A2)

The velocity normalization is

f _T2 ¼ _R2=fþ 1:

For the exterior observer we have

Ar ¼ €Rþm0

R2
: (A3)

Thus, in general

_U r� ¼ €Rþ ð1� f�Þ=ð2RÞ: (A4)

APPENDIX B: P ¼ a�

1. General motions

Because of its simplicity, the linear equation of state is
often used with the field equations and it is frequently used

in discussing thin shells [6,13,32]. For layers with P ¼ a�,
we have

_�

�
¼ �ð1þ 2aÞ _R

R
: (B1)

If a is a constant we have

� ¼ �caR
�ð1þ2aÞ 4�Pa ¼ acaR

�2ð1þaÞ

4��a ¼ caR
�2ð1þaÞ mLa

¼ caR
�2a:

(B2)

ca carries an a index because, from a unit standpoint, it will
have to vary with the value of a. The motion of the layer is
described by

_R 2 ¼
�
�

2

�
2 þ

�
m0 �M

R�

�
2 þm0 þM

R
� 1

¼ c2a

4R2ð1þ2aÞ þ
ðm0 �MÞ2R4a

c2a
þm0 þM

R
� 1 (B3)

€R ¼ � c2að1þ 2aÞ
4R3þ4a

þ 2aðm0 �MÞ2R4a�1

c2a
�m0 þM

2R2
:

(B4)

The points _R ¼ 0 provide an equation for ca

2R1þ4a
0 ½R0 �m0 �M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � 2R0ðm0 þMÞ þ 4m0M

q
�

¼ c2a: (B5)

Not all values of a will correspond to a static layer with
both _R ¼ 0 and €R ¼ 0. Where there is a static layer, the
constant ca can be evaluated in terms of the equation of
state parameter a.

2. Static layer

The static points Rs follow from €Rs ¼ 0, _Rs ¼ 0. This
identifies R0 with Rs. Using Eqs. (B4) and (B5), one finds

ð1þ 2aÞc4aR�4ð1þ2aÞ
s � 8aðm0 �MÞ2

R2
s

þ 2ðm0 þMÞc2aR�2ð1þ2aÞ
s

Rs

¼ 0: (B6)

The parameter values a ¼ 0, a ¼ �1=2 have no solutions.
The static radius in terms of ca is

R1þ4a
s ¼ �ð1þ 2aÞc2a

ðm0 þMÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm0 þMÞ2 þ 8að1þ 2aÞðm0 �MÞ2p : (B7)

Using Eq. (B5) for ca, the static layer radius is
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Rs ¼ ðm0 þMÞð1þ 4aÞ2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm0 þMÞ2ð1þ 4aÞ4 � 32am0Mð1þ 2aÞð1þ 4aÞ2p
8að1þ 2aÞ : (B8)

For M ¼ 0 the layer description is especially simple and
we have

Rs ¼ m0

ð4aþ 1Þ2
4að1þ 2aÞ c2a ¼ R1þ4a

s

4am0

1þ 2a
(B9)

4��a ¼ 1

m0

ð4aÞ2ð1þ 2aÞ
ð4aþ 1Þ3

4�Pa ¼ 1

m0

16a3ð1þ 2aÞ
ð4aþ 1Þ3

mLa
¼ m0

1þ 4a

ð1þ 2aÞ

(B10)

over the a range

� 1 � a <�1=2 0< a � 1:

It is clear that there are static shells with tension as well as
with pressure.

APPENDIX C: DERIVATION OF GEODESIC
EXTENSION

The extension is developed in terms of A and �, which
are zero for exterior geodesic motion

A ¼ €Rþm0=R
2 (C1)

� ¼ _R2 � 2m0=R: (C2)

The Israel formalism gives the stress and density in terms
of a function �,

8�P ¼ �=Rþ _�= _R; 4�� ¼ ��=R;

with

�þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2 � 2m0=R

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p

(C3a)

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2 � 2M=R

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �þ 2

m0 �M

R

s
(C3b)

� ¼ �þ � ��: (C3c)

Calculating the derivatives with respect to � we have

_�þ ¼ _Rð €Rþm0=R
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _R2 � 2m0=R
q ¼ _RA

�þ
(C4)

_�� ¼ _Rð €RþM=R2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2 � 2M=R

p ¼ _RðAþM=R2 �m0=R
2Þ

��
:

(C5)

There are several useful relations. Using Eq. (C4) and (C5)
one finds

�2þ � �2� ¼ 2
M�m0

R
(C6)

and using this, the density of the layer is

4�� ¼ ð�þ � ��Þð�2þ � �2�Þ
2ðm0 �MÞ : (C7)

A pressure-density relation can also be found

8�PR ¼ �4��Rþ RA

�þ
�

�
AþM�m0

R2

�
R

��
;

8�PRþ 4��R ¼ RAð�� � �þÞ
���þ

�M�m0

R��
;

8�PRþ 4��R ¼ RAð�� � �þÞ
���þ

� �2þ � �2�
2��

;

8�PRþ 4��R ¼ RAð4��RÞ
���þ

þ ð�þ þ ��Þ4��R
2��

;

2P=�þ 1=2 ¼ AR

���þ
þ �þ

2��
;

ð4P=�þ 1Þ�� ¼ 2AR

�þ
þ �þ: (C8)

A useful relation is

�
4
P

�
þ 1

�
��
�þ

¼ 2AR

1þ �
þ 1; (C9)

with

��
�þ

þ 1 ¼ 2AR=ð1þ �Þ þ 2þ 4P=�

ð4P=�þ 1Þ ; (C10a)

��
�þ

� 1 ¼ 2AR=ð1þ �Þ � 4P=�

ð4P=�þ 1Þ : (C10b)

Using these, substituting into Eq. (C8), the general exten-
sion of the geodesic equation of state follows

�ðm0 �MÞ�
�
4
P

�
þ 1

�
3 ¼ ð1þ �Þ3=2½F� 2P=��2

� ½Fþ 1þ 2P=��: (C11)

For A ¼ � ¼ 0, this becomes the geodesic equation of
state.
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