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We derive a general equation relating the gravitational-wave observables r and �
gw
0 ðfÞ; or the

observables �gw
0 ðf1Þ and �gw

0 ðf2Þ. Here, r is the so-called ‘‘tensor-to-scalar ratio,’’ which is constrained

by cosmic-microwave-background experiments; and �
gw
0 ðfÞ is the energy spectrum of primordial

gravitational waves, which is constrained, e.g., by pulsar-timing measurements, laser-interferometer

experiments, and the standard big bang nucleosynthesis bound. Differentiating this equation yields a

new expression for the tilt d ln�
gw
0 ðfÞ=d lnf of the present-day gravitational-wave spectrum. The

relationship between r and �
gw
0 ðfÞ depends sensitively on the uncertain physics of the early universe,

and we show that this uncertainty may be encapsulated (in a model-independent way) by two quantities:

ŵðfÞ and n̂tðfÞ, where n̂tðfÞ is a certain logarithmic average over ntðkÞ (the primordial tensor spectral

index); and ŵðfÞ is a certain logarithmic average over ~wðaÞ (the effective equation-of-state parameter in

the early universe, after horizon re-entry). Here, the effective equation-of-state parameter ~wðaÞ is a

combination of the ordinary equation-of-state parameter wðaÞ and the bulk viscosity �ðaÞ. Thus, by
comparing observational constraints on r and �

gw
0 ðfÞ, one obtains (remarkably tight) constraints in the

fŵðfÞ; n̂tðfÞg plane. In particular, this is the best way to constrain (or detect) the presence of a stiff energy

component (with w> 1=3) in the early universe, prior to big bang nucleosynthesis. (The discovery of such

a component would be no more surprising than the discovery of a tiny cosmological constant at late

times!) Finally, although most of our analysis does not assume inflation, we point out that if cosmic-

microwave-background experiments detect a nonzero value for r, then we will immediately obtain (as a

free by-product) a new upper bound ŵ & 0:55 on the logarithmically averaged effective equation-of-state

parameter during the ‘‘primordial dark age’’ between the end of inflation and the start of big bang

nucleosynthesis.
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I. INTRODUCTION

A variety of different experiments (some already oper-
ating, others in various stages of development) are hoping
to detect gravitational waves (tensor perturbations) from
the early universe. In particular, at long wavelengths,
cosmic-microwave-background (CMB) experiments [1–
13] will measure (or tightly constrain) the so-called
tensor-to-scalar ratio r by searching for its characteristic
‘‘B mode’’ imprint in the CMB polarization anisotropy
[14–16]. And on shorter wavelengths, various tech-
niques—including pulsar-timing (PT) [17–19] and laser-
interferometer (LI) experiments [20–26]—will measure or
constrain the present-day gravitational-wave energy spec-
trum �

gw
0 ðfÞ.

The coming decade is likely to see exciting progress in
this area. At the lowest frequencies, CMB polarization
experiments will either detect gravitational waves from
inflation [27–36], or else rule out the simplest (and argu-
ably the most compelling) inflationary models [36]. At
intermediate frequencies, pulsar timing arrays [18,19]
will reach far beyond the gravitational-wave sensitivity

of individual pulsars. And at high frequencies, the sensi-
tivity of ground-based gravitational-wave detectors (and
also the space-based mission LISA, if it is launched) will
surpass the so-called ‘‘standard big bang nucleosynthesis
(sBBN) bound’’ by several orders of magnitude, and thus
place genuinely new constraints on the primordial
gravitational-wave signal at high frequencies.
Since primordial gravitational waves provide a rare and

precious window onto the extremely high-energy physics
of the infant universe, it is essential to think carefully about
the information that they carry.
In this paper we derive Eq. (1) relating the long-

wavelength observable r to the short-wavelength observ-
able �gw

0 ðfÞ, under rather minimal and general assump-

tions about the highly uncertain physics of the early
universe. The key point about this equation is that all of
the early-universe uncertainty is neatly and precisely ab-
sorbed into four parameters fŵ; n̂t; C2; C3g, each of which
has a distinct physical meaning and is defined below.
Furthermore, the relationship between r and �gw

0 is much

more sensitive to ŵ and n̂t than to C2 and C3, so that
observational constraints on r and �gw

0 are most naturally
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and model-independently interpreted as constraints on the
early-universe quantities ŵ and n̂t. We proceed to derive
the constraints on ŵ and n̂t that follow from various
possible combinations of present and future gravitational
wave constraints. For example: if CMB experiments suc-
ceed in detecting a nonzero value for r, then (by combining
with sBBN) we can immediately infer a nontrivial con-
straint in the fŵ; n̂tg plane, as shown in Fig. 5. By con-
straining ŵ in this way, gravitational waves may provide
the best means of constraining (or detecting) a primordial
energy component with an unexpectedly ‘‘stiff’’ equation
of state w> 1=3.

The two quantities ŵ and n̂t are defined by Eqs. (7)–(9),
and explained in detail in Sec. III. For now, let us briefly
discuss their physical meaning: n̂tðfÞ is the logarithmic
average (over a certain range of comoving wave number k)
of the primordial tensor spectral index ntðkÞ; and ŵðfÞ is
the logarithmic average (over a certain range of the cos-
mological scale factor a) of the effective equation-of-state
parameter ~wðaÞ in the early universe (after horizon re-
entry). Here, the effective equation-of-state parameter
~wðaÞ is a combination of the ordinary equation-of-state
parameter wðaÞ and the bulk viscosity �ðaÞ: see Eq. (8).

A key advantage of our current formulation in general
(and of the variables ŵðfÞ and n̂tðfÞ, in particular) is that
wðaÞ, �ðaÞ, and ntðkÞmay be arbitrary functions of a and k,
respectively. So, in particular, we will not takew or nt to be
constant (or piecewise constant), as is often assumed in
analytical treatments of primordial gravitational waves.
When deriving Eq. (1), the quantities ŵðfÞ and n̂tðfÞ
naturally arise as the most direct and general encapsulation
of the uncertain early-universe physics that enters into the
relationship between r and �

gw
0 ðfÞ.

As an application, we will stress that comparison of r
and �gw

0 ðfÞ provides the most powerful way to constrain

the equation-of-state parameter wðaÞ during the ‘‘primor-
dial dark age.’’ Here, we use the phrase primordial dark age
to refer to the epoch separating the end of inflation from the
start of big bang nucleosynthesis (BBN). Note that, on a
logarithmic scale, this primordial dark age spans a large
fraction of cosmic history: the energy scale of BBN is
�10�3 GeV, while the energy scale at the end of inflation
may exceed 1016 GeV. And yet, although there is a stan-
dard theoretical picture of how the Universe behaves dur-
ing this early epoch, we currently have essentially no direct
observational constraints.

In fact, there are several reasons to be nervous about one
of the key (implicit) assumptions in the standard picture of
the primordial dark age: namely, the assumption that the
equation-of-state satisfies w � 1=3. The first reason to
worry is rather general: since the energy density of a

cosmological matter component scales as � / a�3ð1þwÞ,
components with lower w dilute more slowly. Thus, just
as an exotic component with w sufficiently low will tend to
dominate the cosmic energy budget at sufficiently late

times (think of ‘‘dark energy’’ with w<�1=3), an exotic
component with w sufficiently high (call it ‘‘stiff energy’’
with w>þ1=3) will tend to dominate the cosmic energy
budget at sufficiently early times (see Fig. 1). Indeed, as we
look backward past BBN, the primordial dark age provides
a huge window in which a stiff energy component might
overtake radiation as the dominant component in the cos-
mic energy budget, without coming into conflict with any
current observational constraints. It is also worth noting
that there are perfectly sensible energy components with
w> 1=3, which might be present in the early universe. For
example, a homogeneous scalar field �ðtÞ with vanishing
(or negligible) potential energy Vð�Þ ¼ 0 has w ¼ 1; and,
in fact, supergravity and string theory seem to naturally
predict many (embarrassingly many!) scalar moduli fields
with precisely this property. Furthermore, various authors
[37–47] have considered inflation models in which the
inflaton field itself experiences a period of free (w ¼ 1)
evolution at the end of inflation; or some other equation of
state stiffer than radiation [48–53].
‘‘Stiff (w> 1=3) energy’’ in the early universe may

seem like an exotic possibility. But would the discovery
of ‘‘stiff energy’’ at early times be any more surprising than
our apparent discovery of ‘‘dark energy’’ at late times? One
lesson that we have learned from dark matter and dark
energy is that the Universe has an unmistakable penchant
for new and unexpected energy components; and it is
important to check for these components observationally,
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FIG. 1 (color online). How the components of the cosmologi-
cal energy budget scale with cosmological expansion: ‘‘stiff
energy’’ (solid purple line), radiation (long-dashed red line),
matter (dotted blue line), and dark energy (dotted-dashed green
line). Components with higher w tend to dominate at earlier
times. Our universe may be dominated by a ‘‘stiff energy’’
component (with w> 1=3) prior to big bang nucleosynthesis
(but after inflation).
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if possible, rather than simply assuming that they are not
there. Wewill stress that the comparison of constraints on r
and�

gw
0 ðfÞ provides the best means for carrying out such a

check.1

One of the most important results in this paper comes
from considering the relationship between the CMB con-
straint on r and the sBBN constraint on �

gw
0 ðfÞ. If CMB

polarization experiments succeed in detecting a nonzero
value for the primordial tensor-to-scalar ratio r, this will be
widely interpreted as providing evidence for inflation. But
we show that, if these primordial tensor fluctuations are
really generated by inflation, then (in combination with the
current sBBN constraint on �gw

0 ðfÞ), this will also imply

an immediate and important supplementary result: namely,
a remarkably tight bound in the fŵðfÞ; n̂tðfÞg plane. This
bound in the fŵðfÞ; n̂tðfÞg plane is derived in Sec. VII, and
shown in Fig. 5.

If CMB polarization experiments detect a nonzero value
for r, then the bound depicted in Fig. 5 will be a qualita-
tively new piece of model-independent information about
the early universe—which is very exciting, since such
information is notoriously hard to obtain! One way to
look at the bound is as follows: If we assume that the
bulk viscosity �ðaÞ is negligible after inflation, and also
that the primordial tensor power spectrum �2

hðkÞ is nearly
flat (which is a prediction of inflation), then we obtain an
upper bound hwi< 0:55 on the logarithmic average of the
equation-of-state parameter wðaÞ during the primordial
dark age separating the end of inflation from the BBN
epoch.

It is important to clarify the range of validity of our
analysis. When we use �

gw
0 ðfÞ in this paper, we are refer-

ring only to primordial gravitational waves—and, more
specifically, only to those gravitational waves that were
generated well before the corresponding comoving wave-
length ‘‘entered the Hubble horizon’’ (i.e., became shorter
than the instantaneous Hubble length). Apart from this
restriction, the results are quite general, and make no
assumptions about the physical mechanism responsible
for generating the gravitational waves. For example, our
analysis applies to the primordial gravitational-wave spec-
trum generated during inflation; and it applies equally well
to the primordial gravitational-wave spectra generated by
the ‘‘pre-big bang’’ [56,57] and ‘‘cyclic/ekpyrotic’’ [58–
60] alternatives to inflationary cosmology; and, although
all of the previous three examples (inflationary, pre-big
bang, and ekpyrotic/cyclic cosmology) generate primor-
dial gravitational waves through the cosmological ampli-
fication of quantum fluctuations, our analysis would also
apply to models that generate primordial gravitational

waves via some completely different mechanism (as long
as they are generated prior to horizon entry).2 On the other
hand, our analysis does not apply, e.g., to the gravitational-
wave spectrum produced by the incoherent superposition
of signals from merging binary stars [61], or by a hypo-
thetical period of preheating after inflation [62], or by
bubble collisions after a cosmological phase transition
[63]—since all of these production mechanisms result in
gravitational waves that are shorter than the instantaneous
Hubble length at the time when they are generated.
This paper is organized as follows. Sec. II introduces

some notation. In Sec. III, we present and explain Eq. (1),
which relates r and �gw

0 ðfÞ, and will serve as the basis for

most of our analysis. In Sec. IV, we use Eq. (1) to derive
two simple results. The first result is Eq. (15), which
expresses the relationship between �

gw
0 ðf1Þ and

�gw
0 ðf2Þ—that is, two different short-wavelength con-

straints (e.g., from LIGO and LISA) at two different fre-
quencies f1 and f2. The second result is Eq. (19), which
significantly generalizes previous expressions for the tilt
d ln�

gw
0 ðfÞ=d lnk of the present-day energy spectrum of

primordial gravitational waves. In Sec. V, we analyze the
implications of combining CMB constraints on r with LI
and PT constraints on�

gw
0 ðfÞ. The section breaks into four

parts, depending on whether we suppose that CMB and LI/
PTexperiments have detected the gravitational-wave back-
ground, or merely bounded it from above. The results are
summarized in Figs. 2–4. In Sec. VI, we discuss the follow-
ing point: If LI or PT experiments detect an unexpectedly
strong stochastic gravitational-wave signal �

gw
0 ðfÞ, then

there is a rough observational consistency check that this
signal should satisfy, if it is truly of primordial origin. In
Sec. VII, we analyze the constraint in the fŵðfÞ; n̂tðfÞg
plane that follows from combining a CMB detection of r
with the sBBN bound on�gw

0 ðfÞ. As mentioned above, this

constraint is rather strong; and it is also quite insensitive to
the detected value of r: see Fig. 5. Finally, we conclude in
Sec. VIII. Some of the key equations in the text are derived
in appendices: in particular, Eq. (1) is derived in
Appendix A, and Eqs. (12) and (13) are derived in
Appendix B. Appendix C lists a few numbers that are
useful for converting our various algebraic expressions
into numerical results and plots.

II. NOTATION

Throughout this paper, we will often use subscripts to
indicate the time at which a quantity is to be evaluated. For
example, a quantity with subscript ‘‘0’’ is evaluated at the

1It is also worth mentioning that an exotic equation-of-state
parameter w � 1=3 in the early universe will effect the relic
abundance of particles that freeze out at sufficiently early times
[54,55].

2A caveat is that the derivation of Eq. (13) specifically applies
to standard inflation [28] (and not to pre-big bang [56] or
ekpyrotic/cyclic [58,59] models). But this is a very mild caveat,
since Eq. (13) is used only in Sec. VII, which deals with models
that produce a detectable value for r (which pre-big bang and
ekpyrotic/cyclic models do not [57,58,60]).
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present time, a quantity with subscript ‘‘c’’ is evaluated at
the redshift zc (defined in Sec. III), and a quantity with
subscript ‘‘k’’ is evaluated when the comoving wave num-
ber k ‘‘re-enters the Hubble horizon’’ (i.e., crosses from
k < aH to k > aH).

Wewill also use units in which the speed of light is unity,
c ¼ 1.

III. THE STARTING POINT: A REFINED
RELATIONSHIP BETWEEN r AND �gw

0 ðfÞ
Primordial gravitational-wave measurements probe two

basic quantities. On long wavelengths, CMB polarization
experiments constrain the tensor-to-scalar ratio r. And on
shorter wavelengths, various techniques constrain the
present-day gravitational-wave energy spectrum �gw

0 ðfÞ.
In Appendix A, we derive the equation relating r and
�

gw
0 ðfÞ. The result is

�
gw
0 ðfÞ ¼ ½A1A

�̂ðfÞ
2 An̂tðfÞ

3 �r: (1)

As we shall see in a moment, the factor A1 is roughly
independent of the gravitational-wave frequency f, while
the two factors A2 and A3 are both proportional to f, so that

�
gw
0 ðfÞ is roughly proportional to f�̂ðfÞþn̂tðfÞ.
Now let us carefully explain the meaning of each quan-

tity appearing in Eq. (1)—namely, the gravitational-wave
observables f�gw

0 ðfÞ; rg, the factors fA1; A2; A3g, and the

exponents f�̂ðfÞ; n̂tðfÞg.
The present-day gravitational-wave energy spectrum

�gw
0 ðfÞ � 1

�crit
0

d�
gw
0

d lnf
(2)

represents the present-day gravitational-wave energy den-
sity (�gw

0 ) per logarithmic frequency interval, in units of the

present-day ‘‘critical density’’ �crit
0 � 3H2

0=ð8�GNÞ,
where H0 is the present-day value of the Hubble expansion
rate, and GN is Newton’s gravitational constant.

The tensor-to-scalar ratio

r � �2
hðkcmbÞ

�2
RðkcmbÞ

(3)

is the ratio of the primordial tensor power spectrum
�2

hðkcmbÞ (defined in Appendix A) to the primordial scalar

power spectrum�2
RðkcmbÞ at the CMBwave number kcmb.

3

Our definition of the tensor-to-scalar ratio matches the
convention used, e.g., by the WMAP experiment [64,65]
and the CAMB numerical code [66]; but beware that there
are several alternative definitions/conventions floating
around in the literature. The CMB wave number kcmb is
the comoving wave number at which CMB experiments
report their constraints on �2

R, �2
h, and r: e.g., the WMAP

experiment [64,65] uses kcmb=a0 ¼ 0:002 Mpc�1, where
a0 is the present-day value of the cosmological scale factor.
Next, consider the 3 factors fA1; A2; A3g appearing in

Eq. (1). They are given by

A1 �
C2ðkÞC3ðkÞ�2

RðkcmbÞ�
24

; (4a)

A2 �
�
2�f

H0

�
1

ð1þ zcÞ�1=2
; (4b)

A3 �
�
2�f

H0

�
H0

ðkcmb=a0Þ ; (4c)

where

� � g�ðzcÞ
g�ð0Þ

g4=3�s ð0Þ
g4=3�s ðzcÞ

�rad
0 : (5)

In these expressions, the comoving wave number k is
related to the physical frequency f through the relation
k=a0 ¼ 2�f. The cosmological scale factor a is related to
the cosmological redshift z through the relation a0=a ¼
1þ z. In particular, zc denotes the highest redshift at which
we know that the Universe was radiation dominated (i.e.,
the redshift at the end of the ‘‘primordial dark age’’ dis-
cussed in the Introduction). Given our present observatio-
nal knowledge of the early universe, it is natural to choose
zc to be the redshift of BBN zbbn; but in the future, as our
knowledge of the early universe improves, a different
choice (i.e., a higher redshift zc) may become more appro-
priate. The factors g�ðzÞ and g�sðzÞ, which measure the
effective number of relativistic degrees of freedom in the
Universe at redshift z, are conveniently defined as follows:
If �ðzÞ, sðzÞ, and TðzÞ denote, respectively, the energy
density, entropy density, and temperature at redshift z,
then �ðzÞ ¼ ð�2=30Þg�ðzÞT4ðzÞ and sðzÞ ¼
ð2�2=45Þg�sðzÞT3ðzÞ. Note that for g�ð0Þ, g�sð0Þ, and
�rad

0 , one should use the values that these parameters

would have if all three neutrino species were massless.
(For explicit numerical values, see Appendix C.) These are
the correct values to use in Eq. (5) even though, in reality,
neutrinos have mass. For a detailed discussion of the
‘‘correction factors’’ C2ðkÞ andC3ðkÞ, including definitions
and explicit expressions, see Appendix A and Ref. [67].
For now, it is enough to note that C2ðkÞ and C3ðkÞ are both
Oð1Þ, which means that they will not play a very significant
role in this paper (although in other contexts they can be
interesting and important, see Ref. [67]).
Finally, consider the two exponents, �̂ðfÞ and n̂tðfÞ, that

appear in Eq. (1). The first exponent �̂ðfÞ is given by

�̂ðfÞ � 2

�
3ŵðfÞ � 1

3ŵðfÞ þ 1

�
; (6)

where ŵðfÞ is the logarithmic average

ŵðfÞ � 1

lnðac=akÞ
Z ac

ak

~wðaÞ da
a

(7)

3Note that, in Eqs. (1) and (4a), we could trade the more
commonly used observables r and �2

RðkcmbÞ for the single (but
less commonly used) observable �2

hðkcmbÞ.
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of the effective equation-of-state parameter ~wðaÞ from ak
(the scale factor when k ¼ 2�a0f re-entered the horizon)
to ac (the scale factor at redshift zc). Here, the effective
equation-of-state parameter ~wðaÞ is given by

~wðaÞ � wðaÞ � 8�GN�ðaÞ
HðaÞ ; (8)

where wðaÞ ¼ pðaÞ=�ðaÞ is the ordinary equation-of-state
parameter [i.e., the ratio of the total cosmological pressure
pðaÞ to the total cosmological energy density �ðaÞ ¼
�critðaÞ], HðaÞ is the Hubble expansion rate, and �ðaÞ is
the bulk viscosity of the cosmological fluid (see Secs. 2.11
and 15.11 in Ref. [68]). The second exponent n̂tðfÞ is given
by the logarithmic average

n̂tðfÞ � 1

lnðk=kcmbÞ
Z k

kcmb

ntðk0Þ dk
0

k0
(9)

of the primordial tensor tilt ntðk0Þ over the wave number
range kcmb < k0 < k. Here, the primordial tensor tilt ntðkÞ
is defined as the logarithmic slope of the primordial tensor
power spectrum �2

hðkÞ at comoving wave number k

ntðkÞ � d ln�2
hðkÞ

d lnk
: (10)

We again stress that the equation-of-state parameter wðaÞ
may have arbitrary a dependence, and the primordial ten-
sor tilt ntðkÞ may have arbitrary k dependence. We do not
assume that w or nt is constant.

Let us clarify the sense in which �
gw
0 ðfÞ is a ‘‘short-

wavelength’’ gravitational-wave observable. We mean
that, in Eq. (1), the quantity �

gw
0 ðfÞ represents the

present-day gravitational-wave energy spectrum on scales
that re-entered the Hubble horizon during the primordial
dark age: that is, after the end of inflation (or whatever
process produced the primordial gravitational-wave sig-
nal), but before the redshift zc. In other words, the fre-
quency f that appears in Eq. (1) lies in the range

fc < f < fend: (11)

Here, fc is the present-day frequency of the comoving
wave number kc ¼ 2�a0fc that re-entered the Hubble
horizon (kc ¼ acHc) at redshift zc; and fend is the high-
frequency cutoff of�

gw
0 ðfÞ. As shown in Appendix B, fc is

given by

fc ¼ H0

2�
ð1þ zcÞ�1=2 (12)

and, if the primordial tensor spectrum is generated by
inflation, then fend is given by

fend ¼ H0

2�

�
�2r�2

Rðkcmb; �iÞ
16�GNH

2
0

�1�ð1=2Þ�̂

ð1þ zcÞ�̂
�
a0H0

kcmb

�
n̂t
�
1=�̂

(13)

where, in this equation, we have used the abbreviated

notation f�̂; �̂; n̂tg for the quantities

f�̂ðfendÞ; �̂ðfendÞ; n̂tðfendÞg, and defined

�̂ðfendÞ � 4� �̂ðfendÞ � n̂tðfendÞ: (14)

For concreteness, let us give some rough numbers: if we
take zc ¼ zbbn (i.e., the redshift at which the temperature
was T � 1 MeV), then fc ¼ fbbn � 1:8� 10�11 Hz; and
if the primordial tensor spectrum is generated by inflation
(with n̂t � 0), followed by a ‘‘standard’’ primordial dark

age (with ŵ � 1=3), then fend � 4:5� 108r1=4 Hz.
Let us emphasize once again that the derivation of

Eq. (13) is the only place in this paper where we assume
that the primordial gravitational-wave spectrum was gen-
erated by inflation. Since most of the results in this paper
do not rely on Eq. (13), their validity does not rely on the
correctness of inflation. Indeed, we will only need Eq. (13)
in Sec. VII, when we want to combine CMB and BBN
constraints.
It is useful to interpret Eq. (1) as follows: From Eq. (1),

we see that the relationship between r and�
gw
0 ðfÞ is much

more sensitive to the two quantities fŵðfÞ; n̂tðfÞg than it is
to the three quantities fA1; A2; A3g—because ŵðfÞ and
n̂tðfÞ appear in the exponents of the huge dimensionless
numbers A2 and A3. This means that, even though the
numerical values of fA1; A2; A3g are somewhat uncertain
(since, e.g.,H0 and�

mat
0 are measured with non-negligible

error bars, and C2 and C3 are only known to be roughly
equal to unity), these uncertainties do not significantly
affect the constraints on ŵðfÞ and n̂tðfÞ coming from
Eq. (1), as we shall see in more detail below. In other
words, we may think of fA1; A2; A3g as ‘‘known’’ quanti-
ties; so that when we measure or observationally constrain
r and�gw

0 ðfÞ, Eq. (1) allows us to directly infer constraints
on the ‘‘unknown’’ quantities ŵðfÞ and n̂tðfÞ.

IV. TWO SIMPLE CONSEQUENCES

Before moving on, we note two simple results that
follow directly from Eq. (1).
The first result is obtained by evaluating Eq. (1) at two

different frequencies, f1 and f2, and taking the ratio to get

�
gw
0 ðf1Þ

�gw
0 ðf2Þ

¼ C2ðk1ÞC3ðk1Þ
C2ðk2ÞC3ðk2Þ

�
f1
f2

�
�̂ðf1;f2Þþn̂tðf1;f2Þ

: (15)

Here, n̂tðf1; f2Þ is given by

n̂ tðf1; f2Þ ¼ 1

lnðk1=k2Þ
Z k1

k2

ntðkÞdkk ; (16)

where k1;2 ¼ 2�a0f1;2. And �̂ðf1; f2Þ is given by

�̂ðf1; f2Þ � 2
3ŵðf1; f2Þ � 1

3ŵðf1; f2Þ þ 1
; (17)

with
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ŵðf1; f2Þ � 1

lnða1=a2Þ
Z a1

a2

~wðaÞ da
a
; (18)

where a1 and a2 are, respectively, the values of the scale
factor when k1 and k2 re-entered the Hubble horizon.

Thus, whereas Eq. (1) shows how long-wavelength
(CMB) gravitational-wave constraints relate to shorter-
wavelength (pulsar, laser-interferometer, and nucleosyn-
thesis) constraints; Eq. (15) explains how two shorter-
wavelength constraints (e.g., from LIGO and LISA) relate
to one another.

The second result is obtained by differentiating Eq. (1),
which yields a new expression for the logarithmic tilt of the
present-day energy spectrum

d ln�gw
0 ðfÞ

d lnf
¼ ntðkÞ þ 2

�
3 ~wðkÞ � 1

3 ~wðkÞ þ 1

�
þ d lnC2ðkÞ

d lnk

þ d lnC3ðkÞ
d lnk

; (19)

where ~wðkÞ is the value of the effective equation-of-state
parameter [see Eq. (8)] when the comoving wave number
k ¼ 2�a0f re-enters the Hubble horizon (k ¼ aH).

Note that Eq. (19) generalizes earlier expressions
[50,52,53] for d ln�gw

0 ðfÞ=d lnf, by including the correc-

tions arising from the following 3 physical effects, if they
are present at the moment when the comoving wave num-
ber k is re-entering the Hubble horizon (k ¼ aH) in the
early universe: (i) first, the term involving ~wðkÞ incorpo-
rates the correction due to non-negligible bulk viscosity �
[see Eq. (8)]; (ii) second, the term involving C2ðkÞ is the
correction arising from time variation of the effective
equation-of-state parameter ~w; and (iii) the term involving
C3ðkÞ is the correction due to non-negligible tensor aniso-
tropic stress �ij. Again, see Appendix A and Ref. [67] for

more details on the correction factors C2ðkÞ and C3ðkÞ.4
Furthermore, if the primordial gravitational-wave spec-

trum is produced by the amplification of vacuum fluctua-
tions as the mode k ‘‘exits the Hubble horizon’’ in the early
universe (as in inflationary, cyclic/ekpyrotic, and pre-big-
bang cosmological models), and the equation-of-state pa-
rameter is varying sufficiently slowly as k exits the horizon,
then ntðkÞ is given by

ntðkÞ ¼ 3� 3

��������
1� wexitðkÞ
1þ 3wexitðkÞ

�������� (20)

(see Eq. (38) in Ref. [69]), where wexitðkÞ is the equation-
of-state parameter, evaluated at the moment when k exits
the Hubble horizon. Note that Eq. (20) applies equally well

(i) to expanding models (like inflation, where the modes
exit the Hubble horizon while the Universe is expanding
with w<�1=3); and (ii) to contracting models (like the
pre-big bang or cyclic/ekpyrotic models, where the modes
exit the horizon while the Universe is contracting withw>
�1=3).

V. CMBþLI=PT CONSTRAINTS

In this section, we explore some of the implications of
Eq. (1), focusing on the relationship between CMB polar-
ization experiments at long wavelengths and LI and PT
experiments at shorter wavelengths. The discussion natu-
rally breaks into 2� 2 ¼ 4 cases, depending on:
(i) whether or not CMB polarization experiments have
successfully detected r, and (ii) whether or not LI or PT
experiments have successfully detected �

gw
0 ðfÞ. We num-

ber these cases as shown in Table I, and consider each case
in turn.

A. Case 1: neither r nor �gw
0 ðfÞ is detected

First suppose that CMB experiments have not yet de-
tected r; and that LI/PT experiments have not yet detected
�gw

0 ðfÞ. Of course, this is the current situation in 2008.

CMB observations provide an upper bound r � rmax.
Currently, rmax � 0:5 [65]. It is often claimed that this
long-wavelength bound implies an upper bound on
�

gw
0 ðfÞ at shorter wavelengths. Let us examine this claim.

In fact, from Eq. (1), we see that the upper bound is

�
gw
0 ðfÞ � ½A1A

�̂max

2 A
n̂t;max

3 �rmax; (21)

where

�̂max ¼ 2

�
3ŵmax � 1

3ŵmax þ 1

�
: (22)

In other words, in order to infer an upper bound on�
gw
0 ðfÞ

from the CMB upper bound r � rmax, we need to assume
two additional bounds: ŵðfÞ � ŵmax and n̂tðfÞ � n̂t;max.

But these two additional bounds are theoretical specula-
tions about the early universe—not observational facts—
so they should make us nervous. Furthermore, since A2 and
A3 are huge dimensionless numbers, we see that the upper
bound on �gw

0 ðfÞ is very sensitive to the assumed values

for ŵmax and n̂t;max.

TABLE I. The analysis in Sec. V breaks into four cases,
depending on: (i) whether or not CMB experiments have already
detected a nonzero value for r; and (ii) whether or not LI or PT
experiments have already detected a nonzero value for �

gw
0 ðfÞ.

LI/PT nondetection LI/PT detection

CMB nondetection Case 1 Case 3

CMB detection Case 4 Case 2

4This generalized expression for d ln�
gw
0 ðfÞ=d lnf is built

upon the generalized expression derived in [67] for the
gravitational-wave transfer function ThðkÞ. Then, in
Appendix A 2 of the present paper, we obtain a neater and
slightly more general expression for ThðkÞ by making use of the
quantity ŵðfÞ.
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Now, let us consider the most reasonable assumptions
about ŵmax and n̂t;max, given our current theoretical under-

standing of the early universe.
What is the most reasonable assumption for ŵmax? First

note that, if we assume the bulk viscosity �ðaÞ is non-
negative (as required by the second law of thermodynam-
ics), and we assume that the equation-of-state wðaÞ satis-
fies the upper bound wðaÞ � wmax, then Eqs. (7) and (8)
imply that ŵðfÞ satisfies the same upper bound: ŵmax ¼
wmax. Next, note that a fluid of massless (or extremely
relativistic) noninteracting particles satisfies w ¼ 1=3;
and if we give some of these particles finite masses, or
finite interactions, this tends to decrease w below 1=3 (see
Refs. [67,70]). And in standard reheating/preheating after
inflation, one also typically finds w � 1=3 [71]. For these
reasons, and others,

ŵ max ¼ 1=3 (23)

is probably the best guess. But, as argued in Sec. I, there are
also perfectly reasonable matter components with w>
1=3, and there are even reasons to suspect that these
components might generically be important at sufficiently
early times (see Fig. 1). Given our current understanding of
the early universe, ŵmax ¼ 1=3 is a good guess—but it is
only a guess, and should be checked experimentally.

What is the most reasonable assumption for n̂t;max? First

note that, if we assume that the primordial tensor tilt ntðkÞ
satisfies the upper bound ntðkÞ � nt;max, then Eq. (9) im-

plies that n̂tðfÞ satisfies the same upper bound: n̂t;max ¼
nt;max. If we assume that the primordial gravitational-wave

spectrum was generated by inflation, then the primordial
tensor tilt is given by the well-known formula ntðkÞ ¼
�2	ðkÞ, where 	ðkÞ refers to the value of the parameter
	ðkÞ � ð3=2Þð1þ wexitðkÞÞ ¼ �dðlnHÞ=dðlnaÞjk when the
mode k leaves the Hubble horizon (k ¼ aH) during infla-
tion. Then, as long as the stress-energy tensor T
� during

inflation satisfies the so-called ‘‘weak-energy condition’’
(which, as its name suggests, is a very mild assumption,
corresponding to w 	 �1 in a Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe), we can infer ntðkÞ �
0. For these reasons and others,

n̂ t;max ¼ 0 (24)

is probably the best guess. Note that this conclusion is
rather general within the context of inflation, in the sense
that we have not made reference to scalar fields, or any
other details of the (currently unknown) matter content
driving inflation. Indeed, the conclusion should be valid
as long as the following two conditions hold: (i) gravity
may be described (at least effectively) by 4-dimensional
general relativity during inflation; and (ii) 	 is 
 1 and
slowly varying during inflation. Both of these conditions
are indeed satisfied by most viable inflationary models that
have been considered (single-field, multifield, . . .),
although there are also exotic inflationary models in the

literature that can achieve nt > 0, either by violating the
weak-energy condition [72] or by modifying gravity [73].
Furthermore, although the upper bound n̂t;max ¼ 0 applies

to inflationary cosmology, it does not apply to other cos-
mological models in which the perturbations are produced
during a contracting phase (e.g., ‘‘pre-big-bang’’ cosmo-
logical models, which predict nt ¼ 3 [57], or cyclic/ekpyr-
otic models, which predict nt � 2 [58,60]).
It is perhaps worth adding that, instead of considering

inflation in general terms, one may wish to focus on single-
field inflation. After all, in 2008, the simplest single-field
inflation models (e.g., the quadratic inflaton potential
Vð�Þ ¼ ð1=2Þm2�2) continue to agree beautifully with
the current cosmological data sets [65], and arguably pro-
vide the simplest and most compelling available explana-
tion of those data sets. Since single-field models satisfy the
well-known ‘‘inflationary consistency relation’’ ntðkcmbÞ ¼
�r=8, it turns out that we can make the substitution
n̂t;max ! �rmax=8 in the upper bound (21), and thereby

obtain a somewhat stronger upper bound that is still obeyed
by nearly all single-field inflationary models.
To stress that the upper bound on �gw

0 ðfÞ at high fre-

quencies is very sensitive to the assumed values for ŵmax

and n̂t;max, we plot this upper bound in Fig. 2, for various

choices of ŵmax and n̂t;max.

Figure 2 also shows the bounds and sensitivities from
various current and future gravitational-wave constraints.
The LIGO experiment is currently operating at its design
sensitivity, and has placed an upper bound�gw

0 ðfÞ< 6:5�
10�5 on the stochastic gravitational-wave background at
frequencies near f� 102 Hz [74]. The LIGO sensitivity is
expected to increase by another factor of 10–100 within the
next year or so [74]. Then, within the next 10 years,
Advanced LIGO/VIRGO is expected to reach a sensitivity
of �gw

0 ðfÞ � 10�9 � 10�8 [74]; and subsequent genera-

tions of ground-based LI experiments may do even better.
LISA (the first-generation space-based LI experiment) is
expected to achieve a sensitivity of �

gw
0 ðfÞ � 10�11 at

frequencies near f� 10�3 Hz [75]; and BBO (the
second-generation space-based LI experiment, which is
specifically designed to detect a stochastic gravitational-
wave background) may be able to reach a sensitivity of
�gw

0 ðfÞ � 10�17 at frequencies near f� 0:3 Hz [25,76].

Pulsar-timing experiments have currently placed an upper
bound �gw

0 ðfÞ< 2� 10�8 at frequencies between 10�9

and 10�8 Hz [18]. In the coming years, the Parkes Pulsar
Timing Array , which is already operating, should reach a
sensitivity of �

gw
0 ðfÞ � 10�10 or better at these frequen-

cies [18]; and in the future, the proposed Square Kilometer
Array (SKA) experiment may improve this sensitivity by
another order of magnitude or more [19]. Finally, if short-
wavelength primordial gravitational waves had too much
energy density, they would spoil the successful predictions
of BBN; so we obtain the sBBN constraint [77–82] de-
picted in Fig. 2, and further discussed in Sec. VII.
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B. Case 2: both r and �gw
0 ðfÞ are detected

If CMB experiments succeed in detecting r, and one of
the LI (or PT) experiments (at frequency f) also succeeds
in detecting �

gw
0 ðfÞ, then Eq. (1) will yield a curve in the

fŵðfÞ; n̂tðfÞg plane. This is illustrated in Fig. 3. In fact, this
curve will be slightly ‘‘fuzzy’’ due to the nonvanishing
error bars on r, �

gw
0 ðfÞ, A1, A2, and A3.

In particular, CMB polarization experiments are ex-
pected to be sensitive to a tensor-to-scalar ratio as small
as r ¼ 10�2, or smaller [13]; and the sensitivities of cur-
rent and future PT and LI experiments were discussed at
the end of Sec. VA. In the top panel of Fig. 3, we imagine
that �

gw
0 ðfÞ=r ¼ 10�7 has been detected—e.g., r ¼ 0:1

has been detected in the CMB, and �
gw
0 ðfÞ ¼ 10�8 has

been detected in one of the LI/PT experiments—and then
we plot the corresponding constraint curves, assuming that
the detection of �gw

0 ðfÞ occurred at a frequency of 102 Hz
(LIGO), 0.3 Hz (BBO), 10�3 Hz (LISA), or 10�9 Hz (PT).

And the bottom panel of Fig. 3 illustrates the same thing,
assuming that the value of �

gw
0 ðfÞ=r turns out to be closer

to the minimum possible value for each experiment: we use
�

gw
0 =r ¼ 10�9=0:1 ¼ 10�8 for LIGO (at 102 Hz); and

�
gw
0 =r ¼ 10�17=0:1 ¼ 10�16 for BBO (at 0.3 Hz); and

�
gw
0 =r ¼ 10�11=0:1 ¼ 10�10 for LISA (at 10�3 Hz); and

�
gw
0 =r ¼ 10�11=0:1 ¼ 10�10 for SKA (at 10�9 Hz). Note

that, in Fig. 3, the frequency f is different for each LI/PT
experiment: that is, LIGO places a constraint in the
fŵðfLIGOÞ; n̂tðfLIGOÞg plane, while LISA places a constraint
in the fŵðfLISAÞ; n̂tðfLISAÞg plane, and so forth.
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FIG. 2 (color online). This figure relates to ‘‘Case 1,’’ dis-
cussed in Sec. VA. The curves show the upper bound on
�

gw
0 ðfÞ, over the range fcmb < f < fend, for various assumed

values of ŵmax and n̂t;max. The four solid black curves correspond

(from bottom to top) to ŵmax ¼ f1=3; 0:4; 0:5; 0:6g and n̂t;max ¼
0. The four dotted red curves show the same thing, but now with
nt;max ¼ �rmax=8. The four dashed blue curves correspond

(from bottom to top) to n̂t;max ¼ f0:1; 0:2; 0:3; 0:4g and ŵmax ¼
1=3. Note that frequencies below fc ¼ fbbn � 10�11 Hz re-
entered the Hubble horizon after BBN, and hence are unaffected
by assumptions about ŵ during the primordial dark age. The
current and future experimental constraints shown in the figure
are discussed in the text, at the end of Sec. VA.
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Ω 0
gwr and        are both

detected (CASE 2)

Ω 0
gw

is detected
(CASE 3)

r is detected
(CASE 4)

FIG. 3 (color online). Bounds from combining CMB and LI/
PT experiments. (This figure relates to Cases 2, 3, and 4,
discussed in Secs. VB, VC, and VD.) We show examples of
the constraints in the fŵðfÞ; n̂tðfÞg plane that follow from CMB
constraints on r and LI/PT constraints on�gw

0 ðfÞ. In both the top
and bottom panels, the four curves correspond to: fLIGO ¼
100 Hz (red dotted); fBBO ¼ 0:3 Hz (green dashed); fLISA ¼
10�3 Hz (gray solid); and fpulsar ¼ 10�9 Hz (black dotted-

dashed). In the top panel, all four curves are plotted assuming
�

gw
0 ðfÞ=r ¼ 10�7. So, for example, suppose CMB and LI/PT

experiments find: (i) �
gw
0 ðfÞ ¼ 10�8 and r ¼ 0:1 (Case 2); or

(ii)�gw
0 ðfÞ ¼ 10�8 and r < 0:1 (Case 3); or (iii)�gw

0 ðfÞ< 10�8

and r ¼ 0:1 (Case 4). Then fŵðfÞ; n̂tðfÞg must lie: (i) on,
(ii) above, or (iii) below the respective curve. The bottom panel
is similar, but instead of all curves corresponding to�

gw
0 ðfÞ=r ¼

10�7, we take �gw
0 ðfÞ=r to be closer to the minimum possible

value for each experiment: 10�8 (at fLIGO); 10
�10 (at fLISA);

10�16 (at fBBO), and 10�10 (at fpulsar).
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C. Case 3: �gw
0 ðfÞ is detected, but r is not detected

In this section, let us suppose that one of the LI/PT
experiments has successfully detected �

gw
0 ðfÞ at some

frequency f; while CMB experiments have only placed
an upper bound on the tensor-to-scalar ratio: r � rmax. We
will mention three possible interpretations of this observa-
tional situation.

For the first interpretation, we rewrite Eq. (1) as

�
gw
0 ðfÞ � ½A1A

�̂ðfÞ
2 An̂tðfÞ

3 �rmax: (25)

As in Case 2, this equation defines a curve in the
fŵðfÞ; n̂tðfÞg plane. But, whereas in Case 2 the parameters
ŵðfÞ and n̂tðfÞ were required to lie on this line, in the
present situation the parameters are required to lie above
the line (see Fig. 3).

For the second interpretation, we rewrite Eq. (1) as

ŵðfÞ 	 ŵminðfÞ; (26)

where

ŵ minðfÞ ¼ 1

3

�
2þ �̂minðfÞ
2� �̂minðfÞ

�
; (27)

and

�̂minðfÞ ¼ � ln½A1A
n̂t;maxðfÞ
3 rmax=�

gw
0 ðfÞ�

ln½A2� : (28)

In other words, if we assume a theoretical upper bound for
n̂tðfÞ, such as the standard inflationary assumption
n̂t;max ¼ 0 discussed in Sec. VA, then we can infer that

ŵðfÞ must exceed the lower bound ŵminðfÞ given by
Eqs. (27) and (28). Furthermore, Eqs. (7) and (8) allow
us to infer that the effective equation-of-state parameter
~wðaÞ must also satisfy the same lower bound

~wðaÞ 	 ŵminðfÞ (29)

for some nonempty subset of the range ak < a < ac. And
then, if we assume �ðaÞ 	 0 (as required by the second law
of thermodynamics), we can also infer that the ordinary
equation-of-state parameter wðaÞ must again satisfy the
same lower bound

wðaÞ 	 ŵminðfÞ (30)

for some nonempty subset of the range ak < a < ac.
Equations (27) and (28), for ŵminðfÞ as a function of

�gw
0 ðfÞ=rmax, are plotted in the top panel of Fig. 4, assum-

ing n̂t;maxðfÞ ¼ 0 (the standard inflationary assumption,

discussed in Sec. VA). The four curves correspond (from
top to bottom) to PT experiments at f� 10�9 Hz (black
dotted-dashed curve); LISA at f� 10�3 Hz ( gray solid
curve); BBO at f� 0:3 Hz (green dashed curve); and
LIGO at f� 102 Hz (red dotted curve). Since the curves
represent ŵminðfÞ, the actual value of ŵðfÞ must lie above
these curves.

For the third interpretation, we rewrite Eq. (1) as

n̂ tðfÞ 	 n̂t;minðfÞ; (31)

where

n̂ t;minðfÞ ¼ � ln½rmaxA1A
�̂maxðfÞ
2 =�

gw
0 ðfÞ�

ln½A3� (32)

and

�̂ maxðfÞ ¼ 2

�
3ŵmaxðfÞ � 1

3ŵmaxðfÞ þ 1

�
: (33)

In other words, if we assume a theoretical upper bound for
ŵðfÞ, such as the standard assumption ŵmax ¼ 1=3 dis-
cussed in Sec. VA, then we can infer that n̂tðfÞ must

0

1

2

-0.5

0

1

0.5

0.5

1.5

n  
t ,

 m
in

 (
 f  

)
w

 m
in

 ( 
f  )

100 Hz

0.3  Hz

10 - 9
  Hz

10 - 3
  Hz

100 Hz

0.3  Hz

10 - 9
  Hz

10 - 3
  Hz

Ω 0
gw

( f ) / r max

10 -15 10 -10 10 -5

Ω 0 , max
gw ( f ) / r

w
 m

ax  ( f  )
w

 m
ax  ( f  )

n
 t  ,  m

ax  ( f  )
n

 t  ,  m
ax  ( f  )

FIG. 4 (color online). Bounds from combining CMB and LI/
PT experiments. (This figure relates to Cases 3 and 4, discussed
in Secs. VC and VD.) In both the top and bottom panels, the
four curves correspond to the four frequencies: fLIGO ¼ 100 Hz
(red dotted); fBBO ¼ 0:3 Hz (green dashed); fLISA ¼ 10�3 Hz (
gray solid); and fpulsar ¼ 10�9 Hz (black dotted-dashed). This

figure has two interpretations. In Case 3, where LI (or PT)
experiments detect �

gw
0 ðfÞ and CMB experiments obtain an

upper bound rmax, the ‘‘bottom’’ and ‘‘left’’ axis labels apply,
and the curves represent ŵminðfÞ (top panel, with the standard
inflationary assumption n̂t;max ¼ 0) and n̂t;minðfÞ (bottom panel,

with the standard primordial-dark-age assumption ŵmax ¼ 1=3),
so the actual values of ŵðfÞ and n̂tðfÞ lie above the curves. In
Case 4, where CMB experiments detect r and LI (or PT) experi-
ments obtain an upper bound �

gw
0;maxðfÞ, the ‘‘top’’ and ‘‘right’’

axis labels apply, and the curves represent ŵmaxðfÞ (top panel,
with the standard inflationary assumption n̂t � 0) and n̂t;maxðfÞ
(bottom panel, with the standard primordial-dark-age assump-
tion ŵðfÞ � 1=3), so the actual values of ŵðfÞ and n̂tðfÞ lie
below the curves.
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exceed the lower bound n̂t;minðfÞ given by Eqs. (32) and

(33). Furthermore, from Eq. (9), we can infer that the
actual primordial tensor power spectrum ntðk0Þ must also
satisfy the same lower bound

ntðk0Þ 	 n̂t;minðfÞ (34)

for some nonempty subset of the range kcmb < k0 < k.
Equations (32) and (33), for n̂t;minðfÞ as a function of

�
gw
0 ðfÞ=rmax, are plotted in the bottom panel of Fig. 4,

assuming ŵmaxðfÞ ¼ 1=3 (a standard assumption about the
primordial dark age, as discussed in Sec. VA). Again, the
four curves correspond (from top to bottom) to: PT experi-
ments at f� 10�9 Hz (black dotted-dashed curve); LISA
at f� 10�3 Hz ( gray solid curve); BBO at f� 0:3 Hz
(green dashed curve); and LIGO at f� 102 Hz (red dotted
curve). Since the curves represent n̂t;minðfÞ, the actual

value of n̂tðfÞ must lie above these curves.

D. Case 4: r is detected, but �gw
0 ðfÞ is not detected

Finally, in this section, let us suppose that CMB experi-
ments have successfully detected a nonzero value for r, but
LI/PT experiments have only managed to place an obser-
vational upper bound �gw

0 ðfÞ<�gw
0;maxðfÞ at frequency f.

As in the previous section, we will mention three possible
interpretations of this observational situation.

For the first interpretation, we rewrite Eq. (1) as

�
gw
0;maxðfÞ 	 ½A1A

�̂ðfÞ
2 An̂tðfÞ

3 �r: (35)

As in Cases 2 and 3, this equation defines a curve in the
fŵðfÞ; n̂tðfÞg plane. But, whereas in Case 2 the parameters
were required to lie on this curve, and in Case 3 the
parameters were required to lie above this curve, in the
present case the parameters are required to lie below this
curve (see Fig. 3).

For the second interpretation, we rewrite Eq. (1) as

ŵðfÞ � ŵmaxðfÞ; (36)

where

ŵ maxðfÞ ¼ 1

3

�
2þ �̂maxðfÞ
2� �̂maxðfÞ

�
(37)

and

�̂ maxðfÞ ¼ � ln½rA1A
n̂tðfÞ
3 =�gw

0;maxðfÞ�
ln½A2� : (38)

In other words, if we assume a standard value for n̂tðfÞ,
then we can infer that ŵðfÞ must be less than the upper
bound ŵmaxðfÞ given by Eqs. (37) and (38). In inflation, the
primordial gravitational-wave spectrum is extremely flat,
so that the ‘‘standard’’ value may be taken as n̂tðfÞ � 0. In
fact, the standard inflationary gravitational-wave spectrum
has a slight negative tilt ntðkÞ ¼ �2	ðkÞ, but it is small
enough that we can ignore it for the purpose of keeping the
present discussion simple. It is enough to note that the

slight fuzziness in the standard inflationary value n̂tðfÞ � 0
leads to slight fuzziness in the inferred upper bound
ŵmaxðfÞ.
Equations (37) and (38), for ŵmaxðfÞ as a function of

�gw
0;maxðfÞ=r, are plotted in the top panel of Fig. 4, assuming

the standard inflationary value n̂tðfÞ � 0. The four differ-
ent curves correspond to the different LI/PT frequency
bands, as already described for Case 3 in Sec. VC. But,
in Case 3, these curves represented ŵminðfÞ, so that the
actual value of ŵðfÞ was required to lie above the curves.
And now, in Case 4, these same curves represent ŵmaxðfÞ,
so that the actual value of ŵðfÞ is required to lie below the
curves.
For the third interpretation, we rewrite Eq. (1) as

n̂ tðfÞ � n̂t;maxðfÞ; (39)

where

n̂ t;maxðfÞ ¼ � ln½rA1A
�̂ðfÞ
2 =�gw

0;maxðfÞ�
ln½A3� (40)

and

�̂ðfÞ ¼ 2

�
3ŵðfÞ � 1

3ŵðfÞ þ 1

�
: (41)

In other words, if we assume a standard value for ŵðfÞ,
then we can infer that n̂tðfÞ must be less than the upper
bound n̂t;maxðfÞ given by Eqs. (40) and (41). The most

common picture of the post-inflationary universe is that,
after reheating completes, the Universe settles quickly into
ordinary quasi-adiabatic radiation-like expansion [71], so
the ‘‘standard’’ value may be taken as ŵðfÞ � 1=3. In fact,
even during standard quasi-adiabatic radiation-like expan-
sion, various effects—notably conformal anomalies
[67,83] and the evolution of g� and g�s with time [70]—
cause w to drop slightly below 1=3, but these corrections
are usually small enough that we can ignore them for the
purposes of keeping the present discussion simple. It is
enough to note that the slight fuzziness in the standard
value ŵðfÞ � 1=3 leads to a slight fuzziness in the inferred
upper bound n̂t;maxðfÞ.
Equations (40) and (41), for n̂t;maxðfÞ as a function of

�gw
0;maxðfÞ=r, are plotted in the bottom panel of Fig. 4,

assuming a ‘‘standard’’ primordial dark age ŵðfÞ � 1=3.
The four different curves correspond to the different LI/PT
frequency bands, as before. But, in Case 3, these curves
represented n̂t;minðfÞ, so that the actual value of n̂tðfÞ was
required to lie above the curves. And now, in Case 4, these
same curves represent n̂t;maxðfÞ, so that the actual value of

n̂tðfÞ is required to lie below the curves.

VI. OBSERVATIONAL CONSISTENCY CHECK

Suppose that a pulsar-timing experiment, or a laser-
interferometer experiment like LIGO or LISA, detects a
nonzero value for �gw

0 ðfÞ that is far above the expected
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upper bound �10�15 which follows from assuming ‘‘stan-
dard’’ inflation plus a ‘‘standard’’ primordial dark age (see
Sec. VA and Fig. 2). If we wish to interpret this as a
detection of the primordial gravitational-wave back-
ground, then we should expect it to satisfy the following
rough consistency check.

If the unexpectedly high value of�gw
0 ðfÞ is really due to

an unexpectedly high value of ŵðfÞ, or an unexpectedly
high value of n̂tðfÞ, or both, then �

gw
0 ðfÞ should be very

‘‘blue,’’ i.e., rapidly rising with frequency. This point
should be intuitively clear from a glance at Fig. 2, but let
us be a bit more quantitative. The standard expectation is
that all four terms on the right-hand-side of Eq. (19) are
nearly zero, and hence �gw

0 ðfÞ is nearly frequency inde-

pendent. But if the detected signal is actually due to an
unexpectedly high value of ŵðfÞ, then the first term domi-
nates the right-hand-side of Eq. (19), and we expect

d ln�
gw
0

d lnf
* 2

�
3ŵmin � 1

3ŵmin þ 1

�
; (42)

where ŵmin is given by Eqs. (27) and (28). And, similarly, if
the detected signal is actually due to an unexpectedly high
value of n̂tðfÞ, then the second term dominates the right-
hand-side of Eq. (19), and we expect

d ln�gw
0

d lnf
* n̂t;min; (43)

where n̂t;min is given by Eqs. (32) and (33). These expec-

tations can be checked within the frequency band of a
single experiment, or by comparing two different interfer-
ometers with two separated frequency bands (like LIGO
and LISA).

Note that this is just a consistency check—it does not
rule out the possibility that the detected gravitational-wave
signal is produced by some other source, such as a cosmo-
logical phase transition, cosmic strings, or an unanticipated
astrophysical source. Furthermore, we have been careful to
use the term ‘‘expect’’ rather than ‘‘predict’’ in this section,
since it should be clear that Eqs. (42) and (43) are not firm
predictions. Nevertheless, they are sufficiently strong ex-
pectations that—depending on whether or not they are
confirmed—they could significantly increase or decrease
our confidence in the ‘‘Case 2’’ or ‘‘Case 3’’ interpretations
discussed in Secs. VB and VC.

VII. CMBþ BBN CONSTRAINTS

In this section, let us suppose that CMB experiments
have succeeded in detecting r, and combine this informa-
tion with the well-known ‘‘sBBN constraint [77–82]

Z fend

fbbn

�gw
0 ðfÞ df

f
� 1:5� 10�5: (44)

Note that this constraint only applies to the part of the
present-day gravitational-wave spectrum that was gener-

ated prior to big bang nucleosynthesis; and the integral
only runs over frequencies f corresponding to comoving
wave numbers k that were already ‘‘inside the Hubble
horizon’’ (k > abbnHbbn) at the time of BBN at photon
temperature T � 1 MeV. In particular, the lower integra-
tion limit fbbn � 1:8� 10�11 Hz corresponds to the mode
that was on the Hubble horizon (kbbn ¼ abbnHbbn) at the
time of BBN, while the upper integration limit fend corre-
sponds to the high-frequency cutoff of the primordial
gravitational-wave spectrum. For example, if the primor-
dial gravitational-wave spectrum was generated by infla-
tion, then the spectrum cuts off exponentially fast for
k > kend, where kend ¼ aendHend is the comoving wave
number that was on the Hubble horizon at the end of
inflation. This corresponds to the present-day frequency
fend given by Eq. (13).
Although, the sBBN constraint (44) is technically an

integral constraint (nonlocal in frequency space), in prac-
tice it effectively acts as an algebraic constraint (local in
frequency space) of the form �gw

0 ðfÞ< 1:5� 10�5 for
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FIG. 5 (color online). Bound from combining sBBN and CMB
constraints. If CMB experiments detect r, then the sBBN
gravitational-wave constraint immediately requires
fŵðfendÞ; n̂tðfendÞg to lie below the curves shown in the figure.
From top to bottom, the curves correspond to: r ¼ 10�3 (black
dotted curve), r ¼ 10�2 (purple dotted-dashed curve), and r ¼
10�1 (green solid curve). Note that the curves are very insensi-
tive to r: they hardly move as r varies over the range in which it
can be realistically detected by CMB polarization experiments
(10�3 < r < 10�1). The horizontal and vertical dashed lines
point out that, for r ¼ f10�1; 10�2; 10�3g, respectively: (a) if
n̂tðfÞ is assumed to take its ‘‘standard’’’ value ( � 0), then
ŵðfendÞ & f0:54; 0:57; 0:60g; and (b) if ŵðfÞ is assumed to take
its ‘‘standard’’ value ( � 1=3), then n̂tðfendÞ & f0:36; 0:40; 0:43g.
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fbbn < f < fend. �
gw
0 ðfÞ can only exceed this bound by

having a very narrow spike with ð�fÞ=f0 
 1, where f0 is
the peak of the spike, and �f is its characteristic width; but
(as far as we are aware) there are no knownmechanisms for
producing such a narrow spike in the primordial
gravitational-wave spectrum, and we will neglect this
possibility.

Thus, for any frequency f in the range fbbn < f < fend,
we can directly use all of the equations from ‘‘Case 4’’ in
the previous section, as long as we set �

gw
0;maxðfÞ ¼ 1:5�

10�5 in those equations. Furthermore, to maximize the
length of the ‘‘lever arm’’ between the CMB and BBN
constraints, let us consider the case k ! kend and f ! fend.
Then Eqs. (40) and (41) define a curve in the
fŵðfendÞ; n̂tðfendÞg plane (shown in Fig. 5), and the actual
values of ŵðfendÞ and n̂tðfendÞ must lie below this curve.

Note, in particular, that the constraint curve hardly
varies as r varies over the range of realistic future detect-
ability 10�3 < r < 10�1. Furthermore, for r ¼
f10�1; 10�2; 10�3g, respectively: (a) if n̂tðfÞ is assumed
to take its ‘‘standard’’ inflationary value (n̂tðfÞ � 0, see
Secs. VA and VC), then we obtain the upper bound
ŵðfendÞ & f0:54; 0:57; 0:60g; and (b) if ŵðfÞ is assumed
to take its ‘‘standard’’ post-inflationary value (ŵðfÞ �
1=3, again see Secs. VA and VC), then we obtain the
upper bound n̂tðfendÞ & f0:36; 0:40; 0:43g.

These results (particularly Fig. 5) are new, and model-
independent, constraints on the early universe that will take
effect as soon as CMB polarization experiments detect a
nonzero value for r.5

VIII. CONCLUSION

As far as the early universe is concerned, most people
think about upcoming CMB ‘‘B-mode’’ polarization ex-
periments with the following goal in mind: to measure one
crucial number, r, which physically corresponds to mea-
suring the energy density of the Universe, roughly 60 e-
folds before the end of inflation. But these B-mode experi-
ments will actually achieve significantly more than this:
they should also be viewed as half of a two-pronged
experiment to detect or constrain the early-universe pa-
rameters ŵðfÞ and n̂tðfÞ, as we have described in detail.
(The other ‘‘prong’’ of this two-pronged experiment is a
higher-frequency gravitational-wave constraint coming
from laser-interferometer experiments, pulsar-timing mea-

surements, or standard BBN.) For example, if and when
CMB experiments detect a nonzero value for r, they will
immediately obtain a supplementary (and remarkably
strong) constraint in the fŵðfendÞ; n̂tðfendÞg plane, as shown
in Fig. 5. Since quantitative and model-independent con-
straints on the early universe are notoriously hard to obtain,
and we only have a handful, the possibility of obtaining
this ‘‘supplementary’’ constraint is exciting.
We have argued that combining large-wavelength con-

straints on r (from CMB experiments) with small-
wavelength bounds on �

gw
0 ðfÞ (from LI and PT experi-

ments, and sBBN constraints) provides the strongest way
to constrain (or detect) the existence and properties of a
possible exotic ‘‘stiff energy’’ component (with w> 1=3)
[37–51] that could have dominated the Universe for some
period during the primordial dark age between the end of
inflation and the BBN epoch (see Fig. 1).
We have derived several useful and general formulae for

relating primordial gravitational-wave constraints at differ-
ent frequencies, and have shown how these relationships
connect to the uncertain physics of the early universe. In
Figs. 2–5, we have shown the constraints that will be
placed on the parameters ŵðfÞ and n̂tðfÞ by combining
various pairs of gravitational-wave constraints, depending
on the observational situation (that is, depending on
whether CMB and/or LI/PT experiments detect the primor-
dial gravitational-wave background, or only place upper
limits).

ACKNOWLEDGMENTS

L. B. thanks Paul Steinhardt for many insightful con-
versations. A. B. acknowledges support from NSF Grant
No. PHY-0603762 and from the Alfred P. Sloan
Foundation.

APPENDIX A: DERIVING EQ. (1)

The goal of this appendix is to derive Eq. (A33), which is
equivalent to Eq. (1), the basic equation upon which most
of the analysis in this paper relies. As a useful and closely
related intermediate result, we also obtain Eq. (A32)—an
expression for the tensor transfer function ThðkÞ, which is
neater and slightly more general than the tensor transfer
function derived in Ref. [67].
The derivation is broken into four parts. In the first part,

we review some background material about cosmological
gravitational waves, leading to the presentation of
Eq. (A7). The second and third parts are devoted to rewrit-
ing the factors ThðkÞ and �2

hðk; �iÞ, which appear in

Eq. (A7). Finally, in the fourth part, we collect and sum-
marize our results in Eqs. (A32) and (A33).

1. Background material

Let us start by introducing some notation, and reviewing
some basic facts about cosmological gravitational waves

5Recently, [84] pointed out an interesting new constraint on
the cosmic gravitational-wave background, from the fact that
gravitational waves act like another decoupled relativistic degree
of freedom (i.e., an extra ‘‘fraction’’ of a neutrino species) when
the primary CMB fluctuations are generated. For the purposes of
this paper, this new CMB constraint is similar to the sBBN
constraint analyzed in this section. In the future, the CMB
constraint may yield an upper bound on �

gw
0 ðfÞ, which is an

order of magnitude tighter than the current sBBN constraint [84].
This improved constraint will slightly lower the curves in Fig. 5.
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(tensor perturbations [85]). For more details, see Sec. 2 in
Ref. [67].

Tensor metric perturbations in a spatially flat FLRW
universe are described by the line element

ds2 ¼ a2ð�Þ½�d�2 þ ð�ij þ hijðx; �ÞÞdxidxj�; (A1)

where x is a comoving spatial coordinate, � is a conformal
time coordinate, að�Þ is the FLRW scale factor, and the
metric perturbation hijðx; �Þ is transverse (hij;j ¼ 0) and

traceless (hii ¼ 0). In this appendix we follow the con-
vention that repeated indices (i or j) are summed from 1 to
3.

The tensor power spectrum �2
hðk; �Þ, which represents

the contribution by modes of comoving wave number k to
the expectation value hhijðx; �Þhijðx; �Þi, is defined through
the equation

hhijðx; �Þhijðx; �Þi ¼
Z

�2
hðk; �Þ

dk

k
: (A2)

Note that the expectation value of the left-hand-side is
actually independent of x, since a perturbed FLRW uni-
verse is statistically homogeneous.

CMB and LI experiments measure �2
hðk; �Þ at very

different comoving wave numbers k and very different
conformal times �. In particular, whereas LI experiments
measure the present-day tensor power spectrum �2

hðk; �0Þ,
CMB experiments may be thought of as measuring the
primordial tensor power spectrum �2

hðk; �iÞ. (Here, �0
denotes the present time, and �i denotes a very early
time, before any modes k of interest have had a chance
to re-enter the Hubble horizon.) And whereas LI experi-
ments are sensitive to high comoving wave numbers (cor-
responding to length scales smaller than the Solar System),
CMB experiments are sensitive to low comoving wave
numbers (corresponding to large length scales, comparable
to the present-day Hubble radius). CMB constraints on the
primordial scalar and tensor power spectra, �2

Rðk; �iÞ and
�2

hðk; �iÞ, are usually quoted at a fiducial ‘‘pivot’’ wave

number kcmb in the CMB waveband. For example, the
WMAP experiment uses kcmb=a0 ¼ 0:002 Mpc�1, where
a0 is the present-day (� ¼ �0) value of the FLRW scale
factor.

Although it is often convenient, from a theoretical per-
spective, to work with the tensor power spectrum �2

hðk; �Þ,
LI experiments usually report their results in terms of the
present-day (� ¼ �0) gravitational-wave energy spectrum

�gw
0 ðfÞ � 1

�crit
0

d�gw
0

d lnf
; (A3)

where

f ¼ 1

2�

k

a0
(A4)

is the present-day physical frequency of a gravitational

wave corresponding to the comoving wave number k.
Note that the present-day energy spectrum �

gw
0 ðfÞ is re-

lated to the present-day power spectrum �2
hðk; �0Þ through

the equation

�
gw
0 ðfÞ ¼ 1

12

�
2�f

H0

�
2
�2

hðk; �0Þ (A5)

(see Sec. 2 in Ref. [67] for a detailed derivation).
The present-day tensor power spectrum �2

hðk; �0Þ is

related to the primordial tensor power spectrum �2
hðk; �iÞ

via the relation

�2
hðk; �0Þ ¼ ThðkÞ�2

hðk; �iÞ; (A6)

where this equation defines the ‘‘tensor transfer function’’
ThðkÞ. Combining Eqs. (A5) and (A6) we obtain

�gw
0 ðfÞ ¼ 1

12

�
2�f

H0

�
2
ThðkÞ�2

hðk; �iÞ: (A7)

This is the basic equation describing the present-day
gravitational-wave energy spectrum �gw

0 ðfÞ on LI scales.

The rest of this section is devoted to rewriting this equation
in a more concrete and useful form. In the next two
sections, we re-express the two factors ThðkÞ and
�2

hðk; �iÞ, respectively.

2. Rewriting the factor ThðkÞ
First, let us focus on rewriting the factor ThðkÞ. In this

paper, we make use of the general expression for the tensor
transfer function ThðkÞ derived in Ref. [67]. As explained
in Ref. [67], the tensor transfer function ThðkÞ may be
factored into the form

ThðkÞ ¼ 1
2C1ðkÞC2ðkÞC3ðkÞ: (A8)

The overall factor of 1=2 comes from averaging over the
oscillatory factor cos2ðk�þ�ðkÞÞ, which appears in the
tensor transfer function but is unresolvable in any forsee-
able LI experiment [86]. Each of the remaining three
factors fC1ðkÞ; C2ðkÞ; C3ðkÞg has a simple physical meaning
and is derived in detail in Ref. [67]. Here, we just quote a
few key results.
As we shall see, the expression (A8) for ThðkÞ is domi-

nated by the factor C1ðkÞ 
 1, while the other two factors,
C2ðkÞ and C3ðkÞ, represent modest Oð1Þ corrections.
The factor C1ðkÞ is given by

C1ðkÞ ¼ 1

ð1þ zkÞ2
; (A9)

where zk is the redshift at which the mode k re-enters the
Hubble horizon (k ¼ aH) after inflation. We shall return to
this factor below.
The factor C2ðkÞ is given by

C2ðkÞ ¼ �2ð�k þ 1=2Þ
�

�
2

�k

�
2�k

; (A10)
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where �ðxÞ is the gamma function, and we have defined

�k � 2

1þ 3 ~wk

: (A11)

Here, ~wk is the effective equation-of-state parameter at
redshift zk, and is given by

~w k ¼ wk � 8�GN�k
Hk

; (A12)

where wk � pk=�k is the usual equation-of-state parame-
ter (i.e., the ratio of the total cosmological pressure pk to
the total cosmological energy density �k),Hk is the Hubble
expansion rate, �k is the bulk viscosity of the cosmological
fluid (see Secs. 2.11 and 15.11 in Ref. [68])—and, as their
subscripts indicate, all of these quantities are evaluated at
redshift zk. C2 is plotted in Fig. 6. Note that the expression
(A10) for C2ðkÞ is valid as long as the effective equation-
of-state parameter ~w is not changing rapidly relative to the
instantaneous Hubble time at redshift zk; see Ref. [67] for
the meaning of C2ðkÞ more generally.

The factor C3ðkÞ captures the modification of the pri-
mordial gravitational-wave signal due to tensor anisotropic
stress �ij (e.g., from free-streaming relativistic particles)

in the early universe. In particular, in the important case
that the effective equation-of-state near zk is radiation-like
( ~w � 1=3), free-streaming relativistic particles with en-
ergy density �fs damp the gravitational-wave spectrum
by the factor

C3ðkÞ ¼ A2ðkÞ; (A13)

where

AðkÞ � � 10

7

ð98�3
fs � 589�2

fs þ 9380�fs � 55125Þ
ð15þ 4�fsÞð50þ 4�fsÞð105þ 4�fsÞ ;

(A14)

and �fs � �fs
k =�

crit
k is the fraction of the critical density

that is relativistically free-streaming at redshift zk. C3 is
plotted in Fig. 7.
In the remainder of this section, we focus on obtaining a

more explicit expression for (1þ zk) and hence for C1ðkÞ.
To do this, let us proceed carefully as follows:

k2

a20H
2
0

¼ a2kH
2
k

a20H
2
0

; (A15a)

¼ 1

ð1þ zkÞ2
�crit
k

�crit
0

; (A15b)

¼ �rad
0

ð1þ zkÞ2
�rad
c

�rad
0

�crit
k

�crit
c

; (A15c)

where �rad and �crit denote the radiation density and criti-
cal density, respectively, and �rad

0 � �rad
0 =�crit

0 . In the first

line (A15a), we have used the fact that k ¼ akHk by
definition. In the second line (A15b), we have used the
definition of the redshift z to write a0=ak ¼ ð1þ zkÞ, and
the definition of the critical density �crit to write H2

k=H
2
0 ¼

�crit
k =�crit

0 . In the third line (A15c), we have used the fact

that the Universe is radiation dominated at �c so that
�crit
c ¼ �rad

c .
We have introduced the time �c to parametrize our

threshold of ignorance: it represents the earliest time at
which we know that the Universe was already radiation

w~

C 2

FIG. 6. The correction factor C2 as a function of the effective
equation-of-state parameter ~w, as given by Eqs. (A10) and
(A11). Note that C2 ¼ 1 when ~w ¼ 1=3.

Ω fs

C 3

FIG. 7. The correction factor C3 as a function of the free-
streaming fraction �fs ¼ �fs

k =�
crit
k , as given by Eqs. (A13) and

(A14).
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dominated. But, for all we know, the Universe prior to �c
may not have been radiation dominated: e.g., an exotic
‘‘stiff’’ component with w> 1=3 [38–40] may have domi-
nated the cosmic energy budget. The present agreement
between the theoretical and observational understanding of
BBN strongly suggests that the Universe was already
radiation dominated during BBN (i.e., at the time �bbn
when the temperature was T ¼ 1 MeV), so it currently
makes sense to choose �c ¼ �bbn. But, for the sake of
generality, we leave �c unfixed in this section, since we
can easily imagine future developments—such as an im-
proved understanding of primordial baryogenesis—that
would make an earlier time �c 
 �bbn a more appropriate
choice. Note that for the wave numbers of interest in this
paper—e.g., those measured by laser-interferometer ex-
periments—the temporal ordering is �k < �c < �eq < �0.

Two density ratios appear on the right-hand side of
Eq. (A15c). Let us rewrite each of these in turn. In order
to rewrite the first ratio, �rad

c =�rad
0 , let us pause to review a

few properties of an expanding bath of radiation. The bath
has energy density � and entropy density s given by [see
Secs. 3.3 and 3.4 in Ref. [70], and especially Eqs. (3.61),
(3.72)]

�ðzÞ ¼ 1
30�

2g�ðzÞT4ðzÞ; (A16a)

sðzÞ ¼ 2
45�

2g�sðzÞT3ðzÞ; (A16b)

where TðzÞ is the temperature at redshift z. These equations
may be taken as the definition of the quantities g�ðzÞ and
g�sðzÞ, which represent the effective number of relativistic
degrees of freedom in the radiation bath at redshift z, as
measured by the energy density �ðzÞ or the entropy density
sðzÞ, respectively. If the radiation expands quasi-
adiabatically—as is usually the case in the early uni-
verse—then the entropy a3s remains constant (to a very
good approximation). When this is true, Eqs. (A16a) and
(A16b) imply that the energy density of the radiation bath
redshifts as

�radðz1Þ
�radðz2Þ

¼ g�ðz1Þ
g�ðz2Þ

g4=3�s ðz2Þ
g4=3�s ðz1Þ

�
1þ z1
1þ z2

�
4
: (A17)

In particular, since the standard radiation epoch begins
prior to zc, the radiation expanded quasi-adiabatically dur-
ing the epoch zc 	 z 	 0, so we can write

�rad
c

�rad
0

¼ g�ðzcÞ
g�ð0Þ

g4=3�s ð0Þ
g4=3�s ðzcÞ

ð1þ zcÞ4: (A18)

Note that if we know the phase-space distribution functions
describing each particle species in the radiation bath, then
we can compute the quantities g�ðzÞ and g�sðzÞ directly—
again see Secs. 3.3 and 3.4 in Ref. [70] for more details. For
example, if all relevant particle species are in thermal with
one another at temperature T, then g� ¼ Nb þ ð7=8ÞNf

and g�s ¼ Nb þ ð7=8ÞNf, where Nb and Nf are the total

number of relativistic bosonic and fermionic degrees of
freedom, respectively.
To rewrite the second density ratio (�crit

k =�crit
c ) appearing

in Eq. (A15c), note that conservation of stress energy
(T
�

;� ¼ 0) in the early universe (i.e. in a spatially-flat

FLRW universe) implies the continuity equation:

d�crit

�crit
¼ �3½1þ ~wðaÞ� da

a
: (A19)

Here ~wðaÞ is the effective equation-of-state parameter:

~wðaÞ � wðaÞ � 8�GN�ðaÞ
HðaÞ ; (A20)

where wðaÞ ¼ pðaÞ=�ðaÞ is the usual equation-of-state
parameter [i.e., the ratio of the total cosmological pressure
pðaÞ to the total cosmological energy density �ðaÞ ¼
�critðaÞ], HðaÞ is the Hubble expansion rate, and �ðaÞ is
the bulk viscosity of the cosmological fluid (see Secs. 2.11
and 15.11 in Ref. [68]).6 Integrating Eq. (A19) from ac �
að�cÞ to ak � að�kÞ yields

�crit
k

�crit
c

¼ exp

�Z ac

ak

3½1þ ~wðaÞ� da
a

�
: (A21)

Alternatively, we can define an averaged effective
equation-of-state parameter ŵðfÞ through the equation

�crit
k

�crit
c

¼
�
1þ zk
1þ zc

�
3½1þŵðfÞ�

: (A22)

Comparing Eqs. (A21) and (A22), we see that ŵðfÞ is the
logarithmic average of the effective equation-of-state pa-
rameter ~wðaÞ over the range ak < a < ac

ŵðfÞ ¼ 1

ln½ac=ak�
Z ac

ak

~wðaÞ da
a
: (A23)

Note that if ~wðaÞ is an a-independent constant over this
range (which we DO NOT assume in this paper) then it
becomes equal to ŵ.
Finally, we can plug Eqs. (A18) and (A22) into the right-

hand-side of Eq. (A15c), solve for (1þ zk) and thus find

C1ðkÞ ¼ 1

ð1þ zcÞ2
�

��1=2

ð1þ zcÞ
2�f

H0

��4=ð1þ3ŵðfÞÞ
; (A24)

where we have defined

� � g�ðzcÞ
g�ð0Þ

g4=3�s ð0Þ
g4=3�s ðzcÞ

�rad
0 : (A25)

For g�ð0Þ, g�sð0Þ, and �rad
0 , one should use the values that

6Note that, although ~wðaÞ may be highly time varying, our
calculation does implicitly assume that it satisfies a weak adia-
baticity condition with respect to the mode k: after k is well
inside the Hubble horizon, the instantaneous time scale for the
variation of wðaÞ should not be shorter than the instantaneous
oscillation period of the mode k.
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these parameters would have if all three neutrino species
were massless. (For explicit numerical values, see
Appendix C.) These are the correct values to use in
Eq. (A25) even though, in reality, neutrinos have mass.

3. Rewriting the factor �2
hðk; �iÞ

Now, let us focus on rewriting the factor �2
hðk; �iÞ, i.e.,

the primordial tensor power spectrum on short
wavelengths.

Recall that the tensor spectral index ntðkÞ is defined as
the logarithmic slope of the primordial tensor power spec-
trum �2

hðk; �iÞ

ntðkÞ � d½ln�2
hðk; �iÞ�

d½lnk� : (A26)

Integrating this equation, we obtain

�2
hðk; �iÞ ¼ �2

hðkcmb; �iÞ exp
�Z k

kcmb

ntðk0Þdk
0

k0

�
; (A27)

where �2
hðkcmb; �iÞ is the primordial tensor power spec-

trum, evaluated at the CMB ‘‘pivot’’ wave number kcmb.
Alternatively, we can define an averaged spectral index
n̂tðfÞ through the equation

�2
hðk; �iÞ � �2

hðkcmb; �iÞ½k=kcmb�n̂tðfÞ: (A28)

In other words, the effective spectral index n̂tðfÞ is nothing
but the logarithmic average of the actual spectral index
ntðkÞ over the wave-number range from kcmb to k

n̂ tðfÞ � 1

ln½k=kcmb�
Z k

kcmb

ntðk0Þdk
0

k0
: (A29)

Note that if nt is a k-independent constant over this range
(which we DO NOT assume in this paper) then it becomes
equal to n̂t.

Finally, it is conventional (and also convenient, for
certain purposes) to define the tensor-to-scalar ratio r
through the equation

r � �2
hðkcmb; �iÞ

�2
Rðkcmb; �iÞ

: (A30)

Combining Eqs. (A28) and (A30), we can rewrite
�2

hðk; �iÞ, the primordial tensor power spectrum on short

wavelengths, in the form

�2
hðk; �iÞ ¼ r�2

Rðkcmb; �iÞ½k=kcmb�n̂tðfÞ: (A31)

4. Recapitulation

Now, let us assemble our results. Plugging Eq. (A24)
into the right-hand-side of Eq. (A8), we obtain the tensor
transfer function ThðkÞ in the useful form

ThðkÞ ¼ C2ðkÞC3ðkÞ
2ð1þ zcÞ2

�
��1=2

ð1þ zcÞ
2�f

H0

��4=ð1þ3ŵðfÞÞ
; (A32)

Then, plugging Eqs. (A31) and (A32) into Eq. (A7), we
obtain our final result

�
gw
0 ðfÞ ¼ r�2

Rðkcmb; �iÞC2ðkÞC3ðkÞ�
24

�
��1=2

ð1þ zcÞ
2�f

H0

�
�̂ðfÞ

�
�
a0H0

kcmb

2�f

H0

�
n̂tðfÞ

; (A33)

which is equivalent to Eq. (1) in the text.
In Eqs. (A32) and (A33): C2ðkÞ is given by Eqs. (A10)–

(A12); C3ðkÞ is given by Eqs. (A13) and (A14); ŵðfÞ is
given by Eq. (A23); � is given by Eq. (A25); n̂tðfÞ is given
by Eq. (A29); and we have defined

�̂ðfÞ � 2

�
3ŵðfÞ � 1

3ŵðfÞ þ 1

�
: (A34)

Note that, if the quantities C2ðkÞ, C3ðkÞ, ŵðfÞ, and n̂tðfÞ
are only weakly k dependent, then the frequency-
dependences of the tensor transfer function ThðkÞ and the
present-day gravitational-wave energy spectrum �gw

0 ðfÞ
are given roughly by ThðkÞ / ð2�f=H0Þ�4=ð1þ3ŵðfÞÞ and

�gw
0 ðfÞ / ð2�f=H0Þ�̂ðfÞþn̂tðfÞ, respectively.

APPENDIX B: DERIVING THE FREQUENCIES fc
AND fend

In this appendix we derive Eqs. (12) and (13), for fc and
fend, respectively. Let us start with Eq. (12) for fc. We
begin by writing

ð2�fcÞ2 ¼ a2c
a20

H2
c

H2
0

H2
0 ; (B1a)

¼ H2
0

ð1þ zcÞ2
�crit
c

�crit
0

; (B1b)

¼ H2
0�

rad
0

ð1þ zcÞ2
�rad
c

�rad
0

: (B1c)

If these steps are unclear, see Eqs. (A15a)–(A15c) and the
paragraph that follows them. Now, substituting (A18) into
Eq. (B1c), and solving for fc, we obtain Eq. (12) as
desired.
Next let us derive Eq. (13) for fend. To begin, note that

we can write �2
hðkend; �iÞ in two different ways. On the one

hand, using Eqs. (A28) and (A30), we can write

�2
hðkend; �iÞ ¼ r�2

Rðkcmb; �iÞ
�
2�fend
kcmb=a0

�
n̂tðfendÞ

: (B2a)

On the other hand, we can use the well-known inflationary
formula

�2
hðkend; �iÞ ¼ 64�GN

�
Hend

2�

�
2
; (B2b)

where our conventions match those of the WMAP experi-
ment (e.g., see Eq. (A13) in Ref. [64]). Comparing
Eqs. (B2a) and (B2b), we see that
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H2
end ¼

�2r�2
Rðkcmb; �iÞ
16�GN

�
2�fend
kcmb=a0

�
n̂tðfendÞ

: (B3)

Next, from the definition of fend, we can write

ð2�fendÞ2 ¼ a2end
a20

H2
end: (B4)

Note that, since the first factor on the right-hand-side of
Eq. (B4) is nothing but C1ðkendÞ, we can use Eq. (A24) to
rewrite it as

a2end
a20

¼ 1

ð1þ zcÞ2
�

��1=2

ð1þ zcÞ
2�fend
H0

��4=ð1þ3ŵðfendÞÞ
: (B5)

Finally, we can plug Eqs. (B3) and (B5) into the right-
hand-side of Eq. (B4), and solve for fend to obtain Eq. (13)
as desired.

APPENDIX C: NUMERICAL FORMULAE

This appendix lists a few useful numbers. From the
WMAP 5th-year data [87] we have (with 1
 error bars)

�2
RðkcmbÞ ¼ ð2:457þ0:092

�0:093Þ � 10�9 at kcmb ¼ 0:002=Mpc.
The present day value of the Hubble expansion rate may
be written asH0 ¼ ð3:24Þh� 10�18 Hz, where the Hubble
parameter h ¼ 0:701� 0:013 [87] is a fudge factor that
absorbs the uncertainty in the measurement of H0. Thus,
we can write ð2�f=H0Þ ¼ ð1:94=hÞ � 1018 ðf=HzÞ. If
kcmb ¼ 0:002 Mpc�1, then ðkcmb=a0H0Þ ¼ 6:00=h; and if
kcmb ¼ 0:05 Mpc�1, then ðkcmb=a0H0Þ ¼ 150:0=h. During
BBN (at temperature T ¼ 1 MeV) we have ð1þ zbbnÞ ¼
5:9� 109, and the standard values g�ðzbbnÞ ¼ g�sðzbbnÞ ¼
10:75 [70]. (Note: for BBN we have used the nice round
value T ¼ 1 MeV. In the future, if more accuracy is
needed, a more accurate value may used, but in practice
this would have only a very tiny effect on the figures and
bounds obtained in this paper.) From Appendix A in [70],
we have the standard values assuming three massless neu-
trinos: g�ð0Þ ¼ 3:3626, g�sð0Þ ¼ 3:9091, and �rad

0 ¼
4:3069� 10�5h�2ðTcmb=2:75 KÞ4, with Tcmb ¼ 2:725 K.
These are the correct values to use in Eqs. (5) and (A25)
for �, even though neutrinos actually have mass.
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