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We evaluate the ability of future data sets to discriminate among different quintessence dark energy

models. This approach gives an alternative (and complementary) measure for assessing the impact of

future experiments, as compared with the large body of literature that compares experiments in abstract

parameter spaces (such as the well-known w0 � wa parameters) and more recent work that evaluates the

constraining power of experiments on individual parameter spaces of specific quintessence models. We

use the Dark Energy Task Force (DETF) models of future data sets and compare the discriminative power

of experiments designated by the DETF as stages 2, 3, and 4 (denoting increasing capabilities). Our work

reveals a minimal increase in discriminating power when comparing stage 3 to stage 2, but a very striking

increase in discriminating power when going to stage 4 (including the possibility of completely

eliminating some quintessence models). We also see evidence that even modest improvements over

DETF stage 4 (which many believe are realistic) could result in even more dramatic discriminating power

among quintessence dark energy models. We develop and demonstrate the technique of using the

independently measured modes of the equation of state (derived from principle component analysis) as

a common parameter space in which to compare the different quintessence models, and we argue that this

technique is a powerful one. We use the PNGB, Exponential, Albrecht-Skordis, and Inverse Tracker (or

inverse power law) quintessence models for this work. One of our main results is that the goal of

discriminating among these models sets a concrete measure on the capabilities of future dark energy

experiments. Experiments have to be somewhat better than DETF stage 4 simulated experiments to fully

meet this goal.
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I. INTRODUCTION

Over the last decade or so there has been mounting
evidence that the energy of the universe has a large accel-
erating component, dubbed ‘‘dark energy’’[1]. As the evi-
dence becomes more convincing, there is growing
enthusiasm for launching a major program to collect addi-
tional data that will help us better understand the nature of
the dark energy [2], and indeed considerable progress is
being made on this front.

To plan a strong program of dark energy studies, one
needs to assess the relative impact of different possible
experiments. This has most often been done by describing
the dark energy in some abstract parameter space and
calculating how much a given data set could constrain
those abstract parameters. For example, the Dark Energy
Task Force (DETF) [3], building on earlier work [4,5], used
a standard two parameter model of the dark energy equa-
tion of state w as a function of cosmic scale factor a given
by wðaÞ ¼ w0 þ wað1� aÞ to form a figure of merit based
on constraining power in thew0 � wa parameter space. For
the most part, other authors have used other abstract dark
energy parametrizations [3,6,7], but more recently, we
have extensively explored the impact of future experiments
using the constraints produced on the actual parameters of
scalar field dark energy models [8–11]. That work gives

another window on the power of future experiments, which
we have argued is largely consistent with the DETF results
in the w0 � wa parameter space.
Our recent work [8–11] shows the constraining power of

future experiments on specific dark energy models.
However, because the natural parameter space of each
quintessence model is very different from the others, we
were not able to use our techniques to directly evaluate the
ability of experiments to favor one dark energy model
strongly over another. The one exception to this is ‘‘cos-
mological constant’’ dark energy [which has wðaÞ ¼ �1].
Each quintessence model we considered had a part of
parameter space where the quintessence closely mimicked
a cosmological constant, and we used that fact systemati-
cally in [8–11] to consider discriminating power in the
quintessence vs cosmological constant domain.
This paper builds on that earlier work to make a more

comprehensive analysis of the ability of future data to
discriminate among different quintessence models. The
key new ingredient is the use of a specially chosen pa-
rameter space to represent the different quintessence mod-
els in a common and comparable form. To this end we use
the ‘‘independently measured modes’’ of wðaÞ, which have
long been appreciated for a variety of reasons [5,7,12–17].
These modes, which are different for each experiment,
represent the modes or ‘‘moments’’ of wðaÞ of which
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uncorrelated measurements are made by that particular
experiment. This feature allows us to identify the modes
which are best measured and analyze them in a straightfor-
ward way (due to the lack of correlations). These modes
comprise a basis which spans the space of possible func-
tions wðaÞ. A given quintessence model with specific fixed
parameters will give a specific function wðaÞ which can
then be expanded in the modes, and the expansion coef-
ficients form the parameter space in which we work.

We use the pseudo-Nambu-Goldstone boson (PNGB)
[9,18], Exponential [10,19], Albrecht-Skordis (AS)
[8,20], and Inverse Tracker (IT, or inverse power law)
[11,21] quintessence models for this work. This is a diverse
set of models, each of which holds its own special interest
among researchers (see our discussion in the introductions
of [8–11] for a brief review of the motivations and [22] to
place these models in a more general context). One of our
results is that these four quintessence models actually
occupy very different regions of the mode parameter space.
This tells us that the aspects of wðaÞ that are well measured
by realistic experiments have the potential to be extremely
useful in discriminating among quintessence models. How
much this potential is realized is of course related to the
resolution achieved by a given experiment in its mode
parameter space, and that issue is the subject of much of
our analysis.

One of our key results is that the goal of discriminating
among these four models sets a concrete measure on the
capabilities of future dark energy experiments. Experi-
ments have to be somewhat better than DETF stage 4
simulated experiments to fully meet this goal.

Sections II, III, and IV describe our methods and Sec. V
presents our detailed results, while Sec. VI provides a
discussion of the relevant statistical issues. Our conclusion,
Sec. VII, summarizes our results.

II. CONNECTION TO OUR EARLIER WORK

Our work builds very directly on our recent papers
studying specific quintessence models [8–11]. We refer
the reader to those papers to learn more about our methods.
(An appendix giving the technical details about our meth-
ods that are common to all these papers can be found in
[9].) One product of this earlier work is a set of
Monte Carlo Markov chains (MCMC) representing the
distribution of models that are consistent with specific
stage 2 simulated data that are chosen to be consistent
with a cosmological constant cosmology. Specifically,
these chains represent the distribution of possible scalar
field parameters that are consistent with a specific simu-
lated stage 2 data set. Each quintessence model has its own
scalar field parameters and its own chain representing the
distribution in that space. Also, in each case we base the
stage 2 data around a specific ‘‘fiducial’’ set of scalar field
parameters that are consistent with a cosmological constant
at the 1�–2� level. Using these different fiducial models

accounts, in a rough way, for uncertainties in the outcomes
of the stage 2 experiments.
We use these chains for the work reported here by

determining the equation of state function wðaÞ for each
point on the chain and projecting that function into the
eigenmode-based space corresponding to a particular si-
mulated data set from stage 3 or stage 4 (as discussed in
detail below). When data from different scalar field models
are analyzed using the same eigenmodes, those modes
provide a common parameter space in which scalar field
models with different ‘‘fundamental’’ scalar field parame-
ters can be compared on a common footing. In this usage
the full chain represents how scalar field models that are
consistent with each other at stage 2 would be distributed
in the eigenmode-based space based on data from stage 3
or 4. Any discriminating power among regions of the stage
2 chains enabled by the higher stages represents progress
over stage 2 data, on which the original chains are based.

III. GENERATING EIGENMODES

For this work, eigenmodes were generated usingMCMC
calculations. We do this by breaking up the equation of
state into nine bins linear in scale factor from a ¼ 0:2 to
a ¼ 1, and using the value ofwþ 1 in each of these bins as

FIG. 1. The first three best-measured eigenmodes of wðaÞ. The
stage 3 (dot-dashed line), stage 4 ground (dashed line), and stage
4 space (solid line) modes share a common general form at each
mode level. Specific differences can be related to various differ-
ences among the experiments, including how deeply a given
experiment probes in redshift. (Technically, these modes should
each be represented by nine discrete bin values. The connecting
lines guide the eye, and reflect a likely ‘‘continuum limit’’ as
discussed in [7].)
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parameters. We then run Markov chains with these ‘‘bin’’
parameters in addition to cosmological parameters in order
to calculate a covariance matrix, from which we extract the
nine-by-nine covariance matrix for said bin parameters.
The eigenvectors of this matrix give us our eigenmodes,
while the eigenvalues are the squares of the uncorrelated
error in each mode. While these methods are slightly
different from the Fisher matrix techniques of [7], the
results are consistent, and our choice of binning is driven
by the analysis in [7]. As with our previous work [8–11],
the simulated data sets are constructed in a manner equiva-
lent to the DETF simulated data. We do not include cluster
data (due to the technical difficulty of including them
discussed in [7]). There are a number of possible consid-
erations beyond the DETF work (such as considering more
carefully the impact of including cross correlations among
different photometric data types [23,24]) that many expect
will lead to significant improvements over the DETF pro-
jections. For this paper we use the original DETF data
models for ease of comparison, except briefly in Sec. V
where we consider a simpleminded extension.

Plots of the first three eigenmodes are given in Fig. 1
(ranked by how well each mode is measured). All nine
eigenmodes together form an orthonormal basis, which is
different for each data set. The modes pick up additional
oscillations as one goes from best-measured (mode 1) to
less well-measured modes.

IV. PROJECTION ONTO EIGENMODES

We use the above eigenmodes to analyze four quintes-
sence models of dark energy: the PNGB, Exponential, AS,
and IT models. Sample equation-of-state behavior of these
models is illustrated in Fig. 2. In each case, we will use
points pulled from MCMC as representations of each
model’s parameter space. The chains were run on DETF
stage 2 type data generated using a fiducial point in each
model, as in [8–10]; this gives us a fairly wide spread of
parameter space for each model and represents, in a rough
way, the uncertainties in the outcomes of the stage 2
experiments.

We use a simple algorithm to average the equation of
state wðaÞ in the nine scale factor bins,wj. Thesewj can be

mapped into mode projectionsmi by matrix multiplication:

X

j

Eijðwj þ 1Þ ¼ mi (1)

where Eij is the jth term of the ith eigenmode. We use

wj þ 1 to center the eigenmodes around wðaÞ ¼ �1, so

that mi ¼ 0 for all i is a cosmological constant cosmology.
The actual value of mi for a given wðaÞ depends on the
number of bins used, so it is more convenient to look at mi

�i
,

where �i is the square root of the ith covariance matrix
eigenvalue. This expresses the power in each eigenmode in
units of its uncorrelated error, and should be relatively

stable as we change the number of modes by, for example,
refining the bin size.
When we consider how to display the range of quintes-

sence models in the eigenmode space, graphing the power
in the first three modes in a rotatable three-dimensional
plot can be fascinating. However, as this does not lend
itself to the static two dimensions of a paper, it is more
enlightening to view the modes two at a time (an interested
reader may contact the authors of this paper to view the
three-dimensional versions).
Figure 3 shows stage 2 distributions of our four example

quintessence models represented in the first four modes of
combined stage 3 data (using photometric data and system-
atics designated ‘‘optimistic’’ by the DETF, just as was
done in [8–11]). Because these points are plotted in units of
the error of each mode, one can get an intuitive idea of the
stage 3 resolving power by noting that stage 3 data should
roughly resolve areas of unit size in these plots.
It is interesting to note how the models examined here

occupy very distinct portions of the ‘‘mode space’’ except
for where they meet at the origin [wðaÞ ¼ �1]. We should
mention here that these figures in many cases display only
a subset of the total space accessible by the models, be-
cause the parameter spaces of the models were restricted in
the MCMC. This is particularly true of the AS model, for
which we expect that the kinks and wiggles in the dis-
played distribution will characterize a broader distribution
of such features. This may also be an issue for the PNGB
model, which was restricted in the MCMC analysis to the
concave-down portion of its potential. The Exponential
model, however, has a concave-up potential and gives us
some idea of where the concave-up portion of the PNGB

FIG. 2. A characteristic wðaÞ function for each of the four
scalar field models considered in this paper.
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model may lie in the mode space. As discussed in [8–11],
most of these restrictions were required to eliminate pa-
rameters that would be completely unconstrained by even
the best future data.

On a similar note, there is a small fraction of the points
(< 1%) in the Inverse Tracker model that never display
tracking behavior, but instead display the thawing [25]
behavior of the PNGB and Exponential models; this can
be seen in the plots as a handful of outlying points above
the main concentration of Inverse Tracker model points.

It is of interest that, as we look at parametrizations of
increasing distinction from the cosmological constant, we
see a consistent increase in the amplitude of their first
mode projections. As such, we might look at the first
mode projection as a signal of the presence of one of these

scalar field models, but only in extreme cases will it help us
distinguish between them (noting that a very large value
would actually rule out the AS model). It is clear that it is
the higher modes that will distinguish between models,
though the plot shows that stage 3 data will not do this very
well.
The authors of [6] also made plots using similar modes

to ours, but their approach is different. In [6] the potentials
are drawn from an abstract continuous space that covers
large ranges of possibilities, whereas our potentials are
drawn from specific scalar field models which each only
have certain classes of behaviors even as the parameters are
varied fully. These differences have allowed us to discover
a much more striking structure than can be seen in [6].
In Figs. 4 and 5 we show the mode projection plots for

stage 4 space and ground data sets, respectively (using the

FIG. 4. Stage 4 ground: A plot of the projections of the PNGB,
Exponential, AS, and Inverse Tracker models onto the first four
stage 4 ground eigenmodes. While the first mode is measured
better by this data than by the stage 3 data, it is the improvement
in the measurement of the second mode that makes the models
distinguishable over a wide range of their parameters.

FIG. 3. Stage 3 photometric: A plot of the projections of the
PNGB, Exponential, AS, and Inverse Tracker models onto the
first four stage 3 photometric eigenmodes. The displayed points
are a sampling from MCMC for each model, and the scale of
each axis is given by �i, the uncertainty in measurements of that
mode. Note that, while a significant portion of each model has a
first mode projection larger than 1�, very few points have a
second mode projection of 1� or larger.
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same DETF optimistic combinations used in [8–11]). We
can see from these plots that the overall shape of the
distribution of projected models remains very similar in
the first two modes. The stage 4 data sets do a better job of
measuring the first mode than stage 3, a much better job of
measuring the second mode, and even begin to give reso-
lution of the third mode that is of marginal value in
resolving these models. As a result, for a scenario in which
the stage 3 projects detected the presence of quintessence
at the level of a few sigma, the stage 4 data should be able
to discriminate between this sample of models to at least
that level.

V. RESOLVING THE QUINTESSENCE MODELS

With the models projected onto the eigenmode space,
we then have a common space in which to compare the

different scalar field models and evaluate how well upcom-
ing experiments will distinguish among them. We can use
mode uncertainties as a metric to find how measurably
different each quintessence model will be. Informed by
the plots of mode projections, we can reasonably expect
that the first mode will dominate this measure, but the
second mode (and, to some extent, the third) will play a
part in setting the minimum separation. As for the higher
modes, we can expect to see these swamped by their
uncertainty; a combination of the poor measurement and
the lack of power in these modes by our quintessence
models makes them largely irrelevant. Figure 6 gives in-
formation about the distribution of mode amplitudes for
our chains. From Fig. 6 one can see that the scatter in the
higher modes will be much larger than the distribution of
physically interesting values. This gives us, in effect, a
prior on the value of these modes that is much stronger
than the data constraints from even stage 4 experiments.
Therefore, this calculation will actually be done using only
the first three eigenmodes.
Assuming stage 2 data as discussed above, higher stage

data might come from a universe based on any of the
quintessence models represented by points in our mode-
space plots. Our next step is to scan all possible data
outcomes and evaluate the potential discriminating power.
We represent the stage 2 distribution of each quintessence
model, by choosing four ‘‘test points’’ spread evenly across

FIG. 6. A plot of the mean (with bars at 1 standard deviation)
and maximum projections of the examined models into the stage
4 space mode space, in terms of the mode uncertainties. It can be
seen that for nearly all of the model points, the projections onto
the modes higher than 3 are negligible. Also, though the AS
model has outlying points that have some power in the higher
modes, the bulk of the model does not.

FIG. 5. Stage 4 space: A plot of the projections of the PNGB,
Exponential, AS, and Inverse Tracker models onto the first four
stage 4 space eigenmodes. As with the stage 4 ground plot, the
most significant improvement, in terms of model distinction,
going from the stage 3 data to the stage 4 space data is the
measurement of the second mode.
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the mode space. Four test points each for four quintessence
models gives a total of 16 ‘‘data outcomes’’ which are
meant to represent (in a rough way) the full range of
possibilities. The distribution of our test points in mode
space is shown in Fig. 7. These ‘‘test points’’ were chosen
by their first mode projections, which places them in
sequence along the very nearly linear regions the models
cover [26]. For each of the 16 test points, we analyze the
ability of data centered on the test point to exclude other
points on the chains. Note that in Fig. 7 the test points are
not represented with noise, which is expected in any data
set (at a level given by the �i’s) and which is reflected in
our quantitative analysis.

The curves in Figs. 8–10 show the fraction of model
points with �2 less than a specific value, given on the x axis
[27]. To read these plots, start with the labels on the left-
hand side. These read PNGB, EXP (Exponential), IT, and

AS, and label which model the ‘‘test points’’ used in that
row of plots were pulled from. Then, look to the top of the
figure, where the same model labels mark the columns;
these label which model the test points are being compared
to in each column. In each plot, four functions are graphed:
�2 vs the fraction of the compared model’s points that have
that �2 or lower relative to the test point in question. For
example, looking at the PNGB vs PNGB plot, the curves
represent how far the rest of the PNGB model is from each
PNGB test point. The point where each function touches
the x axis (the minimum �2) is, in this case, a loose
measure of how densely the MCMC populates the mode
space at that test point. However, if one were to look at the
PNGB row and the AS column, the graph there represents
how far the PNGB test points are from all of the points in
the AS chain, and the minimum �2 of each function
represents by what �2 each of the PNGB test points would
rule out the entire AS model.
The sharp left-hand edges of curves in Figs. 8–10 imply

very strong discriminating power at the level of �2 given
by the point on the x axis where the edge is located. We
have organized information about this important feature in
Tables I, II, and III, which give numerical results for the
minimum �2 that one could estimate from Figs. 8–10. In
general (due to the outlying points and other factors), one
expects some low level tails even on the otherwise sharp
rising edges. In order to make sure we are quantifying the
true edge of the figure, we ignore the closest 1% of points
from the compared model. This is equivalent to finding the
�2 where each plot crosses the 0.01 fraction mark. For
completeness, we have again included the Exponential
model, though we do not expect any experiment to distin-
guish between it and the PNGB model. The numbers
reported here reinforce the intuition we gain from the
mode plots: only in extreme cases will stage 3 distinguish
between the models. The only examples that rise above the
level of 99% confidence (which is a �2 of 11.36 for the
three parameters used here) are due to the previously
mentioned observation that the AS model has a much
smaller range of amplitudes in the first mode than the other
three models.
The stage 4 ground and stage 4 space �2 values show

significant improvement over stage 3. Again, the largest �2

values come from the large first mode separation between
the last test point for each model and the nearest AS model
point.
Looking at Tables II and III it appears that the stage 4

data lie on some kind of threshold: There are quite a few
entries greater than 11.36 (indicating exclusion at 99%
confidence) but plenty that are lower. To explore the nature
of this threshold a bit more, Table IV presents �2 values for
a hypothetical data set that would improve the �i by a
factor of 1.5 over stage 4 space. Because of a variety of
considerations (including those discussed in [23,24]),
many believe that such improvements (or even much better

FIG. 7. The four test points for each model (16 test points in
all) represent possible experimental outcomes. The test points
are plotted here in the eigenmodes for stage 4 space. One can
compare this figure with Fig. 5 to see the degree to which the full
range of behavior of each model is represented by the test points.
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ones) over the DETF modeling of stage 4 are realistic for
some experiments. In Table IV there are indeed a great
many more entries greater than 11.36, further supporting
the notion of a threshold around stage 4. As a reference

point, the �i of the stage 4 data sets are a factor of about 4
or 5 smaller than the stage 3 �i for most modes. To get a
more complete understanding of which experiments might
achieve (or beat) the level of model discrimination shown

FIG. 8. Stage 3 photometric: These plots show the distributions of �2 as each test point is compared with each comparison model.
Specifically, we plot the fraction of �2 values less than �2 given on the x axis. The rows of this figure correspond to which model the
test points have been pulled from (as seen in Fig. 7), while the columns correspond to the model which is compared to those test points.
In each plot, the test point closest to the origin of the mode space (and, thus, a �CDM model) is denoted by a dotted line, the next
closest as a dot-dashed line, the next as a dashed line, and the farthest as a solid line. The 99% confidence interval for three parameters
is �2 ¼ 11:36. The relatively sharp left-hand edges of these curves are an interesting feature (related to the gaps between models in
mode space) which is discussed in the text and Table I.
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in Table IV, one would have to undertake detailed model-
ing of alternative experiments and data analysis schemes.
Such a systematic analysis is not the subject of this paper,
and we leave that for future work.

VI. DISCUSSION OF STATISTICS

The MCMC of the selected scalar field models in this
analysis are used as a means to represent the phenomenol-

FIG. 9. Stage 4 ground: These plots show the distributions of �2 as each test point is compared with each comparison model.
Specifically, we plot the fraction of �2 values less than �2 given on the x axis. The rows of this figure correspond to which model the
test points have been pulled from (as seen in Fig. 7), while the columns correspond to the model which is compared to those test points.
In each plot, the test point closest to the origin of the mode space is denoted by a dotted line, the next closest as a dot-dashed line, the
next as a dashed line, and the farthest as a solid line. The 99% confidence interval for three parameters is �2 ¼ 11:36. The relatively
sharp left-hand edges of these curves are an interesting feature (related to the gaps between models in mode space) which is discussed
in the text and Table II.
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ogy associated with each model, that is, to represent the
full spread of points in mode space that the model can
occupy. This is not to be confused with the set of priors that
would be used in a Bayesian analysis. The question we

seek to answer with Figs. 8–10, and Tables I, II, III, and IV,
is ‘‘If the universe is a single realization of a particular
model, how well will a given experiment rule out other
models/phenomenologies?’’ The method we use to answer

FIG. 10. Stage 4 space: These plots show the distributions of �2 as each test point is compared with each comparison model.
Specifically, we plot the fraction of �2 values less than �2 given on the x axis. The rows of this figure correspond to which model the
test points have been pulled from (as seen in Fig. 7), while the columns correspond to the model which is compared to those test points.
In each plot, the test point closest to the origin of the mode space is denoted by a dotted line, the next closest as a dot-dashed line, the
next as a dashed line, and the farthest as a solid line. The 99% confidence interval for three parameters is �2 ¼ 11:36. The relatively
sharp left-hand edges of these curves are an interesting feature (related to the gaps between models in mode space) which is discussed
in the text and Table III.
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TABLE II. Stage 4 ground. This is a table of the minimum �2

(ignoring the smallest 1% of �2 values). Again, the low first
mode projections for the AS model are responsible for the
highest �2 values, but we can also see significant separation
for test points that have first mode projections in the range of the
model they are being compared to. As discussed in the text, this
table gives the values of �2 where the curves in Fig. 9 sharply
approach the x axis.

PNGB PNGB Exponential IT AS

Point 1 0.003 0.005 0.3 0.9

Point 2 0.004 0.04 2.4 7.6

Point 3 0.01 0.2 6.0 18.8

Point 4 0.03 0.2 8.0 26.5

Exp. PNGB Exp. IT AS

Point 1 0.01 0.001 0.4 1.6

Point 2 0.04 0.002 2.1 7.8

Point 3 0.1 0.003 3.8 14.5

Point 4 0.3 0.01 6.0 24.4

IT PNGB Exp. IT AS

Point 1 1.1 0.9 0.002 1.2

Point 2 3.2 2.6 0.001 3.6

Point 3 6.7 5.2 0.002 8.3

Point 4 18.7 13.6 0.04 30.1

AS PNGB Exp. IT AS

Point 1 1.4 1.3 0.5 0.001

Point 2 2.3 2.1 0.8 0.001

Point 3 3.3 3.1 1.2 0.001

Point 4 7.4 7.0 2.6 0.001

TABLE I. Stage 3 photometric. This is a table of the minimum
�2 (ignoring the smallest 1% of �2 values). The 99% confidence
level is a �2 of 11.36. Notably, the only comparisons that rise to
that level are between the test points with large first mode
projections and the AS model, telling us that this is mostly a
first mode measurement. As discussed in the text, this table gives
the values of �2 where the curves in Fig. 8 sharply approach the
x axis.

PNGB PNGB Exponential IT AS

Point 1 0.001 0.001 0.1 0.2

Point 2 0.002 0.01 0.5 1.8

Point 3 0.004 0.04 1.2 6.2

Point 4 0.01 0.04 1.6 10.0

Exp. PNGB Exp. IT AS

Point 1 0.004 0.001 0.1 0.4

Point 2 0.01 0.001 0.4 1.8

Point 3 0.03 0.001 0.7 4.3

point 4 0.1 0.01 1.1 9.1

IT PNGB Exp. IT AS

Point 1 0.2 0.1 0.001 0.2

Point 2 0.5 0.4 0.0004 0.7

Point 3 1.0 0.7 0.001 3.3

Point 4 2.7 1.8 0.01 16.4

AS PNGB Exp. IT AS

Point 1 0.1 0.1 0.1 0.0001

Point 2 0.2 0.1 0.1 0.0001

Point 3 0.2 0.2 0.1 0.0002

Point 4 0.6 0.5 0.2 0.001

TABLE IV. Stage 4 space, with experimental uncertainty re-
duced by 2=3 in each mode. This is a table of the minimum �2

(ignoring the smallest 1% of �2 values).

PNGB PNGB Exponential IT AS

Point 1 0.01 0.01 0.9 3.6

Point 2 0.01 0.1 7.3 29.1

Point 3 0.04 0.4 18.4 67.5

Point 4 0.09 0.4 24.1 84.1

Exp. PNGB Exp. IT AS

Point 1 0.04 0.01 1.4 6.4

Point 2 0.1 0.01 6.6 30.7

Point 3 0.3 0.01 11.8 55.1

Point 4 0.7 0.05 18.8 74.6

IT PNGB Exp. IT AS

Point 1 3.5 2.9 0.01 4.9

Point 2 10.4 8.5 0.01 18.4

Point 3 21.9 17.4 0.01 21.1

Point 4 62.4 46.9 0.2 129.0

AS PNGB Exp. IT AS

Point 1 7.2 6.8 2.5 0.004

Point 2 10.9 10.3 4.0 0.01

Point 3 24.6 23.3 9.8 0.01

Point 4 59.7 56.6 23.9 0.01

TABLE III. Stage 4 space. This is a table of the minimum �2

(ignoring the smallest 1% of �2 values). Again, the low first
mode projections for the AS model are responsible for the
highest �2 values, but we can also see significant separation
for test points that have first mode projections in the range of the
model they are being compared to. As discussed in the text, this
table gives the values of �2 where the curves in Fig. 10 sharply
approach the x axis.

PNGB PNGB Exponential IT AS

Point 1 0.01 0.01 0.4 1.6

Point 2 0.01 0.05 3.2 13.0

Point 3 0.02 0.2 8.2 30.0

Point 4 0.04 0.2 10.9 37.4

Exp. PNGB Exp. IT AS

Point 1 0.02 0.002 0.6 2.8

Point 2 0.05 0.003 2.9 13.6

Point 3 0.1 0.01 5.2 24.5

Point 4 0.3 0.02 8.4 33.2

IT PNGB Exp. IT AS

Point 1 1.5 1.3 0.005 2.2

Point 2 4.6 3.8 0.002 8.2

Point 3 9.7 7.7 0.003 9.4

Point 4 27.8 20.8 0.1 57.3

AS PNGB Exp. IT AS

Point 1 3.2 3.0 1.1 0.002

Point 2 4.9 4.6 1.8 0.003

Point 3 10.9 10.4 4.3 0.01

Point 4 26.5 25.1 10.6 0.01
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this is to take the probability of observing the observables
generated by that realization (for a given experiment) at all
other points in the eigenmode space, and then find the
highest of those probabilities (smallest �2) out of our sets
of model-based phenomenologies. We can then speak to
the power of the experiments to distinguish between
models.

Because we are only interested in the regions of closest
approach between a model and a hypothetical realization,
the exact distribution of the points in the chains used for
this work is largely unimportant, so long as it does a
reasonable job of exploring the possibilities of each. Our
focus on the regions of closest approach is really a luxury
which is enabled by the remarkable structure we have
found in the eigenmode space. An outcome with more
overlap (such as we do see between the Exponential and
PNGB models) might draw one into a Bayesian analysis
where priors on the different model distributions in mode
space would play a critical role. One can loosely think of
our approach as a very conservative one that allows for
very unprincipled theorists who might cook up reasons to
place delta function priors on the point of closest approach.
We have shown that high quality stage 4 experiments
could rule out entire models, even under these adverse
circumstances.

There is an important assumption built into our analysis.
Our choice of four test points spread out along the mode
curves for each model implies that we are giving ‘‘equal
weight’’ to the actual universe residing anywhere along the
mode-space curves. In the current confused state of dark
energy theory, one can expect a wide variety of individual
preferences on this point. For someone with a different
preference, our results about the structure in mode space
remain unchanged, and will still impact any alternative
analysis performed to express different prejudices about
possible outcomes of future experiments. We feel we have
built assumptions into our analysis which allow us to most
directly address the following question: ‘‘If one of these
experiments is carried out and gets a significant signal,
what are the prospects for that signal completely ruling out
a given scalar field model?’’ While we have focused our
quantitative analysis on cosmologies based on one or the
other of our scalar field models, one also can see (by
inspecting the mode-space figures) that it would be quite
possible to get an experimental signal that rules out all the
scalar field models considered here. That again is a con-
sequence of the mode-space structure demonstrated in this
paper.

VII. CONCLUSIONS

We have considered the ability of future dark energy
experiments to discriminate among different scalar field

quintessence models of dark energy. To this end we have
projected the equation-of-state functions wðaÞ for each
model into the space of best-measured eigenmodes of
future experiments. We believe this approach is effective
and convenient for investigating the ability of a given data
set to discriminate among different quintessence models.
Specifically, this approach offers a way around the fact that
parameters of different quintessence models are typically
not defined in the same spaces, which makes more direct
comparisons of the models problematic.
The four quintessence models considered here create a

distinctive structure when projected into the mode spaces.
The goal of discriminating among these quintessence mod-
els gives an alternative and complementary measure of the
impact of future experiments. In large part due to the
structure in mode space, this measure has some striking
features that are different from other measures considered
previously.
We have shown that the DETF stage 3 data will have

very little utility in discriminating among the four quintes-
sence models, although it will significantly probe the pos-
sibility of noncosmological-constant-like behavior. DETF
stage 4 simulated data appear to lie right at an interesting
threshold in that this data show significant discriminating
power among the quintessence models we considered. We
also showed that modest improvements over DETF stage 4
(which many consider quite realistic for some stage 4
experiments currently proposed) allow one to cross this
threshold more completely, leading to substantially greater
discriminating power.
It is important to note that at our current level of theo-

retical understanding all quintessence models are suspect,
and we are not advocating the use of the measures pre-
sented here to the exclusion of other approaches. However,
as discussed in [8–11], we have chosen an interesting
sampling of reasonably motivated quintessence models.
Since such quintessence models are part of the current
theoretical discussion of dark energy, discriminating power
among these models should be part of how we evaluate the
impact of dark energy experiments.
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