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We revisit inflation in induced gravity. Our focus is on models where the low scale Planck mass is

completely determined by the breaking of the scaling symmetry in the field theory sector. The Higgs-like

field which breaks the symmetry with a GUT-scale vacuum expectation value (vev) has nonminimal

couplings to the curvature, induced by the gravitational couplings of the other light fields in the theory, so

that its vev controls the gravitational strength. This field can drive inflation and give a low energy universe

in very good agreement with the cosmological observations. The low energy dynamics of the standard

model cannot be unitarized by the Higgsflaton, which decouples from the low energy theory, both because

it picks up a large mass and because its direct couplings to the low energy modes are weakened. Instead,

the short distance behavior of the standard model may be regulated by the dynamics of other light degrees

of freedom, such as in Higgsless models.
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The standard model (SM) of particle physics has been a
singularly successful framework for explaining the ob-
served dynamics of elementary particles. Its low energy
canonical spectrum contains1 90 fermionic degrees of free-
dom, 27 vector bosons, with or without mass terms, and a
single scalar degree of freedom which has so far eluded all
attempts at detection. This evasive mode—the Higgs
field—is special in many respects. It is the only fundamen-
tal scalar in the SM, having so far completely avoided
direct detection. On the other hand, the whole structure
of the SM hinges on its existence, because it is responsible
for the unitarization of the electroweak sector of the theory
and the generation of vector boson and fermion masses.
Indeed, the Higgs spontaneously breaks the electroweak
gauge symmetry, setting the mass scale of the massive SM
fields.2 The residual Higgs fluctuations then regulate the
massive low energy electroweak sector and unitarize its
scattering amplitudes. However, not all is well in the SM
tale. As is well known, the Higgs mass is not radiatively
stable, and its phenomenological value of �100 GeV, and
consequently a flat potential, begs the question about what
may possibly keep it there. This single missing SM degree
of freedom is so vital to the whole model that a spectacular
machine such as the Large Hadron Collider (LHC) has as
one of its key tasks seeking for it, and for the physics which
makes it possible.

But, what if the LHC does not find a fundamental scalar?
An absence of the Higgs would push us into alternative
explanations of the observed low energy SM dynamics.
Models without a light Higgs may have to separate the
origin of masses from the new physics which unitarizes the
low energy theory. Indeed, what would (not) be directly
observed at the LHC are only the fluctuations of the Higgs
field, and not its zero mode. Examples where the unitariza-
tion of SM amplitudes is disentangled from the origin of
mass have already been considered, and among them re-
cently the Higgsless models in extra dimensions [1] at-
tracted much attention. These models are realized as brane
setups in cutoff AdS space [2], with AdS radius L, with
fermions localized on branes and gauge bosons propagat-
ing in the bulk. In the effective 4D theory this yields towers
of Kaluza-Klein gauge bosons, whose masses and cou-
plings are determined by the warping of the bulk AdS
geometry. In the dual cutoff AdS/CFT, they are duals of
light conformal field theory (CFT) states, with masses
below the CFT UV cutoff �� 1=L, whose number is
N � ðM4LÞ2 [3]. Curiously, this counting of light states
agrees with the recent ideas on a relation of the number of
light states below some UV cutoff and hierarchy between
this cutoff and the Planck scale [4]. In fact, such models are
naturally related to technicolor models, but now in the
strong coupling regime as defined by way of the AdS/
CFT duality, where the SM is also unitarized without
invoking fundamental scalars.
Thus if no fundamental scalar were observed at the

LHC, we will have had the (poor) consolation of verifying
experimentally the theoretical prejudice against light fun-
damental scalars. Such an outcome would speak loudly
against the existence of any light fundamental scalar, in-
dicating that nature may choose other routes for realizing
the low energy SM. We stress once again here, that while
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1The discovery of the neutrino masses has already taken us

outside of the canonical SM, extending the spectrum by at least
as many as 6 more fermions.

2With the possible exception of neutrinos, which by the seesaw
mechanism may inherit masses from dynamics at much higher
scales.
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this may be an extreme point of view, it is not yet excluded
by any experimental facts. SM with the Higgs is the
simplest means of describing the observed particle dynam-
ics, but the Higgs is still missing, and its existence has been
questioned. Thus it is of interest to consider other impli-
cations of a missing Higgs, particularly as it relates to the
paradigm of naturalness. While speculative from the point
of view of our current expectations, they yet remain to be
excluded.

Indeed, the absence of the Higgs would have other
implications if we take the view that its presence were to
support naturalness. Beyond the SM physics, scalars also
play a key role in cosmology, where they are prototypical
inflatons. A scalar field provides the simplest dynamics
necessary to inflate the universe, ensuring that its large
smooth and nearly flat swaths survive to the present epoch
[5]. The scalars can be inflatons if their potential is very flat
in the units of the natural cutoff, compared to which they
are light. This is qualitatively similar to the SM Higgs,
although in practice the requirement for potential flatness
is quantitatively weaker. Nonetheless, all inflaton models
need some amount of fine-tuning to make sure the potential
remains flat in spite of the couplings to other matter,
necessary for reheating.

In the event that LHC finally discovers the Higgs, it will
be easy to imagine that other light scalars with flat poten-
tials appear in nature, regardless of why that may be so.
One could be the inflaton, at a scale well below the cutoff,
and well separated from UV physics, and ultimately grav-
ity. On the other hand, if no light scalars are seen, a logical
consequence may be that light scalars are hard to sustain.
In such an instance, the scalars would drift up to near the
cutoff, which may be at the grand unified theory (GUT)
scale �2� 1016 GeV, as hinted at already from sub-TeV-
scale physics explored so far, by the proton stability, the
seesaw explanation neutrino masses, and the clues from
gauge coupling unification.3 So if the scalars cannot be
stabilized near the TeV scale, radiative stability may be
attained if the scalar masses are pushed high, to near the
GUT scale, where even the mode responsible for inducing
SM masses may end up. In such a scenario, the inflaton
would be no exception. However unlikely this option may
now seem, the conspicuous absence of the Higgs from the
observed bestiary of elementary particles found to date
points to the fact this is not yet impossible. Indeed, the
Higgsless models of various kinds already account for this
in the SM sector. In this note, we shall outline how to allow
for inflation in such a universe, basing it on a Higgs-like
field, which spontaneously breaks the scale symmetry at
the GUT scale, and gets a flat enough effective potential, as

it induces the (small) hierarchy between the GUT scale and
the Planck scale.
In the early days of inflationary model building, the

possibility of driving inflation by the SM Higgs has been
tried, but without immediate success [7]. With minimal
couplings to gravity, the SM constraints force the scalar
self-couplings to be too large to yield satisfactory infla-
tionary density perturbations (see [8] for a review). These
problems can be ameliorated if nonminimal couplings to
gravity are allowed. In particular, in the induced gravity
framework [9,10] one can get the right density perturba-
tions even if the scalar self-couplings are much larger than
in the minimal coupling case [11]. Recently it has been
noted [12] that if the scalar has direct coupling to the
curvature, ��j�j2R, and there is also the standard
Einstein-Hilbert term in the theory,�M2

PlR, then the scalar
could both drive a low scale inflation, yielding the right
density contrast, and serve as the Higgs after inflation. For
this claim, it is crucial that the gravitational sector contains
the Einstein-Hilbert term.4 If it were not so, the cosmic
background explorer (COBE) normalization and the phe-
nomenologically required Higgs vev, hHi � 246 GeV,
would force the value of the Planck scale to be at the
�10 TeV scale.
Our route here is very different. We imagine that the

underlying theory is conformal in the UV, including the
gravitational sector. This means that the bare gravitational
Einstein-Hilbert term is absent from the action, which
instead contains higher derivative terms, starting with the
curvature squared invariants,

S ¼
Z
d4x

ffiffiffi
g

p �
AGBþ BC2

���� þ CR2 � 1

2
ðr�Þ2

� �

4
ð�2 � v2Þ2 �Lmatterðg��;�;  Þ þ . . .

�
; (1)

where GB ¼ R2
���� � 4R2

�� þ R2 is the Gauss-Bonnet

combination, C���� is the Weyl tensor, and A, B, C are

some dimensionless constants. This theory is in fact re-
normalizable, as shown some time ago in [14] and, later, in
works on induced gravity [10] and relation between
Newton’s constant and scale symmetry breaking [15]. On
the other hand, suppose there is a somewhat large number
of degrees of freedom in the matter sector, �Oð104Þ,
including those which will become the low energy SM. If
there is a gauge group in the theory which confines at some
scale, dimensional transmutation will yield an IR cutoff,
which will be fed back to the scalars. There may also be
explicit symmetry breaking terms in the scalar sector, with
the scalars which are not protected from radiative correc-
tions from the strong gauge group.
Either way, the matter sector quantum field theory will

be characterized by a dimensional cutoff. Then, the quan-
tum one-loop effects will generate contributions to the

3Some features of dynamics in Higgsless models as pertaining
to these scales, and specifically issues of relevance for unifica-
tion have been addressed in [6]. 4More aspects of this scenario were considered in [13].
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action of the form ��2R [9,10]. In general, these correc-
tions will depend on the cutoff itself, as well as the value of
field vevs around which the corrections are calculated. We
will assume that the field independent contributions to �
can be neglected. This could be justified as follows. The
quantum contributions to �R term will come as ð�2 þ
c�2ÞR from every degree of freedom which couples to
gravity. If these degrees of freedom are all weakly coupled,
one would expect that the bare cutoff terms may dominate.
On the other hand, if some are in strong coupling, the
strong coupling effects may conspire between different
orders in the loop expansion and retain the appearance of
conformality, such that the dimensional transmutation
which they trigger may occur at a scale well below the
strong coupling scale [16]. Thus this scale could be smaller
than the one directly sampled by the Higgs symmetry
breaking.5 Then the leading order contributions to � may
come from the IR masses of the fields residing in the
geometry, yielding by linear superposition �2 �P

km
2
k.

If these masses are generated directly by a symmetry
breaking induced by a Higgs-like field (Higgs for short
from now on), mkð�Þ � g�, this would yield �2 ’
N g2�2, which can dominate over the hard cutoff contri-
butions. Here for simplicity we assume that all the Yukawa
couplings are approximately the same. The number N
counts the fields in the theory which are Higgsed by�, and
so this yields ��N g2. Again, this is consistent with the
recent ideas about the large number of light fields inducing
the hierarchy between the mass scale where they reside and
the Planck scale [4], although it would be a much more
conservative quantitative implementation of such a frame-
work. Note that the crucial aspect of this idea is that the
conformal symmetry breaking which induces the Einstein-
Hilbert term is soft, in that the hard cutoff contributions
must be subleading, which typically may not occur in weak
coupling [16].

Of course, the scalar which breaks the symmetry cannot
be the usual Higgs [12,17], since its mass will be too large,
as would be natural by the low energy accounting of
radiative corrections. This scalar will have its mass and
vev set by the scale where the conformal symmetry breaks
down. To reflect this, we will dub it the ‘‘Higgsflaton,’’ and
take the symmetry breaking scale to be the GUT scale.6

However the crucial property that allows the Higgsflaton to
drive inflation, and therefore get a somewhat flatter poten-
tial, is its coupling to the Ricci scalar. The key reason is
that the parameter �, of the order of 104, needed to induce
the hierarchy between the GUT scale and the Planck scale,

also seesaws the scalar mass from the GUT scale down to
m’ � v=

ffiffiffi
�

p
, flattening the scalar potential just enough.

Moreover, this number precisely reproduces the COBE
normalization7 of the scalar density perturbations in this
model. Given the argument for how the Einstein-Hilbert
term comes about, the value of � can be obtained by
positing that the Higgsflaton gives mass to about 104

degrees of freedom, with Yukawa couplings g� 1=3,
which therefore live at the GUT scale, and whose loops
induce the Einstein-Hilbert term. In this case, the low
energy standard model is unitarized by some other degrees
of freedom, e.g. as in the Higgsless models [1]. Note that in
this scenario—as in the Higgsless model—we are not
addressing the origin of the electroweak scale, which
should be attributed to some other strong dynamics that
does not necessarily involve scalar modes. At least the SM
fields, being outnumbered by the other degrees of freedom
in the theory, and much lighter than most, will not contrib-
ute significantly to the generation of the Einstein-Hilbert
term, which would be largely insensitive to their presence.
Let us now outline the cosmological scenario. In light of

the discussion above, the low energy theory, below the
scale symmetry breaking, is given by the effective 4D
action

S ¼
Z
d4x

ffiffiffi
g

p �
1

2
��2R� 1

2
ðr�Þ2 � �

4
ð�2 � v2Þ2

�Lmatterðg��;�;  Þ þ . . .

�
; (2)

where Lmatter includes the standard model and additional
matter fields which unitarize it at the �TeV scale, collec-
tively denoted by  , and � is the Higgsflaton scalar field
modulus, with a nonminimal coupling to curvature ��2R.
The ellipsis stand for additional terms which we assume to
be mostly negligible. The Higgsflaton phase is inLmatter as
a longitudinal component of a gauge boson, so that Lmatter

is written in a unitary gauge. With the assumptions above,
the parametrization of its leading order low energy dynam-
ics by (2) is accurate in the limit of weak gravity. On the
other hand, although in the regime of background field
values �� 0 the field theory in (2) is perturbative, gravity
as encoded by (2) becomes strong. So sufficiently close to
the origin in field space the theory cannot be described by
(2). However, in this regime the scale symmetry is restored,
and the gravitational theory reverts back to the curvature
squared action, with a negligible Einstein-Hilbert
correction.
At any rate, at low energies for large values of � which

break the symmetry, gravity will be weak when �� 1. In
this limit, we can use the field equations derived from (2)
to describe the background geometry. At a minimum,

5At least in the weak coupling this may occur, as we know
from the example of QCD, where low energy quark masses are
mainly attributed to the electroweak symmetry breaking.

6The proximity of the GUT scale to the Planck scale makes the
presence of fundamental scalars near the GUT scale appear more
plausible, since at those scales one may get away without
mechanisms that protect their masses from radiative corrections.

7Possible connections between the GUT scale and primordial
density perturbations were noted in [18], albeit realizations were
different.
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� ¼ �v, if we integrate out the scalar the theory reduces
to Seff ¼

R
d4x

ffiffiffi
g

p ð12�v2R�Leff
matterðg��;  Þ þ . . .Þ, which

shows that the effective low energy Planck scale around the
scalar vacuum is

M2
Pl ¼ �v2: (3)

To see the scalar dynamics we can go to the unitary gauge
where all fields are canonically normalized. Taking the
conformal transformation and scalar field redefinition
[11,19,20],

ĝ �� ¼
�
�

v

�
2
g��; ’ ¼ MPl

ffiffiffiffiffiffiffiffiffiffiffiffi
6þ 1

�

s
ln

�
�

�0

�
; (4)

where �0 is an arbitrarily chosen normalization, yields the
Einstein frame action

S ¼
Z
d4x

ffiffiffî
g

p �
M2

Pl

2
R̂� 1

2
ðr̂’Þ2 � V̂ð’Þ

�
�
v

�0

�
4
e�4ð’=MPl

ffiffiffiffiffiffiffiffiffiffiffi
6þ1=�

p
Þ

�Lmatterðð�0=vÞ2e2ð’=MPl

ffiffiffiffiffiffiffiffiffiffiffi
6þ1=�

p
Þĝ��; ’;  Þ þ . . .

�
:

(5)

The new effective potential is, using Eq. (3),

V̂ð’Þ ¼ �

4

ð�2 � v2Þ2
ð�=vÞ4

¼ �M4
Pl

4�2

�
1�

�
v

�0

�
2
e�2ð’=MPl

ffiffiffiffiffiffiffiffiffiffiffi
6þ1=�

p
Þ
�
2
: (6)

The minima � ¼ �v clearly correspond to ’ ¼
MPl

ffiffiffiffiffiffiffiffiffiffiffiffi
6þ 1

�

q
lnð v�0

Þ. Around the minimum, the curvature of

the effective potential (6) yields the scalar mass

m2
’ ¼ @2’V̂ ¼ 2�M2

Pl

�2ð6þ 1=�Þ ; (7)

that, together with Eq. (3), implies

m2
’ ’ �v

2

3�
; (8)

in the limit when �� 1. Obviously, in the limit �� 1,
m’ �MPl and so this case is less interesting. This is

precisely the seesaw effect in the scalar sector, which we
alluded to in the introductory discussion. Indeed, that this
is akin to seesaw can be seen by eliminating � from Eq. (8)
by using Eq. (3), which yields

m2
’ ’ �v4

3M2
Pl

; (9)

precisely a seesaw mass formula. In fact, the dynamics
responsible for flattening the potential is conceptually

similar to scalar ‘‘seizing’’ of [21], except that the large
wave function renormalization involves the graviton as
well as the scalar field.
We note that the ‘‘strong gravity regime’’ �� 0 in the

Einstein frame variables corresponds to the limit ’!
�1, where the potential (6), and also all mass scales in
the matter sector in (5) diverge. This of course is simply the
restatement of the fact that the ratio of any mass scale �
and the effective Planck mass MPl ¼

ffiffiffi
�

p
� diverges when

�! 0. This manifestly excludes the limit ’! �1 from
the low energy action (5), because in this case one must
restore the quadratic curvature terms which were ignored
in writing the effective action (2).
For the potential (6), clearly inflation occurs when j�j>

v. In this limit gravity is weak, and furthermore the poten-
tial behaves like a cosmological constant. This can be

readily seen from (6), since when j�j> v, V̂ ! �v4

4 ¼
�M4

Pl

4�2
. Thus, since the potential asymptotes a constant

when’! 1, which smoothly goes to the minimum j�j ¼
v, sufficient inflation followed by a graceful exit will occur
when ’ is initially large. Note, however, that by the for-
mula (9), the mass of the Higgsflaton at the minimum is
comparable to the Hubble scale during inflation, so the
slow roll may extend even as the field approaches the
minimum. In the original variables, the initial value of
the field � need not exceed MPl when �� 1. This is
qualitatively similar to assisted inflation [22], where the
expectation value of the inflaton during inflation also need
not be trans-Planckian. For more complicated potentials,
which may even involve bigger powers of �, however, the
effective potential (6) will still typically have a maximum,
and decay back to zero for very large values of ’. In such
cases, it is still possible to have inflation if the initial value
of ’ will be near the maximum, which is expected to occur
somewhere due to the random distribution of initial values
[23].
Taking the background to be a spatially flat Friedmann-

Robertson-Walker spacetime, we can use the slow-roll
equations to describe the geometry at large scales. This
yields

H2 ffi �M2
Pl

12�2

�
1�

�
v

�

�
2
�
2
;

_’ ffi � 2ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 1=�

p
ffiffiffiffi
�

p
�

�
v

�

�
2
M2

Pl:

(10)

Using these Eqs. (10), and recalling that curvature pertur-
bations are independent of the conformal frame in which
they are calculated [20,24], it is straightforward to deter-
mine the amplitudes of scalar and tensor perturbations
generate during inflation. Their powers are, respectively,

�2
R ¼

�
H2

2� _’

�
2 ffi �

128�2�2

�
�

v

�
4
�
1�

�
v

�

�
2
�
4
; (11)

NEMANJA KALOPER, LORENZO SORBO, AND JUN’ICHI YOKOYAMA PHYSICAL REVIEW D 78, 043527 (2008)

043527-4



�2
h ¼ 8

�
H

2�MPl

�
2 ffi �

6�2�2

�
1�

�
v

�

�
2
�
2
; (12)

where we are taking the limit �� 1. Now, to determine
the scale at which (11) and (12) need to match to the
observed anisotropies, we need to relate the field values
to the inflationary clock readings, conveniently given by
the number of efolds before the end of inflation. Inflation
will end when the field rolls near the minimum j�j ’ v.
However, to get a precise location of the end of inflation,
we can use the slow-roll parameters in the Einstein frame,
which for the potential (6) are

� ¼ M2
Pl

2

�
@’V̂

V̂

�
2 ’ 4

3

�
1�

�
v

�

�
2
��2

�
v

�

�
4
; (13)

	 ¼ M2
Pl

@2’V̂

V̂
’ 4

3

�
1�

�
v

�

�
2
��2

�
2

�
v

�

�
2 � 1

��
v

�

�
2
:

(14)

Inflation will end when either � or 	 become Oð1Þ. From
(13), this will occur at j�j � �� ’ 1:47v. This means that
between some value �>�� and this terminal value ��,
the universe will undergo N efolds of inflation, where N is
related to � according to

N ¼
Z �

��

H

_’

d’

d�
d� ffi 3

4

�
�

v

�
2 � 3

4

�
��
v

�
2 � 3

2
ln

�
�

��

�

’ 3

4

�
�

v

�
2 � 1� 3

2
ln

�
�

��

�
; (15)

where we have used (4), (13), and (14). Since the pivot
scale where cosmic microwave backgrounds (CMB) ob-
servations are matched to the theory is Np ¼ 55, this

implies that the formulas for amplitude of perturbations
(11) and (12) read

�2
R ’ �

72�2�2
ðN þ 4:3Þ2; �2

h ’
�

6�2�2
; (16)

for N ’ 55. They yield �2
R ’ 4:9� �

�2
and the tensor-to-

scalar ratio r ¼ �2
h=�

2
R ’ 0:003. This is within the reach

of future observational confirmation by planned experi-
ments of B-mode polarization observation of CMB such
as B-Pol. Matching the curvature perturbations to the
observed value of �2

R ¼ 2� 10�9 givesffiffiffiffi
�

p
�

’ 2:0� 10�5: (17)

We can also easily calculate the spectral index of the scalar

perturbations. The standard formula ns ¼ 1þ d ln�2
R

d lnk gives

ns ffi 1� 2

N þ 4:3
; (18)

which translates numerically to ns ¼ 0:97, in excellent
agreement with the CMB data. Aspects of the CMB con-

straints on the perturbations in the model based on (2) were
also considered in [25].
What of particle physics scales in this theory? As it

manifest from Eq. (17), inflationary dynamics constrains
the ratio of the coupling constants � and �. To break this
degeneracy we can take the coupling � to be perturbative,
but not tiny, in order to relax the usual severe tunings in the
field theory sector of the inflaton [11]. So, suppose that ��
10�2. In this case, Eq. (17) implies �� 5000, and so by
Eq. (3) we find

v ¼ MPlffiffiffi
�

p � 3� 1016 GeV; (19)

i.e. we find v ’ MGUT, exactly as we asserted in the
introductory discussion. In turn the Higgsflaton mass (7)

in the vacuum j�j ¼ v is m’ ¼ ffiffiffiffi
�

p
v=

ffiffiffiffiffiffi
3�

p � 3�
1013 GeV, by Eq. (8), which thanks to the seesaw induced
by the large parameter � is significantly below the sym-
metry breaking scale v.
As the field rolls down the slope of (6) towards the

minimum, it passes through an inflection point and the
local curvature of the potential, negative up on the plateau,
will increase slowly, eventually ending inflation. After
falling down the precipice to the potential well around
the minimum, the field oscillates around it on a time scale
of the order of m�1

’ , reheating the universe. The details of

reheating depend on the couplings of the Higgsflaton to
matter. The simplest case is when in the original, Jordan
frame, � couples the SM fermions only via Yukawa cou-
plings. In this case, the classical scaling symmetry allow us
to completely remove and decouple the canonical
Higgsflaton field ’ from matter. To see this consider the
transformation of the Jordan frame Yukawa term

ffiffiffi
g

p
� �  

under conformal transformation. The fermions will scale

according to  ¼ ð�=vÞ3=2�, so that � is canonically
normalized, which turns Yukawa couplings into simple

mass terms
ffiffiffî
g

p
v ��� [26]. Without other direct couplings

of ’ to matter, reheating may occur in two stages. In the
first stage,’ oscillates about the bottom of its potential and
its self interactions rapidly lead to resonant amplification
of the nonzero modes of ’, which rescatter on the surviv-
ing part of the condensate, eventually disrupting it [27,28],
and ensuring that the universe is filled almost exclusively
by quanta of ’ with a typical momentum of Oðm’Þ.
Subsequently, the quanta of ’ will scatter against each
other, in processes like ’’! �� mediated by gravitons,
and produce the SM matter. A typical time scale for this
process is the gravitational scattering scale 
gs ’ M4

Pl=m
5
’,

which with the mass scale m’ � 3� 1013 GeV yields a

reheating temperature TRH � g�1=4
� ðMPl=
gsÞ1=2 � TeV.

In reality, however, the reheating will be more efficient,
because there will be additional couplings. To start with,
one-loop corrections will spoil the exact cancellation be-
tween the rescaling factors in Yukawa terms, yielding a
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leftover field-dependent mass m� � vð�=vÞd, where d�
Oð1Þ g2

4�2 arises from the anomalous dimension of the fer-

mions and the running of the coupling g. Thus the coupling

will in reality become m� � v½1þOð1Þ g2

4�2 lnð�vÞ	, or

after introducing the canonically normalized field ’ from
Eq. (4) and using �� 1,

m� � v

�
1þOð1Þ g

2

4�2

’

MPl

�
: (20)

This means that there will be Planck-suppressed couplings
between ’ and the fermions, and so the fermions will be
produced directly by the Higgsflaton tachyonic preheating,
and additional preheating stages as the field oscillates
around the minimum [27,28].

Moreover, if there are fields with explicit mass terms in
the theory, there will be mass-term induced direct cou-
plings of ’ to them, which are Planck suppressed, but
may still be sufficiently large. This is most simply illus-
trated with an example of a scalar field � defined by a
Jordan-frame Lagrangian L� ¼ ffiffiffi

g
p ½�ðr�Þ2=2�Uð�Þ	.

Upon changing to the Einstein frame metric variable, we
find the leading order effective Lagrangian for �,

L effð�̂Þ ¼
ffiffiffî
g

p �
� 1

2
ðr̂�Þ2

�
v

�0

�
2
e�2ð’=MPl

ffiffiffiffiffiffiffiffiffiffiffi
6þ1=�

p
Þ

�
�
v

�0

�
4
e�4ð’=MPl

ffiffiffiffiffiffiffiffiffiffiffi
6þ1=�

p
ÞUð�Þ þ . . .

�
: (21)

If we expand this action in a series in ’ around the
minimum, where � ¼ �v, and focus on the lowest order
terms, we can see that the trilinear Lagrangian describing
lowest order interactions is formed from keeping the ki-
netic term and the mass term for � and the linear term in’.
This yields

L I ¼
ffiffiffî
g

p ’

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 1=�

p ½ðr̂�Þ2 þ 2m2
��

2 þ . . .	: (22)

Clearly, this trilinear term will yield the dominant channel
for ’ decay. The decay rate can now be calculated straight-
forwardly. Since one is interested at the decay of wave
packets much smaller than the Hubble length, one can
ignore the expansion of the universe and go to the locally
Lorentzian frame, by replacing the metric in (22) by the
Minkowski metric. Then since the leading order process is
’! 2�, one can go to the momentum picture and evaluate

(22) on shell. That yields LI ¼ 2m2
��p1
p2

MPl

ffiffiffiffiffiffiffiffiffiffiffi
6þ1=�

p ’�2, where pk

are the 4-momenta of the decay products, and in the center-
of-mass (CM) frame of ’ it reduces to, by recalling our
metric signature to be �þþþ and using energy momen-

tum conservation that yields �p1 
 p2 ¼ m2
’

2 �m2
�, an ef-

fective trilinear interaction

L I ¼
m2
� þm2

’=2

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 1=�

p ’�2; (23)

which is just the standard scalar Yukawa term with the

coupling constant g ¼ m2
�þm2

’=2

MPl

ffiffiffiffiffiffiffiffiffiffiffi
6þ1=�

p . Therefore the decay rate

’! 2� is8

�’!2� ¼ g2

8�m’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
�

m2
’

vuut

¼ ðm2
� þm2

’=2Þ2
8�ð6þ 1=�ÞM2

Plm’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
�

m2
’

vuut : (24)

Thus the gravitational decay time9 whenm�̂ ’ m’ and � >

1 is 
gd �M2
Plm’=m

4
� [20]. These extra channels will

enhance reheating, and raise the reheating temperature:
e.g. if m�̂ ’ m’ ’ 3� 1013 GeV, then TRH � 108 GeV.

The reheating temperature of this range can directly be
measured by observation of future space-based laser inter-
ferometers [29]. Moreover, in the presence of additional
particles lighter than ’ new channels will appear, enhanc-
ing � ! �total ¼

P
k�k. In any case, the Higgsflaton will

settle down into the minimum rather efficiently. This is in
fact good, because if any energy in it survived, it could
overclose the universe. At any rate, this shows that the
decay of the Higgsflaton would be efficient, and will con-
vert the vacuumlike energy density of the Higgsflaton
sector into normal particles. The precise details would of
course depend on the exact structure of the physics which
completes the standard model.
In lieu of a conclusion, let us state here that much of the

dynamics presented here will remain a possibility for in-
flation even if LHC discovers the Higgs. In that case,
however, many more theories involving light scalars may
be plausible, and when identifying which may be the
raison d’etre behind the inflaton, one may fall victim to a
‘‘tyranny of small decisions.’’ The absence of the Higgs
could, at least in this sense, help reduce the number of
options for what lurks beyond the standard model, and
point to a high scale inflation, that could be tested in the
future searches for the primordial gravitational waves.
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