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We estimate the strength of large-scale magnetic fields produced during inflation in the framework of

Dirac-Born-Infeld (DBI) theories. This analysis is sufficiently general in the sense that it covers most of

conformal symmetry breaking theories in which the electromagnetic field is coupled to a scalar field. In

DBI theories there is an additional factor associated with the speed of sound, which allows a possibility to

lead to an extra amplification of the magnetic field in a ultrarelativistic region. We clarify the conditions

under which seed magnetic fields to feed the galactic dynamo mechanism at a decoupling epoch as well as

present magnetic fields on galactic scales are sufficiently generated to satisfy observational bounds.
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I. INTRODUCTION

It is observationally known that there exist magnetic
fields in clusters of galaxies with the field strength
10�7–10�6 G on 10 kpc� 1 Mpc scales [1] as well as
those with the field strength �10�6 G on 1–10 kpc scales
in galaxies of all types [2] and in galaxies at cosmological
distances [3]. In particular, it is very mysterious that mag-
netic fields in clusters of galaxies are as strong as galac-
tic ones and that the coherence scale may be as large as
�Mpc. Although galactic dynamo mechanisms [4] have
been proposed to amplify very weak seed magnetic fields
up to �10�6 G, seed magnetic fields to feed on is neces-
sary at the initial stage, and the effectiveness of the dynamo
amplification mechanism in galaxies at high redshifts and
clusters of galaxies is not well established yet.

Proposed scenarios for the origin of cosmic magnetic
fields fall into two broad categories. One is astrophysical
processes [5] and the other is cosmological processes, e.g.,
cosmological phase transition [6] and primordial density
perturbations before the epoch of recombination [7]. It is
difficult, however, that these processes generate magnetic
fields on megaparsec scales with sufficient strength con-
sistent with observations of galaxies and clusters of gal-
axies without dynamo amplification mechanism.

The most natural origin of such a large-scale mag-
netic field is electromagnetic quantum fluctuations gen-
erated at the inflationary stage [8], because inflation has
a causal mechanism to generate super-Hubble gauge fields
from microphysical processes. When we assume the
Friedmann-Robertson-Walker (FRW) spacetime usually
considered, its metric is conformally flat. Moreover, the
classical electrodynamics is conformally invariant. Hence,
the conformal invariance of the Maxwell theory must have
been broken at the inflationary stage in order that elec-
tromagnetic quantum fluctuations can be generated at
that time [9]. We note that this does not apply when the

FRW background has nonzero spatial curvature [10]. (In
Refs. [11], the breaking of conformal flatness of the FRW
metric induced by the evolution of scalar metric perturba-
tions at the end of inflation was discussed. Moreover, the
generation of magnetic fields from grand unified theories
was studied in Ref. [12].)
So far various conformal symmetry breaking mecha-

nisms have been proposed. An incomplete list includes
nonminimal gravitational coupling [8,13], dilaton elec-
tromagnetism [14], coupling to a scalar field [15], that
to a pseudoscalar field [16], that to a charged scalar field
[17], scalar electrodynamics [18], general coupling to a
time-dependent background field [19,20], the photon-
graviphoton mixing [21], conformal anomaly induced by
quantum effects [22], spontaneous breaking of the Lorentz
invariance [23] (see also [24]), the generation of the mass
of the gauge field due to a minimally supersymmetric
standard model flat direction condensate [25], the photon
mass generation due to the existence of the minimal fun-
damental scale [26], nonlinear electrodynamics [27], and
cosmic defects [28].
In addition, as a breaking scenario based on the funda-

mental theory of particle physics, there exists a scenario
in the framework of the Dirac-Born-Infeld (DBI) theory,
which is a four-dimensional low-energy effective theory of
string theories [29–31]. In this paper we shall derive the
equation of electromagnetic fields for such theory and es-
timate the strength of magnetic fields generated during in-
flation. As we will see later, this analysis also covers
theories that possess electromagnetic couplings of the
form Ið�;RÞF��F

�� [19], where I is an arbitrary function

of a scalar field � or a Ricci scalar R. Thus the strength of
magnetic fields we will derive in this paper is applicable
to many conformal symmetry violating models. In fact
we shall apply our formula to several concrete models of
inflation.
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This paper is organized as follows. In Sec. II we consider
the evolution of theUð1Þ gauge field and derive the general
formula for the field strength of the large-scale magnetic
fields. We apply the derived formula to several infla-
tion models in Sec. III. Finally, Sec. IV is devoted to
conclusions.

We use units in which kB ¼ c ¼ @ ¼ 1, and adopt
Heaviside-Lorentz units in terms of electromagnetism.

II. GENERATION OF MAGNETIC FIELDS

Let us start with the following four-dimensional action

S ¼ �
Z

d4xf1ð�Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ f2ð�Þ@��@��þ f3ð�ÞF��Þ

q

þ ~Sð�;R; g��Þ; (1)

where f1ð�Þ, f2ð�Þ, f3ð�Þ are the functions of �, g�� is

the metric tensor, and F�� ¼ @�A� � @�A� is the electro-

magnetic field-strength tensor. The action ~S depends on �,
R and g�� but not on F��. The DBI scenario proposed in

Ref. [31] corresponds to f1ð�Þ ¼ 1=fð�Þ ¼ �4=�,

f2ð�Þ ¼ fð�Þ, and f3ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
fð�Þp

for the anti–de Sitter
(AdS) throat. The rolling tachyon scenario [30] corre-
sponds to f1ð�Þ ¼ Vð�Þ, f2ð�Þ ¼ 1, and f3ð�Þ ¼
2�=M2

s , where Ms is the string mass scale.
When the action (1) is varied with respect to the Uð1Þ

gauge field A�, we neglect those terms whose orders are

higher than F��F
��. We then obtain

@�

�
f1ð�Þf23ð�Þffiffiffiffiffiffiffiffi�G

p GF��

�
¼ 0; (2)

where G ¼ detðG��Þ, G�� ¼ g�� þ f2ð�Þ@��@��, and

F�� ¼ G��G��F��. Let us consider the flat FRW space-

timewith scale factor aðtÞ, where t is a cosmic time. For the
Coulomb gauge, @jAjðt; xÞ ¼ 0 and A0ðt; xÞ ¼ 0, the equa-

tion of motion for Ai is given by

€A iðt; xÞ þ
_F
F

_Aiðt; xÞ � 1

�2

1

a2
�
ð3Þ
Aiðt; xÞ ¼ 0; (3)

where a dot represents a derivative with respect to t and

F � f1f
2
3a�; � � ½1� f2ð�Þ _�2��1=2: (4)

One can expand the gauge field Ai by using annihilation
and creation operators together with two orthonormal
transverse polarization vectors [19]. Then the Fourier
mode Að	; kÞ, with a conformal time 	 ¼ R

a�1dt and a
comoving wave number k, satisfies the following equation
of motion:

d2

d	2
Að	; kÞ þ 1

J

dJ

d	

d

d	
Að	; kÞ þ k2

�2
Að	; kÞ ¼ 0; (5)

where J ¼ f1f
2
3�. Introducing another time 
 ¼ R

��1d	,
Eq. (5) reduces to

A00ð
; kÞ þ I0

I
A0ð
; kÞ þ k2Að
; kÞ ¼ 0; (6)

where a prime represents a derivative with respect to 
 and

I ¼ f1f
2
3: (7)

If we consider conformal symmetry violating Maxwell
theories with the action

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

4
Ið�;RÞF��F

�� þLð�;R; g��Þ
�
;

(8)

we get the same form of equation as (6) apart from the fact
that 
 is replaced by the conformal time 	 [19].
The Hubble parameter, H ¼ _a=a, needs to satisfy the

condition j _H=H2j � 1 during inflation. Then we have 
 ’
�ð�aHÞ�1 under the condition j _�=H�j � 1. The modes
starting from the ‘‘sub-Hubble’’ regime (k � �aH) enter
the ‘‘super-Hubble’’ regime (k � �aH) at a time 
k char-
acterized by the condition 
k ’ �1=k.

The WKB sub-Hubble solution to Eq. (6) is Ain ¼
e�ik
=

ffiffiffiffiffiffiffiffi
2kI

p
, which approaches the Minkowski vacuum

state in the limit 
 ! �1. Meanwhile the super-Hubble
solution neglecting correction terms of the order k2 is given
by Aout ¼ CðkÞ þDðkÞR
R


 d~
=Ið~
Þ, where CðkÞ and DðkÞ
are constants and 
R corresponds to the time at reheating.
Matching these two solutions at time 
 ¼ 
k using the
junction conditions Aoutð
kÞ ¼ Ainð
kÞ and A0

outð
kÞ ¼
A0
inð
kÞ, the coefficients CðkÞ and DðkÞ are determined

accordingly. Neglecting the decaying mode for Aout, we
get the late-time solution jAð
; kÞj2 ¼ jCðkÞj2 at the end of
inflation:

jAð
; kÞj2 ¼ 1

2kIð
kÞ
�

��������1�
�
I0ð
kÞ
2kIð
kÞ þ i

�
k
Z 
R


k

Ið
kÞ
Ið~
Þ d~


��������
2

: (9)

In the following we assume that the energy density of the
field� is converted to radiation almost instantly right after
the end of inflation and that the conductivity �c of the
Universe jumps to a value much larger than the Hubble rate
at reheating. Then the proper magnetic field, Bproper

i ðt; xÞ ¼
a�2�ij‘@jA‘ðt; xÞ, evolves as Bproper

i ðt; xÞ / a�2 in the re-

heating and subsequent radiation/matter/dark energy domi-
nated stages. Taking into account two polarization degrees
of freedom, the spectrum of the magnetic field is given by

jBproperð
; kÞj2 ¼ 2
k2

a4
jAð
; kÞj2: (10)

The energy density of the magnetic field per unit logarith-
mic interval of k is defined by
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Bð
; kÞ � 1

2

4�k3

ð2�Þ3 jB
properð
; kÞj2Ið
Þ: (11)

Since the radiation density evolves as �ð
Þ ¼ �ð
RÞ�
ðaR=aÞ4, it is convenient to introduce the density parameter
�Bð
; kÞ ¼ Bð
; kÞ=�ð
Þ. From Eqs. (9)–(11) we obtain

�Bð
; kÞ ¼ 15

2�4Neff

�
k

aRTR

�
4 Ið
Þ
Ið
kÞ

�
��������1�

�
I0ð
kÞ
2kIð
kÞ þ i

�
k
Z 
R


k

Ið
kÞ
Ið~
Þ d~


��������
2

: (12)

Here we used �ð
RÞ ¼ �2NeffT
4
R=30, where Neff is the

effective massless degree of freedom and TR is the reheat-
ing temperature.

In order to estimate the strength of magnetic fields, let us
consider the case in which the evolution of the quantity I
during inflation is given by

I ¼ I�ð
=
�Þ��; (13)

where I�, 
�, and � are constants. This choice is made to
get a quantitative estimate of the generated magnetic field
and is general enough to cover many models includ-
ing those discussed in the following section. On using
the relations 
R ’ �ð�RaRHRÞ�1 and 3H2

R ’ �ð
RÞ=M2
pl

(where Mpl is a reduced Planck mass), we get

�Bð
; kÞ ¼ C
Neff

1080

�
TR

Mpl

�
4
�

k

aRHR

�
4�� Ið
Þ

Ið
RÞ�
�
R; (14)

where C ¼ j1� �þ2i
2ð�þ1Þ j2. Hence the spectral index of the

magnetic field is given by

nB ¼ 4� �: (15)

For larger positive � it is possible to generate large-scale
magnetic fields. Note that the reheating temperature gen-
erally has an upper bound from the cosmic microwave
background (CMB) observations (TR & 1015 GeV). Be-
cause of the presence of the � factor there is an extra
amplification of the magnetic field for �R � 1 and �> 0.

Let us first estimate the quantity k=aRHR for the scale
L ¼ 2�=k ½Mpc�. Using the present value H�1

0 ¼ 3:0�
103h�1 Mpc and the relation a0=aR ¼ TR=T0 we have
k=aRHR ’ ð1:88=hÞð104 Mpc=LÞðTR=T0ÞðH0=HRÞ. Since
H2

R ’ �2NeffT
4
R=90M

2
pl, T0 ¼ 2:73 K, and H0 ¼ 2:47h�

10�29 K, we find

k

aRHR

¼ 5:1� 10�25 1ffiffiffiffiffiffiffiffi
Neff

p Mpl

TR

1

L=Mpc
: (16)

The energy density Bð
0Þ at the present epoch is given by
Bð
0Þ ¼ ð1=2ÞjBð
0Þj2 ¼ �Bð
0; kÞ�ð
0Þ, where Bð
0Þ
is an observed magnetic field. Since �ð
0Þ ’ 2�
10�51 GeV4 and 1 G ¼ 1:95� 10�20 GeV2, we obtain

jBð
0Þj ¼ 2:7� 10�56þ25�=2 	
�
C
Ið
0Þ
Ið
RÞ

�
1=2

N�=4�1=2
eff

�
�
1

5:1

TR

Mpl

�R

�
�=2

�
L

Mpc

�
�=2�2

G: (17)

If we take the maximum reheating temperature TR ’
1015 GeV ¼ 4� 10�4Mpl with Neff ¼ 100, one can esti-

mate the order of the present magnetic field to be

jBð
0Þj ’ 1011��57

�
C
Ið
0Þ
Ið
RÞ

�
1=2

��=2
R

�
L

Mpc

�
�=2�2

G: (18)

We must have jBð
0Þj * 10�9 GeV to explain observed
magnetic fields on the scales 1 kpc� 1 Mpc without the
mechanism of galactic dynamo.
At the decoupling epoch with z ¼ 1000, the radiation

energy density is given by �ð
decÞ ’ 1012�ð
0Þ. Then the
magnetic field strength at this epoch is given by

jBð
decÞj ¼ 2:7� 10�50þ25�=2 	
�
C
Ið
decÞ
Ið
RÞ

�
1=2

N�=4�1=2
eff

�
�
1

5:1

TR

Mpl

�R

�
�=2

�
L

Mpc

�
�=2�2

G: (19)

When TR ’ 1015 GeV and Neff ¼ 100, the order of
jBð
decÞj is

jBð
decÞj ’ 1011��51

�
C
Ið
decÞ
Ið
RÞ

�
1=2

��=2
R

�
L

Mpc

�
�=2�2

G:

(20)

The seed field with an amplitude jBð
decÞj * 10�23 G is
required to explain the present size of the magnetic field
through the galactic dynamo mechanism for a flat universe
without cosmological constant. However, this limit is re-
laxed up to jBð
decÞj * 10�30 G on �kpc scale in the
presence of cosmological constant at late times [32].
We would like to stress here that the above results are

valid even for the theories with the action (8) by setting
� ¼ 1.

III. APPLICATION TO CONCRETE MODELS

We shall apply the formula derived in the previous sec-
tion to several conformal symmetry breaking models. We
adopt the reheating temperature TR ¼ 1015 GeV to esti-
mate the maximum allowed size of magnetic fields. Note
that the factor C in Eqs. (17)–(20) is of the order of unity.

A. Power-law inflation with � ¼ 1

Let us consider the dilatonic coupling Ið�Þ ¼ e�� and
the Lagrangian L ¼ ð1=2Þðr�Þ2 þ Vð�Þ in Eq. (8). This
corresponds to the case � ¼ 1, i.e., 
 ¼ 	. If the potential

is given by Vð�Þ ¼ V0 expð�
ffiffiffiffiffiffiffiffiffi
2=p

p
�Þ, where� is normal-

ized by Mpl, power-law inflation with a / tp (p > 1) is

realized. Since the field evolves as � ¼ �0 þ
ffiffiffiffiffiffi
2p

p
lnðtÞ,
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the coupling I has a time dependence I / t�
ffiffiffiffi
2p

p
/

ð�	Þ��, where

� ¼ �

ffiffiffiffiffiffi
2p

p
p� 1

: (21)

We shall study the case in which the field � is frozen
right after the end of inflation due to the appearance of a
potential minimum. We then have Ið
RÞ ¼ Ið
0Þ ¼ Ið
decÞ
in Eqs. (18) and (20). In order to get the present size of
magnetic fields [jBð
0Þj * 10�9 G] on the scale L ¼
1 Mpc without the mechanism of galactic dynamo, we
must have �> 4:4. To explain the origin of seed magnetic
fields jBð
decÞj> 10�30 G on the scale L ¼ 1 Mpc at the
decoupling epoch, we need �> 1:9. This condition is
relaxed to �> 1:6 for the magnetic fields on the scale
L ¼ 1 kpc.

The recent Wilkinson Microwave Anisotropy Probe
(WMAP) data of density perturbations constrains the
power p to be p > 70 at the 95% confidence level [33].
We then find that the parameter � must satisfy at least the
relation, � > 9:4, from the condition �> 1:6.

B. Tachyon inflation

The rolling tachyon scenario [30,34–36] corresponds to
the choice f1ð�Þ ¼ Vð�Þ, f2ð�Þ ¼ 1, and f3ð�Þ ¼
2�=M2

s , where Ms is the string mass scale. We then have
Ið�Þ ¼ 4�2Vð�Þ=M4

s , which decreases during inflation.
Consider the inverse power-law potential Vð�Þ ¼

V0�
�2 with V0 ¼ 4pð1� 2=3pÞ1=2M2

pl. This leads to the

power-law expansion a / tp (p � 1) with � ¼ ffiffiffiffiffiffiffiffiffiffiffi
2=3p

p
t

[35–37], in which case � is a constant [� ¼ ð1�
2=3pÞ�1=2 ’ 1]. Hence one has I / t�2 / ð�
Þ2=ðp�1Þ,
thereby giving

� ¼ 2

1� p
< 0: (22)

This shows that the spectral index nB given in Eq. (15)
is highly blue-tilted. Hence it is difficult to generate suffi-
cient amounts of large-scale magnetic fields. Moreover the
quantity Ið�Þ ( / Vð�Þ) decreases toward zero after infla-
tion for the standard tachyon models in which the field rolls
down toward infinity. In tachyon inflation the magnetic
field at the present epoch is vanishingly small.

C. DBI inflation

The DBI inflation for the AdS throat corresponds to
the choice f1ð�Þ ¼ 1=fð�Þ ¼ �4=�, f2ð�Þ ¼ fð�Þ, and
f3ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

fð�Þp
[31]. In this case one has Ið�Þ ¼ 1, which

means that the generation of the magnetic field does not
occur unlike the results found in Ref. [38]. Since the
coupling f3ð�Þ given above is chosen to reproduce the
standard Maxwell Lagrangian in the low-energy regime

(f _�2 � 1), the field � is not directly coupled to the
electromagnetic field.

One may consider a scenario in which the coupling
f3ð�Þ takes a different form in the ultrarelativistic regime

ð� ¼ ½1� f _�2��1=2 � 1Þ. For example, let us study the
case

f3ð�Þ / ��n; i:e:; I / �4�2n: (23)

For the potential Vð�Þ ¼ ð1=2Þm2�2, inflationary solu-

tions in the regime � � 1 are given by � ¼ ffiffiffiffi
�

p
=t, � ’

mMpl

ffiffiffiffiffiffiffiffiffiffiffi
2�=3

p
=�2 / t2, and a / tp, where p ¼ffiffiffiffiffiffiffiffiffi

�=6
p ðm=MplÞ [31,39]. Since t has a dependence t /
ð�
Þ�1=ðpþ1Þ in this case we get I / ð�
Þ�� with

� ¼ 2n� 4

pþ 1
: (24)

For � � 1 and �> 0, the magnetic field can be more
significantly amplified relative to the case � ¼ 1 because a
mode with the wave number k crosses the point k ¼ �aH
earlier for larger �. In the ultrarelativistic regime of the
DBI inflation the non-Gaussian parameter fnl in CMB
observations is given by fnl ¼ 35

108 ð�2 � 1Þ [40]. Using

the latest WMAP bound jfnlj< 253 based on the equi-
lateral models [33], we obtain the constraint �CMB < 28 on
the scale relevant to 7CMB anisotropies. Since � grows as

� / a2=p during inflation, one can estimate the value �R to

be �R ¼ �CMBe
2N=p, where N is the number of e-foldings

from the epoch at which CMB fluctuations are generated to
the end of inflation (N ¼ 50� 60). In the following we
adopt the value N ¼ 55 for concreteness.
Let us consider the case in which the field � is frozen

right after the end of inflation so that Ið
RÞ is the same
order as Ið
decÞ and Ið
0Þ. On using Eq. (18), we find that
the present magnetic field greater than the order of 10�9 G
can be obtained for

n > 2þ 2pðpþ 1Þ½24þ log10ðL=MpcÞ�
48þ p½22þ log10ð�CMB 	 L=MpcÞ� : (25)

From Eq. (20) the condition to get the seed magnetic field
larger than the order of 10�30 G is given by

n > 2þ pðpþ 1Þ½21þ 2log10ðL=MpcÞ�
48þ p½22þ log10ð�CMB 	 L=MpcÞ� : (26)

In the relativistic regime of DBI inflation the tensor-
to-scalar ratio in CMB anisotropies is given by r ’
16�=� ¼ ð48=�ÞðMpl=mÞ2ð�=MplÞ2 (where � ¼ � _H=H2

is the slow-roll parameter). Using the latest WMAP bound

r < 0:2 [33] together with the non-Gaussianity bound � ¼
mMpl

ffiffiffiffiffiffiffiffiffiffiffi
2�=3

p
=�2 < 28, we find that�CMB is bounded from

both above and below. For the consistency of this inequal-
ity, we must require that �ðm=MplÞ2 > 49, i.e., p > 2:9.
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If we adopt the values L ¼ 1 Mpc, �CMB ¼ 28, and p ¼
3 in Eqs. (25) and (26), then we get the bounds n > 6:9 and
n > 4:1, respectively. The constraint on n is weakened for
smaller scales. For example, when L ¼ 1 kpc, �CMB ¼ 28,
and p ¼ 3, Eq. (26) gives the bound n > 3:6. Meanwhile
the constraint on n tends to be tighter for larger p. Since
�CMB is bounded from above (�CMB < 28), one cannot
choose arbitrary large values of �CMB to make the right-
hand side of Eqs. (25) and (26) smaller.

IV. CONCLUSIONS

In the present paper, we have studied the generation of
large-scale magnetic fields due to the breaking of the
conformal invariance of the electromagnetic field through
its coupling to a scalar field in the framework of DBI
theory. Introducing a time 
 ¼ R

��1d	, the Fourier com-

ponent of the gauge field satisfies the equation of motion
(6). This is the same form of equation derived for the
electromagnetic coupling given in Eq. (8) apart from the
difference that 
 is replaced by conformal time 	 for
the action (8). Hence our analysis is applicable to many
conformal symmetry breaking Maxwell theories.

By matching two solutions in ‘‘sub-Hubble’’ (k �
�aH) and ‘‘super-Hubble’’ (k � �aH) regimes during
the inflationary epoch, the strength of the magnetic field
at the end of inflation can be estimated as Eq. (9). Under
the assumptions that the energy density of inflaton is al-
most instantly converted to radiation after inflation and that
the conductivity during reheating is much higher than the
Hubble rate at that epoch, we derived the size of the mag-
netic field both at the present and at the decoupling epoch.
Note that we have not assumed any other mechanisms for
the amplification of the magnetic field. The results (17) and
(19) are sufficiently general to cover the theories described
by the action (8).

We applied our formula for three cases: (i) power-law
inflation with � ¼ 1, (ii) tachyon inflation, and (iii) DBI
inflation. The power � defined in Eq. (13) that character-
izes the evolution of the quantity I during inflation is
important to determine the spectral index of the magnetic
field. For the theories with � ¼ 1, it should be generally
required that the spectrum is red-tilted (�> 4) to realize
the present field strength jBð
0Þj larger than 10�9 G on the
scales 1 kpc� 1 Mpc. The constraint on � is not so severe
to obtain seed magnetic fields to feed the galactic dynamo
mechanism [jBð
decÞj> 10�30 G]. In power-law inflation,
for example, we found that the constant � for the electro-
magnetic coupling Ið�Þ ¼ e�� is constrained to be � >
9:4 to satisfy the condition required for the seed field on the
scale L ¼ 1 kpc (�> 1:6).

In the theories with � � 1 there exists an extra factor

��=2
R that can lead to additional amplification of the mag-

netic field. In tachyon inflation, in addition to the fact that
�R is very close to 1, the quantity Ið�Þ is proportional to

the field potential Vð�Þ, which decreases during inflation
(i.e., �< 0). Hence we cannot expect the generation of
large-scale magnetic fields consistent with observations.
In DBI inflation, if we wish to reproduce the standard

Maxwell theory in low-energy regimes, we have f1ð�Þ ¼
1=fð�Þ ¼ �4=� and f3ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

fð�Þp
in the action (1).

This corresponds to the effective coupling with Ið�Þ ¼ 1,
which means that the generation of magnetic fields cannot
be expected. This situation changes if we allow the possi-
bility that the coupling f3ð�Þ takes a different form in the
ultrarelativistic regime (� � 1). We adopted the coupling
of the form f3ð�Þ / ��n and derived the bounds (25) and
(26) to get observationally required magnetic fields at the
present and at the decoupling epoch. It is worth mentioning

that the presence of the ��=2
R factor leads to the larger

magnetic field relative to the theories with � ¼ 1.
It will be certainly of interest to apply our formula to

many other conformal symmetry breaking models. While
we have assumed instant reheating with large conductivity,
the details of the reheating process actually depends upon
models of inflation. It is generally difficult to construct
string/brane inflation models with successful reheating, so
we need to wait for the construction of such viable models
to carry out detailed analysis for the dynamics of magnetic
fields in the reheating phase.
Finally, we remark interesting cosmological effects of

large-scale magnetic fields generated during inflation on
the CMB radiation. In Ref. [41], the effect of gravity waves
induced by a possible helicity-component of a primordial
magnetic field on CMB temperature anisotropies and po-
larization has been considered. According to it, the effect
could be sufficiently large to be observable if the spectrum
of the primordial magnetic field is close to scale-invariant
and if its helical component is stronger than �10�10 G. In
Ref. [41], only the tensor mode, whose contribution is
significant for low multipoles (l < 100), has been consid-
ered, while the vector mode has an imprint for higher
multipoles too [42]. Thus, the tensor mode alone cannot
significantly limit the magnetic field amplitude. According
to Ref. [41], the amplitude of the helical magnetic field
(and not the helical component) must be larger than a
few� 10�9 G to be detectable by current CMB measure-
ments. Similar bounds have been derived in Ref. [43].
However, the future missions, for example, PLANCK,
will be able to test the cosmological magnetic field with
an amplitude 10�10 G or even lower [44]. The current
(best) limit on the amplitude of the magnetic field from
the CMB polarization Faraday rotation effect using
WMAP 5-year data is around 5� 10�10 G [45] for the
magnetic field generated from inflation.
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