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We discuss a new inflationary scenario that is realized within the extended supersymmetric Pati-Salam

model which yields an acceptable b-quark mass for universal boundary conditions and�> 0 by modestly

violating Yukawa unification and leads to new shifted, new smooth, or standard-smooth hybrid inflation.

Inflation takes place along a ‘‘semishifted’’ classically flat direction on which the Uð1ÞB�L gauge group

remains unbroken. After the end of inflation, Uð1ÞB�L breaks spontaneously and a network of local cosmic

strings, which contribute a small amount to the curvature perturbation, is produced. We show that, in

minimal supergravity, this semishifted inflationary scenario is compatible with a recent fit to data which

uses field-theory simulations of a local string network. Taking into account the requirement of gauge

unification, we find that, for spectral index ns ¼ 1, the predicted fractional contribution of strings to the

temperature power spectrum at multipole ‘ ¼ 10 is f10 ’ 0:039. Also, for f10 ¼ 0:10, which is the best-fit

value, we obtain ns ’ 1:0254. Spectral indices lower than about 0.98 are excluded and blue spectra are

slightly favored. Magnetic monopoles are not formed at the end of semishifted hybrid inflation.

DOI: 10.1103/PhysRevD.78.043518 PACS numbers: 98.80.Cq

I. INTRODUCTION

One of the most promising models for inflation [1] (for a
review, see e.g. Ref. [2]) is, undoubtedly, hybrid inflation
[3], which is [4,5] naturally realized within supersymmet-
ric (SUSY) grand unified theory (GUT) models. In the
standard realization of SUSY hybrid inflation, the sponta-
neous breaking of the GUT gauge symmetry takes place at
the end of inflation and, thus, superheavy magnetic mono-
poles [6] are copiously produced [7] if they are predicted
by this symmetry breaking. In this case, a cosmological
catastrophe is encountered.

In order to avoid this disaster, one can employ the
smooth [7,8] or shifted [9] variants of SUSY hybrid in-
flation (for a review, see Ref. [10]). In these inflationary
scenarios, which, in their original realization, are based on
nonrenormalizable superpotential terms, the GUT gauge
symmetry is broken to the standard model (SM) gauge
group GSM already during inflation and, thus, no magnetic
monopoles are produced at the termination of inflation.
New versions of these inflationary schemes can be imple-
mented [11,12] with only renormalizable superpotential
terms within an extended SUSY GUT model based
on the Pati-Salam (PS) gauge group GPS ¼ SUð4Þc �
SUð2ÞL � SUð2ÞR [13], whose spontaneous breaking to
GSM predicts the existence of doubly charged [14] mag-
netic monopoles. Actually, this extended SUSY PS model
was initially constructed [15] (see also Ref. [16]) for solv-
ing a very different problem. In SUSY models with exact
Yukawa unification [17], such as the simplest SUSY PS
model (see Ref. [18]), and universal boundary conditions,

the predicted b-quark mass is [19] unacceptably large for
�> 0. However, it can be adequately reduced if Yukawa
unification is moderately violated. This is achieved by
extending the superfield content of the SUSY PS model
so as to include, among other superfields, an extra pair of
SUð4Þc nonsinglet SUð2ÞL doublets, which naturally mix
[20] with the main electroweak doublets.
Fitting the recent data of the Wilkinson microwave

anisotropy probe satellite with the standard power-law
cosmological model with cold dark matter and a cosmo-
logical constant (�CDM), one obtains [21] values of the
spectral index ns which are clearly lower than unity. (Note,
though, that some recent analyses, e.g. Ref. [22], reduce
somewhat the evidence for ns < 1.) However, in super-
gravity (SUGRA) with canonical Kähler potential, the
above hybrid inflation models yield [11,12,23] ns’s which
are very close to unity or even larger than it, although their
running is negligible. This discrepancy may be resolved
[24–26] by including nonminimal terms in the Kähler
potential. Alternatively, if we wish to stick to minimal
SUGRA, we can reduce [27] the spectral index predicted
by the hybrid inflationary models by restricting the number
of e-foldings suffered by our present horizon scale during
the hybrid inflation which generates the observed curvature
perturbations. The additional number of e-foldings re-
quired for solving the horizon and flatness problems of
standard hot big bang cosmology can be provided by a
subsequent second stage of inflation. In Ref. [28], we
showed that the same extended SUSY PS model can lead
to a two-stage inflationary scenario yielding acceptable
ns’s in minimal SUGRA. The first stage of inflation, during
which the cosmological scales exit the horizon, is of the
standard hybrid type, while the second stage, which pro-
vides the additional e-foldings, is of the new smooth hybrid
type.
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In this paper, we consider an alternative inflationary
scenario, which incorporates cosmic strings [29] (for a
textbook presentation or a review, see e.g. Ref. [30]) and
can also be naturally realized within this extended SUSY
PS model with only renormalizable superpotential terms.
As shown in Ref. [11], in a certain range of parameters, this
model possesses a shifted classically flat direction along
which Uð1ÞB�L is unbroken. In order to distinguish it from
the new shifted flat direction on which GPS is broken to
GSM, we will call this flat direction semishifted. This
direction acquires [31], as usual, a logarithmic slope
from one-loop radiative corrections, which are due to the
SUSY breaking caused by the nonzero potential energy
density on it. So, it can perfectly be used as an inflationary
path along which semishifted hybrid inflation takes place.
When the system crosses the critical point at which this
path is destabilized, a waterfall regime occurs during
which the Uð1ÞB�L gauge symmetry breaks spontaneously
and local cosmic strings are produced. The resulting string
network can then contribute to the primordial curvature
perturbations.

It has been argued [32], that, in the presence of a small
contribution to the curvature perturbation from cosmic
strings, the current cosmic microwave background (CMB)
data can allow values of the spectral index that are larger
than the ones obtained in the absence of strings. Therefore,
we may hope that our semishifted hybrid inflationary
scenario, which does involve cosmic strings, can be made
compatible with the CMB data even without the use of
nonminimal terms in the Kähler potential or a subsequent
complementary stage of inflation. Recently, a fit to the
CMB data and the luminous red galaxy data in the Sloan
digital sky survey [33] on large length scales outside the
nonlinear regime was performed [34] by using field-theory
simulations [35] of a dynamical network of local cosmic
strings. It demonstrated that the Harrison-Zeldovich (HZ)
model (i.e. ns ¼ 1) with a fractional contribution f10 �
0:10 from cosmic strings to the temperature power spec-
trum at multipole ‘ ¼ 10 is even moderately favored over
the standard power-law model without strings. For the
power-law �CDM cosmological model with cosmic
strings, this fit yields [34] ns ¼ 0:94–1:06 and f10 ¼
0:02–0:18 at 95% confidence level (c.l.). We show that,
under these circumstances, the semishifted hybrid infla-
tionary model in minimal SUGRA can easily be compat-
ible with the data. Note that there is obviously no formation
of PS magnetic monopoles at the end of the semishifted
hybrid inflation and, thus, the corresponding cosmological
catastrophe is avoided.

In Sec. II, we summarize the salient features of the
extended SUSY PS model and sketch the semishifted
hybrid inflationary scenario with cosmic strings. In
Sec. III, we calculate the one-loop radiative correction to
the inflationary potential along the semishifted path. In
Sec. IV, we include the minimal SUGRA correction to

this inflationary potential, while Secs. V and VI refer to
the inflation and string power spectrum, respectively.
Sec. VII is devoted to the presentation of our numerical
results, which show that, in minimal SUGRA, our semi-
shifted hybrid inflationary scenario with cosmic strings can
yield a spectral index close to unity and be compatible with
the data. In Sec. VIII, we discuss briefly gauge unification.
Finally, in Sec. IX, we present our conclusions.

II. SEMISHIFTED HYBRID INFLATION

We consider the extended SUSY PS model of Ref. [15],
which can lead to a moderate violation of the asymptotic
Yukawa unification [17] so that, for �> 0, an acceptable
b-quark mass is obtained even with universal boundary
conditions. The breaking of GPS to GSM is achieved by the
superheavy vacuum expectation values (VEVs) of the
right-handed neutrino type components of a conjugate
pair of Higgs superfields Hc and �Hc belonging to the
ð�4; 1; 2Þ and (4, 1, 2) representations of GPS, respectively.
The model also contains a gauge singlet S and a conjugate
pair of superfields �, �� belonging to the (15, 1, 3) repre-
sentation of GPS. The superfield � acquires a VEV that
breaks GPS to GSM � Uð1ÞB�L. In addition to GPS, the
model possesses a Z2 matter parity symmetry and two
global U(1) symmetries, namely, a Peccei-Quinn and a R
symmetry. Such continuous global symmetries can effec-
tively arise [36] from the rich discrete symmetry groups
encountered in many compactified string theories (see e.g.
Ref. [37]). For details on the full field content and super-
potential, the charge assignments, and the phenomenologi-
cal and cosmological properties of this extended SUSY PS
model, the reader is referred to Refs. [9,15] (see also
Ref. [16]). This model can lead to new shifted [12] and
new smooth [11] hybrid inflation based solely on renorma-
lizable interactions. It can also yield [28] a two-stage
inflationary scenario consisting of hybrid inflation of the
standard type followed by new smooth hybrid inflation.
The superpotential terms which are relevant for inflation

are

W ¼ �SðM2 ��2Þ � �SHc �Hc þm� ��� � ��Hc �Hc;

(1)

where M, m are superheavy masses of the order of the
SUSY GUT scale MGUT ’ 2:86� 1016 GeV and �, �, �
are dimensionless coupling constants. These parameters
are normalized so that they correspond to the couplings
between the SM singlet components of the superfields. In a
general superpotential of the type in Eq. (1),M,m, and any
two of the three dimensionless parameters �, �, � can
always be made real and positive by appropriately redefin-
ing the phases of the superfields. The third dimensionless
parameter, however, remains generally complex. For def-
initeness, we will choose here this parameter to be real and
positive too as we did in Ref. [11].
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The F-term scalar potential obtained from the super-
potential W in Eq. (1) is given by

V ¼ j�ðM2 ��2Þ � �Hc �Hcj2 þ jm ��� 2�S�j2
þ jm�� �Hc �Hcj2 þ j�Sþ � ��j2ðjHcj2 þ j �Hcj2Þ;

(2)

where the complex scalar fields which belong to the SM
singlet components of the superfields are denoted by the
same symbol. We will ignore throughout the soft SUSY
breaking terms [38] in the scalar potential since their effect
on inflationary dynamics is negligible in our case as in the
case of the conventional realization of shifted hybrid
inflation.

From the potential in Eq. (2) and the vanishing of the D
terms (which implies that �Hc� ¼ ei�Hc), we find [11] that
there exist two distinct continua of SUSY vacua:

� ¼ �þ; �Hc� ¼ Hc;

jHcj ¼
ffiffiffiffiffiffiffiffiffiffiffi
m�þ
�

s
ð� ¼ 0Þ;

(3)

� ¼ ��; �Hc� ¼ �Hc;

jHcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m��
�

s
ð� ¼ �Þ

(4)

with �� ¼ S ¼ 0, where

�� � �m

2��

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2�2M2

�2m2

s �
: (5)

It has been shown [11] that the potential in Eq. (2), gen-
erally, possesses three flat directions. The first one is the
usual trivial flat direction at � ¼ �� ¼ Hc ¼ �Hc ¼ 0 with
V ¼ Vtr � �2M4. The second one, which appears at

� ¼ � �m

2��
;

�� ¼ ��

�
S;

Hc �Hc ¼ ��ðM2 ��2Þ þ �m�

�2 þ �2
;

V ¼ Vnsh � �2�2

�2 þ �2

�
M2 þ �2m2

4�2�2

�
2
;

(6)

exists only for � � 0 and is the trajectory for the new
shifted hybrid inflation [12]. Along this direction, GPS is
broken toGSM. The third flat direction, which exists only if
~M2 � M2 �m2=2�2 > 0, lies at

� ¼ � ~M; �� ¼ 2��

m
S; Hc ¼ �Hc ¼ 0: (7)

It is a semishifted flat direction (in the sense that, although
the field � is shifted from zero, the fields Hc, �Hc remain
zero on it) with

V ¼ Vssh � �2ðM4 � ~M4Þ: (8)

Along this direction GPS is broken to GSM � Uð1ÞB�L.
In our subsequent discussion, we will concentrate on the

case where ~M2 > 0. It is interesting to note that, in this
case, the trivial flat direction is [11] unstable as it is a path
of saddle points of the potential, while the new smooth
path, which exists for ~M2 < 0 and was used in Ref. [11] as
inflationary trajectory, disappears. Moreover, for ~M2 > 0,
we always have Vssh < Vnsh. It is, thus, more likely that the
system will eventually settle down on the semishifted
rather than the new shifted flat direction. Semishifted
hybrid inflation can then take place as the system slowly
rolls down the semishifted path driven by its logarithmic
slope provided by one-loop radiative corrections [31],
which are due to the SUSY breaking by the nonvanishing
potential energy density on this path. As the system crosses
the critical point of the semishifted path, the Uð1ÞB�L

gauge symmetry breaks generating a network of local
cosmic strings, which contribute a small amount to the
CMB temperature power spectrum. As mentioned, for
models with local cosmic strings, it has been shown in
Ref. [34] that, at 95% c.l., ns ¼ 0:94–1:06 and f10 ¼
0:02–0:18.

III. ONE-LOOP RADIATIVE CORRECTIONS

The one-loop radiative correction to the potential on the
semishifted path is calculated by the Coleman-Weinberg
formula [39]

�V ¼ 1

64�2

X
i

ð�1ÞFiM4
i ln

M2
i

�2
; (9)

where the sum extends over all helicity states i, Fi andM
2
i

are the fermion number and mass squared of the ith state
and � is a renormalization mass scale. In order to use this
formula for creating a logarithmic slope in the inflationary
potential, one has first to derive the mass spectrum of the
model on the semishifted path.
As mentioned, during semishifted hybrid inflation, the

SM singlet components of �, �� acquire nonvanishing
values and break GPS to GSM � Uð1ÞB�L. The value of
the complex scalar field S at a point of the semishifted
path is taken real by an appropriate R transformation. For
simplicity, we use the same symbol S for this real value of
the field as for the complex field in general, since the
distinction will be obvious from the context. The deviation
of the complex scalar field S from its (real) value at a point
of the inflationary path is denoted by �S. We can further
write � ¼ vþ ��, �� ¼ �vþ � �� with v ¼ � ~M, �v ¼
ð2�v=mÞS and ��, � �� being complex scalar fields. We
can then define the canonically normalized complex scalar
fields

	 ¼ 2�v�S�m� ��

ðm2 þ 4�2v2Þ1=2 ; 
 ¼ m�Sþ 2�v� ��

ðm2 þ 4�2v2Þ1=2 : (10)
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We find that 
 remains massless on the semishifted path.

So, it corresponds to the complex scalar inflaton field � ¼
ðmSþ 2�v ��Þ=ðm2 þ 4�2v2Þ1=2, which during inflation

takes the form � ¼ ð1þ 4�2v2=m2Þ1=2S. Consequently,
in our case, the real canonically normalized inflaton is

� ¼ 21=2ð1þ 4�2v2=m2Þ1=2S; (11)

where S is obviously rotated to be real.
Expanding the complex scalars 	 , ��, Hc, and �Hc in

real and imaginary parts according to the prescription � ¼
ð�1 þ i�2Þ=

ffiffiffi
2

p
, we find that the mass-squared matrices

M2� of 	1, ��1, M
2þ of 	2, ��2, M

2
1 of Hc

1,
�Hc
1, and M

2
2

of Hc
2,

�Hc
2 are given by

M2� ¼ m2 1þ a2 sð1þ a2Þ1=2
sð1þ a2Þ1=2 1þ a2 þ s2 � 1

 !
; (12)

M2
1;2 ¼ m2 s2b2 �b

�b s2b2

� �
; (13)

where a ¼ 2�v=m, b ¼ ð�þ �aÞ=2�, and s ¼ 2�S=m.
Note that the eigenvalues of the matrices M2� are always
positive. Though, this is not the case with M2

1;2. Speci-

fically, one of the two eigenvalues of each of these matrices
is always positive, while the other one becomes negative

for jsj< sc � 1=
ffiffiffiffiffiffijbjp

(we assume that b � 0). This defines
the critical point on the semishifted path at which this path
is destabilized (see below).

The superpotential in Eq. (1) gives rise to mass terms
between the fermionic partners of 	 , �� and Hc, �Hc (the
fermionic partner of 
 remains massless). The squares of
the corresponding mass matrices are found to be

M2
0 ¼ m2 1þ a2 sð1þ a2Þ1=2

sð1þ a2Þ1=2 1þ a2 þ s2

 !
; (14)

�M 2
0 ¼ m2 s2b2 0

0 s2b2

� �
: (15)

This completes the analysis of the SM singlet sector of
the model. In summary, we found four groups of two real
scalars with mass-squared matrices M2þ, M2�, M2

1, and M
2
2

and two groups of two Weyl fermions with mass matrices
squared M2

0 and �M2
0. The contribution of the SM singlet

sector to the radiative corrections to the potential along the
semishifted path is given by

�V ¼ 1

64�2
Tr

�
M4þ ln

M2þ
�2

þM4� ln
M2�
�2

� 2M4
0 ln

M2
0

�2

þM4
1 ln

M2
1

�2
þM4

2 ln
M2

2

�2
� 2 �M4

0 ln
�M2
0

�2

�
: (16)

We now turn to the uc, �uc type fields, which are color
antitriplets with charge�2=3 and color triplets with charge
2=3, respectively. Such fields exist in Hc, �Hc, �, and ��,
and we shall denote them by ucH, �u

c
H, u

c
�, �u

c
�, u

c
��
, and �uc��.

The relevant expansion of � is

� ¼
�

1ffiffiffiffiffiffi
12

p 13 0

0 �3

 !
;
1ffiffiffi
2

p 1 0

0 �1

 !�
�þ 0 03

1 0

 !
uc�

þ 0 1

03 0

 !
�uc� þ . . . ; (17)

where the SM singlet in� (denoted by the same symbol) is
also shown with the first (second) matrix in the brackets
belonging to the algebra of SUð4Þc (SUð2ÞR). Here, 13 and
03 denote the 3� 3 unit and zero matrices, respectively.
The fields uc�, �u

c
� are SUð2ÞR singlets, so only their SUð4Þc

structure is shown and summation over their SUð3Þc in-
dices is implied in the ellipsis. The field �� can be similarly
expanded.
In the bosonic uc, �uc type sector, we find that the mass-

squared matrices M2
u� of the complex scalar fields uc�� ¼

ðuc� � �uc�� Þ=
ffiffiffi
2

p
, for � ¼ H, �, ��, are

M2
uþ ¼ m2

c2s2 � c 0 0
0 s2 �s
0 �s 1

0
B@

1
CA; (18)

M2
u� ¼ m2

c2s2 þ c 0 0
0 2þ s2 þ 2

g �sð1� 2
gÞ

0 �sð1� 2
gÞ 1þ 2

gs
2

0
B@

1
CA;
(19)

where c ¼ ð�� �a=3Þ=2� and 2
g ¼ g2a2=3�2 with g

being the GPS gauge coupling constant. Note that 2
g

parametrizes contributions arising from the D terms of
the scalar potential, and M2

uþ has one zero eigenvalue
corresponding to the Goldstone boson which is absorbed
by the superhiggs mechanism. Furthermore, one of the
eigenvalues m2ðc2s2 � cÞ of the matrices in Eqs. (18)
and (19) (depending on the sign of c) becomes negative

as soon as s crosses below the point sð1Þc � 1=
ffiffiffiffiffiffijcjp

on the

semishifted path. So, if sð1Þc was larger than the critical
value sc, the system would be destabilized first in one of
the directions ucH�. In this case, a SUð3Þc-breaking VEV

would develop. To avoid this, we should demand that sð1Þc is
located lower than the critical point sc, so that, after the end
of inflation, the correct symmetry breaking is obtained.
This gives the condition jbj< jcj, which we will consider
later.
In the fermionic uc, �uc type sector, we obtain four Dirac

fermions (per color):  DucH
¼  ucH þ  c�ucH

,  Duc
�
¼  uc

�
þ

 c�uc
�
,  Duc��

¼  uc��
þ  c�uc��

, and �i�D ¼ �ið�þ þ ��cÞ.
Here,  � is the fermionic partner of the complex scalar

field � and �� ¼ ð�1 � i�2Þ= ffiffiffi
2

p
, where �1 (�2) is the

gaugino color triplet corresponding to the SUð4Þc gener-
ators with 1=2 (� i=2) in the i4 and 1=2 (i=2) in the 4i
entry (i ¼ 1, 2, 3). The fermionic mass matrix is
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M u ¼ m

�cs 0 0 0
0 �s 1 �g
0 1 0 �gs
0 �g �gs 0

0
BBB@

1
CCCA: (20)

To complete this sector, we must also include the gauge
bosons A1;2 which are associated with �1;2. They acquire a
mass squared M2

g ¼ m22
gð1þ s2Þ.

The overall contribution of the uc, �uc type sector to �V
in Eq. (9) is

�V ¼ 3

32�2
Tr

�
M4
uþ ln

M2
uþ

�2
þM4

u� ln
M2
u�

�2

� 2M4
 u
ln
M2
 u

�2
þ 3M4

g ln
M2
g

�2

�
: (21)

Wewill now discuss the contribution from the ec, �ec type
sector consisting of color singlets with charge 1, �1. Such
fields exist in Hc, �Hc, �, and ��, and we shall denote them
by ecH, �e

c
H, e

c
�, �e

c
�, e

c
��
, and �ec��. The relevant expansion of�

is

� ¼
�

1ffiffiffiffiffiffi
12

p 13 0
0 �3

� �
;

0 1
0 0

� �
ec� þ 0 0

1 0

� �
�ec�

�
(22)

with the same notation as in Eq. (17). A similar expansion
holds for ��. It turns out that the mass terms in this sector
are exactly the same as in the uc, �uc type sector with �=3
replaced by � and 2g2=3 by g2. So, we will only summa-
rize the results.

In the bosonic ec, �ec type sector, the mass-squared
matrices M2

e� of the complex scalars ec�� ¼ ðec� � �ec�� Þ=ffiffiffi
2

p
, for � ¼ H, �, ��, are

M2
eþ ¼ m2

d2s2 � d 0 0
0 s2 �s
0 �s 1

0
B@

1
CA; (23)

M2
e� ¼ m2

d2s2 þ d 0 0
0 2þ s2 þ �2g �sð1� �2gÞ
0 �sð1� �2gÞ 1þ �2gs

2

0
B@

1
CA;
(24)

where d ¼ ð�� �aÞ=2� and �g ¼
ffiffiffiffiffiffiffiffi
3=2

p
g. Note that,

again, M2
eþ has one zero eigenvalue corresponding to the

Goldstone boson which is absorbed by the superhiggs
mechanism. Furthermore, one of the eigenvalues
m2ðd2s2 � dÞ of the matrices in Eqs. (23) and (24) (de-
pending on the sign of d) becomes negative as s crosses

below sð2Þc � 1=
ffiffiffiffiffiffijdjp

on the semishifted path. Therefore,

we must impose the constraint sð2Þc < sc ) jbj< jdj for the
same reason explained above.

In the fermionic ec, �ec type sector, we obtain four Dirac
fermions with mass matrix

M e ¼ m

�ds 0 0 0
0 �s 1 ��g
0 1 0 ��gs
0 ��g ��gs 0

0
BBB@

1
CCCA: (25)

Finally, we again obtain two gauge bosons with mass

squared M̂2
g ¼ m2�2gð1þ s2Þ.

The overall contribution of the ec, �ec type sector to �V
in Eq. (9) is

�V ¼ 1

32�2
Tr

�
M4
eþ ln

M2
eþ

�2
þM4

e� ln
M2
e�

�2

� 2M4
 e
ln
M2
 e

�2
þ 3M̂4

g ln
M̂2
g

�2

�
: (26)

Let us now consider the dc, �dc type sector consisting of
color antitriplets with charge 1=3 and color triplets with
charge�1=3. Such fields exist inHc, �Hc,�, and �� and we
denote them by dcH,

�dcH, d
c
�,

�dc�, d
c
��
, and �dc��. The field �

can be expanded in terms of these fields as

� ¼
"

0 03

1 0

 !
;

0 1

0 0

 !#
dc�

þ
"

0 1

03 0

 !
;

0 0

1 0

 !#
�dc� þ . . . (27)

with the notation of Eq. (17). The field �� is similarly
expanded.
In the bosonic dc, �dc type sector, the mass-squared

matrices M2
d� of the complex scalars dc�� ¼ ðdc� � �dc�� Þ=ffiffiffi

2
p

, for � ¼ H, �, ��, are

M2
d� ¼ m2

e2s2 � e 0 0
0 1þ s2 � 1 �s
0 �s 1

0
B@

1
CA; (28)

where e ¼ ð�þ �a=3Þ=2�. Note that, again, one of the
eigenvalues m2ðe2s2 � eÞ of these matrices (depending on

the sign of e) becomes negative as s crosses below sð3Þc �
1=

ffiffiffiffiffiffijejp
on the semishifted path and we, thus, have to

impose the constraint sð3Þc < sc ) jbj< jej, so that the
correct symmetry breaking pattern occurs at the end of
inflation.
In the fermionic dc, �dc type sector, we obtain three Dirac

fermions (per color) with mass matrix

M d ¼ m
�es 0 0
0 �s 1
0 1 0

0
@

1
A: (29)

Note that there are no D terms, gauge bosons, or gauginos
in this sector.
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The contribution of this sector to �V in Eq. (9) is

�V ¼ 3

32�2
Tr

�
M4
dþ ln

M2
dþ

�2
þM4

d� ln
M2
d�

�2

� 2M4
 d
ln
M2
 d

�2

�
: (30)

Next, we consider the qc, �qc type fields, which are color
antitriplets with charge�5=3 and color triplets with charge
5=3. They exist in �, �� and we call them qc�, �q

c
�, q

c
��
, �qc��.

The relevant expansion of � is

� ¼
"

0 03

1 0

 !
;

0 0

1 0

 !#
qc�

þ
"

0 1

03 0

 !
;

0 1

0 0

 !#
�qc� þ . . . (31)

and a similar expansion holds for ��.
In the bosonic qc, �qc type sector, the mass-squared

matrices M2
q� of the complex scalars qc�� ¼ ðqc� � �qc�� Þ=ffiffiffi

2
p

, for � ¼ �, ��, are

M2
q� ¼ m2 1þ s2 � 1 �s

�s 1

� �
: (32)

In the fermionic qc, �qc type sector, we obtain two Dirac
fermions (per color) with mass matrix

M q ¼ m
�s 1
1 0

� �
: (33)

There are no D terms, gauge bosons, or gauginos in this
sector as well.

The contribution of this sector to �V in Eq. (9) is

�V ¼ 3

32�2
Tr

�
M4
qþ ln

M2
qþ

�2
þM4

q� ln
M2
q�

�2

� 2M4
 q
ln
M2
 q

�2

�
: (34)

Finally, in �, ��, there exist color octet, SUð2ÞR triplet
superfields: �0

8, �
�
8 ,

��0
8,

���
8 with charge 0, 1, �1 as

indicated. The relevant expansion of � is

� ¼
"

T8 0

0 0

 !
;
1ffiffiffi
2

p 1 0

0 �1

 !
�0

8 þ
0 1

0 0

 !
�þ

8

þ 0 0

1 0

 !
��

8

#
þ . . . ; (35)

where T8 represents the eight SUð3Þc generators appropri-
ately normalized. A similar expansion holds for ��.

In the bosonic sector, we obtain two groups of 24 com-
plex scalars, which can be combined in pairs of two with
mass-squared matrix

M2
�8� ¼ m2 1þ s2 � 1 �s

�s 1

� �
: (36)

In the fermionic sector, we find 48Weyl fermions, which
can be combined in pairs of two with mass matrix

M �8
¼ m

�s 1
1 0

� �
: (37)

The contribution of this sector to �V in Eq. (9) is

�V ¼ 12

32�2
Tr

�
M4
�8þ ln

M2
�8þ
�2

þM4
�8� ln

M2
�8�
�2

� 2M4
 �8

ln
M2
 �8

�2

�
: (38)

The final overall �V is found by adding the contribu-
tions from the SM singlet sector in Eq. (16), the uc, �uc type
sector in Eq. (21), the ec, �ec type sector in Eq. (26), the dc,
�dc type sector in Eq. (30), the qc, �qc type sector in Eq. (34),
and the color octet sector in Eq. (38). These one-loop
radiative corrections are added to the tree-level potential
Vssh yielding the effective potential along the semishifted
inflationary path in global SUSY. They generate a slope on
this path that is necessary for driving the system toward the
vacuum. The overall

P
ið�1ÞFiM4

i is � independent, which
implies that the overall slope of the effective potential is �
independent. This is a crucial property of the model since
otherwise observable quantities like the power spectrum
PR of the primordial curvature perturbation or the spectral
index would depend on the scale �, which remains
undetermined.
Let us now discuss the constraints 0< jbj< jcj, jdj, jej

derived in the course of the calculation of the mass spec-
trum on the semishifted path. It is easy to show that these
constraints require that v be in one of the ranges

0> v>� �m

2��
or � �m

2��
> v>� 3�m

4��
: (39)

These two ranges of v lead, respectively, to the two differ-
ent sets of SUSY vacua of Eqs. (3) and (4). To see this, let
us replace all the fields in the scalar potential of Eq. (2)
except Hc, �Hc by their values on the semishifted path.
Taking into account that �Hc� ¼ ei�Hc from the vanishing
of the D terms, we are then left with only two free degrees
of freedom, namely jHcj and �, and the potential becomes

V ¼ Vssh þ 2m2b2
�
s2 � cos�

b

�
jHcj2 þ ð�2 þ �2ÞjHcj4:

(40)

It is obvious from this equation that, if b > 0, which is the
case in the first range for v in Eq. (39), the system will get
destabilized toward the direction with cos� ¼ 1 leading to
the SUSY vacua in Eq. (3), while, if b < 0, which holds in
the second range for v in Eq. (39), the system will be led to
the SUSY vacua in Eq. (4).
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IV. SUPERGRAVITY CORRECTIONS

We now turn to the discussion of the SUGRA correc-
tions to the inflationary potential of the model. The F-term
scalar potential in SUGRA is given by

V ¼ eK=m
2
P

�
ðFiÞ�Ki�jFj � 3

jWj2
m2

P

�
; (41)

where K is the Kähler potential, mP the reduced Planck
mass, Fi ¼ Wi þ KiW=m

2
P, a subscript i (i

�) denotes deri-
vation with respect to the complex scalar field �i (�i�), and
Ki�j is the inverse of the Kähler metric Kji� . We will

consider SUGRA with minimal Kähler potential and
show that the results of the fit in Ref. [34] can be naturally
met.

The minimal Kähler potential in the model under con-
sideration has the form

Kmin ¼ jSj2 þ j�j2 þ j ��j2 þ jHcj2 þ j �Hcj2 (42)

and the corresponding F-term scalar potential is

Vmin ¼ eK
min=m2

P

�X
�

��������W� þW��

m2
P

��������2�3
jWj2
m2

P

�
; (43)

where � stands for any of the five complex scalar fields
appearing in Eq. (42). It is quite easily verified that, on the
semishifted direction, this scalar potential expanded up to
fourth order in jSj takes the form (the SUGRA corrections
to the location of the semishifted path are not taken into
account since they are small)

Vmin
ssh ’ Vsshe

~M2=m2
P

�
1þ 1

2

~M2

m2
P

�2

m2
P

þ 1

8

�
1þ 2 ~M2

m2
P

�
�4

m4
P

�
;

(44)

where Vssh is the constant classical energy density on the
semishifted path in the global SUSY case and � is the
canonically normalized inflaton field defined in Eq. (11).
Thus, after including the SUGRA corrections with minimal
Kähler potential, the effective potential during semishifted
hybrid inflation becomes

VmSUGRA
ssh ’ Vmin

ssh þ �V (45)

with �V representing the overall one-loop radiative cor-
rection calculated in Sec. III.

V. INFLATIONARY OBSERVABLES

The slow-roll parameters ", � and the parameter �2,
which enters the running of the spectral index, are given
(see e.g. Ref. [40]) by

" � m2
P

2

�
V0ð�Þ
Vð�Þ

�
2
; (46)

� � m2
P

�
V00ð�Þ
Vð�Þ

�
; (47)

�2 � m4
P

�
V 0ð�ÞV000ð�Þ
V2ð�Þ

�
; (48)

where prime denotes derivation with respect to the real
canonically normalized inflaton field � defined in Eq. (11).
Here and in the subsequent formulas in Eqs. (49) and (50),
V is the effective potential VmSUGRA

ssh defined in Eq. (45).

Inflation ends at �f ¼ maxf��;�cg, where �� > 0 de-

notes the value of the inflaton field when � ¼ �1 and
�c > 0 is the critical value of � on the semishifted infla-
tionary path corresponding to sc.
The number of e-foldings from the time when the pivot

scale k0 ¼ 0:002 Mpc�1 crosses outside the inflationary
horizon until the end of inflation is (see e.g. Ref. [40])

NQ ’ 1

m2
P

Z �Q

�f

Vð�Þ
V0ð�Þd�; (49)

where �Q is the value of the inflaton field at horizon

crossing of the scale k0. The inflation power spectrum
PR of the primordial curvature perturbation at the pivot
scale k0 is given (see e.g. Ref. [40]) by

P1=2
R ’ 1

2�
ffiffiffi
3

p V3=2ð�QÞ
m3

PV
0ð�QÞ

: (50)

The spectral index ns, the tensor-to-scalar ratio r, and the
running of the spectral index dns=d lnk are written (see e.g.
Ref. [40]) as

ns ’ 1þ 2�� 6"; r ’ 16";

dns
d lnk

’ 16"�� 24"2 � 2�2;

where ", �, and �2 are evaluated at � ¼ �Q. The number

of e-foldings NQ required for solving the horizon and

flatness problems of standard hot big bang cosmology is
approximately given (see e.g. Ref. [2]) by

NQ ’ 53:76þ 2

3
ln

�
v0

1015 GeV

�
þ 1

3
ln

�
Tr

109 GeV

�
; (51)

where v0 ¼ V1=4
ssh is the inflationary scale and Tr is the

reheat temperature that is expected not to exceed about
109 GeV, which is the well-known gravitino bound [41]. In
the following, we take Tr to saturate the gravitino bound,
i.e. Tr ¼ 109 GeV.

VI. STRING POWER SPECTRUM

As mentioned before, the spontaneous breaking of the
Uð1ÞB�L gauge symmetry at the end of the semishifted
hybrid inflation leads to the formation of local cosmic
strings. These strings can contribute a small amount to
the CMB power spectrum. Their contribution is parame-
trized [34] to a very good approximation by the dimen-
sionless string tension G�s, where G is the Newton’s
gravitational constant and �s is the string tension, i.e. the

SEMISHIFTED HYBRID INFLATION WITH B� L . . . PHYSICAL REVIEW D 78, 043518 (2008)

043518-7



energy per unit length of the string. In Refs. [34,35], local
strings were considered within the Abelian Higgs model in
the Bogomol’nyi limit, i.e. with equal scalar and vector
particle masses. If this was the case in our model, the string
tension would be given by

�s ¼ 4�jhHcij2; (52)

where hHci is the VEVofHc in the relevant SUSY vacuum
and is responsible for the spontaneous breaking of the
Uð1ÞB�L gauge symmetry. However, as it turns out, the
scalar-to-vector mass ratio in our model is somewhat
smaller than unity. This is, though, not expected [42] to
make any appreciable qualitative difference. Also, the
strings in our model do not coincide with the strings in
the simple Abelian Higgs model due to the presence of the
field �, which enters the string solution. We do not antici-
pate, however, that this will alter the picture in any essen-
tial way. Moreover, as one can show by using the results of
Ref. [43], charged fermionic transverse zero energy modes
do not exist in the presence of our strings, which, thus, do
not exhibit fermionic superconductivity. Therefore, wewill
apply the results of Refs. [34,35] in our model and adopt
the formula in Eq. (52) for the string tension. This is
certainly an approximation, but we believe that it is ade-
quate for our purposes here. In Ref. [34], it was found that
the best-fit value of the string tension required to normalize
the Wilkinson microwave anisotropy probe temperature
power spectrum at multipole ‘ ¼ 10 is

G�s ¼ 2:04� 10�6: (53)

This corresponds to f10 ¼ 1, which is, of course, unreal-
istically large. The actual value of f10 is proportional to the
actual value of ðG�sÞ2. So, for any given value of f10, we
can calculate �s using its normalization in Eq. (53). From
Eq. (52), we can then determine jhHcij.

VII. NUMERICAL RESULTS

We choose the value v of the field � on the semishifted
path to lie in the first range for v in Eq. (39). In particular,
we take it to be in the middle of this range, i.e.

v ¼ � �m

4��
: (54)

This means, as we explained, that the Universe will end up
in the vacuum of Eq. (3). Similar results can be obtained if
one chooses the value of v to be in the second range of
Eq. (39). In order to fully determine the five parameters of
the model, we need to make another four choices. One of
them is taken to be the ratio �=2� ¼ 1. Later we will
comment on the dependence of the results on variations
of this ratio, which is anyway weak. Secondly, we require
the inflationary power spectrum amplitude of the primor-
dial curvature perturbation at the pivot scale k0 to have its
central value [42] in the fit of Ref. [34]:

P1=2
R ’ 4:47� 10�5: (55)

Further, we take, as an example, f10 to be equal to 0.10,
its central value [34]. This determines jhHcij as discussed
in Sec. VI. Finally, we calculate the spectral index for
various values of the mass parameter m. The results are
presented in Fig. 1, wherem is restricted to be below 2:7�
1015 GeV, so that the spectral index remains within its
95% c.l. range.
For m varying in the interval ð0:5–2:7Þ � 1015 GeV,

which is depicted in Fig. 1, the ranges of the various
parameters of the model are M ’ ð0:6–3:5Þ � 1015 GeV,
� ’ 0:029–0:914, � ’ 0:0145–0:457, � ’ 0:73–0:67,
�Q ’ ð0:4–3:3Þ � 1017 GeV, �f ’ ð1:8–5:3Þ � 1016 GeV,

NQ ’ 53:2–54:4, dns=d lnk ’ �ð0:1–3:1Þ � 10�6, r ’
ð0:001–4:5Þ � 10�5, and the ratio �f=�c ’ 2:6–7:7. As

one observes, we easily achieve spectral indices that are
compatible with the fit of Ref. [34]. In particular, the best-
fit value of the spectral index ns ( ¼ 1:00) is achieved for
m ’ 1:40� 1015 GeV. However, indices lower than about
0.98 are not obtainable. Actually, as we lower m, the
SUGRA corrections become less and less important and
the spectral index decreases tending to its value ( � 0:98)
in global SUSY. In all cases, both the running of the
spectral index and the tensor-to-scalar ratio are negligibly
small.
Note that our results turn out to be quite sensitive to

small changes of � (and, thus, �). This is due to the fact
that the radiative correction to the inflationary potential
contains logarithms with large positive as well as loga-
rithms with large negative inclination with respect to �. If
no cancellation is assumed between these two competing
trends, one ends up with either a rather fast rolling of the

FIG. 1. Spectral index in semishifted hybrid inflation as a
function of the mass parameter m in minimal SUGRA for v ¼
��m=4��, �=2� ¼ 1, and f10 ¼ 0:10.
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inflaton (dominance of logarithms with large positive in-
clination) or a negative inclination of the effective potential
for large values of � (dominance of logarithms with large
negative inclination). In the latter case, after the inclusion
of minimal SUGRA corrections, which lift the potential for
� * mP, a local minimum and maximumwill be generated
on the inflationary path. This leads [25,26] to complica-
tions and must, therefore, be avoided. It turns out that a
cancellation to the third significant digit between the posi-
tive and negative contributions to the derivative of the
effective potential is needed in order to avoid these com-
plications and ensure that the slow-roll conditions for the
inflaton are fulfilled. This can be achieved by a mild tuning
of the parameter � to the third significant digit. So, the
model entails a moderate tuning in one of its parameters in
order to be cosmologically viable. Note, however, that this
tuning needs only to be performed between the various
contributions to the radiative correction and it is not
spoiled by minimal SUGRA corrections. We should also
mention that, in our model, �f turns out to be much larger

than �c and inflation terminates well before the system
reaches the critical point of the semishifted path. This is
again due to the presence in the inflationary potential of
logarithms with large inclination. Finally, we find that
reducing the ratio �=2� generally leads to a slight increase
of the spectral index. Though, this dependence is rather
weak and that is why we have chosen to constrain this
ratio to a constant value (instead of setting e.g. the ratio
�=� ¼ const:).

We observe numerically that, varying f10 within its
95% c.l. range 0.02–0.18, the value of ns changes only in
the third decimal place. So, the curve in Fig. 1 is practically
independent of f10. We should, however, keep in mind that,
for large values of m and low f10’s, the constraint in
Eq. (55) cannot be satisfied. Consequently, the curve in
Fig. 1 applied to low values of f10 terminates on the right at
a value ofmwhich, of course, depends on f10, but is, in any
case, higher than about 2� 1015 GeV.

We have seen that, in minimal SUGRA, the
model develops a preference for values of m near 1:4�
1015 GeV. On the other hand, for f10 ¼ 0:10, the predic-
tion for the value of m that derives from gauge coupling
constant unification is m ’ 2:085� 1015 GeV, as the
reader may find out in Sec. VIII. However, one can see
that, for this value ofm, the predicted spectral index is ns ’
1:0254, which lies inside the 1� � range for ns given by
the fit that we have been using in this paper.

VIII. GAUGE UNIFICATION

We will now discuss the question of gauge coupling
constant unification in our model. As already mentioned,
the VEVs of the fields Hc, �Hc break the PS gauge group
GPS to GSM, whereas the VEVof the field � breaks it only
to GSM � Uð1ÞB�L. So, the gauge boson A

? corresponding
to the linear combination of Uð1ÞY and Uð1ÞB�L which is

perpendicular to Uð1ÞY acquires its mass squared m2
A? ¼

ð5=2Þg2jhHcij2 solely from the VEVs of Hc, �Hc. On the
other hand, the masses squared m2

A and m2
WR

of the color

triplet, antitriplet (A�) and charged SUð2ÞR (W�
R ) gauge

bosons get contributions from h�i too. Namely, m2
A ¼

g2ðjhHcij2 þ ð4=3Þjh�ij2Þ and m2
WR

¼ g2ðjhHcij2 þ
2jh�ij2Þ. Calculating the full mass spectrum of the model
in the appropriate SUSY vacuum, one finds that there are
fields acquiring mass of order m and others that acquire
mass of order gjhHcij. The presence of cosmic strings has
forced the magnitude of the VEVof the fieldsHc, �Hc in the
SUSY vacuum to be in the range ð1:85–3:21Þ � 1015 GeV
(for f10 ¼ 0:02–0:18), which is about an order of magni-
tude below the SUSY GUT scale. Furthermore, for all the
values of the model parameters encountered here, the
highest mass scale of the model in the SUSY vacuum is

mA? ¼ ffiffiffiffiffiffiffiffi
5=2

p
gjhHcij. So, we set this scale equal to the

unification scale Mx. From all the above, it is evident that
the great desert hypothesis is not satisfied in this model and
the simple SUSY unification of the gauge coupling con-
stants is spoiled.
One can easily see that, although there exist many fields

with SUð3Þc and Uð1ÞY quantum numbers which can ac-
quire heavy masses below the unification scale and, thus,
affect the running of the corresponding gauge coupling
constants, the only heavy fields with SUð2ÞL quantum
numbers are h0 and �h0 belonging to the (15, 2, 2) repre-
sentation (see Ref. [15]). However, these fields affect
equally the running of the Uð1ÞY gauge coupling constant
and, consequently, cannot help us much in achieving gauge
unification. We, therefore, assume that their masses are
close toMx so that they do not contribute to the renormal-
ization group running. As a consequence of these facts, the
SUð2ÞL gauge coupling constant fails to unify with the
other gauge coupling constants. One is, thus, forced to
consider the inclusion of some extra fields. There is a
good choice using a single extra field, namely, a superfield
f belonging to the (15, 3, 1) representation. This field
affects mainly the running of the SUð2ÞL gauge coupling
constant. If we require that f has charge 1=2 under the
global Uð1Þ R symmetry, then the only renormalizable
superpotential term in which this field is allowed to par-
ticipate is a mass term of the form 1

2mff
2. One can then

tune the newmass parametermf, along with the massm, so

as to achieve unification of the gauge coupling constants.
In contrast to Ref. [28], we will not include here the
superpotential term �2 �� allowed [15] by the symmetries
of the model since, as it turns out, it is not so useful in the
present case. We will assume that the corresponding cou-
pling constant is negligible.
We have implemented a code that is built on top of

the SOFTSUSY code of Ref. [44] and performs the running
of the gauge coupling constants at two loops. We have
incorporated six mass thresholds below the unifi-

cation scaleMx, namely mf, m, ½m2 þ ð4=3Þ�2jhHcij2�1=2,

SEMISHIFTED HYBRID INFLATION WITH B� L . . . PHYSICAL REVIEW D 78, 043518 (2008)

043518-9



½m2 þ 2�2jhHcij2�1=2, g½jhHcij2 þ ð4=3Þjh�ij2�1=2, and

g½jhHcij2 þ 2jh�ij2�1=2. In Fig. 2, we present the unifica-
tion of the SM gauge coupling constants in the f10 ¼ 0:10
case. We deduce that gauge unification is achieved for
mf ’ 1:69� 1015 GeV and m ’ 2:085� 1015 GeV with

the values of the other parameters of the model being ns ’
1:0254, M ’ 2:53� 1015 GeV, � ’ 0:515, � ’ 0:2575,
� ’ 0:713, �Q ’ 2:5� 1017 GeV, �f ’ 4:5� 1016 GeV,

NQ ’ 54:2, dns=d lnk ’ �0:8� 10�6, r ’ 1:5 	 10�5, and

the ratio �f=�c ’ 6:5. The GUT gauge coupling constant

turns out to be g ’ 0:789 and the unification scale Mx ’
3:45� 1015 GeV. In the HZ case (i.e. for ns ¼ 1), gauge
unification is achieved for mf ’ 1:025� 1015 GeV and

m ’ 1:40� 1015 GeV (see Fig. 3), which corresponds
to f10 ’ 0:039, M ’ 1:68� 1015 GeV, � ’ 0:367, � ’
0:1835, � ’ 0:721, �Q ’ 1:5� 1017 GeV, �f ’ 3:4�
1016 GeV, NQ ’ 53:9, dns=d lnk ’ �0:2� 10�6, r ’
0:3� 10�5, �f=�c ’ 6:3, g ’ 0:823, and Mx ’ 2:865�
1015 GeV. Note that the unification scale Mx turns out to
be somewhat small. This fact, however, does not lead to
unacceptably fast proton decay since the relevant diagrams
are suppressed by large factors (for details, see Ref. [9]).

IX. CONCLUSIONS

It has been shown that the extension of the SUSY PS
model which has been introduced in Ref. [15] in order to
solve the b-quark mass problem in SUSY GUTs with exact
asymptotic Yukawa unification, such as the simplest SUSY
PS model, universal boundary conditions and �> 0 is a
very fruitful framework for constructing hybrid inflation-
ary models. Indeed, it has been demonstrated that this
model automatically and naturally leads to the so-called
new shifted and new smooth hybrid inflationary scenarios,
which are based only on renormalizable superpotential
terms and avoid the cosmological disaster from a possible
overproduction of PS magnetic monopoles at the termina-
tion of inflation. These variants of SUSY hybrid inflation,
however, yield, in the context of minimal SUGRA, values
of the spectral index which lie above the range allowed by
the recent CMB data. It is quite remarkable that this prob-
lem can also be resolved within the same extended SUSY
PS model by considering a two-stage inflationary scenario
without the need of nonminimal terms in the Kähler
potential.
Here, we have presented an alternative inflationary sce-

nario, which can also be naturally realized within the same
PS model using the same renormalizable superpotential
terms as in the previous inflationary scenarios and is com-
patible with the recent data within minimal SUGRA. This
scenario incorporates cosmic strings produced at the end of
inflation. Our PS model, in a certain range of parameters,
possesses a semishifted classically flat direction on which
the PS gauge group is spontaneously broken only toGSM �
Uð1ÞB�L. This direction acquires a slope from one-loop
radiative corrections originating from the SUSY breaking
caused by the nonzero potential energy density on this
trajectory. Therefore, it can be used as an inflationary
path. We coined the name semishifted hybrid inflation
for the resulting inflationary scenario. As it turns out,
inflation terminates by violating the slow-roll conditions
well before the system reaches the critical point of the
semishifted path. Subsequently, the system crosses the
critical point where the semishifted trajectory is destabi-
lized and the spontaneous breaking of the Uð1ÞB�L gauge

FIG. 2. Gauge coupling constant unification in our model for
semishifted hybrid inflation in the case of minimal SUGRA for
v ¼ ��m=4��, �=2� ¼ 1, and f10 ¼ 0:10. The parameter �
represents the three running SM fine structure constants as
indicated and Q is the running mass scale.

FIG. 3. Gauge coupling constant unification in our model for
semishifted hybrid inflation in the case of minimal SUGRA for
v ¼ ��m=4��, �=2� ¼ 1, and ns ¼ 1. Same notation as in
Fig. 2.
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symmetry takes place. As a result of this breaking, a net-
work of local cosmic strings, which can contribute to the
primordial curvature perturbation, is produced.

It is known that, in the presence of a network of cosmic
strings, the present CMB data can easily become compat-
ible with values of the spectral index which are close to
unity or even exceed it. We use a recent fit [34] to CMB and
Sloan digital sky survey data which is based on field-theory
simulations of a dynamical network of local cosmic
strings. For the power-law �CDM cosmological model,
this fit implies that, at 95% c.l., the spectral index is ns ¼
0:94–1:06 and the fractional contribution of cosmic strings
to the temperature power spectrum at ‘ ¼ 10 is f10 ¼
0:02–0:18. Our numerical results show that the semishifted
hybrid inflationary model can easily become compatible
with this fit without the need of nonminimal terms in the
Kähler potential or a subsequent second stage of inflation.
Taking into account the constraints from the unification of
the gauge coupling constants, we have found that, for a

certain choice of parameters, the model yields f10 ’ 0:039
in the HZ case (i.e. for ns ¼ 1) and ns ’ 1:0254 for the
best-fit value of f10 ( ¼ 0:10). Spectral indices lower than
about 0.98 cannot be obtained. So, the model shows a slight
preference to blue spectra. The cosmological disaster from
the possible overproduction of PS magnetic monopoles is
avoided since there is no production of such monopoles at
the end of the semishifted hybrid inflation.
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