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Cosmologists are exploring two possible sets of explanations for the remarkable observation of cosmic

acceleration: dark energy fills space or general relativity fails on cosmological scales. We define a null test

parameter �ðk; aÞ � ���
m d lnD=d lna� 1, where a is the scale factor, D is the growth rate of structure,

�mðaÞ is the matter density parameter, and � is a simple function of redshift. We show that it can be

expressed entirely in terms of the bias factor, bðaÞ, measured from cross correlations with cosmic

microwave background (CMB) lensing, and the amplitude of redshift-space distortions, �ðk; aÞ.
Measurements of the CMB power spectrum determine �m0H

2
0 . If dark energy within general relativity

is the solution to the cosmic acceleration problem, then the logarithmic growth rate of structure

d lnD=d lna ¼ ��
m. Thus, �ðk; aÞ ¼ 0 on linear scales to better than 1%. We show that in the class of

modified gravity models known as fðRÞ, the growth rate has a different dependence on scale and redshift.

By combining measurements of the amplitude of � and of the bias, b, redshift surveys will be able to

determine the logarithmic growth rate as a function of scale and redshift. We estimate the predicted

sensitivity of the proposed SDSS III (BOSS) survey and the proposed ADEPT mission and find that they

will test structure growth in general relativity to the percent level.
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I. INTRODUCTION

In general relativity (GR), there are four variables char-
acterizing linear cosmic perturbations: the two gravita-
tional potentials � and �, the anisotropic stress, �, and
the pressure perturbation, �p. All of these variables can
depend on the wave number k and the expansion factor a.
We focus initially on models with no dark energy
clustering or pressure and discuss these effects later in
the paper. We assume scalar linear perturbations around a
flat Friedmann-Robertson-Walker background in the
Newtonian gauge,

ds2 ¼ �ð1þ 2�Þdt2 þ a2ð1þ 2�Þdx2 (1)

and work in the quasistatic, linear approximation, which is
valid for subhorizon modes still in the linear regime.

The evolution of perturbations is described by the con-
tinuity, Euler and Poisson equations (i.e. [1]):

�0
m ¼ �kHVm; (2)

V 0
m þ Vm ¼ k

aH
�; (3)

k2� ¼ �4�Ga2�m�m: (4)

With the assumption of no anisotropic stress, � ¼ ��,
these equations can be combined to derive the equation of
motion for the growth factor D, defined as Dðk; zÞ ¼

�mðk; zÞ=�mðk; z ¼ 1Þ:

D00 þ
�
2þH0

H

�
D0 � 4�G

H2
�mD ¼ 0; (5)

where H ¼ _a=a is the Hubble function, and a prime de-
notes the derivative with respect to lna. From Eq. (5) one
can infer the two key features of GR with smooth dark
energy. First, the growth factor is exactly determined once
the Hubble functionHðaÞ is known; and second, since none
of the coefficients is a function of scale, the growth factor is
scale independent. Therefore, for a given expansion his-
tory, one can test GR in two ways: checking that the
theoretical solution of Eq. (5) agrees with observations,
and testing the hypothesis of scale independence [2–11].
The growth rate of structure in GR is well approximated by
��
m, where the fitting function �ðzÞ ’ 0:557� 0:02z is

accurate at the 0.3% level [12]. We define a function that
tests the growth rate of structure and can be directly related
to observables:

�ðk; aÞ ¼ ���ðaÞ
m

d lnD

d lna
� 1 ¼ a3�HðaÞ2�

ð�m;0H
2
0Þ�

d lnD

d lna
� 1:

(6)

The combination �m;0H
2
0 can be constrained via cosmic

microwave background (CMB) measurements; it is cur-
rently known to within the 5% level fro the WMAP5 data
[13], with an expected gain of a factor ’ 4 from the
upcoming satellite CMB mission Planck [14]. The solid
line in Fig. 1 shows �ðaÞ in GR with dark energy: regard-
less of the details of the dark energy model, �ðaÞ ’ 0 in the
linear regime. By measuring this quantity, we can charac-
terize deviations from general relativity.
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II. fðRÞ THEORIES IN THE PARAMETERIZED
POST-FRIEDMANN FORMALISM

To quantify the expected deviations, we study a class of
modified gravity (MoG) models known as fðRÞ theories,
whose action is written as

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�gp ðRþ fðRÞÞ þ Sm; (7)

Sm is the action of standard matter fields. It was noted long
ago [15,16] that models where fðRÞ is an inverse power of
the Ricci scalar can give rise to late-time acceleration;
however, many of those models have been shown not to
be cosmologically viable due to gravitational instability
[17].

Recently, Song, Hu, and Sawicki [18] introduced an
effective parametrization for fðRÞ theories which does
not rely on any particular model and is able to discard
models suffering from instabilities. The cosmological evo-
lution is obtained by fixing the expansion history to match
that of a dark energy model, for which we assume a
constant equation of state w:

H2 ¼ H2
0ð�ma

�3 þ ð1��mÞa�3ð1þwÞÞ: (8)

Such requirement for HðaÞ translates into a second-order
equation for fðRÞ, which can be solved numerically. Of the
two initial conditions of this equation, one can be fixed
requiring that fðRÞ=R! 0 at early times (i.e. for large R)
in order to recover GR; the second defines a one-parameter
family of curves which all generate the givenHðaÞ. Such a
parameter is conveniently chosen as (also see [19]):

B0 ¼
�
fRR

1þ fR
R0 H
H0

�
0
: (9)

Here fR and fRR represent the first and second derivative of
f with respect to R. GR is represented by the special case
B0 ¼ 0, so that B0 effectively quantifies the deviation from
GR at the present time. Furthermore, the gravitational
stability condition is easily established as B0 > 0.

The additional degrees of freedom of the fðRÞ gravity
introduce modifications in the Poisson equation and in the
relation between the two gravitational potentials [1], which
now read

k2ð���Þ ¼ 4�Geffðk; aÞa2�m�m (10)

and

� ¼ ðgðk; aÞ � 1Þ k
aH

ð���Þ: (11)

The equation for the growth factor in MoG takes the form

D00 þ
�
2þH0

H

�
D0 þ 4�Geffðk; zÞðgðk; zÞ � 1Þ

H2
�mD ¼ 0:

(12)

GivenHðaÞ, a MoGmodel is not completely defined unless
Geffðk; aÞ, the effective Newton’s constant, and the metric
ratio gðk; aÞ ¼ ð�þ�Þ=ð���Þ, are known, contrary to
the GR case. For the class of fðRÞ theories under study, and
in the subhorizon, linear regime, Hu and Sawicki [20] have
provided a fit to Geff and g as

Geffðk; aÞ ¼ GeffðaÞ ¼ GN

1þ fR
;

gðk; aÞ ¼ gSHðaÞ � 1
3 ð0:71

ffiffiffiffi
B

p ðk=aHÞÞ2
1þ ð0:71 ffiffiffiffi

B
p ðk=aHÞÞ2 ;

(13)

where B is the function appearing in Eq. (9), and gSHðaÞ is
the superhorizon metric ratio (see [18,20] for details). The
key result is that the fðRÞ models all predict an enhance-
ment in the growth rate of structure. In fact, any positive
value of B0 gives rise to a negative fR, so that the effective
Newton constant is larger with respect to GR. Moreover,
both terms in gðk; aÞ have a negative sign, which induce
further enhancement of matter clustering, as can be seen
from Eq. (12). Since Geffðk; zÞ ¼ GN=ð1þ fRÞ does not
depend on k, the scale dependence of the growth factor can
only arise from the second term of Eq. (13). On large
scales, the dominant term in the metric ratio is gSHðaÞ,
while for increasing values of k, the second term in the
expression for gðk; aÞ becomes important and tends to the
constant value of �1=3 for large k. The scale of the
transition from scale-free to scale-dependent growth factor

is k=aH ’ B�1=2; due to the asymptotic behavior of
gðk; aÞ, the growth differs significantly from GR even for
models with very small values of B0, on sufficiently small
scales. A mechanism to restore GR on scales of the galaxy
and smaller is discussed in [20,21]. Figure 1 shows
d lnðDÞ=d lnðaÞ�mðaÞ� � 1 for a few different values of
B0 and k=aH0. For the GR case, B0 ¼ 0, �ðk; aÞ � 1 ’ 0
with no scale dependence.

III. MEASURING THE GROWTH OF STRUCTURE

Peculiar velocities displace galaxies along the line of
sight in redshift space and distort the power spectrum of

FIG. 1 (color online). The behavior of �ðk; aÞ ¼
���
m d lnD=d lna� 1 in GR (solid line) and in fðRÞ models, as

a function of B0 and k. Growth is enhanced for B0 � 0 and at
smaller scales in alternative theories. In GR, �ðaÞ ¼ 0.
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galaxies observed in redshift space. This effect is known as
linear redshift-space distortion and was first derived by
Kaiser [22]. In redshift space, the power spectrum is am-
plified by a factor ð1þ ��2

kÞ2 over its real-space counter-
part,

PsðkÞ ¼ ð1þ ��2
kÞ2PðkÞ; (14)

where PsðkÞ and PðkÞ are redshift and real space power

spectra, respectively, �k ¼ ẑ � k̂ is the cosine of the angle
between the wave vector k̂ and the line of sight ẑ, and � is
the linear redshift-space distortion parameter defined as

�ðaÞ ¼ 1

b

d lnD

d lna
; (15)

b is the linear bias, which we assume to be independent of
scale.

Galaxy redshift surveys can be used to directly measure
�, and, if the bias is known, the growth rate of perturba-
tions. In fact, the redshift-space power spectrum can be
decomposed into harmonics, whose relative amplitude de-
pend on the growth rate of structure through �. The pos-
sibility of using such dependence in order to constrain dark
energy properties has been explored in [23]; here we focus
on the measurements of the scale dependence of � as a
smoking gun of modified gravity.

We assume that � is obtained through the ratio of
quadrupole to monopole moments of the redshift power
spectrum [24]

P2ðkÞ
P0ðkÞ

¼
4
3�þ 4

7�
2

1þ 2
3�þ 1

5�
2
; (16)

and use the prescription in [25] to get the errors in the
above quantities:

�ðPiðkÞÞ
PiðkÞ

¼
�ð2�Þ3 R d3r �n4ðrÞ 4ðrÞ½1þ 1

�nðrÞPiðkÞ�2
Vk½

R
d3r �n2ðrÞ 2ðrÞ�2

�
1=2
;

(17)

where �nðrÞ is the mean galaxy density,  is the weight
function, Vk is the volume of the shell in k space, and the
index ‘‘i’’ assumes the values 0 and 2 for monopole and
quadrupole, respectively.

The linear bias for a population of large-scale structure
tracers can be estimated by cross-correlating the line-of-
sight projected density of the tracer with a convergence
map reconstructed by CMB-lensing techniques and com-
paring the resulting signal with theory. The weak lensing
potential responsible for lensing the CMB can be written as
the line-of-sight integral [26],

	ðn̂Þ ¼ �
Z
d


dAð
0 � 
Þ
dAð
0ÞdAð
Þ ½����ðdAð
Þn̂; 
Þ;

(18)

where dAð
Þ is the comoving angular diameter distance
corresponding to the comoving distance 
, and 
0 is the
comoving distance to the last scattering surface. A qua-

dratic combination of the measured CMB temperature and
polarization [27–29] provides an estimator of the conver-
gence field, � ¼ 1

2r2	. In this study, we have used the

prescription of [27] to compute the expected noise power
spectrum, N��

‘ , corresponding to the reconstructed conver-

gence field by cross-correlating � with the projected frac-
tional overdensity of the tracer,

�ðn̂Þ ¼
Z
d
Wð
Þb�mð
n̂; 
Þ; (19)

where W is the normalized tracer distribution function in
comoving distance. We measure the cross correlation spec-
trum:

C���
‘ ¼ 3

2
b�mH

2
0

Z
d


Wð
Þ
að
Þ P

�
‘

dA
; 


�
dAð
0 � 
Þ
dAð
ÞdAð
0Þ ;

(20)

where Pðk; 
Þ is the matter power spectrum at the comov-
ing distance 
 and we have related the wave number k to
the multipole ‘ via the Limber approximation [30]. The
signal-to-noise ratio for such a cross correlation can be
estimated as [31],

�
S

N

�
2 ¼ fsky

Xð2‘þ 1Þ ðC���
‘ Þ2

ðC��‘ þ N��
l ÞðC��

‘ þ N��
‘ Þ ;

(21)

where fsky is the fraction of sky over which the cross

correlation is performed. For tracer counts the noise is

Poisson, and the power spectrum is given by N��
‘ ¼ 1=n̂,

where n̂ is the number of tracer objects per steradian.

TABLE I. Predictions for the errors on bias from the cross
correlation studies described in the text. For each combination of
experiments, we display the number of galaxies per square
degree ( �n); the area of overlap (A), the signal-to-noise ratio
with which the cross correlation of tracer surface density with
CMB lensing can be extracted, (S/N), and the percentage error in
the bias, b, for the tracer.

Galaxy

Survey n̂ A=103 zc b

CMB

Expt. (S/N)

�b=b
(%)

PLANCK 5.8 17.3

SDSSLRG 12.4 3.8 0.31 2 PACT 11.4 8.8

IDEAL 20.4 4.9

PLANCK 10.8 9.3

BOSS1 40. 10 0.3 2 PACT 25.5 3.9

IDEAL 52.5 1.9

PLANCK 17.0 5.9

BOSS2 110. 10 0.6 2 PACT 39.4 2.5

IDEAL 78.2 1.3

PLANCK 52.8 1.9

ADEPT 3500 27 1.35 1 PACT 107.5 0.9

IDEAL 228.3 0.4
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Since the signal is proportional to the bias, b, the ex-
pected error on b can be written as

�b=b ’ 1=ðS=NÞ: (22)

We consider three present and forthcoming redshift galaxy
surveys: the SDSS-LRG (Sloan Digital Sky Survey-
Luminous Red Galaxies) sample [32], its extension
BOSS-LRG (Baryon Oscillation Spectroscopic Survey)
[33], which we divide in two redshift bins, labeled as
BOSS1 and BOSS2, and the proposed survey ADEPT
(Advanced Dark Energy Physics Telescope) [34].

Specifics of each experiment are listed in Table I. In all
cases we assume that � and b do not change significantly
with redshift within a survey, so that the observed quantity
is �ðk; zcÞ, where zc is roughly the central redshift of the
survey. As a direct comparison of the capabilities of the
three galaxy surveys under examination, we show the real-
space matter power spectrum, normalized to the SDSS-
LRGs median redshift, with its error bars in Fig. 2. We also
consider three possible CMB experiments: a PLANCK-
like CMB experiment with 65% sky coverage and tem-
perature and polarization sensitivities of 28 �K arcmin
and 57 �K arcmin, respectively; a next generation CMB
survey based on using a camera similar to that on ACT
(Atacama Cosmology Telescope) or SPT (South Pole
Telescope) with a polarimeter and a �3 years observing
program (labeled PACT) with 65% sky coverage and tem-
perature and polarization sensitivities of 13 �K arcmin
and 18 �K arcmin, and an ideal polarization experiment
(labeled IDEAL) with 65% sky coverage and temperature
and polarization sensitivities of 1 �K arcmin and 1:4 �K
arcmin, respectively. The expected results from cross cor-
relation with the ADEPTand BOSS surveys, and the SDSS
LRG are displayed in Table I.

IV. RESULTS

We show our main results in Fig. 3. Error bars are
computed using Planck as the complementary CMB-

FIG. 2 (color online). Errors on PðkÞ, normalized to the SDSS-
LRG median redshift (z ¼ 0:31) for all surveys.

FIG. 3 (color online). �ðk; zÞ for the four surveys, as a factor of B0 and k. Total error bars around the�CDM case are shown in black;
the smaller (red) error bars are from bias only.
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lensing survey for SDSS LRG and BOSS, and PACT for
ADEPT. We summarize the current status of � and bias
measurements in Table II and add the expected error bars
on � at two different scales, k=h ¼ 0:05 Mpc�1 and k=h ¼
0:2 Mpc�1, from our analysis, for comparison.

The errors on bias are scale independent and vary from
17% for SDSS LRG to �1% for ADEPT. Errors on �
depend on scale; we bin our simulated data in bins in k
space of width � lnk ¼ 1=e, and see that for all surveys
error bars decrease as we go to smaller scales. The corre-
sponding constraints on � are as strong as a few percent for
BOSS, and of the order of 1% for ADEPT.

The combined effect of smaller errors and of the asymp-
totic behavior of the growth factor, which induces a large
deviation of �ðk; aÞ from its GR value on small scales, is
that redshift galaxy surveys are more sensitive to the small-
scale modification of gravity than to the large-scale one.
Ultimately, the smallest observable value of B0 will not be
set by the capabilities of the survey, but by the breakdown
of the linear regime assumption. Assuming k ’
0:05 Mpc�1 as an upper limit, and for values of aH cor-
responding to redshifts between 0 and 2, the smallest B0

inducing scale-dependent growth is B0 ’ 10�4. Such value
is within reach of ADEPT; future experiments that detect
redshifted 21-cm emission could probe even larger values
of k=aH in the linear regime.

V. CONCLUSIONS AND DISCUSSION

We have built a null test parameter for general relativity,
�ðk; aÞ, based on the consistency between expansion his-
tory and structure growth expected in GR. Such a parame-
ter can be expressed in terms of the combination �0mh

2,

probed by the CMB experiments, the linear matter pertur-
bations growth factor, probed by redshift galaxy surveys,
and the linear bias, probed by cross correlation of the two.
We have predicted the achievable precision in the mea-
surement of �ðk; aÞ for three redshift galaxy surveys, SDSS
LRG, BOSS, and ADEPT, together with Planck and a
possible future CMB experiment, PACT. We have inter-
preted such a result in the context of a one-parameter
family of modified gravity theories, known as fðRÞ, which
can give rise to cosmic acceleration. In such models, the
matter clustering is enhanced on all scales with respect to
the GR case, and the enhancement is largest on small
scales. We concluded that the peculiar signatures of the
fðRÞ theories will be definitely detectable with a survey
like ADEPT.
More generally, any detection of deviation of � from

zero that was not due to some observational systematic
would be a signature of truly novel physics with enhanced
growth, pointing either to non-GR physics or to unexpected
properties of dark energy: dark energy models with a non-
zero sound speed are characterized by an oscillatory be-
havior of the growth [41], and scalar field dark energy
suppresses growth on large scales [42]. Similarly, massive
neutrinos suppress �ðk; aÞ on scales below the neutrino free
streaming scale (see [43] for review).

ACKNOWLEDGMENTS

We warmly thank E. Aubourg, C. Hirata, W. Hu, R. H.
Lupton, M.A. Strauss, and L. Verde for useful suggestions.
D.N. S thanks the APC in Paris for its hospitality. This
work was supported by NSF Grant No. AST-0707731, the
NSF PIRE program, and the NASA LTSA program.

[1] B. Jain and P. Zhang, arXiv:0709.2375.
[2] E. Bertschinger and P. Zukin, Phys. Rev. D 78, 024015

(2008).
[3] E. Bertschinger, Astrophys. J. 648, 797 (2006).
[4] M. Ishak, A. Upadhye, and D.N. Spergel, Phys. Rev. D 74,

043513 (2006).

[5] S. F. Daniel, R. R. Caldwell, A. Cooray, and A. Melchiorri,
Phys. Rev. D 77, 103513 (2008).

[6] O. Dore et al., arXiv:0712.1599.
[7] E. V. Linder and R.N. Cahn, Astropart. Phys. 28, 481

(2007).
[8] P. Zhang, M. Liguori, R. Bean, and S. Dodelson, Phys.

TABLE II. Currently available data for measurements of � through � and b (from [35], with the addition of the measurement
reported in [23]) and comparison with our predictions. Only the error coming from uncertainties in � and b is considered.

z � b
��=�
(%) Ref. z

��=� (%)

k ¼ 0:05 h=Mpc
��=� (%)

k ¼ 0:2 h=Mpc
Combination

of surveys

0.15 0:49� 0:09 1:04� 0:11 21.5 [36,37] 0.3 22.0 10.1 BOSS1þ Planck

0.35 0:31� 0:04 2:25� 0:08 25.7 [32] 0.31 39.5 21.0 SDSS LRGþ Planck

0.55 0:45� 0:05 1:66� 0:35 24.0 [38] 0.5 9.3 5.5 BOSSþ Planck

0.77 0:70� 0:26 1:3� 0:1 39.6 [23] 0.6 10.6 6.5 BOSS2þ Planck

1.4 0:60þ0:14
�0:11 1:5� 0:20 27.7 [39] 1.35 2.1 1.1 ADEPTþ PACT

3.0 � � � � � � 19.9 [40]

NEXT GENERATION REDSHIFT SURVEYS AND THE . . . PHYSICAL REVIEW D 78, 043514 (2008)

043514-5



Rev. Lett. 99, 141302 (2007).
[9] Y. Wang, J. Cosmol. Astropart. Phys. 05 (2008) 021.
[10] V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105

(2006).
[11] K. Yamamoto, T. Sato, and G. Huetsi, arXiv:0805.4789.
[12] D. Polarski and R. Gannouji, Phys. Lett. B 660, 439

(2008).
[13] J. Dunkley et al. (WMAP Collaboration),

arXiv:0803.0586.
[14] Planck Collaboration, arXiv:astro-ph/0604069.
[15] S.M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,

Phys. Rev. D 70, 043528 (2004).
[16] S. Capozziello, S. Carloni, and A. Troisi, Recent Res. Dev.

Astron. Astrophys. 1, 625 (2003).
[17] A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1

(2003).
[18] Y.-S. Song, W. Hu, and I. Sawicki, Phys. Rev. D 75,

044004 (2007).
[19] A. A. Starobinsky, JETP Lett. 86, 157 (2007).
[20] W. Hu and I. Sawicki, Phys. Rev. D 76, 104043 (2007).
[21] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[22] N. Kaiser, Mon. Not. R. Astron. Soc. 227, 1 (1987).
[23] L. Guzzo et al., Nature (London) 451, 541 (2008).
[24] A. J. S. Hamilton, in The Evolving Universe, edited by D.

Hamilton (Kluwer, Dordrecht, 1998).
[25] H. A. Feldman, N. Kaiser, and J. A. Peacock, Astrophys. J.

426, 23 (1994).
[26] M. Bartelmann and P. Schneider, Phys. Rep. 340, 291

(2001).

[27] W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002).
[28] T. Okamoto and W. Hu, Phys. Rev. D 67, 083002

(2003).
[29] C.M. Hirata and U. Seljak, Phys. Rev. D 67, 043001

(2003).
[30] D. N. Limber, Astrophys. J. 119, 655 (1954).
[31] H. V. Peiris and D.N. Spergel, Astrophys. J. 540, 605

(2000).
[32] M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 74,

123507 (2006).
[33] Details can be found at www.sdss3.org.
[34] Details can be found at www7.nationalacademies.org/ssb/

be_nov_2006_bennett.
pdf.

[35] S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 77,
023504 (2008).

[36] E. Hawkins et al., Mon. Not. R. Astron. Soc. 346, 78
(2003).

[37] L. Verde et al., Mon. Not. R. Astron. Soc. 335, 432 (2002).
[38] N. P. Ross et al., arXiv:astro-ph/0612400.
[39] J. da Angela et al., arXiv:astro-ph/0612401.
[40] P. McDonald et al. (SDSS Collaboration), Astrophys. J.

635, 761 (2005).
[41] S. DeDeo, R. R. Caldwell, and P. J. Steinhardt, Phys. Rev.

D 67, 103509 (2003).
[42] S. Unnikrishnan, H.K. Jassal, and T. R. Seshadri,

arXiv:0801.2017.
[43] J. Lesgourgues and S. Pastor, Phys. Rep. 429, 307 (2006).

ACQUAVIVA, HAJIAN, SPERGEL, AND DAS PHYSICAL REVIEW D 78, 043514 (2008)

043514-6


