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The standard inflationary version of the origin of the cosmic structure as the result of the quantum

fluctuations during the early universe is less than fully satisfactory as has been argued in [A. Perez,

H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006).]. A proposal is made there of

a way to address the shortcomings by invoking a process similar to the collapse of the quantum-

mechanical wave function of the various modes of the inflaton field. This in turn was inspired by the

ideas of R. Penrose about the role that quantum gravity might play in bringing about such a breakdown of

the standard unitary evolution of quantum mechanics. In this paper we study in some detail the two

schemes of collapse considered in the original work together with an alternative scheme, which can be

considered as ‘‘more natural’’ than the former two. The new scheme assumes that the collapse follows the

correlations indicated in the Wigner functional of the initial state. We end with considerations regarding

the degree to which the various schemes can be expected to produce a spectrum that resembles the

observed one.
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I. INTRODUCTION

In recent years, there have been spectacular advances in
physical cosmology, resulting from a remarkable increase
in the accuracy of the observational techniques and exem-
plified by the Supernova Surveys [1], the studies of large
scale structure [2], and the highly accurate observations
from various recent studies, in particular, those of the
Wilkinson Microwave Anisotropy Probe (WMAP) [3].
These observations have strengthened the theoretical status
of the inflationary scenarios among cosmologists.

We should note, however, that while much of the focus
of the research in inflation has been directed towards the
elucidation of the exact form of the inflationary model (i.e.,
the number of fields, the form of the potential, and the
occurrence of nonminimal couplings to gravity to name a
few), much less attention has been given to the questions of
principle, how the initial conditions are determined, what
accounts for the low entropy of the initial state, and how
exactly does the Universe transit from a homogeneous and
isotropic stage to one where the quantum uncertainties
become actual inhomogeneous fluctuations. There are of
course several works in which this issues are addressed
[4,5], but as explained in [6–8] the fully satisfactory ac-
count of the last of them seems to require something
beyond the current understanding of the laws of physics.
The point is that the predictions of inflation in this regard
cannot be fully justified in any known and satisfactory
interpretational scheme for quantum physics. The
Copenhagen interpretation, for instance, is inapplicable
in that case, due to the fact that we, the observers, are
part of the system, and to make things even worse we are in

fact part of the outcome of the process we wish to under-
stand, galaxies, stars, planets, and living creatures being
impossible in a homogeneous and isotropic universe [9].
The arguments and counterarguments that have arisen in
regard to this aspect of the article mentioned above have
been discussed in various other places by now, and we
point the reader who is interested in that debate to that
literature [8,10]. In the present work we will focus on a
more detailed study of the collapse schemes and on the
traces they might leave on the observational data.
Nevertheless, and in order to make the article self-
contained, we will briefly review the motivation and line
of approach described in detail in [6].
To clarify where the problem lies, and the way in which

it is addressed in [6], we will review in a nutshell the
standard explanation of the origin of the seeds of cosmic
structure in the inflationary paradigm:
(i) One starts with an homogeneous and isotropic space-

time [11]. The inflaton field is the dominant matter in
this space-time, and it is in its vacuum quantum state,
which is homogeneous and isotropic too. The field is
in fact described in terms of its expectation value
represented as a scalar field which depends only on
cosmic time but not on the spatial coordinates, �0

and a quantum or ‘‘fluctuating part’’ �� which is in
the adiabatic vacuum state, which is an homogene-
ous and isotropic state (something that can be easily
verified by applying the generators of rotations or
translations to the state).

(ii) The quantum fluctuations of the inflaton act as
perturbations [12] of the inflaton field and through
the Einstein field equations (EFE) as perturbations
of the metric.

(iii) As inflation continues the physical wavelength of
the various modes of the inflaton field becomes
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larger than the Hubble radius (horizon-crossing as
referred to commonly in the literature), and the
quantum amplitudes of the modes freeze. At that
moment one starts regarding such modes as actual
waves in a classical field. Later on, after inflation
ends, and as the Hubble radius grows, the fluctua-
tions ‘‘reenter the horizon,’’ transforming at that
point into the seeds of the cosmic structure.

The last step is usually referred to as the quantum to
classical transition. There are of course several schools of
thought about the way one must consider such a transition:
from those using the established physical paradigms [4,5],
to views advocating a certain generalization of the standard
formalisms [13]. The two works [4,13] focus concretely on
a full-blown quantum cosmology, and its interpretational
problems, which are even more severe than the ones we are
dealing with here. In [6] it was argued that such schemes
are insufficient, in particular, if one expects cosmology to
provide a time evolution account starting from the totally
symmetric state to an inhomogeneous and anisotropic uni-
verse in which creatures such as humans might eventually
arise.

The view taken in [6] (and in this work) intends to be
faithful to the notion that physics is always quantum me-
chanical, and that the only role for a classical description is
that of an approximation where the uncertainties in the
state of the system are negligibly small and one can take
the expectation values as a fair description of the aspects of
the state one is interested on. However one must keep in
mind that behind any classical approximation there should
always lie a full quantum description, and thus one should
reject any scheme in which the classical description of the
Universe is inhomogeneous and anisotropic but in which
the quantum-mechanical description persists in associating
to the Universe an homogeneous and isotropic state at all
times. Thus in [6], one introduces a new ingredient to the
inflationary account of the origin of the seeds of cosmic
structure: the self-induced collapse hypothesis. That is, one
considers a specific scheme by which a self-induced col-
lapse of the wave function is taken as the mechanism by
which inhomogeneities and anisotropies arise in each par-
ticular scale. This work was inspired by early ideas by
Penrose [14], which regard the collapse of the wave func-
tion as an actual physical process (instead of just an artifact
of our description of physics) and which is assumed to be
caused somehow by quantum aspects of gravitation. We
will not recapitulate the motivations and discussion of the
original proposal and instead refer the reader to the above-
mentioned works.

The way we treat the transition of our system from a
state that is homogeneous and isotropic to one that is not is
to assume that at a certain cosmic time, something induces
a jump in a state describing a particular mode of the
quantum field, in a manner that would be similar to the

standard quantum-mechanical collapse of the wave func-
tion associated with a measurement, but with the difference
that in our scheme no external measuring device or ob-
server is called upon as ‘‘triggering’’ that jump. (It is worth
recalling that nothing of that sort exists, in the situation at
hand, to play such role.)
The main aim of this article is to compare the results that

emerge from the collapse schemes considered in [6] with
an alternative scheme of collapse that can be said to be
more natural than the previous two. In this new scheme
[15] we take into account the correlations in the quantum
state of the system before the collapse for the values of field
and conjugate momentum variables as indicated by the
Wigner functional analysis of the precollapse state.
This article is organized as follows: In Sec. II we review

the formalism used in analyzing the collapse process.
Section III reviews how to obtain the wave function for
the field from its Fock space description, which is then
used in evaluating theWigner function for the state, and the
state that results after the collapse. Section IV describes the
details of the spectrum of cosmic fluctuations, resulting
from such collapse, and finally, in Sec. V we discuss these
results and those of other collapse schemes vis-à-vis the
empirical data.

II. THE FORMALISM

The starting point is the action of a scalar field with
minimal coupling to the gravity sector:

S½�; gab� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R½gab� � 1

2
ra�rb�gab

� Vð�Þ
�
: (1)

One splits the corresponding fields into their homogeneous
(‘‘background’’) part and the perturbations (‘‘fluctua-
tion’’), so the metric and the scalar field are written as g ¼
g0 þ �g and � ¼ �0 þ ��. With the appropriate choice
of gauge (conformal Newton gauge) and ignoring the
vector and tensor part of the metric perturbations, the
space-time metric is described by

ds2 ¼ að�Þ2½�ð1þ 2�Þd�2 þ ð1� 2�Þ�ijdx
idxj�; (2)

where � is called the Newtonian potential. One then
considers the EFEs to zeroth and first order. The zeroth
order gives rise to the standard solutions in the inflationary
stage, where að�Þ ¼ � 1

HI�
, withH2

I ’ ð8�=3ÞGV with the

scalar potential, �0 in slow-regime so �0
0 ’ � 1

3HI

dV
d� ; and

the first-order EFEs reduce to an equation relating the
gravitational perturbation and the perturbation of the field

r2� ¼ 4�G�0
0��

0 � s��0; (3)

with s � 4�G�0
0. The next step involves quantizing the

fluctuating part of the inflaton field. In fact it is convenient
to work with the rescaled field y ¼ a��. In order to avoid
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infrared problems we consider restriction of the system to a
box of side L, where we impose, as usual, periodic bound-
ary conditions. We thus write the fields as

ŷð�; ~xÞ ¼ 1

L3

X
k

ei
~k� ~xŷkð�Þ;

�̂ð�; ~xÞ ¼ 1

L3

X
k

ei
~k� ~x�̂kð�Þ;

(4)

where �̂k is the canonical momentum of the scaled field.
The wave vectors satisfy kiL ¼ 2�ni with i ¼ 1, 2, 3,

and ŷkð�Þ � ykð�Þâk þ �ykð�Þâyk , and �̂kð�Þ � gkð�Þâk þ
��kð�Þâyk . The functions ykð�Þ, gkð�Þ reflect our election of
the vacuum state, the so-called Bunch-Davies vacuum:

ykð�Þ ¼ 1ffiffiffiffiffi
2k

p
�
1� i

�k

�
e�ik�; gkð�Þ ¼ �i

ffiffiffi
k

2

s
e�ik�:

(5)

The vacuum state is defined by the condition âkj0i ¼ 0
for all k, and is homogeneous and isotropic at all scales. As
indicated before, according to the proposal, the self-
induced collapse operates in close analogy with a ‘‘mea-
surement’’ in the quantum-mechanical sense, and assumes
that at a certain time �c

k the part of the state that describes

the mode ~k jumps to a new state, which is no longer
homogeneous and isotropic. To proceed to the detailed
description of this process, one decomposes the fields
into their hermitian parts as follows: ŷk ¼ ŷRk ð�Þ þ
iŷIkð�Þ and �̂k ¼ �̂R

k ð�Þ þ i�̂I
kð�Þ.

We note that the vacuum state j0i is characterized in

part by the following: its expectation values hŷR;Ik ð�Þi ¼
h�̂R;I

k ð�Þi ¼ 0 and its uncertainties are �ŷR;Ik ¼
1=2jykj2ð@L3Þ and ��̂R;I

k ¼ 1=2jgkj2ð@L3Þ.
For an arbitrarily given state of the field j�i, we intro-

duce the quantity dk � h�jâR;Ik j�i � jdR;Ik jei�k so that,

hŷR;Ik i ¼ ffiffiffi
2

p <ðykdR;Ik Þ; h�̂R;I
k i ¼ ffiffiffi

2
p <ðgkdR;Ik Þ; (6)

which shows that it specifies the main quantity of interest
in characterizing the state of the field.

It is convenient for future use to define the following
phases, �k ¼ argðykÞ and �k ¼ argðgkÞ, keeping in mind
that they depend on the conformal time �.

The analysis now calls for the specification of the
scheme of collapse determining the state of the field after
the collapse [16], which is the main purpose of the next
section. With such a collapse scheme at hand one then
proceeds to evaluate the perturbed metric using a semiclas-
sical description of gravitation in interaction with quantum
fields as reflected in the semiclassical EFEs: Gab ¼
8�GhTabi. To lowest order this set of equations reduces to

r2�k ¼ sh��̂0
ki�; (7)

where h��̂0
ki� is the expectation value of the momentum

field ��̂0
k ¼ �̂k=að�Þ on the state j�i characterizing the

quantum part of the inflaton filed. It is worthwhile empha-
sizing that before the collapse has occurred there are not
metric perturbations [17], i.e., the right-hand side of the
last equation is zero, so, it is only after the collapse that the
gravitational perturbations appear, i.e., the collapse of each
mode represents the onset of the inhomogeneity and an-
isotropy at the scale represented by the mode. Another
point we must stress is that, after the collapse, and in fact
at all times, ourUniverse would be defined by a single state
j�i, and not by an ensemble of states. The statistical
aspects arise once we note that we do not measure directly

and separately each of the modes with specific values of ~k,
but rather the aggregate contribution of all such modes to
the spherical harmonic decomposition of the temperature
fluctuations of the celestial sphere (see below).
To make contact with the observations we note that the

quantity that is experimentally measured (for instance by
WMAP) is �T=Tð�; ’Þ, which is expressed in terms of its
spherical harmonic decomposition

P
lm�lmYlmð�; ’Þ. The

contact with the theoretical calculations is made through
the theoretical estimation most likely value of the �lm’s,
which are expressed in terms of the Newtonian potential on
the 2-sphere corresponding to the intersection of our past
light cone with the last scattering surface (LSS):
�ð�D; ~xDÞ, �lm ¼ R

�ð�d; ~xDÞY�
lmd

2�. We must then

consider the expression for the Newtonian potential (7) at
those points:

�ð�; ~xÞ ¼ X
k

sT ðkÞ
k2L3

h��̂0
kiei ~k� ~x; (8)

where we have introduced the factor T ðkÞ to represent the
physics effects of the period between reheating and
decoupling.
Writing the coordinates of the points of interest on the

surface of last scattering as ~x ¼ RDðsin� sin�; sin� cos�;
cos�Þ, where RD is the comoving radius of that surface and
�, � are the standard spherical coordinates of the sphere,
and using standard results connecting Fourier and spherical
expansions we obtain

�lm ¼ X
k

sT ðkÞ
k2L3

Z
h��̂0

kiei ~k� ~xYlmð�;�Þd2� (9)

¼ s

L3

X
k

T ðkÞ
k2

h��̂0
ki4�iljlðj ~kjRDÞYlmðk̂Þ: (10)

As indicated above statistical considerations arise when
noting that Eq. (8) indicates that the quantity of interest is
in fact the result of a large number (actually infinite) of
harmonic oscillators, each one contributing with a complex
number to the sum, leading to what is in effect a two-
dimensional random walk whose total displacement corre-
sponds to the observational quantity. Note that this part of
the analysis is substantially different from the correspond-
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ing one in the standard approach. In order to obtain a
prediction, we need to find the most likely value of the
magnitude of such total displacement.

Thus we must concern ourselves with

j�lmj2 ¼ 16s2�2

L6

X
~k ~k0

T ðkÞ
k2

T ðk0Þ
k02

h��̂0
ki

� h��̂0
k0 i�jlðkRDÞjlðk0RDÞYlmðk̂ÞYlmðk̂0Þ; (11)

and to obtain the ‘‘most likely’’ value for this quantity. This
we dowith the help of the imaginary ensemble of universes
[18] and the identification of the most likely value with the
ensemble mean value.

As we will see, the ensemble mean value of the product

h��̂kih��̂k0 i�, evaluated in the post-collapse states [19],
results in a form 	CðkÞ�~k ~k0 , where 	 ¼ @L3k=ð4a2Þ and
CðkÞ is an adimensional function of k, which codifies the
traces of detailed aspects of the collapse scheme. We are
thus led to the following expression for the most likely
(ML) value of the quantity of interest:

j�lmj2ML ¼ s2
4�2

@

L3a2
X
~k

CðkÞT ðkÞ2
k3

j2l ðj ~kjRDÞjYlmðk̂Þj2:

(12)

Writing the sum as an integral (using the fact that the

allowed values of the components of ~k are separated by
�ki ¼ 2�=L):

j�lmj2ML ¼ s2@

2�a2

Z CðkÞT ðkÞ2
k3

j2l ðj ~kjRDÞjYlmðk̂Þj2d3k:
(13)

The last expression can be made more useful by chang-
ing the variables of integration to x ¼ kRD, leading to

j�lmj2ML ¼ s2@

2�a2

Z Cðx=RDÞ
x

T ðx=RDÞ2j2l ðxÞdx: (14)

With this expression at hand we can compare the expecta-
tions from each of the schemes of collapse against the
observations. We note, in considering the last equation,
that the standard form of the spectrum corresponds to
replacing the function C by a constant. In fact if one
replaces C by 1 and one further takes the functionT which
encodes the late time physics including the plasma oscil-
lations which are responsible for the famous acoustic
peaks, and substitutes it by a constant, one obtains the
characteristic signature of a scale-invariant spectrum:
j�lmj2ML / 1

lðlþ1Þ .
In the remainder of the paper we will focus on the effects

that a nontrivial form of the functionC has on the predicted
form of the observational spectrum.

III. PROPOSAL OF COLLAPSE à LAWIGNER

As indicated in the Introduction, the schemes of collapse
considered in the first work following the present approach,
[6], essentially ignored the correlations between the ca-
nonical variables that are present in the precollapse vac-
uum state. In the present analysis, we will focus on this
feature, characterizing such correlations via the Wigner
distribution function [20], and requiring the collapse state
to reflect those aspects. The choice of the Wigner distribu-
tion function to describe these correlations in this setting is
justified by some of its standard properties regarding the
‘‘classical limit’’ (see for instance [21]), and, by the fact
that there is a precise sense in which it is known to encode
the correlations in question [22]. The Wigner distribution
function for pure quantum states characterized by a posi-
tion space wave function �ðqÞ is defined as

W ðq; pÞ ¼ 1

2�@

Z 1

�1
dy��ðqþ yÞ�ðq� yÞ exp

�
ipy

@

�
;

(15)

with ðq; pÞ corresponding to the canonical conjugate
variables.
In our case the wave function for each mode of the field

(characterized by its wave vector number ~k) corresponds,
initially, to the ground state of an harmonic oscillator. It is a
well-known result that the Wigner distribution function
gives for a quantum harmonic oscillator in its vacuum state
a bidimensional Gaussian function. This fact will be used
to model the result of collapse of the quantum field state.
The assumption will be that at a certain (conformal) time
�c
k, the part of the state characterizing the mode k, will

collapse (in a way that is similar to what in the Copenhagen
interpretation is associated with a measurement), leading
to a new state j�i in which the fields (expressed by its
hermitian parts) will have expectation values given by

hŷR;Ik i� ¼ xðR;IÞk �k cos�k; h�̂R;I
k i� ¼ xðR;IÞk �kk sin�k;

(16)

where xðR;IÞ is a random variable, characterized by a
Gaussian distribution centered at zero with a spread one;
�k is given by the major semiaxis of the ellipse character-
izing the bidimensional Gaussian function (the ellipse
corresponds to the boundary of the region in ‘‘phase
space’’ where the Wigner function has a magnitude larger
than 1=2 its maximum value), and�k is the angle between

that axis and the yR;Ik axis.

Comparing (6) with (16) we obtain,

jdR;Ik j cosð�k þ �kÞ ¼ 1ffiffiffi
2

p jykj
xR;Ik �k cos�k; (17)

jdR;Ik j cosð�k þ �kÞ ¼ 1ffiffiffi
2

p jgkj
xR;Ik �kk sin�k: (18)
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From these expressions we can solve for the constants dR;Ik ¼ jdR;Ik jei�k . In fact using the polar representation of the yk and
gk we find

tanð�k � k�Þ ¼ k2�cjykj sin�k

jgkj cos�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ð�cÞ2p � kjykj sin�k

(19)

obtaining

jdR;Ik j ¼ xR;Ik �kffiffiffi
2

p jykjjgkj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2�2

c

p
k�c

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jykj2k2sin2�k þ jgkj2cos2�k � 2jykjjgkjk cos�k sin�k

ð1þ k2�2
cÞ1=2

s
; (20)

where in all of the expressions above the conformal time �
is set to the time of collapse �k

c of the corresponding mode.
In order to obtain the expression for�k it is necessary to

find the wave-function representation of the vacuum state

for the variable yR;Ik . Following a standard procedure, we

apply the annihilation operator, âR;I, to the vacuum state
j0i, obtaining the well-known equation for the harmonic
oscillator in the vacuum state, and from the result we
extract the wave function of the k-mode of the inflaton
field:

�R;IðyR;Ik ; �Þ ¼
�

2k

ð1þ i
k�Þ�@L3

�
1=4

� exp

�
� k

@L3ð1þ i
k�Þ

ðyR;Ik Þ2
�
: (21)

We next substitute this in the expression for the Wigner

function, W ðyR;Ik ; �R;I
k ; �Þ, obtaining,

W ðyR;Ik ; �R;I
k ; �Þ ¼ 2

�
1þ 1

k2�2

�
1=4

exp

�
� 2k

@L3
ðyR;Ik Þ2

�

� exp

�
2

k�@L3
yR;Ik �R;I

k

�

� exp

�
�ð1þ k2�2Þ

2@L3k3�2
ð�R;I

k Þ2
�
:

(22)

This has the form of a bidimensional Gaussian distribution
as expected from the form of the vacuum state. The cross
term is telling us that the support of the Wigner function is
rotated with respect to the original axes. Rescaling
the �k-axe to �k ¼ �k=k and doing a simple 2D

rotation (i.e., y0R;Ik ¼ yR;Ik cos�k þ�R;I
k sin�k, �0R;I

k ¼
�R;I

k cos�k � yR;Ik sin�k) we find the principal axes of

the Wigner function:

W ðy0kR;I�0
k
R;I; �Þ ¼ 2

�
1þ 1

k2�2

�
1=4

� exp

�
�
�
y0R;Ik

0

yk

�
2
�

� exp

�
�
�
�0R;I

k


�0
k

�
2
�
; (23)

with the corresponding widths given by


y0
k
¼ 4@L3k�2

1þ 5k2�2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10k2�2 þ 9k4�4

p ; (24)


�0
k
¼ 4@L3k�2

1þ 5k2�2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10k2�2 þ 9k4�4

p : (25)

Note that 
�0
k
> 
y0

k
. The rotation angle, �k is given by

2�k ¼ arctan

�
4k�

1� 3k2�2

�
: (26)

It is clear then that �k � 2
�0
k
.

Substituting �̂k in ��̂0
k (defined by Eq. (8)) and calcu-

lating the expectation value of it in the post-collapse state,
j�i, we obtain

h��̂0
ki� ¼

ffiffiffi
k

2

s
� 1
a
½jdRk j cosð�R

k þ �k þ �kÞ
þ ijdIkj cosð�I

k þ �k þ�kÞ�; (27)

where we have defined the ‘‘collapse to observation delay’’
from the collapse time of the mode k, �c

k as �k ¼ kð��
�c
kÞ where � represents the time of interest which in our

case will be the ‘‘observation time.’’
Inserting Eq. (20) in the last expression, we can rewrite

h��̂0
ki� as
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h��̂0
ki� ¼ 2

að�cÞ �
k�c

ffiffiffiffiffiffiffiffiffiffiffi
@L3k

p

ð1þ 10k2�2
c þ 9k4�4

cÞ1=4
� xRk þ ixIkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 5k2�2
c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10k2�2

c þ 9k4�4
c

pq

�
�
cos�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10k2�2

c þ 9k4�4
c

q
� 1þ 3k2�2

c

r

þ sin�k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10k2�2

c þ 9k4�4
c

q
þ 1� 3k2�2

c

r
� 1

k�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10k2�2

c þ 9k4�4
c

q
� 1þ 3k2�2

c

r ��
: (28)

Now we take the ensemble mean value of the square of h��̂0
ki�, taking out a factor of 	 (remember that 	 ¼ @L3k=4a2, see

last section) and call it CwignerðkÞ

CwignerðkÞ ¼ 32z2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10z2k þ 9z4k

q � 1

1þ 5z2k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10z2k þ 9z4k

q �
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10z2k þ 9z4k

q
� 1þ 3z2k�

�
cos�k � sin�k

zk

�
2

þ sin2�k½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10z2k þ 9z4k

q
� 3z2k � 7� þ 8zk cos�k sin�k

�
; (29)

where we replaced k�c
kðkÞ by zk. Henceforth (14) is

j�lmj2ML ¼ s2@

2�a2

Z Cwignerðx=RDÞ
x

T ðx=RDÞ2j2l ðxÞdx:
(30)

Now we are prepared to compare the predictions of the
various schemes of collapse with observations.

Before doing so it is worth recalling that the standard
results are obtained if the function C is a constant, and to
mention that it turns out that in order to obtain a constant C
(in this and any collapse scheme) there seems to be a single
simple option: that the zk be essentially independent of k
indicating that the time of collapse for the mode k, �c

k

should depend on the mode frequency according to �c
k ¼

z=k. For a more detailed treatment we refer to the article
[6].

IV. COMPARING WITH OBSERVATIONS

This is going to be a rather preliminary analysis concen-
trating on the main features of the resulting spectrum and
ignoring the late time physics corresponding to the effects
of reheating and acoustic oscillations (represented by
T ðkÞ). Actual comparison with empirical data requires a
more involved analysis which is well outside the scope of
the present paper.

We remind the reader that CðkÞ encapsulates all of the
imprint of the details of the collapse scheme on the obser-
vational power spectrum.

The functional form of this quantity for the scheme
considered in this article, Cwigner (29), has a more compli-

cated form than the corresponding quantities that resulted
from the schemes of collapse considered in [6]. Here we
reproduce those expressions for comparison with the
scheme considered here and with observations. In the first
collapse scheme (31), the expectation values for the field ŷk
and its canonical conjugate momentum �̂k after the col-

lapse are randomly distributed within the respective ranges
of uncertainties in the precollapsed state, and are uncorre-
lated. The resulting power spectrum has

C1ðkÞ ¼ 1þ 2

z2k
sin2�k þ 1

zk
sinð2�kÞ: (31)

In the second scheme considered in [6] only the conjugate
momentum changes its expectation value from zero to a
value in such range; this second scheme is proposed since
in the first-order Eq. (7) only this variable appears as a
source. This leads to a spectrum with

C2ðkÞ ¼ 1þ sin2�k

�
1� 1

z2k

�
� 1

zk
sinð2�kÞ: (32)

Despite the fact that the expression for Cwigner looks by far

more complicated than C2, their dependence in zk is very
similar, except for the amplitude of the oscillations [see
Figs. 1(b) and 1(c)]. Another interesting fact that can be
easily detected in the behavior of the different schemes of
collapse is that if we consider the limit zk ! �1, then
C1ðkÞ ! 1 and we recover the standard scale-invariant
spectrum. This does not happen with C2ðkÞ or CwignerðkÞ
(see Fig. 1).
We recall that the standard form of the predicted spec-

trum is recovered by taking CðkÞ ¼ 1. Therefore, we can
consider the issue of how the various collapse schemes
approach the standard answer (given the fact that the
standard answer seems to fit the observations rather
well). In particular, we want to investigate how sensitive
the predictions are for the various schemes, to small de-
partures from the case where zk is independent of k, which
as we argued above would lead to a precise agreement with
the standard spectral form. In order to carry out this analy-
sis, we must obtain the integrals (14) for the various
collapse schemes characterized by the various functions
C1ðkÞ; C2ðkÞ and CwignerðkÞ. It is convenient to define the
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adimensional quantity ~zx � xNðxÞ, where x ¼ kRD and
NðxÞ � �c

kðxÞ=RD. We will be working under the following

assumptions: (1) The changes in scale during the time
elapsed from the collapse to the end of inflation are
much more significant than those associated with the
time elapsed from the end of inflation to our days, thus
we will use the approximation �k ¼ �~zx; (2) We will
explore the sensitivity for small deviations of the ‘‘zk
independent of k recipe’’ by considering a linear departure
from the k independent zk characterized by ~zx as ~zx ¼ Aþ
Bx in order to examine the robustness of the collapse
scheme in predicting the standard spectrum. We note that
A and B are adimensional.

Figs. 2–4 reflect the way the spectrum behaves as a
function of l, where we must recall that standard prediction
(ignoring the late physics input of plasma oscillations, etc.)
is a horizontal line. Those graphs represent various values

of A and B chosen to sample a relatively ample domain.
The graphs (5–7) show the form of the spectrum for various
choices for the value of B keeping the value of A fixed.
It is important at this point to remind the reader—in the

order to avoid possible misinterpretations—that these
graphs are ignoring the effect of late physics phenomena
(plasma oscillations, etc.). Our aim at this stage is to
compare these graphs with the scale-invariant spectrum
predicted by standard inflationary scenarios (i.e., a con-
stant value for 2lðlþ 1Þj�lmj2) and not—directly—with
the observed spectrum.
As we observed before, the behavior of C2 and Cwigner is

qualitatively similar, the main difference comes from the
amplitude of the oscillations of the functional.
From these results we can obtain some reasonable con-

straints on the values of the A and B for the different
schemes of collapse. We start by defining for a given

FIG. 1 (color online). Plots of the three collapse schemes. We could appreciate that C2 (middle) and Cwigner have a similar behavior
despite their dissimilar functional form.
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predicted spectrum the degree of deviation from the flat

spectrum to be simply �lmax � ð 1
lmax�

l¼lmax
l¼1 ½ðlðlþ 1Þ�

1
2lþ1 �mj�l;mj2 � S�2Þ1=2=S where S represents the flat

spectrum that would best approximate the corresponding
imaginary data and is given by S � 1

lmax�
l¼lmax
l¼1 ðlðlþ

1Þ 1
2lþ1 �mj�l;mj2Þ. If we set a bound on the departure

from scale invariance up to l ¼ 1500 of 10% measured
by �lmax (i.e., requiring �lmax < 0:1) we obtain for the
various collapse schemes the corresponding allowed range
of values for the parameters A and B. The results from
these analyses are presented in Tables I, II, and III. We see
that the restriction of range in B becomes weaker for larger
values of A, something that can be described by stating that
the earlier the collapse occurs the larger the possible
departures from the behavior �c

kk ¼ constant.

We note that we can recover the range of times of
collapse for the different values of A and B. We can solve
NðxÞ ¼ A=xþ B, therefore j�c

kðkÞj ¼ A=kþ RDB. Note

that RD is the comoving radii of the last scattering surface.
Considering the radial null geodesics we find RD ¼ �0 �
�d, where�d is the time of the decoupling. The decoupling
of photons occurs in the matter domination epoch, so we
can use the expression for RD in terms of the scale factor,
using the corresponding solution to the Friedman equation

FIG. 2 (color online). Semilog plot of j�lmj2ðC1ðkÞÞ for differ-
ent values of ðA; BÞ, representing how robust is the scheme of
collapse when it departs from zk constant. The abscissa is l until
l ¼ 2600.

FIG. 3 (color online). Semilog plot of j�lmj2ðC2ðkÞÞ for differ-
ent values of ðA; BÞ, representing how robust the scheme of
collapse is when it departs from zk constant. The abscissa is l
until l ¼ 2600.

FIG. 4 (color online). Semilog plot of j�lmj2ðCwignerðkÞÞ for
different values of ðA; BÞ, representing how robust the scheme of
collapse is when it departs from zk constant. The abscissa is l
until l ¼ 2600.

TABLE I. Robustness of C1 when the parameters ðA; BÞ were
varied from 10�4 � A � 103 and 10�4 � B � 10.

C1ðkÞ
A B �lmax � 100

0.0001 0.0001 6.63019

0.0001 0.001 28.3844

0.0001 1 0.288273

0.0001 10 0.301883

0.01 0.0001 6.84475

0.01 0.001 28.3706

0.01 1 0.282546

0.01 10 0.301614

1 0.0001 10.1258

1 0.001 21.3117

1 1 0.247444

1 10 0.341509

10 0.0001 1.67782

10 0.001 15.8869

10 1 0.195523

10 10 0.384265

1000 0.0001 0.44236

1000 0.001 1.58567

1000 1 0.394892

1000 10 0.402706

ADOLFO DE UNÁNUE AND DANIEL SUDARSKY PHYSICAL REVIEW D 78, 043510 (2008)

043510-8



RD ¼ 2

H0

ð1� ffiffiffiffiffi
ad

p Þ; (33)

where we have normalized the scale factor so today is a0 ¼

1, so, ad � að�dÞ ’ 10�3 and H0 is the Hubble variable
today. The numerical value is RD ¼ 5807:31h�1 Mpc.
Henceforth

j�c
kðkÞj ¼

A

k
þ 2B

H0

ð1� ffiffiffiffiffi
ad

p Þ: (34)

Thus, we can use this formula and calculate the collapse
time of the interesting values of k we observe in the cosmic
microwave background (CMB), namely, the range between
10�3 Mpc�1 � k � 1 Mpc�1. These modes cover the
range of the multipoles l of interest: 1 � l � 2600, where
we made use of the relation [23] l ¼ kRD. The collapse
times for these modes can be regarded as the times in
which inhomogeneities and anisotropies first emerged at
the corresponding scales. These collapse times are shown
in Fig. 8 for the best values of ðA; BÞ given in the tables [24]
(I, II, and III).
We can compare the value of the scale factor at the

collapse time að�c
kÞ with the traditional scale factor at

‘‘horizon crossing’’ that marks the ‘‘quantum to classical
transition’’ in the standard explanation of inflation: aHk .
The ‘‘horizon crossing’’ occurs when the length corre-
sponding to the mode k has the same size as the ‘‘Hubble
Radius,’’ H�1

I , (in comoving modes k ¼ aHI) therefore,
aHk � að�H

k Þ ¼ k
HI

¼ 3k
8�GV . Thus the ratio of the value of

the scale factor at horizon crossing for mode k and its value
at collapse time for the same mode is

aHk
ack

¼ k�c
kðkÞ ¼ Aþ BRDk ¼ Aþ Bl: (35)

Using the best-fit values for the different collapse schemes,
we can plot the e-folds elapsed between the mode’s col-
lapse and its horizon crossing. As we can see in Fig. 9 this
quantity changes—at most—of 1 order of magnitude in the
range for k for the values of A and B that were considered
more reasonable, i.e., aHk > ack, the time of collapse �c

k ’
10�3�H

k in this range. The door is clearly open for a more

detailed analysis and comparison to the actual empirical
data, whereby one could hope to extract robust information
of the type discussed above.

V. DISCUSSION

We have considered various relatively ad hoc recipes for
the form of the state of the quantum inflationary field that
results, presumably from a gravitationally induced collapse
of the wave function. The breakdown of unitarity that this
entails is thought to be associated with drastic departures
from standard quantum mechanics once the fundamental
quantum gravity phenomena come into play. We have not
discussed at any length this issue here and have focused in
the present treatment on purely phenomenological aspects
of the problem.
The analysis of the signatures of the different schemes of

collapse illustrate various generic points worth mention-

TABLE II. Robustness of C2 when the parameters ðA;BÞ were
varied from 10�4 � A � 103 and 10�4 � B � 10.

C2ðkÞ
A B �lmax � 100

0.0001 0.0001 7.92849

0.0001 0.001 53.9872

0.0001 1 0.423473

0.0001 10 0.249129

0.01 0.0001 8.12093

0.01 0.001 54.2265

0.01 1 0.277929

0.01 10 0.251313

1 0.0001 21.8266

1 0.001 50.6328

1 1 0.312876

1 10 0.443572

10 0.0001 18.4953

10 0.001 46.1397

10 1 0.917963

10 10 0.445398

1000 0.0001 28.9085

1000 0.001 56.2369

1000 1 0.208227

1000 10 0.434914

TABLE III. Robustness of Cwigner when the parameters ðA;BÞ
were varied from 10�4 � A � 103 and 10�4 � B � 10.

CwignerðkÞ
A B �lmax � 100

0.0001 0.0001 10.0763

0.0001 0.001 47.3616

0.0001 1 0.506768

0.0001 10 0.162458

0.01 0.0001 10.2874

0.01 0.001 47.494

0.01 1 0.359852

0.01 10 0.165756

1 0.0001 18.445

1 0.001 34.1731

1 1 0.358535

1 10 0.394309

10 0.0001 19.3128

10 0.001 45.1946

10 1 0.51842

10 10 0.430548

1000 0.0001 28.9273

1000 0.001 56.2646

1000 1 0.197662

1000 10 0.445794
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ing: First, that, depending on the details of the collapse
scheme and its parameters, there can be substantial depar-
tures in the resulting power spectrum, from the standard
scale-invariant spectrum usually expected to be a generic
prediction from inflation. Of course it is known that there

exist other ways to generate modifications in the predicted
spectrum, such as considering departures from slow roll
and modifications of the inflaton potential and so forth. In
the approach we have been following the modifications
arise from the details of a quantum collapse mechanism, a

FIG. 5 (color online). Plot showing how the integral of j�lmj2ðC1Þ varies with respect to changes in B (10�4 – 10), keeping A fixed.
Both axes B and l are in logscale. See the main text for a more extensive explanation.

ADOLFO DE UNÁNUE AND DANIEL SUDARSKY PHYSICAL REVIEW D 78, 043510 (2008)

043510-10



feature tied to a dramatic departure from the standard
unitary evolution of quantum of physics that we have
argued must be invoked if we are to have a satisfactory
understanding of the emergence of structure from quantum
fluctuations. In fact, by fitting the predicted and observa-

tional spectra, these sorts of modifications are possible
sources of clues about what exactly is the physics behind
the quantum-mechanical collapse or whatever replaces it.
We saw that generically one recovers the standard scale-
invariant Harrison-Z’eldovich spectrum if the collapse

FIG. 6 (color online). Plot showing how the integral of j�lmj2ðC2Þ varies with respect to changes in B (10�4 � 10), keeping A fixed.
Both axes B and l are in logscale. See the main text for a more extensive explanation.
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time (conformal time) of the modes is such that �c
kk ¼

constant [25]. On the other hand and as shown in detail in
[6] the simple generalization of the ideas of Penrose about
the conditions that would trigger the quantum gravity
induced collapse leads precisely to such a prediction for
�c
k. We should however keep in mind that, even if some-

thing of that sort is operating, the stochastic nature of any
sort of quantum-mechanical collapse leads us to expect
that such a pattern would not be followed with arbitrarily
high precision. In this regard we have studied the robust-
ness of the various schemes in leading to an almost scale-
invariant spectrum. To this end we have considered in this

FIG. 7 (color online). Plot showing how the integral of j�lmj2ðCwignerÞ varies with respect to changes in B (10�4 � 10), keeping A
fixed. Both axes B and l are in logscale. See the main text for a more extensive explanation.
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work the simplest (linear) deviations from the behavior of
�c
k as a function of k, i.e., we have explored in the three

existing collapse schemes the effects of having a time of
collapse given by �c

k ¼ A=kþ BRD. The results of these

studies are summarized in Figs. 2–4 and Tables I, II, and
III, so here we will only point out one of the most salient
features: We note that the different collapse schemes lead
to different types of departures of the spectrum from the
scale-invariant one, for instance the schemes C2ðkÞ and
CwignerðkÞ lead naturally to a turning down of the spectrum

as we increase l.
It is worth noting that a turning down in the spectrum is

observed in the CMB data [3], which is attributed as a

whole in literature to the damping effect [26], i.e., to the
fact that inhomogeneities are dampened to the nonzero
mean-free-path of photons at that time of decoupling
[27]. As observed in Figs. 3 and 4 for some values of
ðA; BÞ we obtain an additional source of ‘‘damping’’ due
to fluctuations in the time of collapse about the pattern
characterized by �c

kk ¼ constant. It is expected that the

PLANCK probe will provide more information on the
spectrum for large values of l, so hopefully this character-
istic of our analysis could be analyzed and distinguished
from the standard damping in order to obtain interesting

FIG. 8 (color online). Logarithmic plot in both axes of the
collapse times j�c

kj (in seconds), for the three schemes, taking in

account only the best values of ðA;BÞ in the range of
10�3 Mpc�1 < k< 1 Mpc�1. For these plots h ¼ 0:7.

FIG. 9 (color online). Semilogarithmic plot of the number of e-
foldings between aHk and ack for the three schemes, taking in

account only the best values of ðA;BÞ in the range of
10�3 Mpc�1 < k< 1 Mpc�1. For these plots h ¼ 0:7.
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constraints on the parameters ðA; BÞ. In fact we believe that
one should be able to disentangle the two effects, because
in the cases in which our model leads to additional damp-
ing in the spectrum, it also predicts that there should be a
rebound at even higher values of l (see Figs. 2–4).

However, the most remarkable conclusion, illustrated by
the present analysis, is that by focusing on issues that could
be thought to be only philosophical and of principle, we
have been led to the possibility of addressing issues per-
taining to some novel aspects of physics which could be
confronted with empirical observations. Further and more
detailed analyses based on direct comparisons with obser-
vations are indeed possible, and should be carried out. This
together with the foreseeable improvements in the empiri-
cal data on the spectrum, particularly in the large l region,

and the large scale matter distribution studies, should
permit even more detailed analysis of the novel aspects
of physics that we believe are behind the origin of structure
in our Universe.
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