
Constraints for warped branes

C. Wetterich

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg
(Received 5 June 2008; published 4 August 2008)

We investigate singular geometries which can be associated with warped branes in arbitrary dimen-

sions. If the brane tension is allowed to be variable, the extremum condition for the action requires

additional constraints beyond the solution of the field equations. In a higher-dimensional world, such

constraints arise from variations of the metric which are local in the usual four-dimensional space-time,

without changing the geometry of internal space. As a consequence, continuous families of singular

solutions of the field equations, with arbitrary integration constants, are generically reduced to a discrete

subset of extrema of the action, similar to regular spaces. As an example, previously found static solutions

of six-dimensional gravity with a cosmological constant, that lead to effective four-dimensional gravity,

are not extrema of the action. These findings explain why the field equations of the reduced four-

dimensional theory are not generically consistent with arbitrary solutions of the higher-dimensional field

equations—consistency requires the additional constraints. Characteristic solutions for variable tension

branes are nonstatic runaway solutions where the effective four-dimensional cosmological constant

vanishes as time goes to infinity.
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I. INTRODUCTION

It is conceivable that our observed four-dimensional
world corresponds to a generalized membrane—
‘‘brane’’—embedded in a higher-dimensional world [1–
3]. The presence of the brane modifies the higher-
dimensional geometry. One important ingredient is the
warping factor, which is the analogue of the gravitational
potential for a black hole solution in four dimensions.
(Black holes are special cases of pointlike branes.)
Higher-dimensional spaces with warping have been inves-
tigated intensively in the past [2,4–6]. A continuous family
of warped solutions has been found in six-dimensional
gravity with a cosmological constant, depending on free
integration constants [4]. In particular, the effective four-
dimensional cosmological constant can be considered as
one of the integration constants, being therefore a property
of the solution rather than given by the parameters of the
higher-dimensional theory. While the geometries corre-
sponding to these solutions are rather strange and do not
lead to an acceptable effective four-dimensional theory,
similar features have been observed for warped branes in
the six-dimensional Einstein-Maxwell theory [2]. These
solutions describe codimension two singularities, similar
to strings in four dimensions, and do not share some of the
problems of the solutions in Ref. [4]. In modern language,
these are codimension two branes [7–10]—actually the
first warped brane solutions. (The equivalence of the bulk
point of view with ‘‘noncompact’’ or singular geometries
and the brane point of view where a brane sits at the
singularity is discussed extensively in [11]; see also [7].)

One may ask whether all the warped solutions within
these continuous families are equally acceptable. Since
some of the integration constants are directly related to

the brane tension [11], the issue of whether all integration
constants are allowed depends on the status of the brane.
We may distinguish between two types of branes—fixed
tension branes and variable tension branes. For fixed ten-
sion branes the tension is treated as a fixed parameter of the
model, while for variable tension branes the tension is a
property of a particular solution and may change in the
course of the cosmological evolution. Only for variable
tension branes does the tension have the status of an
integration constant. In contrast, for fixed tension branes
one of the integration constants of the most general ‘‘bulk
solution’’ is fixed by the brane tension.
In our four-dimensional world we can find analogues of

the two types of branes. An example for fixed tension
branes are strings in grand unified theories (cosmic
strings). Here the string tension can be calculated from
the parameters of the microscopic theory. It should be
considered as a fixed parameter for the effective theory at
distances larger than the transverse size of the string. (In
this effective theory the string appears as a singular object,
while in the microscopic theory it is regular.) An example
for variable tension branes is a black hole. Here the
strength of the singularity is determined by the mass of
the black holeMBH. It is a property of a particular solution,
reflecting the cosmological history of a given astrophysical
object. The mass of the black hole can change in the course
of the history by accretion of mass. Thus the strength of the
singularity should indeed be considered as an integration
constant.
For four-dimensional black holes one finds a continuous

family of static isotropic Schwarzschild solutions, parame-
trized by the integration constant MBH. By analogy, one
may therefore guess that variable tension branes in higher

PHYSICAL REVIEW D 78, 043503 (2008)

1550-7998=2008=78(4)=043503(27) 043503-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.043503


dimensions also lead to continuous families of solutions,
with free integration constants. In this paper we argue that,
in general, this is not the case.

If the brane tension is variable, metric fluctuations that
change the brane tension cannot be excluded. The extre-
mum condition for the action with respect to such fluctua-
tions leads to constraints beyond the higher-dimensional
field equations. These additional ‘‘brane constraints’’ ex-
clude most of the values of the integration constants of the
general solution of the field equations. The case of a
continuous family of solutions similar to the black holes
is an exceptionally special case. The generic situation
admits at most a discrete number of solutions, similar to
regular spaces. In particular, the continuous family of
solutions of Ref. [4] cannot be realized by variable tension
branes—none is an extremum of the action with respect to
arbitrary variations of the metric. Only for a fixed tension
brane can one particular solution become consistent, with
integration constants chosen according to the brane ten-
sion. In this case, however, the four-dimensional cosmo-
logical constant is fixed by the brane tension as a parameter
of the theory. It appears no longer as an integration con-
stant associated with a particular solution. (We employ the
wording of ‘‘brane tension’’ here in a generalized sense for
the strength of the singularity. It always characterizes the
singular energy momentum tensor in the ‘‘brane picture,’’
even though the singularities are sometimes not really
branes in a stricter sense, as for the solutions in [4].)

Solutions of the higher-dimensional field equations are
guaranteed to be extrema of the action with respect to all
local field variations. Local field variations in a higher-
dimensional sense are restricted to a neighborhood around
some point in higher dimensions. They do not change the
strength of a singularity. In contrast, local field variations
in a four-dimensional sense are only local around some
point in four-dimensional space, but not restricted to be
local in internal space as well. For example, fluctuations
that do not change the shape of internal geometry, while
changing the four-dimensional metric locally, are local in a
four-dimensional sense, but not in a higher-dimensional
sense. Such variations often change the strength of the
singularity. They may therefore be forbidden for fixed
tension branes, while they count among the natural varia-
tions for variable tension branes.

An effective four-dimensional theory can be obtained by
expanding in fluctuations around a given higher-
dimensional solution, and integrating over internal space.
The infinitely many ‘‘Kaluza-Klein modes’’ are usually
truncated to a finite subset. Typically, the effective four-
dimensional theory contains the four-dimensional metric
as well as four-dimensional scalar fields, the latter corre-
sponding to changes of size and shape of the internal
geometry, that are local in a four-dimensional sense. (In
addition, there may be fermions and gauge fields which are
not relevant for our discussion.) An extremum of the

higher-dimensional action should be reflected as an extre-
mum of the effective four-dimensional action. In the
Einstein frame, where the coefficient of the four-
dimensional curvature scalar is a constant, an extremum
of the four-dimensional effective action has to correspond
to an extremum of the effective four-dimensional scalar
potential V. This should hold whenever the higher-
dimensional solution has static size and shape of internal
space and static warping. An explicit computation shows
that this is not the case for arbitrary integration constants of
the higher-dimensional solutions.
In general, the four-dimensional field equations for the

infinitely many fields are more restrictive than the higher-
dimensional field equations. The four-dimensional field
equations are the extremum conditions for the action
with respect to all fluctuations which are local in a four-
dimensional sense. In contrast, the higher-dimensional
field equations correspond to variations of fields which
are local in a higher-dimensional sense. The second class
of fluctuations is only a subset of the first. For a singular
internal geometry, solving the higher-dimensional field
equations is a necessary, but not a sufficient condition for
solving the four-dimensional field equations.
As an illustrative example we may discuss the solutions

of Ref. [4] for six-dimensional gravity with a cosmological
constant. They have two internal dimensions, D ¼ 2, with
SOðDÞ symmetry. The internal geometry and the warping
are static, and the effective four-dimensional cosmological
constant � is a free integration constant. We may general-
ize this construction to arbitrary D, within Dþ
4-dimensional gravity with a cosmological constant [5].
For the effective four-dimensional theory we consider here
variations of the size of internal space, LðxÞ, and variations
of the scale of the D� 1-dimensional subspace on which
the SOðDÞ symmetry acts, denoted by AðxÞ. The four-
dimensional scalar field corresponding to LðxÞ is often
called the radion. The solution of the higher-dimensional
field equations corresponds to L ¼ A ¼ 1, and we consider
variations which are local in the coordinates of the usual
four-dimensional space x�. Nevertheless, an overall rescal-
ing of the ‘‘internal metric’’ by L modifies the strength of
the singularity. Also, variations of the four-dimensional
metric change the strength of the singularity.
In Sec. IV we discuss the most general solutions of the

higher-dimensional field equations which lead to a finite
coefficient of the four-dimensional curvature scalar or a
finite effective reduced Planck mass M. Finite M is re-
quired for a consistent effective ‘‘local’’ four-dimensional
gravity [12]. [We restrict the discussion of this paper to
‘‘local gravity’’ in the sense that the first terms in a deriva-
tive expansion become reliable for macroscopic length
scales. The effective four-dimensional gravity is then gov-
erned by the Einstein action, with a scalar potential acting
as a (dynamical) cosmological constant.] Generically,
these solutions have two singularities. One is a brane,
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and the other is a ‘‘zerowarp’’ solution for which the
warping factor vanishes at the singularity. For special
choices of the integration constants the brane singularity
gets replaced by a regular behavior—these are the solu-
tions discussed in Refs. [4,5]. After dimensional reduction,
we compute the effective four-dimensional scalar potential
for L and A in Secs. VIII and IX,

V ¼ L�DA�ðD�1Þ=2
�
~cV þ

�
2��Dþ 4

Dþ 2
~cV

�
L�2

þ ðD� 1ÞðD� 2Þ~cA
2L2

�
1� 1

A

��
: (1)

Here ~cV and ~cA are constants that depend on the particular
higher-dimensional solution around which we expand, in
particular on the integration constant�. The constant ~cV is
proportional to the higher-dimensional cosmological
constant.

An extremum of the higher-dimensional action requires
that VðL; AÞ should have an extremum for L ¼ A ¼ 1.
Only for these values of L and A are the higher-
dimensional field equations obeyed. Inspection of Eq. (1)
shows, however, that for D ¼ 2 the potential has no extre-
mum at all, while for D> 2 an extremum at L ¼ A ¼ 1
requires the brane constraints

� ¼ 2

Dþ 2
~cV; ~cA ¼ 2~cV

ðD� 2ÞðDþ 2Þ : (2)

The first brane constraint fixes the effective four-
dimensional cosmological constant in terms of the
higher-dimensional cosmological constant. [The specific
higher-dimensional solution obeying the condition (2)
turns out to be actually a maximum of V for a positive
higher-dimensional cosmological constant, ~cV > 0.] More
generally, the extremum condition for V leaves at most a
discrete number of solutions out of the continuous family
of higher-dimensional solutions. This is similar to the
situation for regular spaces, where the regularity condition
restricts the choice of the integration constants. In fact,
higher-dimensional solutions with regular spaces are auto-
matically extrema of the effective four-dimensional poten-
tial V. It may happen that for a given class of solutions the
brane constraints are strong enough such that only regular
spaces remain as solutions.

The generic solutions of Refs. [4,5] correspond to ex-
trema of the higher-dimensional action only for fixed
tension branes. In this case variations of the overall size
of internal space corresponding to LðxÞ are not allowed
since they change the brane tension. There is then no need
to impose the constraint (2) anymore. As mentioned be-
fore, for a fixed tension brane the cosmological constant �
is fixed in terms of the brane tension. For D> 2 specific
higher-dimensional solutions can also be extrema for vari-
able tension branes. These are the ones obeying the brane
constraint (2), and � is now fixed by this constraint. In
conclusion, both for fixed and variable tension branes there

are no continuous families of static solutions with an
arbitrary integration constant �. For fixed tension branes
� is fixed by the boundary conditions at the singularity,
while for variable tension branes � is fixed by the brane
constraint (2) which is needed to guarantee an extremum of
the action.
Even for fixed tension branes additional constraints of

the type (2) arise if the field content of the higher-
dimensional theory is extended beyond the graviton. For
example, if we add a scalar field to the higher-dimensional
model, the most general solution of the field equations
consistent with our symmetry exhibits two additional free
integration constants. Even for a fixed brane tension, the
four-dimensional cosmological constant � will depend on
these additional integration constants. It will appear again
as an integration constant rather than being fixed by the
brane tension. However, there are also new brane con-
straints of the type (2), connected to the extremum condi-
tion of the higher-dimensional action with respect to
arbitrary variations of the scalar field. Typically, these
constraints select again only a discrete subset of solutions,
such that � remains no longer a free integration constant.
For variable tension branes, static solutions are difficult

to be realized because the brane constraint may have no
appropriate stable solutions. This observation has interest-
ing consequences for cosmology. The characteristic solu-
tions corresponding to extrema of the action turn out to be
nonstatic runaway solutions. If the brane tension is allowed
to change, it generally does so in the course of the cosmo-
logical solution. For the potential (1) one finds that L and A
move to infinity or zero, thereby changing the strength of
the singularity. A characteristic runaway solution with
L! 1 leads to an asymptotically vanishing four-
dimensional effective potential for t! 1, similar to quin-
tessence cosmologies [13]. The fact that the potential goes
to zero and not to a constant is no accident [14]. This
property is due to geometry and will not be affected by
quantum fluctuations. Thus the question of whether the
cosmological constant vanishes asymptotically even in the
presence of quantum fluctuations finds a natural solution,
incidentally demonstrating that too naive arguments about
the generic contribution of quantum fluctuations to the
cosmological constant are not correct [14]. Nevertheless,
runaway solutions lead to another potential problem. It has
to be explained why the couplings of the standard model of
particle physics change only very little (at least in the
present cosmological epoch) in an environment of evolving
geometry and warping of internal space. Several sugges-
tions have been made for possible stabilization mecha-
nisms for the couplings [14], but this is not the subject of
the present paper.
This paper is organized as follows. In Sec. II we display

the field equations and the extremum conditions for
d-dimensional gravity with a scalar field. The most general
ansatz consistent with SOðDÞ symmetry and maximal
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Poincare, de Sitter, or anti-de Sitter symmetry in D1 di-
mensions (d ¼ D1 þD) is displayed in Sec. III, where we
also discuss the field equations for this ansatz. (For a
realistic world, one would need D1 ¼ 4.) In Sec. IV we
specialize to pure gravity without a d-dimensional scalar
field. We discuss the most general static solution consistent
with an effective D1-dimensional gravity.

The special case of a vanishing d-dimensional cosmo-
logical constant and flatD1-dimensional space is discussed
in detail in the Appendix. This covers the geometry of flat
branes embedded in flat space for arbitrary dimensions of
the branes, D1, and arbitrary dimension of space, d. We
also investigate another class of solutions with finite vol-
ume and a finite D1-dimensional gravitational constant.
The discussion of Sec. IV is extended to a d-dimensional
scalar field in Sec. V.

In Sec. VI we perform for these higher-dimensional
solutions the dimensional reduction to an effective
D1-dimensional theory. Even if we retain only the
D1-dimensional metric, the effective D1-dimensional
Einstein equation clashes with the general d-dimensional
solution. A simultaneous solution of the d-dimensional
field equation and the effective field equation for the
D1-dimensional metric requires the brane constraint (2).
In Sec. VII we discuss how this apparent clash can be
understood by a discussion of arbitrary variations of the
d-dimensional fields. In the presence of singularities the
d-dimensional field equations are not sufficient in order to
guarantee an extremum of the action. We turn to the
cosmology of variable tension branes in Sec. VIII.
Starting at some time t0 with a higher-dimensional solu-
tion, we see that the cosmological evolution for t > t0
corresponds to a static flat or (anti-) de Sitter space only
if the constraint (2) is met. Otherwise, the internal geome-
try does not remain static. The typical solutions are rather
runaway solutions where the effective four-dimensional
constant asymptotically relaxes to zero, as for quintessence
cosmologies [13]. We discuss these runaway solutions in
Sec. IX. Finally, we present our conclusions and a discus-
sion of the possible impact of our findings for the cosmo-
logical constant problem in Sec. X.

II. FIELD EQUATIONS AND EXTREMUM
CONDITIONS

We start with the d-dimensional action for the metric
~g�̂ �̂ and a scalar field �,

S ¼ Md�2
d

Z
~g1=2

�
1

2
~R� 1

2
@�̂�@�̂�� ~Vð�Þ

�
: (3)

HereMd�2
d

~Vð�Þ is the higher-dimensional scalar potential.

In the absence of a higher-dimensional scalar field a con-
stant ~V corresponds to the d-dimensional cosmological
constant. We denote d-dimensional indices by �̂, �̂, �̂,
whereas D1-dimensional indices will be �, �, �.

The field equations for the metric read

~R �̂ �̂ � 1
2
~R~g�̂ �̂ ¼ @�̂�@�̂�� 1

2@
�̂�@�̂�~g�̂ �̂ � ~V~g�̂ �̂; (4)

and the scalar field obeys

D̂ 2� ¼ @ ~V

@�
: (5)

Here D̂2 ¼ D�̂D�̂ is the covariant Laplacian. By contract-

ing Eq. (4) one obtains

~R ¼ @�̂�@�̂�þ 2d

d� 2
~V: (6)

For solutions of the field equations the action therefore
becomes

S ¼ 2

d� 2
Md�2
d

Z
~g1=2 ~V: (7)

In the presence of singularities the extremum condition
for S goes beyond the field equations. We may first discuss
a general variation of the scalar field �ðx̂Þ ! �ðx̂Þ þ �ðx̂Þ,
with � infinitesimal and x̂ the d-dimensional coordinates.
The variation of the action (3) reads

�S ¼ �Md�2
d

Z
~g1=2

�
@�̂�@�̂�þ @ ~V

@�
�

�

¼ Md�2
d

Z
~g1=2

�
D̂2�� @ ~V

@�

�
�

�Md�2
d

Z
@�̂f~g1=2�@�̂�g: (8)

The first term in the second equation (8) vanishes by virtue
of the field equation (5). The second term is a boundary
term. It vanishes automatically for compact spaces or for
variations � with compact support. In the presence of
singularities, there are possible variations � for which the
boundary term does not vanish automatically. The extre-
mum condition �S ¼ 0 then requires additional constraints
beyond the field equations—the brane constraints.
A similar boundary term for the metric will be the origin

of the constraint (2). For a variation ~g�̂ �̂ðx̂Þ ! ~g�̂ �̂ðx̂Þ þ
~h�̂ �̂ðx̂Þ the extremum condition for the action requires, in

addition to the gravitational field equation (4), the vanish-
ing of a ‘‘boundary term’’Z

x̂
@�̂ð~g1=2K�̂Þ ¼ 0; (9)

with

K�̂ ¼ ð~g�̂ �̂~g�̂ �̂ � ~g�̂ �̂~g�̂ �̂Þ@�̂ ~h�̂ �̂
� 1

2ð~g�̂ �̂~g�̂ �̂ � ~g�̂ �̂~g�̂ �̂Þ
� ð@�̂~g�̂ �̂ þ @�̂~g�̂ �̂ � @�̂~g�̂ �̂Þ~g�̂ �̂ ~h�̂ �̂: (10)

The condition (9) is the most general form of the brane
constraints for pure gravity. It depends on the allowed
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metric variations ~h�̂ �̂. (For fixed tension branes ~h�̂ �̂ is

typically restricted such that ~g1=2K�̂ vanishes at the singu-
larity.) We will discuss in this paper specific constraints

that correspond to specific variations ~h�̂ �̂. In the presence

of scalar fields, one has additional brane constraints which
read in their most general formZ

@�̂f~g1=2�@�̂�g ¼ 0: (11)

We consider all extrema that obey the field equations and
the brane constraints (9) and (11) as possible cosmological
states. Since the action S is considered as the quantum
effective action, we see no further restrictions for allowed
cosmological states. The selection of the state that de-
scribes our Universe depends on initial conditions and
the history of the cosmological evolution.

III. WARPED SOLUTIONS

We discuss possible solutions with the ansatz

~g �̂ �̂ðx; y; zÞ ¼
�ðzÞgðD1Þ

�� ðxÞ 0 0

0 �ðzÞgðD2Þ
	
 ðyÞ 0

0 0 1

0
B@

1
CA: (12)

Here the D2 coordinates y	 describe a D2-dimensional

Einstein space with the Ricci tensor RðD2Þ
	
 ðyÞ ¼

�2g
ðD2Þ
	
 ðyÞ, and similarly for the D1 coordinates x�, with

RðD1Þ
�� ¼ �1g

ðD1Þ
�� . ForD1 ¼ 4wemay identify x� with time

and the usual three coordinates of the ‘‘large dimensions.’’

The coordinates y	 and z describe the D ¼ D2 þ
1-dimensional internal space. The internal geometry is

given by �ðzÞ, �ðzÞ, and gðD2Þ
	
 ðyÞ, and is therefore time

independent. The D1-dimensional space is either static as
well, for �1 ¼ 0, or it has the maximal space-time sym-
metry corresponding to de Sitter space (�1 > 0) or anti-
de Sitter space (�1 < 0). In a general sense we will refer to
these solutions as static solutions. [For �1 � 0 the time
translation symmetry is replaced by the analogous isome-
try of (anti-) de Sitter space.)

For definiteness, we may choose gðD2Þ
	
 ðyÞ as parametriz-

ing a D2-dimensional unit sphere, such that �2 ¼ D2 � 1

for D2 > 1, and gðD2Þ
	
 ðyÞ ¼ 1 for D2 ¼ 1. Our ansatz then

has the isometry SOðD2 þ 1Þ and describes the most gen-
eral static metric with SOðD2 þ 1Þ symmetry. The length
unit is set by the radius of the D2-dimensional sphere. This
fixes the units forMd and ~V in Eq. (3). In particular, we can
choose units such thatMd ¼ 1. The functions � and � are
dimensionless, while�1,�2, and ~V have dimension mass2.
We will generalize the discussion to arbitrary �2 for D2 >
1, while �2 ¼ 0 for D2 ¼ 1. Since we are free to choose
units for the coordinates ywe can take�2 ¼ �ðD2 � 1Þ or
�2 ¼ 0. Alternatively, we can also use for y dimensionless
angular variables, such that � has dimension mass�2 and
�2 is dimensionless. This is particularly appropriate for
D2 ¼ 1, with periodic y and 0 � y � 2�.
The �� � component of the field equation for the

metric reads [5]

2 ~R�� � ~R~g�� ¼
�
�ðD1 � 2Þ�1�

�1 �D2�2�
�1 þ ðD1 � 1Þ�

00

�
þ 1

4
ðD1 � 1ÞðD1 � 4Þ

�
�0

�

�
2 þ 1

2
ðD1 � 1ÞD2

�0

�

�0

�

þD2

�00

�
þ 1

4
D2ðD2 � 3Þ

�
�0

�

�
2
�
~g�� ¼ �ð2 ~V þ �02Þ~g��; (13)

and similarly for the 	� 
 component,

2 ~R	
 � ~R~g	
 ¼
�
�ðD2 � 2Þ�2�

�1 �D1�1�
�1 þ ðD2 � 1Þ�

00

�
þ 1

4
ðD2 � 1ÞðD2 � 4Þ

�
�0

�

�
2 þ 1

2
ðD2 � 1ÞD1

�0

�

�0

�

þD1

�00

�
þ 1

4
D1ðD1 � 3Þ

�
�0

�

�
2
�
~g	
 ¼ �ð2 ~V þ �02Þ~g	
; (14)

and the z� z component,

2 ~Rzz � ~R~gzz ¼ �D1�1�
�1 �D2�2�

�1 þ 1

2
D1D2

�0

�

�0

�
þ 1

4
D1ðD1 � 1Þ

�
�0

�

�
2 þ 1

4
D2ðD2 � 1Þ

�
�0

�

�
2 ¼ �ð2 ~V � �02Þ:

(15)

Correspondingly, the curvature scalar obeys
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~R ¼ D1�1�
�1 þD2�2�

�1 �D1

�00

�
�D2

�00

�
� 1

4
D1ðD1 � 3Þ

�
�0

�

�
2 � 1

4
D2ðD2 � 3Þ

�
�0

�

�
2 � 1

2
D1D2

�0

�

�0

�

¼ �02 þ 2ðD1 þD2 þ 1Þ
D1 þD2 � 1

~V: (16)

All other components vanish.
Using

U ¼ �0

�
; W ¼ �0

�
; (17)

and

F ¼ 2 ~V � �02 �D1�1�
�1 �D2�2�

�1; (18)

we can express W in terms of �, �, and U by employing
Eq. (15) for D2 > 1,

W ¼ 1

D2ðD2 � 1Þ f�D1D2U

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1D2ðD1 þD2 � 1ÞU2 � 4D2ðD2 � 1ÞF

q
g:
(19)

Here � ¼ �1 corresponds to the two solutions of the
quadratic equation (15). For D2 ¼ 1 the expression for
W simplifies and reads for U � 0

W ¼ �D1 � 1

2
U� 2F

D1U
: (20)

Suitable linear combinations of Eqs. (13)–(15) yield

U0 ¼ �D1

2
U2 �D2

2
UW þ 2�1

�
� 4

D1 þD2 � 1
~V (21)

and

W 0 ¼ �D2

2
W2 �D1

2
UW þ 2�2

�
� 4

D1 þD2 � 1
~V:

(22)

In addition, we have the scalar field equation

�00 þ
�
D1

2

�0

�
þD2

2

�0

�

�
�0 � @ ~V

@�
¼ 0: (23)

The derivative of Eq. (19), combined with Eqs. (21) and
(23), yields Eq. (22), which is therefore not independent.
This holds provided ðD2 � 1ÞW þD1U � 0.

For a numerical solution one may use the two second
order differential equations (21) and (23) for � and �,
supplemented by �0 ¼ W�. For D2 > 1 the function
Wð�;�;UÞ is given by Eq. (19), while for D2 ¼ 1
Eq. (20) applies. This system is equivalent to five nonlinear
first order differential equations. The five initial conditions
will lead to the continuous family of solutions character-
ized by integration constants. For D2 > 1 the initial con-
ditions for �, �, U have to be chosen such that the
argument of the square root of Eq. (19) is positive or

zero. Alternatively, one may use Eqs. (21)–(23), corre-
sponding to a system of six first order differential equa-
tions. In this case the initial conditions are not independent,
since Eq. (15) relates the allowed initial values. In the case
of pure higher-dimensional gravity the scalar field equa-
tion (19) is absent and the number of integration constants
gets reduced by 2.
The characteristic properties of the solution can often be

understood in terms of the warping factor�ðzÞ. ForD1 ¼ 1
this is the analogue of the gravitational potential BðrÞ for
the (generalized) Schwarzschild solution for black holes.
With s ¼ lnð�=�0Þ, U ¼ s0, Eq. (21) takes for D2 > 1 the
explicit form

s00 � D1

2ðD2 � 1Þ s
02 þ �s0K

2ðD2 � 1Þ þ
@Vs
@s

¼ 0; (24)

where

@Vs
@s

¼ �2~�1e
�s þ 4

D1 þD2 � 1
~Vð�Þ;

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1D2ðD1 þD2 � 1Þs02 � 4D2ðD2 � 1ÞF

q
;

(25)

and ~�1 ¼ �1=�0. This has an analogue of a particle mov-
ing in a potential

Vs ¼ 2~�1e
�s þ 4

D1 þD2 � 1
~Vs; (26)

with time replaced by z. However, the form of the ‘‘damp-
ing terms’’ involving s0 is rather complicated.
Under a reflection z! �z, s0 ! �s0, the sign of the

square root is reversed, �! ��. For a positive sign � ¼ 1
the effect of the terms involving s0 is the following. For
s0 < 0 they tend to increase s0 as z increases. (The contri-
bution to s00 is positive.) This has a damping effect, since
js0j gets reduced. For s0 > 0 the term �� often dominates.
Then the effect is a relative decrease of s0 for increasing z
and therefore again a damping. If for decreasing z we
switch the sign of �, we again find a damping. This is in
contrast to the usual damping terms in mechanics which
are linear in s0. In our case, the damping in both directions
of z reflects the invariance of our system of equations under
the reflection z! �z. Finally, if we switch the sign �
without changing the direction of z, the damping typically
turns into antidamping. Via F the strength of the damping/
antidamping depends on �, �, ~V, and �02.
For D2 ¼ 1 the equation for s is simpler,

s00 þD1 þ 1

4
s02 þ 1

2

@Vs
@s

¼ 0: (27)
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The evolution shows damping for increasing z and s0 > 0,
or for decreasing z and s0 < 0. The opposite cases, increas-
ing z and s0 < 0 or decreasing z and s0 > 0, are character-
ized by antidamping. The damping term can be absorbed
by a variable change

t ¼ eððD1þ1Þ=4Þs ¼
�
�

�0

�ðD1þ1Þ=4
; (28)

with

t00 ¼ �D1 þ 1

8
t
@Vs
@s

¼ �@Vt
@t

(29)

and

Vt ¼ D1 þ 1

4D1

~Vt2 � ðD1 þ 1Þ2
8ðD1 � 1Þ

~�1t
2ðD1�1Þ=ðD1þ1Þ: (30)

This map to an undamped motion of a particle in a poten-
tial Vt makes a classification of the possible solutions
particularly simple [4,11]. For D1 ¼ 4 the potential

Vt ¼ 5

16
~Vt2 � 25

24
~�1t

6=5 (31)

has a minimum if ~V > 0, ~�1 > 0, located at

tmin ¼
�
2~�1

~V

�
5=4
; (32)

corresponding to�min ¼ 2�1= ~V. Typical solutions are part
of an oscillation around tmin, with a singularity �! 0 if
t! 0. For such a solution �ðzÞ can be computed from
Eq. (20) and singularities may occur if �! 0 or �! 1.

IV. HIGHER-DIMENSIONAL EINSTEIN SPACES

In this section we discuss the case of higher-dimensional
gravity with a cosmological constant. Thus ~V is constant
and no scalar field is present. (In our system of equations
one sets �0 ¼ 0, @ ~V=@� ¼ 0.) Warped solutions of this
type have been discussed in the original paper by
Rubakov and Shaposhnikov [4] forD1 ¼ 4,D2 ¼ 1,�2 ¼
0, and for general D1, D2, �1, �2 by [5]. For the special
case �1 ¼ �2 ¼ 0 the field equations simplify, and ex-
plicit solutions have been given in [8]. We concentrate first
on a positive cosmological constant, ~V > 0. We will find
generic solutions with two singularities, and special
choices of the integration constants with only one singu-
larity or no singularity.

For �1 > 0 the potential Vs has a minimum at s ¼ sE,

sE ¼ ln

�
D1 þD2 � 1

2

~�1

~V

�
; (33)

corresponding to

�E ¼ D1 þD2 � 1

2

�1

~V
: (34)

As z increases, one may suspect that �ðzÞ approaches �E

and settles there. We will see that this is not necessarily the
case. For example, � may diverge or approach zero before
�E is reached. Nevertheless, for sðzÞ ¼ sE Eq. (24) is
obeyed for arbitrary �. Indeed, U ¼ 0 solves Eq. (21) for
constant � ¼ �E, and the constant warping factor implies
a direct product geometry forD-dimensional internal space
and D1-dimensional large space.

A. Codimension two singularities

Let us first discuss the case D2 ¼ 1, �2 ¼ 0, D1 ¼ 4
where Eq. (15) takes the simplified form

2 ~V � 4�1

�
þ 2

�0

�

�0

�
þ 3

�
�0

�

�
2 ¼ 0: (35)

The solutions have been classified and discussed exten-
sively in [4,11], and we discuss here some aspects that can
be generalized to more complicated situations. Consider a
fixed point of the SOð2Þ isometry at z ¼ 0, which is
regular, as the pole of a two-sphere. This requires

lim
z!0

�ðzÞ ¼ z2; lim
z!0

�ðzÞ ¼ �0: (36)

The divergence of W ¼ �0=� ¼ 2=z requires that �0 must
vanish for z! 0, and we make the ansatz

U ¼ �0

�
¼ uzþ . . . (37)

Then for z! 0 Eq. (35) yields the relation

u ¼ �1

�0

� 1

2
~V: (38)

Without loss of generality we may take �0 ¼ 1. The
‘‘initial conditions’’ or ‘‘integration constants’’ are all fixed
by the regularity condition (36) and �1. Numerically, one
may take some very small z0 and use the initial conditions
�ðz0Þ ¼ z20, �ðz0Þ ¼ 1, Uðz0Þ ¼ uz0.
Solving the differential equations for larger z results in a

singularity for z! �z, where

� ¼ ��ð�z� zÞ��; � ¼ ��ð �z� zÞ
;
� ¼ �4

5; 
 ¼ �6
5:

(39)

This singular solution exists for �1 ¼ 0, but also for

positive and negative ~�1 < 3 ~V=10. The ’’internal vol-
ume,’’ more precisely the volume of the two-dimensional
hypersurface for constant x�,

�2 ¼ 2�
Z �z

0
dz�1=2�2; (40)

is finite, since one has �1=2�2 � ð�z� zÞ close to the sin-
gularity. Similarly, the effective gravitational constant after
dimensional reduction is proportional to

cR ¼
Z �z

0
dz�1=2� (41)
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and remains finite. The solution with boundary conditions
(36) and (39) is the Rubakov-Shaposhnikov solution [4].
The singularity has the geometry of a six-dimensional
black hole, with the time coordinate replaced by y [11].
Perhaps the most striking feature of this singularity is the
vanishing of the warp factor, �ðz! �zÞ ! 0. We will call
singularities with this property zerowarps. Even arbitrarily
large distances on the four-dimensional space, as measured

with gð4Þ��, shrink to zero d-dimensional distances as �z is
approached. In contrast to branes, where � shrinks to zero
at the singularity (39), the zerowarp singularity has a
diverging �.

For �1 > 0 there is a notable special case, namely, for
u ¼ 0 or �1 ¼ ~V=2. This special case corresponds to the
minimum of the potential VsðsÞ in Eq. (24). It implies a
constant �ðzÞ ¼ �0. [More precisely, � ¼ const follows
from Eq. (24) if for some z0 one has �ðz0Þ ¼ �E, �

0ðz0Þ ¼
0.] The geometry is therefore a direct product of a four-
dimensional de Sitter space and a two-dimensional space.
The z dependence of � follows from Eq. (22),

W 0 þ 1
2W

2 þ ~V ¼ 0: (42)

This equation is invariant under a rescaling of �! A��,

such that solutions exist with an arbitrary overall normal-
ization of �. (This feature is particularly for vanishing
�2 ¼ 0.)

The general solution

W ¼
ffiffiffiffiffiffiffi
2 ~V

p
tg

�
�

2
�

ffiffiffiffi
~V

2

s
z

�
; � ¼ 2�0

~V
sin2

� ffiffiffiffi
~V

2

s
z

�
; (43)

behaves for z! 0 as

�ðz! 0Þ ¼ �0z
2: (44)

For �0 ¼ 1 it describes a sphere, whereas for �0 � 1 one
has a conical singularity, with deficit angle

� ¼ 2�ð1�
ffiffiffiffiffiffiffi
�0Þ

q
: (45)

A similar singularity occurs for �z ¼ �
ffiffiffiffiffiffiffiffiffi
2= ~V

p
, and we note

the reflection symmetry around the point zmax ¼ �=
ffiffiffiffiffiffiffi
2 ~V

p
.

This may suggest the existence of a direct product solution
with a ‘‘football shaped’’ internal space [10]. However, for
U ¼ 0 the three equations (13)–(15) are no longer linearly
dependent. Inserting the direct product ansatz into Eq. (13)
yields the condition �1 ¼ ~V (for �0 ¼ 1). This is compat-
ible with Eq. (34) (�1 ¼ ~V=2) only for ~V ¼ 0, �1 ¼ 0.
Then the volume of internal space and cR do not remain
finite. Football shaped geometries for D2 ¼ 1 can only be
realized with additional ingredients, as for the six-
dimensional Einstein-Maxwell theory [15]. Exact time
dependent cosmological solutions for such football shaped
geometries have been discussed in [16].

The solutions discussed so far require special initial
conditions or a special value of �1. For generic initial

conditions and�1, we find solutions with two singularities.

For ~�1 < 3 ~V=10 one is a zerowarp of the type of Eq. (39),
and the other is a conical singularity. For a general conical
singularity at z ¼ 0 the behavior of � is given by Eq. (44),
and for � one has

�ðz! 0Þ ¼ �0

�
1þ u

2
z2
�
; Uðz! 0Þ ¼ uz: (46)

From Eq. (35) or (21) one infers the relation (38). Conical
singularities can exist for arbitrary �1. We note that ge-
nerically the solution does not approach the minimum of
Vs close to the singularity. The generic solution close to a
conical singularity has a nonvanishing s00 ¼ U0 ¼ u. The
further evolution of s towards the minimum is stopped by
the vanishing of �, driven by the term �U�1 in Eq. (20).

For ~�1 > 3 ~V=10 the generic solution still has two singu-
larities, but both can now be of the conical type.

B. Singularities with codimension larger than 2

We next turn to the case D2 > 1 which corresponds to a
codimension of the singularity larger than 2. We also
consider general D1. For �2 � 0 modifications arise
from the presence of the curvature of the D2-dimensional
subspace, �2. We start with the direct product solution
which exists for ~V > 0, �1 > 0, i.e. �ðzÞ ¼ �E, as given
by Eq. (34). We need to solve the remaining differential
equation for �,

�0

�
¼ W ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2ðD2 � 1Þp ffiffiffiffiffiffiffiffi�Fp
;

F ¼ 2ðD2 � 1Þ
D1 þD2 � 1

~V �D2�2

�
:

(47)

For �2 > 0 the range of � is bounded, 0< � � �max,

�max ¼ D2ðD1 þD2 � 1Þ
2ðD2 � 1Þ

�2

~V
; (48)

with W diverging at the boundary �! 0. One may be
tempted to try the solution with a constant �ðzÞ ¼ �max.
This solves Eq. (47), but for U ¼ W ¼ 0 Eq. (22) is
no longer linearly dependent and is not obeyed for ~V �
0. For � ¼ �max one has W ¼ 0, W 0 ¼ �2�2=½ðD2 �
1Þ�max� � 0.
The solution of Eq. (47) is symmetric under a reflection

around the location of the maximum zmax, �ðzmaxÞ ¼ �max.
For �! 0 the approximate equation (�2 > 0)

�0 ¼ �B�1=2; B ¼ 2
ffiffiffiffiffiffi
�2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p (49)

is solved by

� ¼ B2

4
z2 ¼ �2

D2 � 1
z2 (50)
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or by a similar behavior replacing z! ð�z� zÞ. For �2 ¼
D2 � 1 this is the regular behavior at the pole of the D2 þ
1-dimensional sphere. The direct product solutions are
regular and there is no analogue to the conical singularity
for D2 ¼ 1. With the replacement ~V ! 4 ~V=ðD2ðD1 þ
D2 � 1ÞÞ Eq. (42) is obeyed, but the integration constant
is now fixed such that �0 ¼ 1 in Eq. (43). For the unique
direct product solution we therefore have (�2 ¼ D2 � 1)

� ¼ �maxsin
2ð ffiffiffiffiffiffiffiffiffiffi

�max
p

zÞ: (51)

This describes a sphere with radius
ffiffiffiffiffiffiffiffiffiffi
�max

p
.

For D2 > 1 the direct product solution is regular.
We may check that these regular solutions obey the
brane constraint (2). For the direct product solutions the
coefficients ~cV , ~cA are given by ~cV ¼ �E ~V,

~cA ¼ �E
R
z �

ðD2=2Þ�1=
R
z �

D2=2—amore general definition

of these quantities will be given later. With D ¼ D2 þ 1,
D1 ¼ 4, �2 ¼ D2 � 1, �1 ¼ �, the first equation in (2)
corresponds to Eq. (34). The generalization of the second
equation in (2),

~c A ¼ 2~cV
ðD2 � 1ÞðD1 þD2 � 1Þ ¼

D2�E
ðD2 � 1Þ�max

; (52)

is indeed obeyed for the solution (51).
Beyond the special direct product solutions we may

consider Eq. (24) with arbitrary initial values for s and s0 ¼
U. For a nontrivial warping we find generic solutions with
singularities. The characteristic behavior close to a singu-
larity where �! 0 (or �! 1) is given by

� ¼ �0z

; � ¼ �0z

��; W ¼ 


z
; U ¼ ��

z
:

(53)

For z! 0, or similarly ð�z� zÞ ! 0 if z in Eq. (53) is
replaced by �z� z, and 
 < 2, �>�2, the influence of
�1, �2, and ~V is subleading close to the singularity. The
singular exponents 
 and � are given by [14]

�� ¼ �2� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðD1 þD2 � 1Þ=D1

p
D1 þD2

;


� ¼ 1

D2

ð2þD1��Þ:
(54)

The powerlike solutions (53) and (54) are exact solutions
of the field equations for ~V ¼ �1 ¼ �2 ¼ 0. They have a
brane or zerowarp singularity at z ¼ 0, depending on the
sign of ��. The extension of this solution to z! 1will be
modified by nonzero ~V, �1, or �2.

C. Solutions with two singularities

For 
 < 2 a singularity encountered for decreasing z [as
in Eq. (53)] requires � ¼ þ1 in Eq. (19), while a singu-
larity for increasing z needs � ¼ �1. [This corresponds to
antidamping at the singularity for the evolution of s in
Eq. (24).] Indeed, using Eq. (54) we find for decreasing z

2� 
 ¼ �j�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD1 þD2 � 1Þ=D2

q
(55)

and the opposite sign of � for increasing z. Solutions with
two singularities at z ¼ 0 and z ¼ �z therefore need a
switch of �. If we define � ¼ signð�Þ we find that the
singular exponents ð�þ; 
þÞ correspond to �� ¼ �1 for
z increasing and to �� ¼ 1 for z decreasing. (Since �þ > 0
one has � ¼ 1.) The exponents ð��; 
�Þ correspond to the
opposite sign of �� . (Now �� < 0 corresponds to � ¼
�1.) The exponents ð�þ; 
þÞ correspond to a brane where
�! 0, �! 1, while ð��; 
�Þ describe a zerowarp with
�! 0, �! 1.
For ~V > 0 and �1 > 0 we find that the generic solutions

interpolate between two singularities with opposite signs in
Eq. (54). They describe spaces with one brane at z ¼ 0 and
one zerowarp at z ¼ �z. This behavior is also found for
�1 ¼ 0 or �1 < 0. The brane singularity with exponents
ð�þ; 
þÞ can be replaced by a regular behavior �! z2,
�! �E, if the integration constants are chosen appropri-
ately. This special case corresponds to the geometries
discussed in [5]. For all solutions of this type or with two
singularities, we find a finite volume of internal space and a
finite value of the four-dimensional gravitational constant,
given by

cR ¼
Z �z

0
dz�D2=2�ðD1�2Þ=2: (56)

Geometries with two singularities are interesting because
they lead to an effectiveD1-dimensional gravity with finite
cR.
We may ask what the conditions are for solutions with

two singularities at z ¼ 0 and z ¼ �z. (We include here the
case where one singularity gets replaced by a regular
behavior with �! 0.) Solutions with two singularities
need a switch of the sign � between � ¼ 1 for z! 0 and
� ¼ �1 for z! �z > 0. Continuity requires that such a
switch can only occur if the square root in Eq. (19) van-
ishes at a point zc where

U2
c ¼ 4ðD2 � 1ÞFc

D1ðD1 þD2 � 1Þ : (57)

Obviously, this is possible only if F is positive. If the
condition (57) is met, not onlyW but also all its derivatives
remain continuous for solutions where � switches sign. We
can write Eq. (19) as

ðD2 � 1ÞW þD1U ¼ �
ffiffiffiffi
K

p
=D2; (58)

such that the possible switch of � for Eq. (57) occurs at
K ¼ 0. A switch therefore always happens at an extremum
of the combination �D2�1�D1 , and for solutions with two
singularities this extremum has to be a maximum. Indeed, a
switch from � ¼ 1 for z < zc to � ¼ �1 for z > zc occurs
if ðD2 � 1ÞW 0 þD1U

0 < 0 for z ¼ zc. With ~V � 0 and
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ðD2 � 1ÞW 0 þD1U
0

¼ �K0

2D2

ffiffiffiffi
K

p ¼ 2ðD2 � 1Þ�2

�c
þ 2D1�1

�c
� 4 ~V

¼ �D1ðD1 þD2 � 1ÞU2
c

2D2

� 4 ~V

D2

þ 2D1�1

D2�c
(59)

this quantity is negative. Indeed, the positivity of Fc re-
quires for �2 > 0

�c >
D1�1

2 ~V
; �c � D2�2

2 ~V �D1�1=�c
; (60)

such that ðD2 � 1ÞW 0 þD1U
0 � �2�2=�c.

For ~V > 0 we have found that the solution with two
singularities is indeed a generic behavior (for not too large
�1). For ~V < 0, in contrast, the negative d-dimensional
cosmological constant gives a negative contribution to F in
Eq. (18). For positive �1 and �2 a switch of � is no longer
possible. In this case the generic solutions are expected to
have only one singularity, while the volume of internal
space and cR diverge for z! 1. Such solutions do not lead
to an effective D1-dimensional gravity.

An interesting case is ~V ¼ 0, �1 ¼ 0. Then we find for
�2 > 0 no switch in �. The solutions correspond to a flat
brane embedded in d-dimensional flat space. They are
discussed in the Appendix. In contrast, for �2 < 0 one
has positive F. Now we find again solutions with two
singularities and a finite cR. These solutions are also in-
vestigated in the Appendix. Such solutions are interesting
candidates for an effectiveD1-dimensional gravity that has
flat space as the static solution. The brane constraint (2),
i.e. �1 � ~V, will single out a vanishing D1-dimensional
cosmological constant �1 ¼ 0 if ~V ¼ 0. On the other
hand, we will see that the second brane condition (2) can
only be obtained for�2 ¼ 0 if ~V ¼ 0. We discuss the exact
solutions for ~V ¼ 0, �1 ¼ 0, �2 ¼ 0 in the Appendix.
They are given for the whole range 0< z <1 by
Eq. (53), with singular exponents (54).

For a numerical investigation of solutions with two
singularities, one may take initial values at the switch
point, with two free initial values �in ¼ �c, �in ¼ �c.
The initial value Uin ¼ Uc is computed from Eq. (57).
The value �c has to obey Eq. (60). For a fixed �2 ¼ D2 �
1 and positive�1 * 0we observe that small values ~V ! 0
imply large values of �c. In the limit ~V ! 0, �1=�c ! 0,
the characteristic size of the D2-dimensional subspace will
diverge and the solution approaches the infinite-volume
solutions discussed in the Appendix. A particular limiting
case for the switch point is the direct product solution with

�c ¼ ðD1 þD2 � 1Þ�1=ð2 ~VÞ;

�c � D2ðD1 þD2 � 1Þ�2

2ðD2 � 1Þ ~V ¼ �max:
(61)

Since � � �max is required by Eq. (47), the switch point
corresponds to �c ¼ �max.

The most general solution of the field equations has
several integration constants. For a given �1 we have
four initial values �ðz0Þ, �0ðz0Þ, �ðz0Þ, �0ðz0Þ. Only three
are independent due to Eq. (19) or (20). One integration
constant concerns only the overall normalization of�. This
has no physical relevance. For the spaces with finite vol-
ume we may fix the integration constant �ðz0Þ by requiringZ

dz�D1=2�D2=2 ¼ 1: (62)

One further integration constant can be used to fix the
location of one singularity (or of the regular point where
� ¼ 0) at z ¼ 0. We therefore are left with one ‘‘physical’’
integration constant besides �1. Typically, this determines
the location of the (second) singularity at �z.

V. MODELS WITH SCALAR FIELD

In this section we extend the discussion of singular
solutions to higher-dimensional gravity with a scalar field.
For example, such a scalar field arises from a higher-
dimensional dilatation invariant theory [10]. In this case
a nonvanishing scalar potential ~Vð�Þ will be produced only
as a result of a dilatation anomaly. One purpose of this
discussion is a demonstration that brane constraints of the
type (2) arise generically for all higher-dimensional fields.
In general, the singular behavior is not directly linked to a
conserved quantity. Avoiding the brane constraint by a
fixed brane tension is an option for gravity, where the
singular behavior of the metric can be associated with a
conserved energy momentum tensor. It seems much harder
to defend a similar option for a scalar field since no
associated conserved charge is available.
As a second purpose, we investigate possible modifica-

tions of the singular behavior (53) and (54). Indeed, in the
presence of a scalar field there are new possibilities for an
asymptotic behavior of the solutions for z! 1 or for z!
0 or z! �z. We do not attempt in this short section to
discuss all relevant possibilities, but rather we investigate
a particular case for demonstration. (For topologically
stable scalar fields with a different potential, see [17].)
As an example, we concentrate on an exponential po-

tential

~Vð�Þ ¼ ~v0 expð�	�Þ: (63)

It admits scaling solutions of the type

~V ¼ ~vsz
�2; � ¼ �0 þ 2

	
lnz; �0 ¼ 1

	
ln
~v0
~vs
;

�02 ¼ 4

	2
z�2; �00 ¼ � 2

	
z�2;

� ¼ �0z
��; � ¼ �0z


:

(64)

(Here z may be replaced by �z� z.) The scalar field equa-
tion is obeyed for
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~v s ¼ 1

	2
ð2þD1��D2
Þ ¼ 2�

	2
: (65)

For ~v0 > 0 such solutions can only exist for

� ¼ 1þD1�

2
�D2


2
> 0; (66)

whereas negative ~v0 implies negative �. The correspond-
ing behavior of the volume element

dz�D2=2�D1=2 � dzz1�� (67)

leads to a finite volume for � < 2 for z! 0 (or z! �z) or
for � > 2 for z! 1. For a finite gravitational constant
after dimensional reduction, the conditions are � < 2þ
�ðz! 0Þ or � > 2þ �ðz! 1Þ.

We want to relate the exponents �, 
, and � to the
behavior of the potential characterized by 	. For this
purpose we first investigate the relations between �, 
,
and ~vs. For � and � decreasing sufficiently slowly or fast,
the terms ��1;2 can be neglected in Eqs. (21) and (22),

which yield the relations

�þD1

2
�2 �D2

2
�
þ 4

D1 þD2 � 1
~vs ¼ 0; (68)

� 
þD2

2

2 �D1

2
�
þ 4

D1 þD2 � 1
~vs ¼ 0; (69)

and therefore

�þ 
þ 1
2ðD1�

2 �D2

2Þ þ 1

2ðD1 �D2Þ�
 ¼ 0: (70)

Equation (68) generalizes Eq. (54),

D2
 ¼ 2þD1�þ 8

D1 þD2 � 1

~vs
�
; (71)

and implies

� ¼ 1þD1

2
��D2


2
¼ � 4

D1 þD2 � 1

~vs
�
: (72)

Since � and ~vs have the same sign, cf. (65), this type of
scaling behavior is possible only for �< 0. The singular-
ities are zerowarps as far as the behavior of � is concerned.

Combining Eqs. (65) and (72) yields the relation be-
tween � and 	,

� ¼ � 8

ðD1 þD2 � 1Þ	2
: (73)

The relation between 
 and � can then be inferred from
Eq. (70). This quadratic equation has two solutions,


1 ¼ 1

D2

ð2þD1�Þ; 
2 ¼ ��: (74)

The first solution 
1 corresponds to vs ¼ 0. In this case ~V
decays faster than �z�2 and plays no role asymptotically,
such that Eq. (54) is recovered. The new type of scaling
solution, for which the potential matters, obeys


 ¼ �� ¼ 8

ðD1 þD2 � 1Þ	2
; (75)

and therefore

� ¼ 1�D1 þD2

2

 ¼ 1� 4ðD1 þD2Þ

ðD1 þD2 � 1Þ	2
;

�� � ¼ 1� 4ðD1 þD2 � 2Þ
ðD1 þD2 � 1Þ	2

:
(76)

For all 	 one finds � < 1, �� �< 1. A singularity at z!
0 with

� ¼ ��z
; � ¼ ��z
; 
 > 0; (77)

leads to a finite volume and a finite gravitational constant
of the effective D1-dimensional theory. Since � vanishes
for z! 0 this is a brane singularity combined with a
zerowarp. We infer that the singular exponents near a brane
singularity can be modified by the presence of a scalar
field.
The scaling behavior (75) and (77) implies U, W ! 1

as the singularity is approached. It corresponds to the plus
sign for the square root in Eq. (79), and to the plus sign in
Eq. (19) (� ¼ þ1). A similar singularity can be reached for
z! �z. [Now � ¼ �1 in Eq. (19).] A numerical solution of
the system of differential equations indeed finds solutions
with two such singularities if 	2 > 4=ðD1 þD2 � 1Þ. For
generic values of the integration constants these seem to be
the characteristic solutions for�1 ¼ 0, but also for positive
and negative �1. Such geometries with two cusps seem
perfectly acceptable. We note that for both singularities �
diverges logarithmically to negative values, such that Vð�Þ
diverges.
One may also check the consistency of the singular

behavior (75) with Eq. (19). If�1 and�2 can be neglected,
one finds the asymptotic behavior

F ¼
�
2~vs � 4

	2

�
z�2 ¼ 2

	2
ðD1��D2
Þz�2: (78)

For D2 > 1 Eq. (19) relates 
 to �,

ðD2 � 1Þ
 ¼ D1�� 1ffiffiffiffiffiffi
D2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD1 þD2 � 1Þ�2 � 8ðD2 � 1ÞðD1��D2
Þ=	2

q
: (79)
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The argument of the square root must be positive, requiring

	2 � 8ðD2 � 1ÞðD1��D2
Þ
D1ðD1 þD2 � 1Þ�2

: (80)

The condition for the neglection of the terms ��2�
�1

near the singularity requires 
 < 2 or 	> 	c,

	c ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 þD2 � 1

p : (81)

For 	< 	c the behavior at the singularities is different.
For example, a numerical integration of the field equations
shows solutions where � vanishes at two zerowarp singu-
larities at z ¼ 0, z ¼ �z, while � diverges.

VI. DIMENSIONAL REDUCTION

A. Higher-dimensional gravity

If internal space is in some sense small as compared to a
typical wavelength of an experiment, say at the CERN
LHC, we do not expect that we can resolve it. In this
case one expects a valid description in terms of an effective
four-dimensional theory, obtained by taking a suitable
average over the hidden internal dimensions. In fact, a
higher-dimensional theory can always be formulated as a
four-dimensional theory with infinitely many degrees of
freedom. The effective four-dimensional theory obtains if
one only keeps a finite number of these modes. Usually, the
neglection of the infinitely many other modes is related to
the heavy mass of these ‘‘Kaluza-Klein particles’’—often
many orders of magnitude larger than the inverse of the
experimental wave length. For a given model and solution,
this neglection of course has to be justified. We concentrate
in this paper on ‘‘local’’ four-dimensional gravity with at
most a finite number of massless (or very light) fields. We
assume that for these fields a derivative expansion becomes
valid in the long wavelength limit, in the sense that only
terms in the effective action with up to two derivatives are
relevant.

Dimensional reduction to a D1-dimensional theory ob-
tains by expanding the higher-dimensional field in some
complete set of functions depending on the internal coor-
dinates z and y	. The coefficients depend on the
D1-dimensional coordinates x� and correspond to the
D1-dimensional fields. There is one field for each basis
function in the complete system of functions. The effective
D1-dimensional action obtains by integrating the
d-dimensional action over the internal coordinates z and
y	. At this stage it is a functional of infinitely many
D1-dimensional fields. It is completely equivalent to the
higher-dimensional action—we have just chosen a suitable
representation of the d-dimensional functions. In particu-
lar, there is a one-to-one correspondence between an ex-
tremum of the d-dimensional action and an extremum of
the D1-dimensional action with respect to variations of all
the infinitely many fields. Of course, if there are constraints

limiting the allowed variations of the d-dimensional
fields—as for fixed tension branes—these constraints also
have to be implemented on the level of theD1-dimensional
fields.
Let us consider variable tension branes with an uncon-

strained d-dimensional metric and scalar field. The extre-
mum condition for the action implies an extremum with
respect to the variation of any single D1-dimensional field.
We will truncate the D1-dimensional action by keeping
only a finite number of fields that correspond to fluctua-
tions around some given solution to the d-dimensional field
equation. If this d-dimensional solution corresponds to an
extremum of the d-dimensional action, the truncated ef-
fectiveD1-dimensional action must also have an extremum
for those values of the D1-dimensional fields that corre-
spond to a vanishing fluctuation around the solution. We
will find that this is not the case for arbitrary integration
constants of the solutions discussed in Secs. IV and V.
There is a clash between the d-dimensional solutions and
the D1-dimensional solutions.
We begin by considering only fluctuations of the

D1-dimensional metric. The dimensionally reduced

D1-dimensional action for the metric gðD1Þ
�� ðxÞ obtains by

inserting a solution for�ðzÞ, �ðzÞ, �ðzÞ and integrating over
the internal D2 þ 1 coordinates y, z. It has the form

S½gðD1Þ
�� � ¼

Z
x
ðgðD1ÞÞ1=2

�
MD1�2

2
RðD1Þ � VðD1Þ

�
; (82)

with effective reduced D1-dimensional Planck mass M,

MD1�2 ¼ cR�D2
Md�2
d ; cR ¼

Z
z
�D2=2�ðD1�2Þ=2;

(83)

and �D2
is the volume of the D2-dimensional subspace

with metric gðD2Þ
	
 . The effective potential or

D1-dimensional cosmological constant VðD1Þ reads

VðD1Þ ¼ �D2
Md�2
d

Z
z
�D2=2�D1=2

�
~V þ 1

2
�02 � 1

2
~Rint

�
:

(84)

Here ~Rint is the ‘‘internal space contribution’’ to the higher-
dimensional curvature scalar

~R int ¼ ~Rsol �D1�1�
�1; (85)

with ~Rsol the curvature scalar for the solution around which
we expand. [While we keep �, �, and � fixed, we consider

the ansatz (12) with arbitrary gðD1Þ
�� ðxÞ, such that ~R ¼ ~Rint þ

RðD1Þ��1.] The values for M and VðD1Þ will depend on the
particular solution of the higher-dimensional field equa-
tions ð�;�; �Þ for which we perform the dimensional
reduction.

The internal curvature contribution to VðD1Þ involves the
D2 þ 1-dimensional curvature scalar
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RðD2þ1Þ ¼ D2

�
�2

�
� �00

�
� 1

4
ðD2 � 3Þ

�
�0

�

�
2
�

(86)

and a contribution from the warping

~Rint ¼ RðD2þ1Þ �D1

�
�00

�
þ 1

4
ðD1 � 3Þ

�
�0

�

�
2 þ 1

2
D2

�0

�

�0

�

�
:

(87)

For all solutions to the higher-dimensional field equations
it obeys

~R int ¼ �02 þ 2ðD1 þD2 þ 1Þ
D1 þD2 � 1

~V �D1

�1

�
; (88)

such that

VðD1Þ ¼ �D2
Md�2
d

Z
z
�D2=2�D1=2

�
D1�1

2�
� 2 ~V

D1 þD2 � 1

�

¼ D1�1M
D1�2

2
� 2MD1�2

D1 þD2 � 1

cV
cR
; (89)

with

cV ¼
Z
z
�D2=2�D1=2 ~V: (90)

If we insert in Eq. (82) the metric gðD1Þ
�� corresponding to

the solutions of the higher-dimensional field equations, i.e.

RðD1Þ ¼ D1�1, we find with Eqs. (83) and (89) the result
(7), as it should be.

From Eq. (82) we can compute the field equations for the

metric gðD1Þ
�� in the dimensionally reduced theory

MD1�2ðRðD1Þ
�� � 1

2R
ðD1ÞgðD1Þ

�� Þ ¼ �VðD1ÞgðD1Þ
�� ; (91)

which yields for the curvature scalar

RðD1Þ ¼ 2D1

D1 � 2

VðD1Þ

MD1�2
: (92)

In general, this does not have the solution RðD1Þ ¼ D1�1,
as required by the d-dimensional solution. We observe a
clash between the extremum of theD1-dimensional action,
given by Eq. (92), and the solution of the d-dimensional
field equations. Only for special values of the integration
constants of the higher-dimensional solution will the two
coincide.

Consistency of the higher-dimensional solution (RðD1Þ ¼
D1�1) with the effective D1-dimensional theory requires

VðD1Þ

MD1�2
¼ D1 � 2

2
�1: (93)

Using Eqs. (83) and (89) one finds

VðD1Þ

MD1�2
¼ D1�1

2
� 2cV

ðD1 þD2 � 1ÞcR (94)

and therefore the constraint

�1 ¼ 2cV
ðD1 þD2 � 1ÞcR : (95)

We recognize the brane constraint (2), with�1 ¼ �,D1 ¼
4, ~cV ¼ cV=cR. If this constraint is not obeyed, the higher-
dimensional action is not an extremumwith respect to local

variations of the D1-dimensional metric gðD1Þ
�� . This varia-

tion is performed with all other metric components and the
scalar field, i.e. the functions �, �, �, kept fixed at the
values corresponding to a solution of the higher-
dimensional field equations. One concludes that the solu-
tion to the higher-dimensional field equation is a necessary,
but not a sufficient condition for an extremum of S. An
extremum with respect to arbitrary variations requires in
addition the brane constraint (95).
Similar considerations can be made for other variations.

For example, we may vary the volume of internal space by
multiplying ~g	
 and ~gzz by a common factor L2. We want

to compute the dependence of the action on L, while

keeping �ðzÞ, �ðzÞ, �ðzÞ as well as gðD1Þ
�� and gðD2Þ

	
 at fixed

values. The volume factor yields a factor LD2þ1, while the
different contributions to S scale differently: @�̂�@�̂��
L�2, ~Rint � L�2, RðD1Þ��1 � L0, ~V � L0. As a result, the
dependence of S on L is not trivial,

SðLÞ ¼
Z
x
ðgðD1ÞÞ1=2MD1�2LD2þ1

�
D1�1

2
ð1� L�2Þ � cV

cR

þD1 þD2 þ 1

D1 þD2 � 1

cV
cR
L�2

�
: (96)

The solution of the d-dimensional field equations corre-
sponds to L ¼ 1. Again, the extremum of SðLÞ does not
generically occur for L0 ¼ 1, and a constraint on the
integration constants of the solution is needed in order to
avoid a clash between the extremum of SðLÞ and the
d-dimensional solution.
An extremum with respect to L requires for L0 ¼ 1

ðD2 þ 1Þ
�
D1�1

2
� cV
cR

�

� ðD2 � 1Þ
�
D1�1

2
�D1 þD2 þ 1

D1 þD2 � 1

cV
cR

�
¼ 0 (97)

or

�1 ¼ 2cV
ðD1 þD2 � 1ÞcR : (98)

This is the same condition as (95). Thus, if the brane
constraint (95) is violated, the action is not an extremum
with respect to variations of the volume of internal space
either. We could also consider a class of metrics where the
overall scale of � is varied, �ðzÞ ! A��ðzÞ. With
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SðA�Þ ¼
Z
x
ðgðD1ÞÞ1=2MD1�2AD1=2

�

�
D1�1

2
ðA�1

� � 1Þ

þ 2cV
ðD1 þD2 � 1ÞcR

�
(99)

the condition @SðA�Þ=@A�jA�¼1 ¼ 0 yields again the brane

constraint (95).
Similarly, we may vary the overall scale of �, i.e. �ðzÞ !

A��ðzÞ, while keeping all other functions fixed. From

S½A�� ¼ MD1�2
Z
x
ð~gðD1ÞÞ1=2AD2=2

�

�
D2�2

2

�
1

A�
� 1

�
c�
cR

þ 2cV
ðD1 þD2 � 1ÞcR

�
; (100)

with

c� ¼
Z
z
�ðD2�2Þ=2�D1=2; (101)

we obtain the condition for an extremum at A� ¼ 1,

�2c� ¼ 2

D1 þD2 � 1
cV: (102)

This corresponds to the second brane condition in Eq. (2),
with ~cA ¼ c�=cR. The combination with Eq. (95), which

corresponds to a volume conserving opposite multiplica-
tive scaling of � and �, yields

�2c� ¼ �1cR: (103)

Equation (102) has an important consequence for D2 ¼ 1
where �2 ¼ 0. Now S½A�� is a monotonic function of A�
for all ~V � 0. As a consequence, the extremum condition
(102) can be obeyed only for ~V ¼ 0. We will understand
better in Secs. VIII and IX why this excludes all singular
finite-volume solutions if metric variations corresponding
to a constant multiplicative rescaling of � are allowed.

We conclude that for geometries with singularities there
are additional conditions for the extrema of the action, such
as Eqs. (95) and (102), that go beyond the solution of the
field equations. They are associated with ‘‘global varia-
tions’’ of the fields, while the field equations are the
extremum condition only for local field variations. In
particular, for the class of models considered here the
consistent extrema with flat D1-dimensional space, �1 ¼
0, require ~V ¼ 0 and, by Eq. (103), also �2 ¼ 0. These
solutions are given by flat space or the exact singular
solutions (53) and (54).

B. Higher-dimensional scalar fields

We may also investigate global variations of the scalar
field �. One possibility is an overall constant shift �!
�þ�. This affects only the potential term. The condition
that a given solution of the higher-dimensional field equa-
tions is also an extremumwith respect to the global shifts is
simply

Z
z
�D2=2�D1=2

@ ~V

@�
¼ 0: (104)

For the exponential potential (63) it can only be obeyed for
�! 1 where ~Vð�Þ ! 0.
Other possibilities are multiplicative rescalings �!

A��, with

SðA�Þ ¼ MD1�2
Z
x
ðgðD1ÞÞ1=2

�
ð1� A2

�Þ
cK
cR

þD1 þD2 þ 1

D1 þD2 � 1

cV
cR

� 1

cR

Z
z
�D2=2�D1=2 ~VðA��Þ

�
;

(105)

where

cK ¼ 1

2

Z
z
�D2=2�D1=2�02: (106)

The extremum condition @S=@A�jA�¼1 reads

Z
z
�D2=2�D1=2

@ ~V

@�
� ¼ �2cK: (107)

Using the scalar field equation (5) and the definition of the

covariant Laplacian D̂2, we can write the condition (107)
as

Z
z

@

@z
f�D2=2�D1=2��0g ¼ 0: (108)

It is obviously obeyed for compact spaces, whereas in the
presence of singularities it contains possible boundary
terms.
We can construct the effective D1-dimensional action

for a scalar field associated with local multiplicative var-
iations of � by using the ansatz

�ðz; y; xÞ ¼ �ðzÞ’�ðxÞ: (109)

The solution to the higher-dimensional field equations
corresponds to a homogeneous and static field ’�ðxÞ ¼
1. On the other hand, one finds for the D1-dimensional

action (with fixed metric gðD1Þ
�� corresponding to the higher-

dimensional solution)

S½’�� ¼ �
Z
x
ðgðD1ÞÞ1=2

�
V�ð’�Þ þ 1

2
c�@

�’�@�’�

�
(110)

with

V�ð’�Þ ¼
Z
z
�D1=2�D2=2

�
~Vð�’�Þ þ 1

2
’2
��

02
�
;

c� ¼
Z
z
�ðD1�2Þ=2�D2=2�2:

(111)

The D1-dimensional field equations read
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D�D�’� ¼ c�1
�

@V�
@’�

¼ c�1
�

Z
z

�
@zð�D1=2�D2=2�0�Þ

þ �D1=2�D2=2

�
�02 þ @2 ~V

@�2

�
ð’� � 1Þ þ . . .

�
:

(112)

Here the dots denote higher orders in an expansion in’� �
1. For a static solution at ’� ¼ 1 the first term in Eq. (112)
has to vanish, cf. Eq. (108). The second term �ð’� � 1Þ
determines the mass of the scalar field ’�.

VII. FIELD VARIATIONS

A. Brane constraints and field variations

One may ask if the variations of the metric and the scalar
field considered in the preceding section are legitimate.
Consider a higher-dimensional solution ð�;�; �Þ for which
cR and cV are finite. It is then easy to see that there exist
variations of the d-dimensional metric ~g�̂ �̂ for which the

action remains finite, while the solution of the field equa-
tions is not an extremum with respect to such variations.

Example are variations of the metric gðD1Þ
�� which are local

in the D1-dimensional space. They result in a finite change
of the dimensionally reduced action (82) and therefore also
in a finite change of the higher-dimensional action. As
another example, we may replace the global change of
the ‘‘size of internal space,’’ L, by a change LðxÞ which
is local in the D1 coordinates x

�. This results in replacing
Eq. (96) by

S ¼ �
Z
x
ðgðD1ÞÞ1=2fVðD1ÞðLÞ

þ cLM
D1�2LD2þ1@� lnL@� lnLg: (113)

We can construct local variations of LðxÞ for which the
‘‘kinetic term’’ @� lnL@� lnL is negligible, while the action

remains finite. The extremum condition for such variations

is then the condition that the potential VðD1ÞðLÞ should have
an extremum for the value L ¼ L0 ¼ 1, around which the

variation is taken. This condition, @VðD1Þ=@LjL0¼1 ¼ 0, is

precisely the brane constraint (95). If we look for an
extremum with respect to all allowed variations of the
higher-dimensional metric, which change the action by a
finite amount, we have to impose the brane constraint, in
addition to the local field equations.

One should interpret the higher-dimensional action as
the quantum effective action after including all quantum
fluctuations. (Formally, it is the generating functional of
the ‘‘full’’ one particle irreducible vertices.) Physical states
correspond to an extremum of the quantum effective action
with respect to all allowed variations of ~g�̂ �̂ and � for

which it is well defined. This is the case for all variations
which change the action only by a finite amount. It is

therefore difficult to argue why the condition (95) should
be dismissed unless the model contains some additional
ingredients which restrict the allowed values of the metric
and scalar field, as for fixed tension branes.
For the higher-dimensional Einstein spaces discussed in

Sec. IV, one finds finite cR and cV . The brane constraint
(95) selects among the solutions of the higher-dimensional
field equations, the ones with �1 given by cV and cR. We
recall that cR is always positive and cV vanishes only for
~V ¼ 0. For a nonvanishing higher-dimensional cosmologi-
cal constant ~V � 0, one therefore selects solutions with
�1 � 0. Furthermore, c� (101) is also finite for the solu-

tions with finite volume discussed in Sec. IV. If we also
impose Eq. (102) (with a fixed value of �2, say �2 ¼
D2 � 1) this yields an additional relation between cV and
c� and therefore, for given ~V, a further brane constraint on

the functions �ðzÞ and �ðzÞ.
This implies that a continuous family of solutions with

arbitrary�1 no longer remains possible. Indeed, for a given
value of �1 two integration constants of the most general
solution are fixed by the brane constraints (95) and (102).
As mentioned before, the overall scale of � is arbitrary and
we may fix it by the condition cV ¼ ~V. One further inte-
gration constant can be used to have the location of one
singularity at z ¼ 0. We then have only one independent
integration constant left, but two constraints. As a result,
for an arbitrary value of �1 the system is overdetermined.
We expect that solutions exist at most for discrete values of
�1, for which the �1-dependent integral cRð�1Þ matches
Eq. (95). Indeed, the relation (102) fixes all integration
constants for given �1, such that cRð�1Þ is a given func-
tion. The discrete values for �1 must then obey ðD1 þ
D2 � 1ÞcRð�1Þ�1 ¼ 2 ~V. It is not clear, a priori, if such
solutions with finite volume exist—this depends on the
range that c�ð�1Þ can take for a given ~V. If not, only the

infinite-volume spaces, such as the D1 þD2 þ
1-dimensional de Sitter space, are extrema with respect
to arbitrary variations of the metric.
The condition for a finite-volume solution with two

singularities can be written asR
z �

ðD2�2Þ=2�D1=2R
z �

D2=2�D1=2
¼ 2 ~V

ðD1 þD2 � 1Þ�2

: (114)

For D2 > 1 and �2 � 0 the overall scale of � is ���1
1

according to Eq. (103). If the dimensionless function
cRð�1Þ does not vary too strongly (for given ~V), such
that cRð�1Þ�1 remains a monotonic function of �1 which
vanishes for �1 ! 0 and diverges for �1 ! 1, one will
find exactly one solution of Eq. (95). We recall that
Eq. (102) has no solution for D2 ¼ 1ð�2 ¼ 0Þ if ~V � 0.
Our discussion of spaces with singularities includes as
special cases the regular behavior at z ¼ 0 and z ¼ �z. We
have found in Sec. IV special values for the integration
constants where the geometry is a direct product of
D1-dimensional space and a compact (regular) internal
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space. This solution obeys the brane constraint. It is tempt-
ing to speculate that these regular solutions are the only
extrema of the higher-dimensional action with finite cV and
cR.

The situation is more complicated for the solutions with
a scalar field discussed in Sec. V. For ~V > 0 and for
solutions showing at the singularities the scaling behavior
(64), the integral cV is not a finite quantity anymore. Near a
singularity ~V diverges �z�2, or

cV �
Z
dzz�ð1þ�Þ; (115)

and � > 0 if ~v0 > 0. As a consequence, the effective
D1-dimensional theory does not exist—the potential V in
Eq. (89) is not well defined. The arguments leading to the
constraint (95) are not directly applicable in this case. This

remark also holds for the constraint (102). With c� �R
z z

1���
 � R
z z

ðD1þD2�2Þ
=2 finite, we can still perform

the variations which require the constraint (103) as an
extremum condition. On the other hand, for ~V < 0 one
has � < 0 and cV is well defined. The brane constraints
(95) and (102) are now well defined and have to be obeyed
for variable tension branes. Furthermore, for an exponen-
tial potential the constraint (104) reads 	cV ¼ 0 and is
well defined. Its only solution is cV ¼ 0 or �0 ! 1, ~vs !
0. We note that for � < 1 the condition (108) is obeyed for
all singular solutions of the type (64). We conclude that the
issue of the scalar brane constraints (104) and (108) de-
pends on the detailed shape of the potential and solution.
We will not discuss further here the issue of how to deal
with the case where cV is not finite.

We may discuss the variations that are not accounted for
by the field equations in a more general context. This is
most easily done for the scalar fields. With respect to some
general variation �! �þ � the variation of the
d-dimensional action is given by Eq. (8). Since the field
equations are obeyed, the additional constraints arising for
nonlocal variations � readZ

@�̂f~g1=2�@�̂�g ¼ 0: (116)

For example, taking constant � leads to the constraint
(104),

Z
z
�D1=2�2D̂2� ¼

Z
z
�D1=2�D2=2

@ ~V

@�
¼ 0: (117)

Similarly, for � ¼ A�, with constant A, the extremum
condition for the action yields the constraint (108).

The situation with respect to variations of the metric ~g�̂ �̂
is analogous. Again, the field equations (4) guarantee an
extremum of the action only in the absence of boundary
contributions. In the presence of singularities one may
require that the action is an extremum also with respect
to metric variations which do not lead to vanishing bound-
ary terms. This leads to the brane constraints (95), (102),

and (103). For example, a variation of the D1-dimensional

metric gðD1Þ
�� ðxÞ, even if local in the D1 coordinates x�,

amounts still to a universal variation for all coordinates
of the D-dimensional internal space. This variation does
not vanish at the location of the singularities and gives a
nonvanishing contribution to the boundary term. We con-
clude that the additional constraints beyond the field equa-
tions are connected to the extremum condition for the
metric with respect to variations that are not local in the
higher-dimensional space-time and do not vanish at the
singularities.
We may explicitly computeK�̂ in Eq. (9) for appropriate

metric variations. For example, taking ~h	
 ¼ ðA� �
1Þ�ðzÞgðD2Þ

	
 ðyÞ (and vanishing other components), one finds

the nonvanishing component

Kz ¼ D2

2

�0

�
ðA� � 1Þ (118)

and therefore the extremum conditionZ
z
@zð�D1=2�ðD2�2Þ=2�0Þ

¼
Z
z
�D1=2�D2=2

�
D1

2

�0

�

�0

�
þD2 � 2

2

�
�0

�

�
2 þ �00

�

�
¼ 0:

(119)

Using the field equation (22) this yieldsZ
z
�D1=2�D2=2

�
2�2

�
� 4

D1 þD2 � 1
~V

�
¼ 0; (120)

which is precisely the brane constraint (102).
There is a simple necessary condition for the action to be

an extremum with respect to arbitrary variations of the
metric and scalar field. We may first compute the most
general solution to the local field equations. It will contain
a number of integration constants that we denote by 
i. We
next insert the solution into the action and compute Sð
iÞ.
A necessary extremum condition is @S=@
i ¼ 0, or, with
Eq. (7),

@

@
i

Z
z
�D2=2

 �D1=2


 ~V
 ¼ 0: (121)

[We denote by �
ðzÞ etc. the solution corresponding to a

particular set of integration constants 
.] In particular, in
the absence of a scalar field and for constant ~V � 0, the

condition (121) implies that
R
�D2=2�D1=2 is at an extre-

mumwith respect to variations of the integration constants.
We recall that Eq. (121) is necessary, but not sufficient for
an extremum of the action.

B. Nonlocal field variations

Our findings so far clearly indicate that for generic
solutions of the field equations the action is not an extre-
mum. While it is an extremum with respect to local field
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variations, it is not for nonlocal field variations. A crucial
question is whether the action has to be an extremum with
respect to such nonlocal field variations. Let us address this
question from a different point of view—the ‘‘brane point
of view.’’ For this purpose we consider codimension two
singularities in a six-dimensional space (d ¼ 6, D1 ¼ 4,
D2 ¼ 1). For the brane singularities, where �ðzÞ vanishes
for z ¼ 0 or z ¼ �z, we may take the point of view that a
singular object—a brane—‘‘sits’’ at the singularity. This
corresponds to an additional singular contribution to the
energy momentum tensor ��ðzÞ or ��ðz� �zÞ, given by
the brane tension. The brane tension is in one-to-one
correspondence with the deficit angle such that the prop-
erties of the brane can actually be inferred from the prop-
erties of the bulk geometry [11]. We take a similar point of
view for the zerowarp singularity and use the phrase
‘‘brane tension’’ also for the singular energy momentum
tensor for this configuration.

Consider the solutions of pure six-dimensional gravity
with a cosmological constant in Sec. IV. They have two
physical integration constants. For the solutions with two
branes, those can be associated with the two deficit angles
at the two singularities. In other words, the two integration
constants are given by the tension of the two branes. If we
consider the brane tensions as fixed intrinsic values, the
bulk metric is completely fixed. (This holds up to the two
irrelevant integration constants, one giving the location of
branes, i.e. the location of one brane at z ¼ 0, and the other
specifying the overall normalization of �.) For fixed brane
tensions the boundary conditions at the singularities are
fixed by appropriate ‘‘matching conditions.’’ The varia-
tions of the metric which lead to the brane constraint
(95) are not compatible with those fixed boundary condi-
tions. Indeed, the metric is fully specified by the solution of
the field equations with the boundary conditions given by
the two brane tensions. Now �1 is given by the values of
the two brane tensions, and there seems to be no reason
anymore to impose the constraint (95).

This situation generalizes to the singularities with codi-
mension larger than 1. There is a one-to-one correspon-
dence between the singular energy momentum tensor on
the brane on one side, and physical integration constants,
which parametrize the most general solution of the gravi-
tational field equations with the symmetries of our ansatz,
on the other side. For two singularities the two brane
tensions fix two integration constants. In the absence of a
scalar field this fixes�1. These considerations also hold for
the case where some singularity of our solution is a coor-
dinate singularity, like the horizon of the black hole. (The
location of the brane is then inside the horizon.)

If we add the scalar field, two additional integration
constants characterize the most general solution, i.e.
�ðz0Þ and �0ðz0Þ. Even for fixed brane tensions the effective
D1-dimensional cosmological constant �1 is no longer
fixed uniquely. It will depend on the additional integration

constants. Thus �1 appears to be again a free integration
constant. Of course, we can fix the two additional integra-
tion constants by the properties of the scalar field at the
singularities. In this sense, we can define a ‘‘scalar charge’’
of the branes, similar to the ‘‘cosmon charge’’ of black-
hole-like solutions in four-dimensional gravity with scalars
[18]. Then �1 is determined by the brane tensions and the
scalar charges of the two branes. For fixed scalar charges,
the variations of �, which lead to the boundary term in
Eq. (92), would then be replaced by a fixed behavior of � at
the singularity, as given by the scalar charge.
We note that in distinction to the energy momentum

tensor, no conserved charge can be associated with the
‘‘scalar charge,’’ even if a singularity is embedded in flat
higher-dimensional space. Fixing the scalar charges of the
two branes is just another wording for taking fixed values
of the integration constants �ðz0Þ and �0ðz0Þ and seems
quite ad hoc. Constraining the variations of the metric and
scalar field to fixed values of the scalar charges lacks any
natural motivation. In particular, there is no reason why the
scalar charges cannot change in the course of the cosmo-
logical evolution.
We will argue in the next section that this consideration

also holds for the brane tensions, unless additional un-
known microphysics keeps the brane tension fixed.
Similar to the mass of a black hole in usual four-
dimensional gravity, the brane tensions should be consid-
ered as dynamical quantities, reflecting the result of a given
cosmological history. For a black hole, one does not con-
sider its mass as given a priori—it is rather a result of the
accretion of mass in the past. There is no difference be-
tween a black hole and a brane in higher dimensions,
except the different value of D1. (For black holes one has
D1 ¼ 1). We therefore will consider the brane tensions as
dynamical quantities as well.

VIII. COSMOLOGY WITH VARYING BRANE
TENSION

For variable brane tensions we will investigate in this
section the variations of the higher-dimensional metric and
scalar fields from a dynamical point of view. We will
discuss the possible time evolution of these fields. This
will shed new light on the question of why a static cosmo-
logical solution is subject to the brane constraint (95). If the
brane tensions are not fixed a priori, but are rather allowed
to vary with time, there seems to be no reason to exclude

from the allowed states the metric variations of gðD1Þ
�� ðxÞ,

which are local in D1-dimensional space, but global in the
coordinates of internal space. Computing the brane tension
for some fixed internal geometry and some arbitrarily

given metric gðD1Þ
�� ðxÞ will result in a brane tension that

depends on x�.
In analogy to the four-dimensional black holes, this

seems rather natural. Indeed, for a study of the time evo-
lution of black-hole-like objects, the metric functions
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Aðr; tÞ, Bðr; tÞ of the isotropic line element ds2 ¼
�Bdt2 þ Adr2 þ r2d2� depend on time and the radial
coordinate r. [In particular, Bðr; tÞ is the analogue of an
x-dependent warping factor �ðz; xÞ or, more generally, of
an x-dependent metric component ~g��ðz; xÞ.] The mass of

the black hole can be defined by the radial dependence of
Bðr; tÞ at a given distance of the singularity. (At a sufficient
distance of the black hole, Bðr; tÞ is directly related to the
Newtonian potential.) In general, this mass will depend on
time—in complete analogy to the higher-dimensional
brane tension depending on x�. There would be no good
reason to impose an additional constraint on Bðr; tÞ which
keeps the mass of the black hole at some given time-
independent value. (Note that the mass of the black hole
is conserved only if it is embedded in empty flat space. If
there are stars or dust outside the region which is used to
define the mass of the black hole inside, these objects may
be accreted later and enhance the mass of the black hole.)
Similarly, there seems to be no good reason to restrict the

possible metrics gðD1Þ
�� to those with a fixed brane tension.

All these remarks may seem rather trivial. The conse-
quences for our understanding of singular solutions in
higher-dimensional space-time are far reaching, however.
They result in the additional brane constraints for the
allowed static solutions, such as the constraint (95).
Consider again the finite-volume solutions of higher-
dimensional gravity discussed in Sec. IV, and start at
some time t0 with a metric configuration given by such a

solution. We will argue that for t > t0 neither L nor gðD1Þ
��

remain at the values given at t0, i.e. Lðt0Þ ¼ 1, RðD1Þ
�� ðt0Þ ¼

�1g
ðD1Þ
�� , unless the brane constraint is met. In consequence,

the brane tensions also do not remain at the same values as
for t0—they change in the course of the cosmological
evolution.

The action for the dimensionally reduced

D1-dimensional theory for the metric gðD1Þ
�� and the dimen-

sionless ‘‘radius of internal space’’ L reads

SðD1Þ ¼ MD1�2
Z
x
ðgðD1ÞÞ1=2

�
LD2þ1

�
1

2
RðD1Þ � cV

cR

�

þ LD2�1

�
D1 þD2 þ 1

D1 þD2 � 1

cV
cR

�D1�1

2

�

� cL
2
LD2�1@�L@�L

�
; (122)

with cL an integral over internal space which multiplies the
derivative term for an x-dependent radius LðxÞ. We have

already seen in Sec. VI that SðD1Þ is an extremum with

respect to variations of gðD1Þ
�� and L only if the constraint

(95) is obeyed. We will investigate here in more detail the

solutions to the field equations for gðD1Þ
�� and L that follow

from the variation of the action (122). For simplicity, we
consider only the case D1 ¼ 4.

We first perform a Weyl scaling,

gðD1Þ
�� ¼ L�ðD2þ1Þg�� (123)

such that Sð4Þ becomes (with R the curvature scalar built
from g��)

Sð4Þ ¼ M2
Z
x
g1=2

�
R

2
� V � ~cL

2
@� lnL@� lnL

�
: (124)

(Since we will consider only variations of g�� and L that

are local in the four-dimensional space, we are allowed to
omit boundary terms.) The action (124) corresponds to the
Einstein frame where the coefficient in front of R is field
independent. In this frame the potential reads

VðLÞ ¼ VðD1ÞðLÞL�2ðD2þ1Þ

¼ cV
cR
L�ðD2þ1Þ �

�
D2 þ 5

D2 þ 3

cV
cR

� 2�1

�
L�ðD2þ3Þ;

(125)

with the derivative

@V

@L
¼ �ðD2 þ 1Þ cV

cR
L�ðD2þ2Þ þ ðD2 þ 5Þ cV

cR
L�ðD2þ4Þ

� 2ðD2 þ 3Þ�1L
�ðD2þ4Þ: (126)

The extremum occurs for

L2
0 ¼

D2 þ 5

D2 þ 1
� 2�1cR

cV

D2 þ 3

D2 þ 1
: (127)

Only if the brane constraint (95) is met,

�1 ¼ �1;c ¼ 2

D2 þ 3

cV
cR
; (128)

does the extremum occur for L0 ¼ 1, as required by the
d-dimensional solution. For all other values of �1 the
nonvanishing derivative @V=@L will induce a change of
LðtÞ from the ‘‘initial value’’ Lðt0Þ ¼ 1 to some other
value. Thus the solution of the field equation for L derived
from the effective four-dimensional action (124) cannot be
static if we start with Lðt0Þ ¼ 1 and �1 � �1;c. In other

words, the true solution corresponding to the extremum of
the higher-dimensional action will be a nonstatic runaway
solution for such an initial condition. We will discuss the
generic properties of these runaway solutions in the next
section, and end this section with a few more considera-
tions for the possible static solutions.
For L0 ¼ 1 the solution of the four-dimensional field

equation

R�� � 1
2Rg�� ¼ �Vg�� (129)

is given by

R ¼ 4V ¼ 4�1 ¼ 8

D2 þ 3

cV
cR

(130)

if the brane constraint is met. In this case we have a
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consistent solution with static LðtÞ ¼ 1 and R�� ¼
�1;cg��. The second derivative @2V=@L2 at the extremum

at L0 ¼ 1 is negative for cV=cR > 0, such that L0 actually
corresponds to a maximum of VðLÞ. The consistent static
solution is then unstable with respect to small excitations.
(The vicinity of this solution could describe an inflationary
universe.)

We may understand the properties of the effective
D1-dimensional scalar potential V in the Einstein frame
in a more general context. Let us consider a set of
D1-dimensional scalar fields  u that correspond to local
variations of the d-dimensional fields which vanish at the
singularities. A second set of scalar fields ’z describes
variations that do not vanish at the singularity, like the
variation of the overall size of internal space L. The fields
 u and’z are chosen such that they vanish for a solution to
the d-dimensional field equation. Expanding around a
solution of the d-dimensional field equations, one finds in
linear order for homogeneous fields  u theD1-dimensional
field equations

Dt u ¼ @V

@ u
¼ Quð u; ’zÞ; Quð0; 0Þ ¼ 0: (131)

Here Dt is an appropriate operator involving time deriva-
tives. For flat D1-dimensional space one has Dt ¼ �@2t ,
while the appropriate generalization to D1-dimensional
(anti-) de Sitter space makes Dt vanishing in the case of
maximal symmetry of the D1-dimensional subspace.

The solution of the d-dimensional field equations guar-
antees an extremum of the action with respect to local
variations  u. In consequence,Qu vanishes for  u ¼ ’z ¼
0. Away from the solution of the d-dimensional field
equations the source term Qu will not vanish anymore—
the fields  u � 0 or ’z � 0 no longer correspond to an
extremum of V. In our case the d-dimensional solution
L ¼ A� ¼ 1 corresponds to  u ¼ 0, ’z ¼ 0, while other

values of L and A� are no longer higher-dimensional

solutions. They amount to nonvanishing ’z, withQuð’z �
0Þ � 0. They therefore do not correspond to static solu-
tions. In other words, for L � 1 or A� � 1 a nonstatic

behavior arises due to a source term for the fields  u,
even if L and A� themselves may have no source term

for some particular values.
In contrast, for the field equations for the nonlocal

fluctuations

Dt’z ¼ @V

@’z
¼ Rzð u; ’zÞ (132)

no argument is available in order to guarantee Rzð0; 0Þ ¼ 0.
The solution of the higher-dimensional field equations only
guarantees an extremum for the local fluctuations, but not
for the nonlocal fluctuations ’z. In general, one has a
nonvanishing source term and the fields ’z do not remain
constant. The changes of the scales ofD2 þ 1-dimensional
space, L, or the D2-dimensional subspace, A�, correspond

to nonlocal fluctuations ’z. The solution to the higher-
dimensional field equation,  u ¼ ’z ¼ 0, is not sufficient
to guarantee an extremum of V. The extremum condition
Rzð0; 0Þ ¼ 0 provides for the additional brane constraints
(95) and (102).

IX. RUNAWAY SOLUTIONS

In this section we discuss the fate of cosmologies which
start at t0 with a higher-dimensional solution for which the
brane constraint is not obeyed. We first discuss this issue
within the reduced four-dimensional theory and investigate
the solutions for the field equation derived from the action
(124). For�1 >�1;c the potential derivative is negative for

Lðt0Þ ¼ 1. The radius L therefore starts to increase for t >
t0. Since no extremum of V is encountered, we have a
‘‘runaway solution’’ where L evolves to infinity as t! 1.

For large enough L only the term �L�ðD2þ1Þ matters for
the potential. This is a rather generic type of higher-
dimensional runaway solutions [14]. For a scalar field
with a canonical kinetic term,

’ ¼ ~c1=2L M lnL; (133)

one finds an exponential potential

V �M4 exp

�
�~	

’

M

�
; ~	 ¼ D2 þ 1ffiffiffiffiffi

~cL
p : (134)

In the presence of radiation and matter this leads to the
typical scaling solutions associated with quintessence [13],
provided 	> 2. For 	< 2 or in the absence of matter and
radiation, one has a scalar field dominated late cosmology.
For both types of solutions the scalar field ’ increases
� lnt and the scalar potential decreases �t�2, at the
same rate as the dominant matter or radiation. The
Hubble parameter decreases �t�1, such that the curvature
scalar R vanishes asymptotically for t! 1. (For a realistic
particle physics model, however, possible problems arise
from too large variations of ‘‘fundamental coupling con-
stants’’ [14].)
The solution of the effective four-dimensional theory

looks very different from the one expected for the
higher-dimensional solutions with �1 >�1;c. Instead of

a de Sitter solution with fixed cosmological constant �1,
the effective cosmological constant relaxes to zero. On the
other side, for �1 <�1;c, the potential derivative is posi-

tive for Lðt0Þ ¼ 1. For t > t0 the radius decreases now

towards zero. The terms �L�ðD2þ3Þ will dominate the
potential (125) and VðLÞ will become negative. Again,
the solution is quite different from the static six-
dimensional solution. For both cases with �1 � �1;c the

boundary terms at the singularities change. These solutions
correspond to cosmologies with brane tensions changing
with time.
Of course, the solutions of the effective four-

dimensional theory for gðD1Þ
�� and L are not solutions of
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the higher-dimensional field equations. They obtain for a
fixed shape of the internal geometry, i.e. fixed functions
�ðzÞ,�ðzÞ. For true dynamical solutions, which should also
obey the d-dimensional field equations, one expects that

other fields except gðD1Þ
�� and L change their values for t >

t0. For example, the functions �ðzÞ and �ðzÞ correspond to
infinitely many four-dimensional scalar fields after dimen-
sional reduction, the ‘‘Kaluza-Klein modes.’’ Typically,
these are massive scalar fields, often with a discrete spec-
trum [19]. The four-dimensional field equations discussed
above neglect the changes in these massive scalar fields.

However, one does not expect that these massive modes
change the qualitative behavior of the solution. The run-
away solutions for L! 1 or L! 0 correspond to rather
generic geometrical features. They involve only consider-
ations of relevant length scales, rather than the detailed
shape of internal geometry, reflected in the detailed prop-
erties of the scalar potential [14]. If one would ‘‘integrate
out’’ these modes by solving their field equations as func-

tions of given LðtÞ, gðD1Þ
�� ðtÞ, one would obtain a modified

effective action (122). The potential VðLÞ would get modi-
fied, and the constant cL as well as the coefficient of the
curvature term would acquire an additional L dependence.
The general shape of VðLÞ cannot change, however. Its
only true extremum must correspond to a static solution of
the higher-dimensional field equations. They have all been
classified in Sec. IV. Furthermore, the brane constraints
must be satisfied. The only true extremum is therefore the
maximum at L0 ¼ 1. We conclude that the only static
solution corresponds to the maximum at L0 ¼ 1, with
�1 ¼ �1;c. Since this solution is unstable, it requires

very particular initial conditions.
All other initial conditions end in runaway solutions

with L! 1 or L! 0. In particular, for initial conditions
given by a higher-dimensional solution with �1 � �1;c,

the behavior of L very near the initial time t0 is given by
VðLÞ in Eq. (125). All massive modes start with small
values at t0 as well, and they do not influence the evolution
of L in a linear approximation in L� 1. Starting from a
static higher-dimensional solution, with arbitrary integra-
tion constants corresponding to the continuous family of
solutions of Ref. [5], at most a subset with discrete values
of the four-dimensional cosmological constant really
shows static behavior. For variable tension branes, generic
initial conditions lead to runaway solutions.

We have argued that the generic character of the run-
away solutions remains even if we include the other de-
grees of freedom obtained from dimensional reduction.
Indeed, the runaway solutions correspond to the generic
extrema of the higher-dimensional action—they are not
artefacts of the approximation (122). As an example for
the quantitative changes induced by the presence of addi-
tional fields, we further include scalar fields in the effective
D1-dimensional action. In fact, the issue of additional
changes of internal geometry beyond the overall scale

can be demonstrated by including into the effective
D1-dimensional theory also the scalar fields that corre-
spond to x-dependent factors A�ðxÞ and A�ðxÞ. This yields

SðD1Þ ¼ MD1�2
Z
x
ðgðD1ÞÞ1=2

�
1

2
w�2RðD1Þ � VðD1Þ þLðD1Þ

kin

�
(135)

with

w�2 ¼ LD2þ1AD2=2
� AðD1�2Þ=2

� (136)

and

VðD1Þ ¼ LD2þ1AD2=2
� AD1=2

�

�
cV
cR

þD1�1

2L2

þD2�2

2L2

c�
cR

�
1� 1

A�

�
� 1

L2

D1 þD2 þ 1

D1 þD2 � 1

cV
cR

�
:

(137)

We observe that VðD1Þ is monotonic in A� with a vanishing

derivative only for VðD1Þ ¼ 0. At first sight this seems to

question the consistency of static solutions for VðD1Þ � 0.

However, for �1 � 0 the term RðD1Þ will also contribute to
the A� dependence of the effective action, as discussed
after Eq. (99). There are now also derivative terms for A�
and A�,

LðD1Þ
kin ¼ �1

2L
D2þ1AD2=2

� AðD1�2Þ=2
� fcLL�2@�L@�L

þ cK�A
�2
� @�A�@�A� þ cK�A

�2
� @�A�@�A�

þmixed termsg: (138)

The mixed terms contain terms �@�L@�A� etc.

We restrict the discussion again to D1 ¼ 4 and perform
the Weyl scaling

gð4Þ�� ¼ w2g��; (139)

resulting in the effective action in the Einstein frame,

Sð4Þ ¼ M2
Z
x
g1=2

�
1

2
R� V þLkin

�
; (140)

with the scalar potential

V ¼ w4Vð4Þ

¼ L�ðD2þ1ÞA�ðD2=2Þ
�

�
cV
cR

þ 2�1

L2
þD2�2

2L2

c�

cR

�
1� 1

A�

�

� 1

L2

D2 þ 5

D2 þ 3

cV
cR

�
: (141)

After Weyl scaling the potential shows no dependence on

A� anymore. This simply reflects that A�ðxÞ and gðD1Þ
�� ðxÞ

are not independent variables, since A�ðxÞ can be absorbed
into a redefinition of gðD1Þ

�� ðxÞ. The Weyl-scaled metric in
the Einstein frame is independent of this artificial separa-
tion. In consequence, no kinetic term for A� remains after
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the Weyl scaling

Lkin ¼ �1
2f~cL@� lnL@� lnLþ ~cK�@

� lnA�@� lnA�

þ ~cL�@
� lnL@� lnA�g: (142)

Besides gravity the effective four-dimensional theory

now contains two scalar fields, ’L ¼ ~c1=2L M lnL and ’� ¼
~c1=2K�M lnA�. Static solutions require an extremum with

respect to variations of both L and A�, and consistency

with the d-dimensional field equations requires that this
extremum occurs for L ¼ 1, A� ¼ 1. In a more general

setting, there will be additional four-dimensional scalar
fields, which correspond to local changes of internal ge-
ometry, i.e. changes in the z dependence of �ðzÞ or �ðzÞ
which vanish at the singularities. For extrema of V (141) at
L � 1 or A� � 1, the variations of the extended scalar

potential with respect to these additional fields will not
vanish.

Let us investigate the shape of the potential (141) more
closely. With ~cV ¼ cV=cR, ~cA ¼ c�=cR, �2 ¼ D2 � 1 and

�1 ! �, A� ! A, this is the effective potential (1). First of

all, we note that for �2 ¼ 0 there is no minimum with
respect to variations of A� unless V ¼ 0. This is a mani-

festation of the discussion after Eq. (103). For D2 ¼ 1,
where�2 ¼ 0, the only possible solution for static internal
geometries with finite volume can occur for

cV
cR

¼ 1

L2

�
D2 þ 5

D2 þ 3

cV
cR

� 2�1

�
: (143)

On the other hand, an extremum of V with respect to L
requires Eq. (127). For static solutions this has to occur for
L0 ¼ 1 and therefore obeys the constraint (95) and (128),
�1 ¼ 2cV=½ðD2 þ 3ÞcR�. Insertion into Eq. (143), together
with L ¼ 1, yields forD2 ¼ 1 the condition cV ¼ 0. Static
solutions are then only possible for ~V ¼ 0, cV ¼ 0, �1 ¼
0. ForD2 > 1,�2 � 0, the requirement of an extremum of
the potential (141) at L ¼ A� ¼ 1 precisely yields the two

conditions (95) and (102). We note that the extremum of V
is a maximum with respect to variations of both L and A�.

The static solution is unstable.
We conclude again that the generic cosmological solu-

tions for variable tension branes are runaway solutions
where L and A� either diverge or go to zero. Let us

consider initial conditions for which both L and L2A�
increase towards infinity for asymptotic times t! 1,
while A� goes to zero. First of all, we note that the

particular runaway cosmology is modified as compared
to the case A� ¼ 1 discussed at the beginning of this

section. Nevertheless, the qualitative features remain simi-
lar. A given cosmology will now move along some trajec-
tory in ðL; A�Þ space. We can associate this trajectory with

a cosmon field’ and choose a standard normalization of its
kinetic term. Then we will encounter again an exponential
potential decreasing to zero as ’! 1, as is characteristic

for quintessence cosmologies. These features will remain
similar if we further include scalar fields beyond L and A�.

The exponential potentials are generic for runaway solu-
tions [14].
For L! 1, L2A� ! 1 the brane tensions at the singu-

larities go to zero. One may wonder if cosmology asymp-
totically approaches a state where the difference between
theD1 � 1 large space dimensions and theD2 þ 1 internal
space dimensions vanishes, such that four-dimensional
gravity is no longer meaningful. This is not automatic.
The issue depends on the relative size of L and the
D1-dimensional Planck mass, as well as on the curvature
of D1-dimensional space. We have to compare typical
masses of the Kaluza-Klein modes MKK with the scale of
gravity. Only ifMKK vanishes sufficiently fast as compared
to the effective Planck mass do the internal dimensions
become asymptotically observable. (We assume here im-
plicitly that particle physics masses, such as the nucleon
mass, scale proportional to M, as required by observation;
cf. our conclusions.)
Let us consider D1 ¼ 4 and compute in the Weyl frame

(before the Weyl scaling) the ratioMKK between ~M2
KK and

the coefficient in front of the four-dimensional curvature

scalar Rð4Þ. With a renormalized mass in the Weyl frame
~M2
KK � L�2, one finds

RKK � L�ðD2þ3ÞA�ðD2=2Þ
� : (144)

The dimensionless ratio RKK is invariant under Weyl scal-
ing such that in the Einstein frameM2

KK ¼ RKKM
2. For the

potential (141) we may compare MKK with the character-

istic scale for dark energy ðM2VÞ1=4 and compute the
asymptotic ratio

MKKðM2VÞ�1=4 �M1=2

�
cV
cR

��1=4
L�ðD2þ5Þ=4A�D2=8

� :

(145)

If this ratio becomes smaller than 1, a description in terms
of a four-dimensional quintessence cosmology ceases to be
meaningful. [The presently observed dark energy scale is

ðM2VÞ1=4 � 2� 10�3 eV, and MKK would become
smaller.] We may also make a comparison with a typical

size of the Hubble parameter, H2 � V1=2,

MKKV
�1=2 �M

�
cV
cR

��1=2
L�1: (146)

If this ratio is of order one, the size of internal space is
comparable to the horizon of the four-dimensional space.
The issue depends on the evolution of cV=cR. For constant
~V observable internal dimensions seem unavoidable in our
model for large t. On the other hand, a runaway where
cV=cR approaches zero sufficiently fast may be compatible
with unobservable internal dimensions. Realistic cosmol-
ogies should correspond to increasing ratios (145) and
(146) for increasing t. We also observe that for A� 	 1
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the lowest masses of the Kaluza-Klein modes pick up an

additional factor A�1=2
� multiplying Eqs. (145) and (146).

In Ref. [14] we have discussed various scenarios for run-
away solutions where internal space remains unobservable
and the dangerous change of ‘‘fundamental couplings’’
may be effectively stopped.

We end this section with a brief discussion of the run-
away solutions for higher-dimensional theories with a
scalar field. This can be done on the basis of the effective
four-dimensional action (110). For ~V > 0 the effective
potential V� is positive definite. For the exponential poten-
tial (63) one finds that V� vanishes only if �! 1, �0 ! 0.
For this case one may argue that it is likely that the run-
away solution leads to � increasing to infinity, with �02
relaxing to a small value. The runaway solution ‘‘turns
off’’ the scalar field. In other words, one expects that the
ratios cV=cR and cK=cR go to zero during the runaway.

X. CONCLUSIONS AND DISCUSSION

We have distinguished between fixed tension branes and
variable tension branes. For the variable tension branes we
have identified additional constraints besides the require-
ment of being a solution of the field equations. These brane
constraints result from the extremum condition for the
action with respect to field variations that change the
strength of the singularity and therefore the brane tension.
Simple examples for such variations are changes of the
metric that are local in four-dimensional space, but do not
change the geometry of internal space or the warping in a
higher-dimensional context. The brane constraints are also
needed in order to obtain a consistent dimensionally re-
duced effective theory in four dimensions, where the met-
ric can be varied without constraints.

The brane constraints strongly restrict the number of
static solutions or, more generally, solutions with maximal
four-dimensional symmetry. (We assume homogeneity and
isotropy in the large three space dimensions as appropriate
for cosmological solutions.) While the d-dimensional field
equations admit continuous families of solutions with free
integration constraints, these are reduced to at most a
discrete subset of extrema of the action. The four-
dimensional cosmological constant no longer remains a
free integration constant of the solution. For the static
solutions it becomes fixed by the parameters of the theory,
similar to the case of fixed tension branes. As a result, the
singular spaces with branes become in this respect very
similar to regular or compact spaces. Both have at most a
discrete set of static solutions.

We have investigated d-dimensional gravity with a cos-
mological constant. Furthermore, we have also considered
additional d-dimensional scalar fields. For solutions with
variable tension branes and a finite four-dimensional gravi-
tational constant, we have found a constraint for the effec-
tive four-dimensional cosmological constant �1. In
particular, for flat four-dimensional space, �1 ¼ 0, the

d-dimensional cosmological constant must vanish, ~V ¼
0, cf. Eq. (95). [For higher-dimensional scalar fields this
generalizes to a weighted integral over the scalar potential,
cV ¼ 0, cf. Eq. (90).] A further constraint for internal
geometry requires for �1 ¼ 0 that also the effective cos-
mological constant for the internal d� 5-dimensional hy-
persurface must vanish, �2 ¼ 0. The static solutions with
�1 ¼ �2 ¼ ~V ¼ 0 are known, cf. the Appendix. They
correspond either to flat d-dimensional space or to exact
infinitely spread brane or zerowarp solutions with a power-
like decrease or increase of the warp factor for z! 1,
cf. Eq. (53). These solutions have no finite four-
dimensional gravitational constant. For our class of models
no variable tension branes with static solutions and effec-
tive four-dimensional gravity with a vanishing cosmologi-
cal constant exist. Solutions of this type that have been
considered previously in the literature [4,5] cannot be
realized for variable tension branes.
Our general discussion can be extended to models where

static solutions with �1 ¼ 0 and effective four-
dimensional gravity are known to exist. In fact, every
solution of the higher-dimensional field equations with a
regular space automatically obeys the brane constraints. In
the absence of singularities these constraints follow from
the solution of the field equations since the boundary terms
in the variation of the action vanish. It is an interesting open
question whether there are also singular static spaces that
obey the brane constraints, and have a finite four-
dimensional gravitational constant and a vanishing four-
dimensional cosmological constant.
The absence of static solutions, both for �1 � 0 and

vanishing �1, may offer interesting perspectives for cos-
mology. In fact, for a positive d-dimensional cosmological
constant ~V > 0, we have found that our model does not
have any stable static solution with effective four-
dimensional gravity and maximal symmetry. Thus an
asymptotic state of the universe with a fixed nonzero
cosmological constant is excluded for the variable tension
branes in our models. We argue that the characteristic
cosmological solutions for variable tension branes are run-
away solutions where the effective four-dimensional cos-
mological constant or dark energy approaches zero as time
goes to infinity. These are candidates for models of quin-
tessence. We have shown that variable tension branes
typically lead to an exponentially decaying potential for
the cosmon field. However, for the runaway solutions the
length scales of internal space are also evolving. This poses
problems with the observed approximative constancy of
the couplings of the standard model of particle physics.
What will be needed is a stabilization mechanism for the
‘‘fundamental couplings.’’ Several possible mechanisms
have been suggested in [14]. We do not address this issue
in the present paper.
We may compare our findings for variable tension

branes with the situation for fixed tension branes. Now
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(part of) the brane constraints are absent, at the price of
introducing the brane tension as an additional fixed pa-
rameter of the model. Performing dimensional reduction as
in Sec. IV one may naively conclude that no consistent
dimensionally reduced four-dimensional gravity theory
exists even for this case. This raises the question of how
the concept of fixed tension branes can be implemented in
higher dimensions in a meaningful way. The problem is
that independent local variations of the four-dimensional
metric, leaving internal geometry fixed, are no longer
allowed. Since they change the strength of the singularity
locally, one has to demand that for a fixed brane tension
such metric variations are always accompanied by local
changes in the internal geometry which compensate their
effect on the brane tension. One needs to implement the
constraint of a fixed brane tension within the effective four-
dimensional theory. This amounts to a complicated non-
linear constraint among the infinitely many four-
dimensional fields that result from an expansion of the
higher-dimensional fields in some complete system of
functions. In other words, a consistent ansatz for the
four-dimensional metric is no longer of the form of

Eq. (12) with arbitrary gð4Þ��ðxÞ, but all other fields indepen-
dent of x�. For a given gð4Þ��ðxÞ the functions � and � (and
possibly other functions) will also have a specific depen-
dence on x�. Only in this way can an effective four-
dimensional theory be obtained which is consistent with
a fixed brane tension. While dimensional reduction for
variable tension branes is straightforward, it becomes
rather involved for fixed tension branes.

Let us finally address the cosmological constant problem
in the light of our findings. We have encountered two
different types of solutions that are extrema of the
higher-dimensional action: static solutions and runaway
solutions. Static solutions have the maximal four-
dimensional symmetry of Minkowski, de Sitter or anti-
de Sitter space. They occur both for fixed and variable
tension branes. The solutions of the higher-dimensional
field equations are subject to additional constraints, either
from the fixed brane tension or from the brane constraint
that variable tension branes must obey. Typically, for the
static solutions the effective four-dimensional cosmologi-
cal constant has a value which is fixed by the parameters of
the theory. Obtaining a zero or very small value of the
cosmological constant may require an apparent fine-tuning
of parameters. In other words, such values need some
additional explanation. On the other hand, the dimension-
less couplings of the standard model of particle physics
have naturally static values, such that no problems with a
too strong time variation of those couplings arise.

For the runaway solutions, in contrast, the effective four-
dimensional cosmological ‘‘constant’’ typically goes to
zero as time increases to infinity. This asymptotically
vanishing value is a simple consequence of geometry and
therefore stable with respect to quantum fluctuations. This

may solve the problem of the cosmological constant by a
quintessence-type cosmological scaling solution. There the
value of the dark energy density is naturally of the same
order as the energy density in matter and radiation—both
decrease with the inverse second power of time. Indeed, for
the runaway solutions the effective potential for the scalar
cosmon field turns out to be of the exponential type which
leads to such scaling solutions as cosmological attractors.
In order to explain the recent relative increase of the dark
energy fraction (‘‘Why now problem’’) the scaling solu-
tions need some additional ingredient which causes an end
of the scaling regime—one possible mechanism could be
an effective stop of the time evolution of the cosmon field
triggered by a growing neutrino mass [20]. The potential
problems from this scenario arise from a different side.
Since the geometry of internal space and the warping are
not static, the rather strict bounds on a possible time
variation of fundamental couplings in particle physics
have to be explained.
Again, runaway solutions can exist both for fixed tension

and variable tension branes. In a certain sense, they are
more generic for variable tension branes, since the stabi-
lizing effect of a fixed brane tension is absent. In our
specific model the characteristic cosmological solutions
are all runaway solutions, except for a few unstable static
solutions for singularities with codimension larger than 2.
Variable tension branes offer perhaps also more freedom
for a solution of the problem of ‘‘running couplings’’ in
runaway solutions. It is conceivable that the adjustment of
the strength of the singularity during the runaway occurs in
a way that leaves the dimensionless couplings of elemen-
tary particle physics fixed.
Within our class of models, we have found an interesting

class of runaway solutions, for which the asymptotic be-
havior approaches the static solution with ~V ! 0, �1 ! 0,
�2=�! 0. This static solution may not be flat
d-dimensional space, but rather a brane or zerowarp solu-
tion with �� z
, �� z�� for all z. For the runaway
solution the coefficient cR, which multiplies the four-

dimensional curvature scalar Rð4Þ, may remain finite, di-
verging only for t! 1. In this case an effective four-
dimensional gravity may be well defined. For the models
with a higher-dimensional field the limit ~V ! 0 corre-
sponds to a free massless scalar field. This is the Weyl-
scaled version of a higher-dimensional model with dilata-
tion symmetry [14]. In the asymptotic limit the brane or
zerowarp solution therefore corresponds to the spontane-
ous breaking of an exact dilatation symmetry, with an
exactly massless cosmon field as the corresponding
Goldstone boson [14].
The effective four-dimensional theory for our ansatz

with SOðD2 þ 1Þ isometry will contain the gauge bosons
of a non-Abelian Yang-Mills theory with gauge symmetry
SOðD2 þ 1Þ. The gauge coupling g is dimensionless in
four dimensions—it mimics the dimensionless couplings
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of the standard model of elementary particle physics. We
may ask if it is possible for a runaway solution that g runs
towards a nonvanishing fixed point value g
 as time in-
creases to infinity. Then one may expect that for late times
the change of g is small. In a more realistic analogue this
could explain the observed (approximate) constancy of the
couplings. The four-dimensional non-Abelian gauge the-
ory leads to a coupling depending on the length scale,

inducing a confinement scale ~� by dimensional transmu-
tation. If we identify g with the ‘‘running coupling’’ gðMÞ
evaluated at the Planck scale, a fixed g would result in a

fixed (exponentially small) ratio ~�=M. This could be the
analogue for a fixed ratio between the nucleon mass and
the Planck mass in a more realistic scenario.

For a realistic runaway solution we require the following
conditions:

(i) The effective cosmological constant should go
asymptotically towards zero. A characteristic value
for the present time which is compatible with obser-
vation is V=M2 � 10�120.

(ii) The dimensionless gauge coupling g should asymp-
totically approach a constant value.

(iii) The mass of the Kaluza-Klein excitations should
remain sufficiently large such that internal space
has not yet been observed. For the present time this
requires MKK=M * 10�14.

We argue that a runaway solution is not incompatible
with a constant g. By simple scaling arguments one finds

g�2 � LD2�1AðD2�2Þ=2
� : (147)

Despite an increasingL during a runaway solution one may
have a simultaneous decrease of A� towards zero such that

g remains constant. This would require a behavior during
the runaway where

A� � L�ð2D2�2Þ=ðD2�2Þ: (148)

The effective radius of the D2-dimensional subspace

�L ffiffiffiffiffiffi
A�

p � ðg2LÞ�1=ðD2�2Þ would decrease for a solution

with increasing L and constant g. On the other hand, the
effective four-dimensional scalar potential (or ‘‘cosmo-
logical constant’’) scales as

V

M4
� L�ðD2þ1ÞA�ðD2=2Þ

� ~cV � g2D2=ðD2�2ÞL2=ðD2�2Þ~cV:

(149)

A fixed g does not contradict V=M4 ! 0, which may be
due to ~cV ! 0. Thus a runaway of the cosmological con-
stant towards zero could be compatible with a fixed gauge
coupling. Also internal space could remain unobservable,
requiring RKK * 10�28. The ratio RKK ¼ M2

KK=M
2 be-

haves for fixed g as L�2ðD2�3Þ=ðD2�2Þ. For a realistic model
with a moderate increase of L, a decrease of ~cV with a
sufficiently high power of L�1 would be needed for an
acceptable present dark energy density. Another option

may be decreasing L, with A� increasing according to

Eq. (148). Then RKK picks up an additional factor A�1
� ,

such that RKK � L4=ðD2�2Þ.
A particular simple form of runaway would only rely on

decreasing ~cV , while L and A� remain approximately

constant. Quite generally, one finds for D1 ¼ 4

g�2 �
Z
z
�ðD2�2Þ=2 (150)

such that a constant gauge coupling obtains for a static
internal geometry or, more generally, if the function

z�ðD2�2Þ=2 remains essentially constant around its maxi-
mum. The gauge coupling is independent of the warping�,
however, and therefore not affected by a possible runaway
of the warping near the singularities. Nevertheless, the
warp factor influences the masses of the Kaluza-Klein
modes and its change is restricted from this side. If realistic
phenomenology requires, within our model, an almost
static internal geometry, a possible runaway could only
concern the scalar sector, with a runaway of the scalar
potential towards zero. It remains to be seen if a runaway
of this type can be realized in an appropriate model. A
search for such possibilities opens interesting new perspec-
tives for a solution of the cosmological constant problem.
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APPENDIX: FLAT BRANES IN HIGHER-
DIMENSIONAL GRAVITY WITHOUTA

COSMOLOGICAL CONSTANT

An interesting special case is d-dimensional gravity
without a d-dimensional cosmological constant, ~V ¼ 0,
and with a vanishing D1-dimensional cosmological con-
stant,�1 ¼ 0. This will appear as the limiting behavior for
small ~V and �1. In particular, the solutions will comprise
the flat branes embedded in flat space. We first consider the
case of positive �2 and take �2 ¼ D2 � 1, such that flat
space is realized asymptotically for z! 1 if � ¼ z2, � ¼
const. If a brane sits at �z its codimension isD2 þ 1. We will
concentrate the discussion here on branes with codimen-
sion larger than 2, D2 � 2.
For ~V ¼ 0, �1 ¼ 0, �2 ¼ D2 � 1 Eqs. (21) and (22)

simplify to

U0 ¼ �D1

2
U2 �D2

2
UW; (A1)

W 0 ¼ �D2

2
W2 �D1

2
UW þ 2ðD2 � 1Þ

�
; (A2)

with Eq. (19) yielding
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W ¼ � D1

D2 � 1
Uþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD1 þD2 � 1Þ
D2ðD2 � 1Þ2 U2 þ 4

�

s
: (A3)

Equation (A3) can also be written in the form

D2 � 1

�
¼ D2 � 1

4
W2 þD1

2
UW þD1ðD1 � 1Þ

4D2

U2;

(A4)

such that Eq. (A2) becomes

W 0 ¼ � 1

2
W2 þD1

2
UW þD1ðD1 � 1Þ

2D2

U2: (A5)

For the special case of black holes with D1 ¼ 1 the
equations can be further simplified. With

W ¼ U

D2 � 1

�
�1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðD2 � 1Þ2

�U2

s �
(A6)

we obtain the relation

ðD2 � 1ÞW2 þ 2UW ¼ 4ðD2 � 1Þ
�

: (A7)

This can be used to write Eq. (A2) in the form

W 0 ¼ �1
2W

2 þ 1
2UW: (A8)

As a particular case we note that for the five-dimensional
black hole, D1 ¼ 1, D2 ¼ 3, one has

U0 þW 0 ¼ � 1

2
ðUþWÞ2; UþW ¼ 2

z
; (A9)

and therefore

� ¼ z2

c�
: (A10)

We first concentrate on the solutions describing a flat
brane embedded in d-dimensional flat space. The embed-
ding into an asymptotically flat space implies the boundary
condition

lim
z!1� ¼ z2; lim

z!1� ¼ 1; lim
z!1W ¼ 2

z
: (A11)

Equation (A3) is obeyed asymptotically for � ¼ þ1, if U
decays faster than z�1. In this case the asymptotic behavior
of Eq. (A2),

W 0 ¼ �D2

2
W2 þ 2ðD2 � 1Þ

z2
; (A12)

is obeyed by Eq. (A11). The leading behavior for U is
given by Eq. (A1),

U0

U
¼ �D2

z
; U ¼ u1z�D2 ; (A13)

and therefore for z! 1

� ¼ 1� u1
D2 � 1

z�ðD2�1Þ: (A14)

We may fix the initial values for �, �, and U for some

very large z0, i.e. �0 ¼ z20,U0 ¼ u1z
�D2

0 and �0,W0 given

by Eqs. (A3) and (A14). The fate of the solution for smaller
values of z depends on the integration constant u1. For
u1 ¼ 0 we recover flat D1 þD2 þ 1-dimensional space,
i.e. the exact solution � ¼ z2, � ¼ 1. For u1 � 0 we may
have either a singularity or finite nonzero values of � and�
for all finite z. However, finite nonzero values for � and �
for z! �1 are excluded. This would imply vanishing U
and W in this limit and would contradict Eq. (A2). We
conclude that either � or � have to vanish or diverge at
some value �z or for z! �1.
We may insert Eq. (A3) into Eq. (A1),

U0 ¼ U2

2D1ðD2 � 1Þ
�
1� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðD1 þD2 � 1Þ

D1

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D2ðD2 � 1Þ2

D1ðD1 þD2 � 1Þ�U2

s �
: (A15)

For the case of higher-dimensional black holes, where
D1 ¼ 1, this equation reads

U0 ¼ U2

2ðD2 � 1Þ
�
1� �D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðD2 � 1Þ2

�U2

s �
: (A16)

The qualitative behavior of the solution can be understood
by comparing the relative importance of the two terms
under the square root in Eqs. (A15) and (A16). For large

z one has �U2 ! u21z�2ðD2�1Þ such that the second term in
the square root�ð�U2Þ�1 is large. As long asW þ 2U0=U
remains negative, the importance of this term decreases as
z gets lower. With

W þ 2U0

U
¼ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD1 þD2 � 1Þ

D2

U2 þ 4ðD2 � 1Þ2
�

s

(A17)

and � ¼ 1 this is indeed the case. We note that the square
root multiplying � never vanishes, such that by continuity
� ¼ 1 for the whole range of z where the solution exists.
The solution therefore makes a smooth transition from the
regime of small �U2 for large z to the regime of large �U2

for smaller z.
In the second regime we can expand the square root in

powers of ð�U2Þ�1. The leading terms read for D1 > 1

W ¼ D1U

D2 � 1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 þD2 � 1Þ

D1D2

s
� 1

�
(A18)

and
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U0 ¼ � D1U
2

2ðD2 � 1Þ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðD1 þD2 � 1Þ

D1

s
� 1

�
¼ U2

�
:

(A19)

Here we define � ¼ signðUÞ, and

� ¼ � 2

D1 þD2

�
1þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðD1 þD2 � 1Þ

D1

s �
(A20)

corresponds to �� for � ¼ 1, while for � ¼ �1 we find
�þ [cf. Eq. (54)]. We note that Eqs. (A19) and (A20) are
also the leading contribution for D1 ¼ 1. The general
solution

U ¼ � �

z� �z
; � ¼ �0ðz� �zÞ�� (A21)

shows a singularity at �z where � vanishes. (Without loss of
generality we can choose �z ¼ 0.) At this singularity one
has

W ¼ 


z� �z
; � ¼ �0ðz� �zÞ
; (A22)

and we find from Eq. (A18) for D1 > 1


 ¼ � D1�

D2 � 1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 þD2 � 1

D1D2

s
� 1

�

¼ � 2

ðD1 þD2Þ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðD1 þD2 � 1Þ

D2

s
� 1

�

¼ 2þD1�

D2

: (A23)

For � ¼ 1 one has 
� which is negative for allD1 > 1. The
function � diverges as the singularity is approached. Since
the warp factor goes to zero (� ¼ �� < 0) we encounter a
zerowarp. The contribution to the volume factor including
the warping goes to zero,

�D1=2�D2=2 � ðz� �zÞðD2
�D1�Þ=2 � z� �z: (A24)

On the other hand, for U < 0, � ¼ �1, the singular ex-
ponents are given by the positive values ð�þ; 
þÞ. Now �
goes to zero for D1 > 1 and the solution describes the
singular geometry of a brane with codimension D2 þ 1 �
3. Since � vanishes at the singularity, there is no horizon
away from the singularity. While R and R�̂ �̂R

�̂ �̂ remain

zero as the singularity is approached, we expect that

R�̂ �̂ �̂ �̂R
�̂ �̂ �̂ �̂ and other invariants diverge, such that we

have a true singularity. In the brane picture, this singularity
in the metric will be produced by a singular energy mo-
mentum tensor for the brane sitting at �z. Numerical solu-
tions yield either a brane or a zerowarp singularity,
depending on the integration constants. Oncewe have fixed
the location of the singularity at z ¼ 0 and the normaliza-
tion �ðz! 1Þ ! 1, there remains only one free integra-
tion constant. This may be identified with the strength of

the singularity, similar to the mass of a black hole, and is
reflected in u1.
The case of black holes for D1 ¼ 1 is special. ForD1 !

1 one finds from Eq. (A23) �! �2, 
! 0. This is an
indication for the qualitative changes for the black hole for
D1 ¼ 1. Indeed, for D1 ¼ 1 the leading behavior of W for
large �U2 becomes

W ¼ 2ðD2 � 1Þ
�U

; U ¼ 2

z� �z
(A25)

or

�0 ¼ ðD2 � 1Þðz� �zÞ; � ¼ �s þD2 � 1

2
ðz� �zÞ2:

(A26)

For �s > 0 one finds, close to the singularity, �! const,
�! �0ðz� �zÞ2, such that �U2 ! 4�s=ðz� �zÞ2 diverges.
On the other hand, for �s ¼ 0 both � and � vanish �ðz�
�zÞ2, and therefore �U2 ! 2ðD2 � 1Þ. The approximation
leading to Eq. (A25) therefore does not remain valid for
�s ¼ 0.
The case �s ¼ 0 corresponds to 
 ¼ 2 for the general

ansatz (53). In this case Eq. (54) is no longer valid. For 
 ¼
2 the terms���1 matter and Eqs. (A1) and (A2) imply the
relations

� ¼ 2ðD2 � 1Þ
D1

; (A27)

2ðD2 � 1Þ �D1� ¼ 2ðD2 � 1Þ
�0

: (A28)

Equations (A27) and (A28) have no solution for D2 > 1
and finite �s. Indeed, a numerical solution of the differen-
tial equations shows that �ðz! �zÞ always approaches a
positive constant �s > 0, for all integration constants u1 �
0. This shows that isotropic black holes in arbitrary dimen-
sions always have a horizon.
In order to make contact with the Schwarzschild metric

ds2 ¼ �BðrÞdt2 þ AðrÞdr2 þ r2d2�, we identify

r2 ¼ �ðzÞ; BðrÞ ¼ �ðzÞ;
A1=2ðrÞdr ¼ dz; AðrÞ ¼ 4�

�02 ¼
4

�W2
:

(A29)

The nonzero value of �s for D1 ¼ 1 implies that the
singularity occurs for a nonzero Schwarzschild radius rs ¼ffiffiffiffiffi
�s

p
, corresponding to the horizon. In our coordinates the

relation AðrÞBðrÞ ¼ const translates to

�0

�
þ �0

�
� 2�00

�0 ¼ 0: (A30)

This can be written as W 0 ¼ 1
2UW � 1

2W
2 and coincides

with Eq. (A8). Using Eq. (A29) our solution for black holes
in arbitrary dimensions can easily be transformed to the
Schwarzschild coordinates.
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One may ask if a horizon can also exist for branes with
D1 > 1. A finite �s at the singularity corresponds to 
 ¼ 0.
From Eq. (A3) we conclude that this is not possible for
D1 > 1. The generalized branes embedded in flat space
have no horizon, except for the black holes with D1 ¼ 1.

For ~V ¼ 0, �1 ¼ 0, �2 > 0, the solutions of branes
embedded in flat space are the generic solutions. We can
take � ¼ 1 and use the fact that � cannot switch since F is
negative [cf. Eqs. (18) and (57)]. We therefore can have
only one singularity. This must be encountered for decreas-
ing z. Taking the location of the singularity at z ¼ 0 and
following the solution for positive z, one finds flat space for
z! 1.

The situation changes drastically for �2 < 0. Now the
sign � may switch. We find indeed solutions with two
singularities, one brane ð�þ; 
þÞ and one zerowarp
ð��; 
�Þ. The volume as well as the effective
D1-dimensional gravitational constant �cR are finite. In
contrast to the solutions for �2 > 0 an effective
D1-dimensional gravity exists for �2 < 0.

Finally, we can consider the boundary case ~V ¼ 0,�1 ¼
0, �2 ¼ 0. In this case we find that the singular solutions
(53), both for ð�þ; 
þÞ and ð��; 
�Þ, are exact. Also
�ðzÞ ¼ �0, �ðzÞ ¼ �0 is an exact solution. This describes
flat space in Cartesian or torus coordinates if we take

gðD2Þ
	
 ¼ �	
. For all these solutions cR diverges. For �1 ¼

�2 ¼ 0 the overall scaling of � and � does not enter the
equations such that�0 and �0 are integration constants that
may be set to arbitrary values without affecting the char-
acter of the solution. At some zin we may take �in ¼
�0z

��
in , �in ¼ �0z



in. For an arbitrary value of the third

integration constant Uin � 0, we can always find zin such
that Uin ¼ ���=zin. This means that these initial values
correspond to the exact solution (53) for appropriate �0

and �0. For Uin ¼ 0 one has the flat solution. The exact
solutions (51) are therefore the most general solutions for
~V ¼ �1 ¼ �2 ¼ 0, with integration constants given by
�0, �0 and the location of the singularity �z. For D2 ¼ 1
only the zerowarp solution exists besides flat space.
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