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Gravitational waves potentially represent our only direct probe of the universe when it was less than one

second old. In particular, first-order phase transitions in the early universe can generate a stochastic

background of gravitational waves which may be detectable today. We briefly summarize the physical

sources of gravitational radiation from phase transitions and present semianalytic expressions for the

resulting gravitational wave spectra from three distinct realistic sources: bubble collisions, turbulent

plasma motions, and inverse-cascade helical magnetohydrodynamic turbulence. Using phenomenological

parameters to describe phase transition properties, we determine the region of parameter space for which

gravitational waves can be detected by the proposed Laser Interferometer Space Antenna. The electro-

weak phase transition is detectable for a wide range of parameters.
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I. INTRODUCTION

Since gravitational waves propagate freely through the
universe after being generated, their detection provides a
powerful test of the very early universe. Various mecha-
nisms that generate such gravitational waves have been
discussed: quantum fluctuations during [1] and shortly
after inflation [2]; bubble wall motion and collisions during
phase transitions [3–7]; cosmic strings and defects, includ-
ing primordial black holes [8]; cosmological magnetic
fields [9–11]; and plasma turbulence [12–15]. This paper
focuses on gravitational waves generated during phase
transitions, and we study the possibility of direct detection
by the planned Laser Interferometer Space Antenna
(LISA).

Near-future data from the CERN Large Hadron Collider
will, for the first time, have the ability to probe in detail
physics at the electroweak energy scale. This physics
determines the nature of the electroweak phase transition
in the early universe, when the primordial plasma went
from an electroweak-symmetric state to a broken state with
distinct electromagnetic and weak interactions. The phase
transition took place when the primordial plasma had a
temperature on the order of 1 TeV. Intriguingly, the Hubble
frequency H� at this epoch, redshifted to today, falls in the
lower end of the detection range for LISA, which ranges
from 10�4 to 10�1 Hz [16]. If gravitational waves are
generated during the electroweak phase transition, their
characteristic frequency will be related to this Hubble

frequency: remarkably, gravitational waves may provide
us with an alternate route to probing electroweak physics.
Having gravitational waves at detectable frequencies is

not sufficient for detecting the electroweak phase transi-
tions: the source of gravitational waves must be sufficiently
strong to produce radiation with a detectably large ampli-
tude today [17–20]. If the phase transition is first order, the
latent heat of the phase transition is partly transferred into
kinetic energy of the walls of expanding bubbles of the
broken phase. If these expanding bubbles contain a large
enough amount of energy, they will produce a gravitational
wave background with a detectably large amplitude today
[3]. Models of the electroweak phase transition based on
standard-model particle physics do not produce observable
gravitational wave signals since they are not first order for
allowed values of the Higgs mass [21], but common ex-
tensions of the standard model, including supersymmetry
and extra dimensions, can produce much stronger phase
transitions [22].
Bubbles of broken phase in a first-order phase transition

expand and percolate to convert the entire universe to the
low-energy phase. The kinetic energy in the bubble walls
eventually thermalizes, but prior to that the bubbles act to
stir the primordial plasma, plausibly generating
Kolmogoroff turbulence cascading from the turbulence
scale to a much smaller scale where the kinetic energy
turns into thermal energy via viscous heating. The turbu-
lent eddy motions can also be a potent source of gravita-
tional waves if the energy input is large enough [12]. If a
small magnetic seed field with nonzero helicity is gener-
ated at the phase transition [23,24], magnetohydrodynamic
effects can generate an inverse cascade, transferring energy
to scales substantially larger than the stirring scale [15] and
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resulting in a detectably large signal [25]; additionally they
can give the radiation a nonzero circular polarization [14]
which is also directly detectable [26]. So, gravitational
wave generation from an early universe phase transition
can be decomposed into three distinct sources: expanding
bubbles of the broken phase, hydrodynamic turbulence
stirred by the colliding bubbles, and an inverse cascade
due to the amplification of seed magnetic fields.

Previous papers have computed the gravitational wave
spectra for each of these sources individually. Here we
consider their combined spectrum. The detailed shape
and amplitude of the spectrum depends on fundamental
properties of the phase transition: its energy scale, bubble
nucleation rate, latent heat, efficiency of converting latent
heat into plasma motions, and mean helicity of seed mag-
netic fields. We summarize how the total power spectrum
depends on these parameters, then evaluate the regions of
parameter space for which the relic gravitational radiation
from the phase transition is detectable with LISA, display-
ing the results as contour plots in the parameter space.
While the bubble collisions produce detectable gravita-
tional radiation for a very limited range of parameters,
adding the radiation from turbulence and an MHD inverse
cascade greatly widens the range of detectable phase
transitions.

In the following section, we give a brief overview of the
physics of phase transitions and the corresponding phe-
nomenological parameters. In Sec. III, we express the
gravitational wave spectra in terms of these phenomeno-
logical parameters, and show how the total gravity wave
spectrum varies with the parameters. Section IV compares
these spectra with the projected LISA sensitivity curve for
stochastic backgrounds, displaying detectability regions in
the space of phase transition parameters.

II. MODELING GRAVITATIONAL RADIATION

A. General remarks on gravitational wave generation

Gravitational waves generated during phase transitions
by stochastic sources have an energy density just after the
phase transition of [27]

�GWðxÞ ¼ 1

32�G
h@thijðx; tÞ@thijðx; tÞi

¼ G

2�

Z
d3x0d3x00 h@tSijðx0; t0Þ@tSijðx00; t00Þi

jx� x0jjx� x00j ; (1)

where time variables with primes represent the light-cone
combination t0 ¼ t� jx� x0j, i and j are spatial indices
(repeated indices are summed), the source Sijðx; tÞ ¼
Tijðx; tÞ � �ijT

k
kðx; tÞ=3 is the traceless part of the stress-

energy tensor Tij, G is the gravitational constant, and we

use natural units with @ ¼ c ¼ 1. This expression assumes
that the duration of the phase transition is short enough to
neglect the cosmological expansion during gravitational
wave production. Since the phase transition lasts for a finite

duration, we can consider the total radiation field to be an
incoherent sum of radiation from many sources, each with
a size corresponding to the light travel distance during the
phase transition.With this approximation, we can apply the
far-field approximation for each individual source region,
x � d where d is the size of the source region; in this
region the gravitational waves are the only metric pertur-
bations [28], allowing replacement of jx� x0j by jxj in
Eq. (1).
The generated gravitational waves propagate freely

through the expanding universe. Their wavelengths simply
scale with the scale factor a of the universe, while their
total energy density evolves like a�4 and their amplitude
decays like a�1. Following Ref. [27], we use the gravita-
tional wave spectral energy density �GWð!Þ per logarith-
mic angular frequency !, defined as the root-mean-square
average of �GWðx; !Þ over spatial positions, and form the
spectral energy density parameter�GWð!Þ ¼ �GWð!Þ=�c

with the critical energy density �c ¼ 3H2
0=8�G. Changing

to linear frequency f ¼ !=2�, a characteristic strain am-
plitude is conventionally defined as

hcðfÞ ¼ 1:3� 10�18

�
1 Hz

f

�
½h20�GWðfÞ�1=2 (2)

where h0 is the current Hubble parameter H0 in units of
100 km sec�1 Mpc�1. We will present our results in terms
of the gravitational wave amplitude hc vs linear frequency
f measured today.
The temperature at which the phase transition occurs

determines the corresponding Hubble frequency, which is
given today by [12]

fH ¼ 1:6� 10�5 Hz

�
T�

100 GeV

��
g�
100

�
1=6

(3)

where g� is the number of relativistic degrees of freedom at
the temperature T�; for standard-model degrees of free-
dom, g� � 106:75 as T ! 1. To obtain this expression,
begin with the Hubble parameter at temperature T�, given
by

H2� ¼ 8�3T4�
90M2

Pl

; (4)

and then rescale H� to its present value with the ratio
between the scale factors a� corresponding to the
Universe temperature T� and a0 today:

a�
a0

¼ 8� 10�16

�
100 GeV

T�

��
100

g�

�ð1=3Þ
: (5)

Note that an extra factor of approximately 3.6 occurs for fH
in Ref. [29] [Eq. (10)] due to approximating H2� ’ G�tot.
It can be shown from general physical principles that

since the gravitational wave generation process is causal,
the peak frequency must be greater than or equal to the
Hubble frequency, fpeak � fH [3]. Independent of the na-

ture of the source, the gravitational wave spectrum is the
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same at low frequencies, �GWðfÞ / ðf=fpeakÞ3 (for f �
fpeak) [5,11,12,15,18,30]. The gravitational spectrum be-

havior at higher frequencies is determined by the specific
source features.

B. Phase transition model parameters

A first-order phase transition is generically described by
several parameters: (i) � 	 �vac=�thermal, the ratio of the
vacuum energy associated with the phase transition to the
thermal density of the Universe at the time (which charac-
terizes the strength of the phase transition); (ii) �, an
efficiency factor which gives the fraction of the available
vacuum energy which goes into the kinetic energy of the
expanding bubble walls, as opposed to thermal energy;
(iii) ��1, which sets the characteristic time scale for the
phase transition; (iv) vb, the velocity of the expanding
bubble walls, which set the characteristic length scale of
the phase transition; and (v) T�, the temperature at which
the phase transition occurs. In any first-order phase tran-
sition, the characteristic bubble nucleation rate per unit
volume is generically [31]

� ¼ �0e
�t; (6)

which uses the constant and linear terms of a Taylor
expansion of the bubble nucleation action. General con-
siderations confirmed by numerical calculations show that
the largest bubbles reach a size of order ��1vb by the end
of the phase transition [6], where vb is the bubble expan-
sion velocity, assuming the bubbles remain spherical as
they expand. In general, � is expected to be of the order
4 lnðmPl=TÞH ’ 100H for a Hubble rate H [31].

The fundamental symmetry breaking mechanism which
drives the phase transition determines some effective po-
tential for bubble nucleation [32]. The difference in energy
density between the two phases and the bubble nucleation
rate are both determined by this mechanism. Thus the
parameters T�, �, and � are all determined directly by
the underlying physics. On the other hand, the bubble
velocity vb and the fraction of kinetic energy into the
bubbles � depend on the detailed microphysics involved
in the bubble propagation through the relativistic plasma
and are not determined from general properties of the
effective potential. In general, the larger the vacuum en-
ergy density driving phase transition, the higher the bubble
wall velocity vb [4,31].

III. SOURCES OF GRAVITATIONAL RADIATION

A. Bubble collisions

Bubble walls can propagate outwards through a relativ-
istic plasma via two modes, detonation and deflagration
[33]. In the case of detonation, the bubble walls are thin
compared to the bubble radius, with velocity [33]

vbð�Þ ¼ 1=
ffiffiffi
3

p þ ð�2 þ 2�=3Þ1=2
1þ �

; (7)

and an approximate form of � is given [4] by

�ð�Þ ¼ 1

1þ A�

�
A�þ 4

27

�
3�

2

�
1=2

�
(8)

with A ¼ 0:715. If the bubbles propagate as a deflagration
front, the walls are thick and have lower energy density.
However, it has been argued [34] that for relativistic
plasma, instabilities in the bubble shape will accelerate
the bubble walls, so that the hydrodynamic deflagration
expansion mode is unstable to becoming a detonation. For
this reason, Ref. [4] assumes that Eqs. (7) and (8) hold, and
we will also make that assumption here. (For unusual cases
with very strong detonation and � * 1, the following
formulas must be corrected.) Both modes of bubble propa-
gation recently have been readdressed in Ref. [30], with
results slightly different from those of Ref. [4].
The peak frequency of the gravitational wave spectrum

is of fundamental importance for issues of detectability.
The bubble nucleation time scale is always determined by
��1, while the largest bubble size depends also on the
bubble wall velocity, l0 ¼ vb�

�1. What scale determines
the peak frequency of the gravitational waves? When the
bubble wall velocity vb approaches the speed of light,
l�1
0 ’ � and both characteristic frequency scales are the

same. In Refs. [3–5], where the bubble wall velocity is
assumed to be the speed of light, the peak frequency is
given by [4,18,30]

fBCpeak ¼ 0:3

�
�

H?

�
fH: (9)

Note that the angular peak frequency at the moment of
emission !BC

peak? is set by 0:3k0vb ’ 2� (where k0 ¼
2�=l0). To understand the peak frequency of the radiation
from bubble walls with lower velocity, it is useful to exploit
the direct analogy with sound wave generation. The typical
source velocity compared to the velocity of the induced
waves determines the characteristic peak frequency [35]. If
the characteristic source velocity, given by the ratio be-
tween the source’s characteristic length and time scales, is
less than the group velocity of the induced waves, then the
frequency is determined by the source time scale; in the
opposite case, the characteristic length scale determines
the peak frequency. Applied to gravitational waves with
group velocity v ¼ 1, the source time scale always deter-
mines the peak radiation frequency, since by causality its
characteristic velocity can never exceed the speed of light.
For the realistic values �=H� ¼ 100 and g� ¼ 100, the

peak frequency from bubble collisions fBCpeak ’ 5�
10�4 Hz [18] is close to the peak of LISA sensitivity at
2 mHz if T� ’ 100 GeV. The corresponding peak ampli-
tude of the gravitational radiation today is [4]

DETECTABILITY OF GRAVITATIONAL WAVES FROM . . . PHYSICAL REVIEW D 78, 043003 (2008)

043003-3



hcðfBCpeakÞ ¼ 1:8� 10�16�

�
�

�þ 1

��
H?

�

�
2
�
100

g?

�
1=3

�
�
100 Gev

T?

��
v5
b

v3
b þ 0:24

�
1=2

: (10)

The spectrum shape at high frequencies (f � fH) is
hcðfÞ / f�2 [30], very close to the scaling hcðfÞ / f�1:9

found numerically in Ref. [4].

B. Turbulence

Once the bubbles expand and percolate, a significant
amount of their kinetic energy will be converted to turbu-
lent bulk motions of the primordial plasma [5]. As the
phase transition ends, far more small bubbles have been
nucleated than large ones, but the energy density in the
large ones dominates the total energy density [31].
Therefore, a reasonable approximation is that the turbu-
lence energy is injected on a stirring scale l0 corresponding
to the size of the largest bubbles, and that the stirring will
last for roughly �stir ¼ ��1, comparable to the duration of
the phase transition. We make the conservative assumption
that the duration of the turbulence is also �stir. The turbu-
lence can actually last substantially longer than this; see
Ref. [12] for a detailed discussion. After generation, the
turbulence kinetic energy cascades from larger to smaller
scales, stopping at a viscous damping scale lD where the
turbulence energy is dissipated into heat. We define the
parameter � 	 l0H? ’ vbðH�=�Þ which determines the
number (Neddy ’ ��3) of turbulent eddies within the

Hubble radius. In terms of the parameter �, Eq. (9) reads
fBCpeak ¼ 0:34fHvb=�.

We associate a characteristic velocity perturbation v0

with the fluid velocity of the largest eddies at the stirring
scale l0. This velocity determines the turbulent motions’
Mach number M ’ v0. It is easy to estimate v0 by relating
the kinetic energy density of plasma wv2

0=ð1� v2
0Þ (where

w ¼ pþ � is the enthalpy of plasma) and the vacuum
energy �vac using w ¼ 4��vac=3. This leads to [18]

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3��

4þ 3��

s
: (11)

Accounting for Eq. (8), v0 can be expressed uniquely in
terms of � and, in the case of realistic phase transitions,

when �< 1, v0 ’ �3=4ð3=2Þ1=4=3, and of course is less
than the bubble wall expansion speed vb. For �� ’ 1
corresponding to a strongly first-order phase transition,
v0 ’ 0:65.

Figure 1 of Ref. [15] shows that it is safe to adopt the
aero-acoustic limit k ! 0 in the gravitational wave gen-
eration formalism for turbulent sources, provided only that
the Mach number M & 1. Employing this simplifying
assumption and adopting the results of Ref. [15], the
peak frequency of gravitational waves is given by

fTpeak ¼
�
M

vb

�
fH

�
�

H?

�
’ 0:3

�
M

vb

�
fBCpeak: (12)

For typical parameters � ¼ 100H�, T� ¼ 100 GeV, g� ¼
100, and � ¼ 0:5 (which correspond to � ¼ 0:36, vb ¼
0:89, and v0 ¼ 0:34), the peak frequency is 0.4 mHz,
within the LISA range.
At frequencies high compared to the characteristic

damping frequency, f � fD 	 fTpeakR
1=2 where R is the

turbulence Reynolds number, the gravitational wave strain

spectrum hcðfÞ � ðf=fDÞ1=2 expð�ðf=fDÞ2Þ possesses a
sharp exponential cutoff. Near the peak frequency, for

fTpeak < f < fD, the spectrum scales like hcðfÞ ’
ðf=fTpeakÞ�13=4 [15]. The peak frequency of the radiation

spectrum from bubble collisions for the parameters con-
sidered here is lower than the peak frequency due to
turbulence, fBCpeak < fTpeak, and the bubble collision spec-

trum falls only as ðf=fBCpeakÞ�2 at frequencies above the

peak, but even at frequencies substantially greater than
fTpeak, the total gravitational wave spectrum is not domi-

nated by the bubble collision source, due to the lower
amplitude of gravitational waves induced by collisions.
The gravitational wave amplitude from turbulence can

be conveniently estimated analytically using the aero-
acoustic approximation (see Refs. [15,25] for details of
numerical computations), giving

hcðfTpeakÞ ¼ 3:3� 10�16M3=2v2
b

�
H?

�

�
2
�
100

g?

�
1=3

�
�
100 GeV

T?

�

’ 1:9M3=2

�
�þ 1

��

��
vb

v3
b þ 0:24

��1=2
hcðfBCpeakÞ

(13)

and for � ’ 0:5 is approximately 3 times larger than the
peak amplitude coming from bubble collisions.

C. MHD inverse-cascade turbulence

Several models lead to generation of a cosmological,
helical, magnetic field during phase transitions [23,24]. In
such a case, turbulence develops in a magnetized plasma,
which is qualitatively different than an unmagnetized
plasma. In particular, an inverse cascade, which generates
magnetized perturbations on larger scales than the stirring
scale, can occur. To model such turbulence, we assume that
the hydrodynamic and magnetic Reynolds numbers are
much greater than unity on scales �l0 (which is simply
the condition for turbulence to develop); we also assume
that the dynamics of magnetohydrodynamic turbulence is
dominated by Alfvén waves for which the magnetic and
kinetic energy densities are in approximate equipartition
[36]. We also assume a small initial magnetic helicity, 	� 	
HMðt�Þ=½2
Mðt�ÞEMðt�Þ� � 1, of a magnetic field with
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the magnetic-eddy correlation length 
MðtÞ 	R
EMðk; tÞk�1dk=EMðtÞ and with total magnetic energy

EMðtÞ ¼
R
EMðk; tÞdk and helicity HMðtÞ ¼R

HMðk; tÞdk. From the stirring scale, the direct cascade

proceeds via a Kolmogoroff-like model [37,38] and the
following inverse-cascade stage adopts the MHD turbu-
lence model of Refs. [39,40]. Then it can be shown that the
induced gravitational wave spectrum always peaks at the
Hubble frequency fMHD

peak ¼ fH [25], and compared to the

turbulence peak frequency, it is shifted to lower frequen-
cies by a factor ðvb=MÞðH�=�Þ.

The amplitude is larger compared to the hydrodynamic
turbulence case, as [25]

hcðfMHD
peak Þ ’ 32� 	9=8�

�
�

0:01

��3=4
M3=4hcðfTpeakÞ

¼
�
M

vb

�
3=4

	9=8� hcðfTpeakÞ: (14)

This increase in amplitude is because the duration of the
inverse cascade is longer than the duration of the direct
cascade. No efficient dissipation mechanisms exist at the
largest scales, so the cascade will stop at a scale 
M ¼
1=kS either when the cascade time scale �cas reaches the
expansion time scaleH�1� or when the characteristic length
scale 
MðtÞ reaches the Hubble length H�1� . These con-

ditions are 	�1=2
� l2S=v0l0 
 H�1� or lS ¼ 2�=kS 
 H�1�

(the cascade time is scale dependent and maximal at k ¼
kS). Defining � 
 1, it is easy to see that the first condition

is fulfilled first, and consequently k0=kS 
 ðv0=�Þ1=2	1=4� .
To have an inverse cascade requires k0=kS � 1, leading to

a constraint on initial helicity � 
 M	1=2� . In addition,
these gravitational waves will be circularly polarized since
they are induced by parity-violating stochastic sources
[14]. If, alternately, we use the inverse-cascade model of
Ref. [41], the peak frequency of the gravitational wave
spectrum remains unchanged while the peak amplitude is
doubled [25,42].

D. Total gravitational wave spectrum

The total gravitational wave background from a first-
order phase transition is a sum of three terms correspond-
ing to the three distinct sources discussed here. Our results
are expressed as the dependence of the effective strain
spectrum hcðfÞ on the phase transition temperature T�,
the number of effective relativistic degrees of freedom
g�, the ratio of vacuum energy to thermal energy �, the
bubble nucleation time scale �, and the initial magnetic
helicity parameter 	�. All other relevant parameters ap-
pearing in the analytical approximations, such as �, vb, l0,
and M, can be computed in terms of these fundamental
parameters using simple and well-motivated assumptions.
We fix g� ¼ 100, and we do not study the dependence on
this parameter since it is very weak and the actual value of
g� will not vary more than a factor of a few from this

nominal value (g� ¼ 106:75 for standard-model degrees of
freedom at temperatures large compared to the W and top
quark masses). We choose 	� small enough to insure that
the resulting magnetic turbulence can be modeled as an
inverse cascade (see Ref. [25] for details).
Figure 1 displays the three components contributing to

the total gravitational wave spectrum, for a fiducial model
with g� ¼ 100, � ¼ 0:5, �=H� ¼ 100, and T� ¼
100 GeV. Bubble collisions are shown as the dashed line,
hydrodynamic turbulence with no magnetic helicity as the
solid line, and MHD turbulence with an initial helicity
parameter 	� ¼ 0:15 as the dash-dotted line. The dark
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FIG. 1. The spectrum of gravitational radiation for a first-order
phase transition with g� ¼ 100, T� ¼ 100 GeV, � ¼ 0:5, and
� ¼ 100H?, from bubble collisions (dashed line), hydrody-
namic turbulence with zero helicity (solid line), and MHD
turbulence with 	� ¼ 0:15 (dash-dotted line). The bold solid
line corresponds to the one-year, 5� LISA sensitivity curve
[43], including the confusion noise from white-dwarf binaries
[44].
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FIG. 2. The total spectrum of gravitational radiation (including
three sources of gravitational radiation—bubble collisions, hy-
droturbulence, and MHD turbulence) for g� ¼ 100, T� ¼
100 GeV, 	� ¼ 0:1, � ¼ 100H�, and three different values of
�: � ¼ 1 (solid line), � ¼ 0:5 (dashed line), and � ¼ 0:2
(dotted line), with the LISA sensitivity curve.
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curve is the LISA design sensitivity for stochastic back-
grounds with a detection signal-to-noise ratio of 5 over a
one-year integration [43], including a rough estimate of the
confusion limit from white-dwarf binaries [44]. It is clear
that bubble collisions alone do not produce a significant
signal (marginally detectable) in LISA for this range of
phase transition parameters, agreeing with previous results
[17–19,30]. The turbulence peak is observable, as well as
the separate peak from the MHD inverse cascade.

The next set of figures show how the total gravitational
wave spectrum varies as each of the phase transition pa-
rameters is changed, holding the others fixed. Figure 2
shows the variation with �, Fig. 3 the variation with T�,
Fig. 4 the variation with 	�, and Fig. 5 the variation with
�=H?. In each case, the spectrum for the fiducial model in

Fig. 1 is plotted, along with the spectra for two or three
other values of the parameter in question. We can see
qualitative outlines of detectability from these figures.
For example, Fig. 3 shows that as the temperature of the
phase transition increases, detection relies increasingly on
the MHD signal.
While these plots give a good qualitative sense of the

spectrum dependence on the parameters, we would like to
know more precisely which regions of the four-
dimensional parameter space of phase transitions result
in a gravitational wave spectrum detectable with LISA.
The following section gives one useful representation of
the detectability regions.

IV. DETECTABLE REGIONS IN PARAMETER
SPACE

The remaining figures show various detectability re-
gions. For the first set of four plots, Figs. 6–9, the detect-
able region in the �=H? � � plane is displayed; each
figure is for a different value of the phase transition tem-
perature T�, ranging from 0.1 TeV to 100 TeV. The larger
displayed region includes the MHD inverse cascade from
an initial helicity of 	 ¼ 0:15, while the smaller region
shows the case of no inverse cascade or, equivalently, the
limit 	 ¼ 0. The other parameter, g�, is held fixed and only
has a weak effect on the results. We designate a power
spectrum as detectable if its amplitude comes above the
LISA one-year sensitivity curve at signal-to-noise ratio of
5 at any frequency; more careful detection conditions can
also be used but will give the same general results.
Large regions of parameter space are detectable. The

natural expectation for � is around 100H� [31], with some
range around this value for plausible models. For �=H?

between 10 and 100, the detection threshold in � tends to
be roughly constant, with lower � being detectable as T�
increases. If T� > 1 TeV, then phase transitions with � �
0:06 are detectable by LISA.
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FIG. 3. The total spectrum of gravitational radiation for g� ¼
100, � ¼ 0:5, � ¼ 100H�, 	� ¼ 0:1, and three different tem-
perature values, T� ¼ 100 GeV (solid line), T� ¼ 1 TeV
(dashed line), and T� ¼ 10 TeV (dotted line), with the LISA
sensitivity curve.
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FIG. 4. The total spectrum of gravitational radiation for g� ¼
100, T� ¼ 100 GeV, �� ¼ 0:5, � ¼ 100H�, and four different
values of 	�: 	� ¼ 0, corresponding to hydrodynamic turbulence
without the inverse-cascade effect (solid line), 	� ¼ 0:02 (dashed
line), 	� ¼ 0:5 (dotted line), and 	� ¼ 0:15 (dash-dotted line),
with the LISA sensitivity curve.
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FIG. 5. The total spectrum of gravitational radiation for g� ¼
100, T� ¼ 100 GeV, 	� ¼ 0:1, � ¼ 0:5, and three different
values of �: � ¼ 40H� (solid line), � ¼ 100H� (dashed line),
and � ¼ 500H� (dotted line), with the LISA sensitivity curve.
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For temperatures T� 
 1 TeV, the contribution from the
MHD inverse cascade is not important for LISA detect-
ability, due to the experiment’s low-frequency cutoff. As
T� moves to higher temperatures, the typical frequency, set
byH�, becomes larger, and the low-frequency peak and tail
from the MHD inverse cascade start to come into the
detection window. For T� � 10 TeV, the detectability
range in � is substantially expanded due to the magnetic
source, though mostly at comparatively large values of �.
The spectrum contribution from hydrodynamic turbulence,
due to its somewhat higher frequency and amplitude than
that from bubble collisions and much higher frequency

than the MHD contribution, dominates most of the detect-
ability for the LISA frequency band.
Figures 10 and 11 show the detectability regions in the

�� T� plane, for � ¼ 0:1 and � ¼ 0:5, respectively. For
� ¼ 0:1, a relatively large region is detectable, while for
� ¼ 0:5, a phase transition at any temperature up to
10 TeV is detectable for any reasonable value of �.
These results will be useful for computing future con-

straints on various high-energy physics theories which give
first-order electroweak phase transitions. The fundamental
parameters of any theory can be used to construct order
parameters and vacuum energies for any phase transition at
relevant energy scales (see, e.g., Refs. [22] for many
examples). These in turn can be used to compute the
phenomenological phase transition parameters �, �, and
T� used here, as done in Appendix A of Ref. [4]. The
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FIG. 8 (color online). Same as Fig. 6, except for T� ¼ 10 TeV.
For 	� ¼ 0:15, a substantial extra area on the right side of the
	� ¼ 0 region is detectable.
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for a phase transition at a temperature T� ¼ 0:1 TeV. The
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frequency its value of hcðfÞ is detectable at a signal-to-noise
ratio of 5 in a one-year integration, including the confusion noise
from white dwarfs from [43].
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100 TeV.
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parameter 	� likely will require additional astrophysical
modeling in situations where there is no well-defined
mechanism for generating magnetic fields, but most of
the parameter-space detectability is independent of this
parameter.

We have made several basic physical assumptions: we
have assumed that the walls of the bubbles formed in the
first-order phase transition expand as detonations [34]; that
the bubbles remain spherical as they expand; that the

resulting bubble collisions drive turbulence on the scale
of the largest bubbles for a time comparable to the duration
of the phase transition; that the turbulence can be modeled
as fully developed Kolmogoroff turbulence; and that initial
seed magnetic fields with nonzero helicity will be ampli-
fied in an inverse cascade according to a specific MHD
turbulence model [39,40]. While these are all reasonable
assumptions and are likely close to the realistic physical
situation, they are not guaranteed to be correct. In particu-
lar, the assumption that bubbles in a relativistic plasma
always expand as detonations deserves further study. The
transition from coherent bubble wall expansion to stochas-
tic turbulent behavior needs to be simulated numerically;
current computing power is sufficient to model this process
with enough resolution to verify the simple assumptions in
this work. The standard Kolmogoroff turbulence results
apply to nonrelativistic fluids, and our direct extension to
relativistic plasmas, while likely qualitatively correct, is
not based on either direct observation or detailed calcula-
tion. Finally, mechanisms for generating seed magnetic
fields prior to or during the phase transition are not clearly
understood. The enticing prospect of a direct probe of
electroweak physics via the stochastic background of
gravitational radiation is a strong motivation for further
investigation of these interesting questions concerning the
fundamental physics of the early universe.
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