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We study the effect of modifications to general relativity on large-scale weak lensing observables. In

particular, we consider three modified gravity scenarios: fðRÞ gravity, the Dvali-Gabadadze-Porrati

model, and tensor-vector-scalar theory. Weak lensing is sensitive to the growth of structure and the

relation between matter and gravitational potentials, both of which will in general be affected by modified

gravity. Restricting ourselves to linear scales, we compare the predictions for galaxy-shear and shear-shear

correlations of each modified gravity cosmology to those of an effective dark energy cosmology with the

same expansion history. In this way, the effects of modified gravity on the growth of perturbations are

separated from the expansion history. We also propose a test which isolates the matter-potential relation

from the growth factor and matter power spectrum. For all three modified gravity models, the predictions

for galaxy and shear correlations will be discernible from those of dark energy with very high significance

in future weak lensing surveys. Furthermore, each model predicts a measurably distinct scale dependence

and redshift evolution of galaxy and shear correlations, which can be traced back to the physical

foundations of each model. We show that the signal-to-noise for detecting signatures of modified gravity

is much higher for weak lensing observables as compared to the integrated Sachs-Wolfe effect, measured

via the galaxy-cosmic microwave background cross-correlation.
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I. INTRODUCTION

A number of independent observations, ranging from
supernovae to the cosmic microwave background (CMB)
and its cross-correlation with foreground galaxies [1–5],
have now firmly established that the expansion of the
Universe is accelerating, and that a purely matter-
dominated universe is not consistent with measurements.
Commonly, these observations are ascribed to an addi-
tional smooth stress-energy component, ‘‘dark energy’’
(DE), pervading the Universe [6]. However, instead of
attributing the accelerated expansion to our lack of under-
standing of the constituents of the Universe, one can take
the alternative approach and attribute it to our lack of
understanding of gravity on cosmological scales. For ex-
ample, an effective weakening of gravity on the largest
scales could explain the accelerated expansion and other
cosmological observations without invoking an additional
smooth ‘‘dark’’ component. Several such modified gravity
scenarios have been proposed. The difficulty in construct-
ing a consistent theory of gravity which preserves the
success of general relativity (GR) in the Solar System
and the early Universe has however limited the number
of proposed theories to only a handful.

Seen from a fundamental physics point of view, the two
approaches of general relativity coupled with a smooth
dark energy (GRþ DE) and modified gravity are appar-
ently quite distinct. However, there is enough freedom in
both scenarios to match any given expansion history of the

Universe. Thus, the expansion history, measured primarily
with supernovae and the CMB, is not sufficient to distin-
guish between these two ‘‘fundamentally different’’
scenarios.
Going beyond the smooth background Universe offers a

multitude of additional observables probing the evolution
of structure formation in the Universe. For the purpose of
constraining modified gravity, the evolution of the cosmo-
logical gravitational potentials, and their relation to the
matter overdensities and velocities are the most sensitive
probes [7–10]. Several such observational tests of gravity
have been proposed: the integrated Sachs-Wolfe (ISW)
effect [11–15] directly probes the evolution of the poten-
tials on horizon-size scales. While quite sensitive as a
probe of gravity, it is restricted to large scales, and offers
only a limited amount of signal-to-noise. Thematter power
spectrum probes the growth of matter perturbations on a
range of scales. While it can be measured to high precision
and to very small scales, and hence offers a large amount of
information, it is affected by the nonlinearities of structure
formation, and galaxy bias, which are not well understood
for modified gravity models. A cleaner method of probing
gravity with galaxies is using velocity correlations
[7,16,17]. In principle, these tests can isolate signatures
of modified gravity. However, they will be challenging to
perform observationally.
Several deep, wide-field galaxy surveys are in the plan-

ning stage which are designed to measure galaxy counts
and weak lensing shear with unprecedented accuracy.
Galaxy and shear correlations can be used to measure the
expansion history and growth of structure in the Universe*fabians@oddjob.uchicago.edu
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to high precision. Additionally, the potential of weak lens-
ing observables to probe gravity has been shown in [7,18–
21]. In this paper, we investigate the constraints on modi-
fied gravity theories to be expected from galaxy and shear
correlations in future surveys. Since weak lensing is caused
by the potential wells along the line of sight, it can be used
to measure the scale dependence and cosmological evolu-
tion of these potentials. In addition, correlating foreground
galaxies with the shear of background galaxies offers a test
of the matter-potential relation. We will show that future
weak lensing surveys will place very tight constraints on
gravity. In other words, they will perform stringent tests of
the smooth dark energy scenario, which will have to match
all of the weak lensing observables in order to remain a
viable model.

Regarding the potential of these precision tests, it is
important to keep several caveats in mind: first, the non-
linear evolution in modified gravity models is not yet
understood in a realistic cosmological context. Hence, in
this paper we will limit ourselves to scales where linear
theory is appropriate. Second, correlations involving gal-
axy number counts are affected by the galaxy bias, which is
a priori unknown. We will point out how the effects of bias
can hopefully be disentangled from modified gravity ef-
fects. Third, it is always possible to find a general, non-
smooth dark energy model which mimics the predictions of
any given modified gravity model [22,23]; note that such a
DE model will have significant density and anisotropic
stress perturbations on subhorizon scales.

In this paper, we will study three different modified
gravity scenarios, focusing on their predictions for lensing
observables: (i) fðRÞ gravity [24–28]; (ii) the Dvali-
Gabadadze-Porrati (DGP) model [29–31]; and (iii) -
tensor-vector-scalar theory (TeVeS) [32]. While the first
two models are able to achieve accelerated expansion
without dark energy, TeVeS is designed to explain obser-
vations without dark matter by showing MOND-behavior
in certain regimes. These three theories encompass very
different approaches to the problem of constructing a con-
sistent theory of gravity. Hence, it is interesting to deter-
mine not only whether observations can detect departures
from GR, but also whether they would be able to discrimi-
nate among different modified gravity scenarios.

In addition to predicting a late-time accelerated expan-
sion of the Universe, all these models have been designed
to approach GR in the high-curvature regime, which ap-
plies to the Solar System as well as the early Universe. In
this way, the models pass Solar System tests while making
predictions close to the standard cosmological model for
the CMB and big bang nucleosynthesis.

Weak lensing probes the growth of large-scale structure
which is sensitive to the background expansion history, as
the expansion rate enters the evolution equations of per-
turbations. Since two of the models discussed here (DGP
and TeVeS) predict expansion histories somewhat different

from �CDM, we compare them with smooth dark energy
models designed to mimic the expansion history of these
models by employing a suitable equation of state wðaÞ.
Deviations in the weak lensing predictions of DGP and
TeVeS from the corresponding dark energy model are then
solely due to modified gravity effects on the growth of
structure and the matter-potential relation, and indepen-
dent of the exact expansion history.
The structure of the paper is as follows. In Sec. II,

general expressions for galaxy and shear correlations ap-
plicable to modified gravity are given, and we point out the
different channels through which modified gravity can
affect the observables. We also present a cosmological
test of the Poisson equation using weak lensing and galaxy
correlations. In Sec. III, we briefly describe the modified
gravity models studied here, and outline the characteristics
which determine their lensing predictions. We then present
forecasts for galaxy-shear and shear-shear correlations in
future surveys in Sec. IV, showing the deviations of the
modified gravity predictions from those of GRþ DE, as
well as the expected signal-to-noise in actual surveys. We
conclude in Sec. V.

II. WEAK LENSING CORRELATIONS

A. Weak lensing in modified gravity

In this section, we summarize the lensing observables
considered in this paper, generalizing the standard expres-
sions to the case of modified gravity. We assume a flat
Universe throughout. Our metric convention is [33]:

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ ð1þ 2�Þdx2�; (1)

where að�Þ is the scale factor, � denotes conformal time,
and �, � are the cosmological potentials. In general
relativity (GR), � ¼ �� in the absence of anisotropic
stress, which is the case at late times in �CDM and most
dark energy models. In addition, the potentials are conven-
tionally reexpressed in terms of the matter overdensity
using the Poisson equation. In case of modified gravity,
both of these assumptions do not necessarily hold. In the
following we give generalized expressions for the different
observables which apply to the case of modified gravity
(see also [7,18]). We restrict ourselves to linear perturba-
tions valid on large scales (k & 0:1 h=Mpc). Since the fðRÞ
and DGP models recover the GRþ DE limit at early times
in the matter-dominated epochs, it is convenient to refer
observables to the matter overdensity at high redshift zm.
For definiteness, we take zm ¼ 50. Then, for any viable
fðRÞ and DGP model, Pðk; zmÞ is identical to that expected
in GR.
Weak lensing surveys use the observed ellipticities of

galaxies to reconstruct a map of the cosmic shear, which
can then be used to infer the convergence � [34,35]. In the
following, we will use the terms convergence and shear
interchangeably, understanding that they are reconstructed
from observed galaxy ellipticities. Using standard approx-
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imations, the convergence in the direction n̂, given by the
Laplacian of the projected lensing potential, is expressed as
a line of sight integral to the source at redshift zs:

�ðn̂Þ ¼ �
Z zs

0

dz

HðzÞ r
2��ðxðzÞ; zÞWLð�s; �ðzÞÞ; (2)

where �ðzÞ is the comoving distance out to redshift z,
HðzÞ ¼ da

dt =a is the expansion rate, �� � 1=2ð���Þ,
r2 denotes the Laplacian in terms of comoving coordi-
nates, and the lensing weight function is given by:

WLð�s; �Þ ¼ �

�s

ð�s � �Þ: (3)

Hence, the convergence is sensitive to the potential�� in a
range of distances centered around �� �s=2. Note that in
the case of GR and smooth dark energy (referred to as
‘‘GRþ DE’’ in the following), �� ¼ � ¼ ��, and we
can apply the Poisson equation:

r2�� ¼GRþDE ¼ 4�Ga2�m� ¼ 3

2
�mH

2
0a

�1� (4)

In modified gravity, this equation does not hold anymore,
and we define a generalized ‘‘Poisson factor’’D�� relating

the potential �� to the matter overdensity � in Fourier
space:

D�� � ��ðk; zÞ
�ðk; zÞ ¼GRþDE 3

2
�m

H2
0

k2
a�1 (5)

Apparently, a departure of the Poisson factor D�� from its

expected value in general relativity is a signature of the
modification of the Poisson equation in alternative gravity
theories (for a discussion of general, nonsmooth dark
energy models, see Sec. III D). In addition, the growth of
potential and matter perturbations is affected by modified
gravity. The growth factor of matter, which we normalize
at z ¼ zm ¼ 50 so that Dmðk; zÞ � �ðk; zÞ=�ðk; z ¼ zmÞ,
becomes scale-dependent in many modified gravity mod-
els. We can combine the growth of structure and the
Poisson equation to obtain:

��ðk; zÞ
�ðk; z ¼ zmÞ

¼ D��ðk; zÞDmðk; zÞ: (6)

This allows us to express the galaxy-galaxy, galaxy-shear,
and shear-shear correlation coefficients, Cggð‘Þ, Cg�ð‘Þ,
C��ð‘Þ as follows:

Cgigjð‘Þ ¼ 2

�

Z
dkk2Pðk; zmÞ

�
Z

dzbiWgiðzÞDmðk; zÞj‘ðk�ðzÞÞ

�
Z

dz0bjWgjðz0ÞDmðk; z0Þj‘ðk�ðz0ÞÞ; (7)

Cgi�jð‘Þ ¼ 2

�

Z
dkk2Pðk; zmÞ

�
Z

dzbiWgiðzÞDmðk; zÞj‘ðk�ðzÞÞ

�
Z

dz0W�j
ðz0Þk2D��ðk; z0Þ

�Dmðk; z0Þj‘ðk�ðz0ÞÞ; (8)

C�i�jð‘Þ ¼ 2

�

Z
dkk2Pðk; zmÞ

�
Z

dzW�i
ðzÞk2D��ðk; zÞDmðk; zÞj‘ðk�ðzÞÞ

�
Z

dz0W�j
ðz0Þk2D��ðk; z0ÞDmðk; z0Þj‘ðk�ðz0ÞÞ:

(9)

Here, Pðk; zmÞ is the matter power spectrum at early times
z ¼ zm, which in the case of the fðRÞ and DGP models is
the same as for a GRþ smooth DE model with the same
expansion history. The indices i, j denote different redshift
bins, i.e.,WgiðzÞ is the galaxy redshift distribution for bin i,
normalized to 1, bi is the galaxy bias for the same bin, and
the shear weighting function of redshift bin j,W�j

, is given

by:

W�j
ðzÞ ¼ 1

HðzÞ
Z 1

z
dzsWLð�ðzsÞ; �ðzÞÞWgjðzsÞ: (10)

For ‘ * 10, we can apply the Limber approximation [36],
which simplifies the expressions considerably:

Cgigjð‘Þ ¼
Z

dz
HðzÞ
�2ðzÞbiWgiðzÞbjWgjðzÞ

� ½D2
mðk; zÞPðk; zmÞ�k¼ðlþ1=2Þ=�ðzÞ; (11)

Cgi�jð‘Þ ¼
Z

dz
HðzÞ
�2ðzÞbWgiðzÞW�j

ðzÞ

� ½D��ðk; zÞD2
mðk; zÞk2Pðk; zmÞ�k¼ðlþ1=2Þ=�ðzÞ;

(12)

C�i�jð‘Þ ¼
Z

dz
HðzÞ
�2ðzÞW�i

ðzÞW�j
ðzÞ

� ½D2
��ðk; zÞD2

mðk; zÞk4Pðk; zmÞ�k¼ðlþ1=2Þ=�ðzÞ:

(13)

Weak lensing correlations thus depend on cosmology
through three distinct channels: (i) the background expan-
sion history, via HðzÞ and WLð�s; �ðzÞÞ; (ii) the growth of
perturbations and the Poisson equation, through Dmðk; zÞ
and D��ðk; zÞ; and (iii) the matter power spectrum at early

times, Pðk; zmÞ. In case general relativity holds and the
accelerated expansion is due a smooth dark energy, only
the expansion history (i) is affected by the dark energy, i.e.
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modified from �CDM. In the case of the late-time accel-
eration modified gravity models fðRÞ and DGP, both chan-
nels (i) and (ii) are affected. And the TeVeS model without
dark matter modifies (i), (ii), as well as (iii) from the
�CDM case.

In this paper, we want to illuminate how weak lensing
correlations are sensitive to these three channels, both in
redshift evolution and in scale dependence. Clearly, it is
crucial to separate these effects in order to distinguish
between GRþ DE and modified gravity; in addition, test-
ing Dmðk; zÞ, D��ðk; zÞ, and Pðk; zmÞ separately will allow

to distinguish between different modified gravity
scenarios.

The galaxy-shear correlation is proportional to the a
priori unknown bias of the foreground galaxies.
Assuming that the bias is scale-independent on linear
scales, one can marginalize over this parameter for a given
galaxy sample. An alternative is to consider the reduced
galaxy-shear correlation Rg�ð‘Þ, defined by:

Rgi�jð‘Þ � Cgi�jð‘Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cgigið‘Þp : (14)

For redshift bins that are not too wide, the linear galaxy
bias drops out of this expression, so that Rg� is independent
of bi. Since it is not straightforward to compute the errors
on this quantity, we will for simplicity only consider the
galaxy-shear correlation divided by the bias, Cg�ð‘Þ=b, in
this paper. In any case, we do not expect the constraints to
be degraded very significantly when considering Rg� in-
stead of Cg�.

On small scales k� 0:1 h=Mpc and above, the density
contrast grows to order unity, and nonlinearities in the
formation of structure become important. Furthermore,
all of the modified gravity theories studied here employ
nonlinear equations of motion which are expected to re-
store gravity to general relativity in high-density environ-
ments [32,37–39]. These mechanisms have been studied in
special cases, e.g. spherically symmetric and/or static cases
[32,37]; however, the details of cosmological structure
formation in the nonlinear regime have not been studied
in the case of modified gravity. Hence, we will restrict our
discussion to linear scales in this paper.

B. A cosmological probe of the Poisson equation

Recently, techniques have been proposed to isolate the
geometrical factors in weak lensing correlations from the
growth of structure, bias, and matter power spectrum
(shear ratios, or ’’cosmography’’ [40,41]). Because of the
separation of geometry from growth effects, cosmographic
techniques apply equally well in modified gravity theories,
i.e. when using the generalized expressions (11)–(13).

A similar approach as for cosmography can be used to
separate out the effect of a modified Poisson equation from
the growth factor and matter power spectrum. Observing a
modification of the Poisson equation on cosmological

scales would constitute a ‘‘smoking gun’’ for deviations
from the GRþ smooth dark energy scenario. Consider a
very narrow galaxy redshift distribution centered around
zf. Then, the galaxy-galaxy and galaxy-shear correlation

coefficients become:

Cggð‘Þ ’ HðzfÞ
�2
f

b2½D2
mðk; zÞPðkÞ�k¼ðlþ1=2Þ=�f

;

�f � �ðzfÞ;
(15)

Cg�ð‘Þ ’ HðzfÞ
�2
f

bW�ðzfÞ

� ½D��ðk; zÞD2
mðk; zÞk2PðkÞ�k¼ðlþ1=2Þ=�f

: (16)

With this simplifying assumption, ratios of weak lensing
correlations can be used to isolate the effect of a modified
Poisson equation:

P ð‘Þ � Cg�ð‘Þ
Cggð‘Þ

’ b�1H2
0W�ðzfÞ

�
k2

H2
0

D��ðk; zfÞ
�
k¼ð‘þ1=2Þ=�f

� ¼GRþDE 3

2
�mb

�1H2
0W�ðzfÞð1þ zfÞ: (17)

These ratios divide out the dependency on the matter power
spectrum and growth factor; they still depend on the ex-
pansion history, although not very strongly, via �f and the

lensing weight function W�ðzfÞ. On linear scales, P ð‘Þ is
independent of scale in GRþ DE, due to the scale-
independence of both k2D�� and bias b. In contrast, a

scale-dependence is expected for gravity theories which
modify the Poisson equation. Hence, measuring P ð‘Þ as a
function of scale ‘ would constitute a robust test of the
Poisson equation on large scales. See section III D for a
discussion of the effect of nonsmooth dark energy.

III. MODIFIED GRAVITY MODELS

In this section, we briefly present the modified gravity
models and parameters adopted in this paper, and discuss
the qualitative expectations for their lensing predictions.
First, let us discuss general constraints applicable to any
theory of gravity. In any metric theory of gravity that
conserves energy-momentum, the evolution of superhori-
zon perturbations is essentially defined by the expansion
history alone [10]. This can be understood in the ‘‘separate
universes’’ picture: a superhorizon curvature perturbation
behaves essentially as a separate Friedmann-Robertson-
Walker universe with a constant small curvature. Hence,
the evolution of superhorizon curvature perturbations in
modified gravity models is the same as in GR (given the
same expansion history) [22,23]. Once a scale-independent
superhorizon relation between the metric potentials � and
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� has been supplied by a theory, the evolution of �, � is
fixed on superhorizon scales. In the opposite limit, when a
mode is well within the horizon, one can apply the quasi-
static approximation, neglecting time derivatives with re-
spect to spatial gradients. In this regime, the potentials �,
� are given by a modified Poisson equation which again is
determined by the theory.

Recently, Hu and Sawicki [22] presented a parametriza-
tion of modified gravity theories which is based on the
superhorizon and quasistatic regimes, with a suitable in-
terpolation between both. They showed that this
‘‘Parametrized Post-Friedmann’’ (PPF) approach reprodu-
ces the predictions of the late-time acceleration fðRÞ and
DGP models well, with only few model-dependent func-
tions. Several alternative parametrizations of modified
gravity have been proposed [7–9,17,23]. The PPF parame-
trization is most useful for us in that it describes the fðRÞ
and DGP models with suitable parameters.

The two main model-dependent quantities with impact
on cosmological observables are (in the notation of [22]),
(i) the metric ratio gðk; zÞ, given by:

gðk; zÞ � �þ�

���

��������k;z
; (18)

and (ii) the rescaling fGðzÞ of the Newton constant in the
Poisson equation [Eq. (4)] on subhorizon scales:

GeffðzÞ ¼ G

1þ fGðzÞ : (19)

Note that for GR coupled with a smooth dark energy, g ¼
fG ¼ 0 at late times. Thus, fG influences D�� directly, by

rescaling the GR value by 1=ð1þ fGÞ. The metric ratio g
influences the evolution of cosmological perturbations
[22,23]: if g > 0, i.e. �þ�> 0, the potentials decay
faster during the epoch of onsetting acceleration than in
the GR limit. Conversely, for g < 0 the potential decay is
slowed down and, for sufficiently negative g, inverted into
a potential growth. From Eqs. (11)–(13), we expect this
suppressed or enhanced growth of perturbations to lead to
potentially observable effects in the weak lensing
correlations.

A. fðRÞ model

In fðRÞ gravity, the Einstein-Hilbert action is modified
by adding a certain function of the Ricci scalar, fðRÞ, to the
gravitational part of the Lagrangian [24–28,42–45]:

SEH ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Rþ fðRÞ�: (20)

In the case of fðRÞ ¼ C ¼ const, we recover �CDM, i.e.
GR with a cosmological constant � ¼ �C=2. A linear
function fðRÞ, so that fR � df=dR is a constant, simply
amounts to a rescaling of Newton’s constant,G ! G=ð1þ
fRÞ. Thus, a nontrivial modification of gravity is linked to a
nonzero second derivative of f. The dimensionless field

fR � df=dR then appears as an additional scalar degree of
freedom in the modified Einstein equations.
Different functional forms of fðRÞ have been proposed

in the literature. They generally satisfy the asymptotic
relation fðRÞ ! 0 for R ! 1, so that GR is in principle
restored in the high-curvature limit, which applies to the
Solar System as well as the early Universe. Note that Solar
System constraints strongly limit the possible choices of f
[38,42,45]. In addition, d2f=dR2 should be positive in
order to achieve a stable high-curvature limit [26,43]. For
this paper, we adopt the implicit definition of fðRÞ pro-
posed in [26]. Since the background curvature R is fixed as
a function of a for a given expansion history aðtÞ, the
function fðRðaÞÞ can be determined from the modified
Friedmann equations, which are obtained by applying the
modified Einstein equations to the FRW metric. We as-
sume the expansion history of our fiducial �CDM model,
defined by�m ¼ 0:27,�� ¼ 0:73,�b ¼ 0:046, h ¼ 0:7,
ns ¼ 0:95. For the power spectrum normalization, we use
the CMB normalization of the primordial curvature per-
turbations given by �� ¼ 4:58� 10�5 at k ¼ 0:05 Mpc�1,

as in the case of the�CDMmodel. This is motivated by the
fact that this fðRÞ model makes definite predictions for the
CMB (i.e., identical to �CDM), whereas measurements of
the power spectrum amplitude today, e.g. using the power
spectrum of galaxies, are affected by gravitational nonline-
arities, a regime where definite predictions for modified
gravity are still outstanding.
The amplitude of the field fR, and correspondingly of

the modification to gravity, is most conveniently parame-
trized in terms of the parameter B0 ¼ Bða ¼ 1Þ, where
BðaÞ is a function proportional to the second derivative
of f:

BðaÞ � d2f=dR2

1þ fR
R0 H

H0 ; (21)

where RðaÞ is the Ricci scalar of the FRW background,
which in turn can be expressed in terms of the Hubble rate
HðaÞ and its derivatives, and primes denote derivatives
with respect to lna. Thus, the evolution of fðRÞ in the
background is fixed by the expansion history together
with B0, and we then proceed to calculate the evolution
of matter perturbations and potentials using the PPF pa-
rametrization presented in [22].
For a positive value of B, necessary for stability in the

high-curvature limit, fðRÞ models generically predict a
negative �þ�, i.e., a metric ratio g < 0. On superhor-
izon scales, g is of order�B, and grows to a value of�1=3
on small scales. The negative potential ratio leads to a
slower decay of the potentials during the acceleration
epoch, and hence a smaller growth suppression of matter
perturbations (Fig. 1, left panel) with respect to �CDM.
Having fixed the fluctuation amplitude at early times
through the CMB, we thus expect an increased weak lens-
ing signal from the fðRÞ model.
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As pointed out above, the gravitational constant is re-
scaled by 1=ð1þ fRÞ in fðRÞ models. Since fðRÞ< 0 to
achieve acceleration, Geff >G in fðRÞ gravity, and hence
D�� is larger than its �CDM value (right panel of Fig. 1).

However, this effect is quite small, at the percent level, for
observationally allowed models. For the weak lensing
forecasts below, we adopt a value of B0 ¼ 0:1, leading to
a field amplitude today of fRða ¼ 1Þ ¼ �0:017. For pur-
poses of presentation, we use the larger value of B0 ¼ 0:4
for the plots in Fig. 1.

B. DGP model

In the Dvali-Gabadadze-Porrati model [29–31], all mat-
ter and nongravitational interactions are confined to a
(3þ 1)-dimensional ‘‘brane’’ embedded in (4þ 1)-
dimensional space. Only gravity is five-dimensional, and
the effects of the large extra dimension become noticeable

at the crossover scale rc ¼ Gð5Þ=2Gð4Þ, where Gð5Þ is the

gravitational constant in five dimensions, and Gð4Þ is the
usual four-dimensional gravitational constant. The cross-
over scale rc is the only free parameter of the model. One
of the two possible branches of the model naturally leads to
an accelerated expansion when the horizon scale c=HðzÞ
reaches rc. The expansion history in the DGP model is
somewhat different than �CDM. It is given by [30]:

HðzÞ ¼ H0ð
ffiffiffiffiffiffiffiffi
�rc

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�rc þ�ma

�3
q

Þ; (22)

where �rc ¼ 1=ð4r2cH2
0Þ, and, for a flat universe, �rc ¼

ð1��mÞ2=4. Here, we adopt�m ¼ 0:25 and h ¼ 0:66, as
determined from fitting Supernova distances and the CMB
[14], corresponding to rcH0 � 1:78. For the same reasons
as in the case of the fðRÞ model, we assume a primordial
power spectrum normalization of �� ¼ 4:58� 10�5 at

k ¼ 0:05 Mpc�1 for the DGP model. For the evolution of
perturbations in DGP, effects from the 5D nature of gravity,
namely, perturbations in the extrinsic curvature of the
brane, have to be taken into account in order to close the
perturbation equations [46,47]. Here, we again employ the
interpolation based on the PPF parametrization given in
[22]. In order to compare the DGP predictions with those
from GRþ DE, we use a dark energy model with an
equation of state weffðaÞ which exactly mimics the expan-
sion history of the DGP model.
The DGP model has a positive metric ratio g which

grows proportional to 1=ðHrcÞ and is of order unity at z ¼
0; it is only weakly scale-dependent for subhorizon scales.
The positive g leads to an enhanced potential decay with
respect to GRþ DE [14], as is apparent in Fig. 1 (left
panel). Correspondingly, we expect a reduced lensing sig-
nal for the DGP model. Note that the decay of the poten-
tials sets in at considerably higher redshifts, z� 5, than in
GRþ DE. This is because weff � �1=2 in the DGP model
for z * 1 [48]. The Poisson equation is not modified in the
DGP model. However, as the Poisson ratio P ð‘Þ is propor-
tional to �m [Eq. (17)], the prediction for the DGP model
shows a scale-independent departure due to the slightly
smaller value of �m adopted for this model (right panel of
Fig. 1). In contrast to the simple DGP model considered
here, generalized braneworld-inspired modified gravity
models can show a modified Poisson equation [49].

C. TeVeS

The TeVeS model [32] is a relativistic metric theory of
gravity which, as the models presented above, reduces to
general relativity in the high-density, high acceleration
regime. However, in the high-density, weak acceleration
regime, it behaves like modified Newtonian dynamics

FIG. 1 (color online). Left panel: Deviation of the growth factor Dmðk; zÞ from a GRþ DE model with the same expansion history,
for three different modified gravity models: fðRÞ (red/dotted line; using a value of B0 ¼ 0:4), DGP (blue/short-dashed line), TeVeS
(green/long-dashed line; normalized to 1 at z ¼ 5 for clarity). The three lines show different scales: k ¼ 10�3 h=Mpc (thick line),
k ¼ 0:01 h=Mpc (medium line), and k ¼ 0:1 h=Mpc (thin line). Right panel: The Poisson factor D�� [Eq. (5)] scaled by k2=H2

0=ð1þ
zÞ, which reduces to 3�m=2 in the case of an unmodified Poisson equation, as a function of redshift for �CDM and modified gravity
models. The lines correspond to the same scales as in the left panel.
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(MOND, [50]). The MOND force law can explain galactic
rotation curves without invoking dark matter. TeVeS gen-
eralizes this idea by adding an additional vector field (Ve)
and scalar field (S) in such a way that the same effect of
dark matter apparently seen in dynamics is also seen in
gravitational lensing. Hence, TeVeS can be taken as an
attempt to explain all cosmological observables without
any dark matter of unknown nature.

For this paper, we adopt the ‘‘neutrino model’’ from
[15]. The matter content in this model is given by baryons,
�b ¼ 0:05, and neutrinos, �� ¼ 0:17, with a cosmologi-
cal constant given by �� ¼ 0:78, in order to match the
observed expansion history. This model has been shown to
be in acceptable agreement with CMB and matter power
spectrum observations [51]. While the current TeVeS
model uses a cosmological constant to achieve accelera-
tion, related theories invoking vector fields have been
proposed which lead to acceleration without a cosmologi-
cal constant [52]. The evolution equations of linear cos-
mological perturbations in TeVeS have been derived in
[51,53–55]. In order to satisfy big bang nucleosynthesis
bounds, the TeVeS scalar field is constrained to small
values throughout cosmological history, and neither sig-
nificantly contributes to the background expansion nor the
growth of perturbations. In contrast, perturbations of the
timelike vector field exhibit a growing mode which in turn
boosts the growth of matter perturbations [54]. Hence, the
perturbations of the vector field in TeVeS play the role of
seeds of structure formation in the absence of dark matter.
The vector degree of freedom is formed by the spatial
components of the timelike vector field, which couple to
the spatial part of the metric. Hence, the growing vector
field only affects the potential�, which leads to a nonzero
�þ�< 0, i.e. g < 0 [54]. As in the case of the fðRÞ
model, this produces a slower decay, or even growth, of the
potentials at late times. However, the power spectrum at
earlier times is lower than that of �CDM due to the
considerably different history of structure formation in
TeVeS.

In addition to their effect on the potential ratio, the
vector perturbations also appear on the right-hand side of
the Poisson equation [15], and even dominate the matter
perturbations on small scales. This effect can be seen in the
‘‘Poisson factor’’ (Fig. 1, right panel): on large scales
(thick line), the value is significantly smaller than in
�CDM due to the smaller �m in TeVeS without dark
matter. Going to smaller scales, D�� grows and eventually

overtakes the �CDM value due to the increasing contribu-
tion of vector perturbations [15]. Thus, the Poisson factor
in TeVeS shows a characteristic scale dependence and
redshift evolution, which should be observable in the cor-
relation ratio P ð‘Þ defined in Sec. II B. We return to this in
Sec. IVD.

The TeVeS modifications to GR are somewhat more
severe than those from the late-time accelerating models

fðRÞ and DGP; a simple parametrization in terms of gðk; zÞ
and fGðzÞ does not exist (yet) for this model. Since the
TeVeS model used here has a slightly different expansion
history than�CDM, we compare it with an effectiveGRþ
DE model with the same expansion history.

D. Comparison with general dark energy models

In the previous sections we pointed out the two main
physical quantities affected by gravity, aside from the
expansion history: the growth factor of matter perturba-
tions, Dmðk; zÞ, and the matter-potential relation,
D��ðk; zÞ. In modified gravity, they are influenced by a

nonzero metric ratio g, and a rescaling of the gravitational
constant or additional degrees of freedom appearing in the
Poisson equation. Can these signatures possibly be mim-
icked by a general dark energy model ?
Within GR, anisotropic stress perturbations are the only

source of differing cosmological potentials. In order to
achieve a given metric ratio gðk; zÞ, so that �þ� ¼
g��, one would need components of the dimensionless
anisotropic stress perturbation�, at late times, of the order
of [23]:

�ðk; zÞ � ak2

H2
0

gðk; zÞ��ðk; zÞ: (23)

Clearly, the components of the dark energy anisotropic
stress tensor have to be large on small scales in order to
produce the order unity values of g predicted by modified
gravity theories. Any neutrino contribution to � will be
very small at late times. In addition, dark energy density
perturbations would also add a contribution of the order of
�DE�DE=ð�m�Þ to the Poisson ratio P ð‘Þ introduced in
Sec. II B. While the dark energy properties necessary to
emulate modified gravity seem not to be very natural ones,
it is not possible to place stringent constraints on general
dark energy models, in lack of an underlying theory. In the
linear regime, the two functions �DEðk; zÞ and �ðk; zÞ are
sufficient to emulate any given modified gravity model.
However, one might expect that more freedom is needed
for a dark energy model to extend this emulation into the
nonlinear regime. For example, the fðRÞ and DGP models
exhibit a chameleonlike behavior [56] in order to restore
GR in high-density environments [37,39,42]. To emulate
this effect, a dark energy model would also need a chame-
leonlike coupling to matter [56]. It would be worth study-
ing to what extent general physical constraints can be
placed on dark energy models which also apply in the
nonlinear regime.

IV. FORECASTS FOR WEAK LENSING SURVEYS

We now present quantitative forecasts of the constrain-
ing power of future surveys with regard to modified grav-
ity. Following the treatment presented in Sec. II, we
consider the galaxy-shear and shear-shear correlations,
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Cg�, and C��, on linear scales (‘ & 200 for z * 1). In this
regime, the Gaussian error estimate is a good approxima-
tion. The variance of the cross-correlation CABð‘Þ, where
A, B stand for any of gi; �j, is then given by:

½�CABð‘Þ�2 ¼ 1

fSkyð2‘þ 1Þ
��
CAAð‘Þ þ 	2

A

nA

�

�
�
CBBð‘Þ þ 	2

B

nB

�
þ CABð‘Þ2

�
: (24)

Here, fSky is the fraction of sky observed in the survey, nA;B
denote the number densities of galaxies per sr in each
sample, and 	A;B is the shot noise error. For galaxy number

counts, 	g ¼ 1, while for the shear (convergence), we take

	
 ¼ 0:35 as the shot noise due to intrinsic ellipticities. We
use the exact integrals [Eqs. (7)–(9)] for the correlations for
‘ � 10. For higher ‘, we use the Limber-approximation
expressions [Eqs. (11)–(13)], since the deviations are less
than 1% and drop quickly for higher ‘. Note that in any
case the bulk of the signal-to-noise comes from much
higher ‘.

In principle one should take into account magnification
bias as well, which adds additional fluctuations to the
observed galaxy overdensity and hence affects Cgg and
Cg�. For a galaxy population with bias b, the observed
galaxy overdensity �g will be given by [57]:

�g ¼ b�þ ð5s� 2Þ�; (25)

where � is the matter overdensity, � is the convergence,
and s ¼ d lgN=dm is the logarithmic number count slope
as a function of magnitude m. Typical values for galaxy
surveys are s ¼ 0:2; . . . ; 0:6 [57,58]. The galaxy-shear
correlation will thus be modified as:

Cg�ð‘Þ ! Cg�ð‘Þ þ ð5s� 2ÞC�f�ð‘Þ; (26)

where �f is the convergence calculated for the foreground

galaxy redshift bin. Note that modified gravity will also
affect the magnification bias term. Since we do not have a
realistic estimate for the number count slope in the surveys
considered here, we do not include this effect. For the
galaxy-shear correlation with foreground galaxies centered
around z ¼ 1:1 and for the range in s given above, we
estimate that the effect is around 10% (‘ * 50) for�CDM
and reaches up to 30% for the fðRÞ cosmology. Note that
the parameter s is measurable in surveys. Furthermore, by
varying the magnitude cut of the galaxy sample, one can
vary s to some extent and in this way probe the magnifi-
cation effect. Hence, while straightforward to include for
an actual survey, magnification bias will not affect the
forecasts presented here appreciably.

Our fiducial flat �CDM cosmology is given by: 	8 ¼
0:8, �m ¼ 0:27, �� ¼ 0:73, �b ¼ 0:046, h ¼ 0:7, ns ¼
0:95. For the linear matter power spectrum, we use the
transfer function from [59]. The parameters used for the
modified gravity models are stated in Sec. III. Additionally,

we will consider a �CDM cosmology with a nonlinear
power spectrum from HALOFIT [60], in order to assess
where the linear approximation breaks down. Note that
this is only indicative; nonlinearities can in principle be-
come important already at larger scales in modified gravity
theories, due to the nonlinear nature of the modified evo-
lution equations for perturbations.

A. Survey specifications

We adopt simple survey specifications, as we are mainly
interested in the differences between modified gravity
models from GR in this paper, which do not depend
appreciably on the detailed specifics of the survey. The
galaxy redshift distribution dN=dz is adopted from obser-
vations [61,62] for a magnitude-limited sample with I <
27, as parametrized as ‘‘Sample I’’ in [63]. This is roughly
what is expected to be attained by LSST [64] or SNAP
[65]. The median redshift of the distribution is 0.91. We
then divide the galaxy distribution into redshift bins de-
fined by zl, zh:

WgðzÞ ¼ C
dN

dz

�
erfc

�
zl � zffiffiffi
2

p
	z

�
� erfc

�
zh � zffiffiffi
2

p
	z

��
; (27)

where C is a normalization constant, erfc is the comple-
mentary error function, zl and zh are the lower and upper
bin boundaries, respectively, and 	z is the expected photo-
metric redshift error. We adopt 	z ¼ 0:03ð1þ zÞ.
In the following, for studies of the redshift evolution of

the galaxy-shear and shear-shear correlations, we divide
the redshift range from z ¼ 0–3 in bins with �z ¼ zh �
zl ¼ 0:4, so that the first bin is defined by zl ¼ 0; zh ¼ 0:4,
while the last bin corresponds to zl ¼ 2:4; zh ¼ 2:8. In
addition, we define a ‘‘background’’ high-z bin encompass-
ing the galaxies from z ¼ 3 to z ¼ 5 (bin ‘‘B’’, with a
median redshift �zb ¼ 3:6). We then correlate foreground
galaxies or shear with the shear of galaxies in bin B. For
studies of the scale-dependence of Cg�ð‘Þ and C��ð‘Þ, we
choose the same background galaxies, and use a wider
foreground redshift bin defined by zl ¼ 0:8, zh ¼ 1:6
(yielding a median redshift of zf ¼ 1:1). The constraints

on modified gravity do not depend strongly on the number
and precise redshift of the foreground and background bins
chosen.
We do not attempt to model the galaxy bias in each bin,

instead we show correlations divided by b, where appli-
cable. In practice, the bias can be taken as free (scale-
independent) parameter to be marginalized over. We will
see that the dependence on scale and redshift of the effects
of modified gravity should allow them to be disentangled
from galaxy bias. We will show forecasts for LSST, adopt-
ing ng ¼ 50 arcmin�2 as the total observed galaxy density,

and fSky ¼ 0:5 as the observed sky fraction. Constraints

similar to those for LSST are expected from the ‘‘wide
survey’’ of SNAP [65]. Galaxy-shear and shear-shear cor-
relations offer a large amount of information. As we are
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mainly interested in the specific behavior of weak lensing
correlations in the different modified gravity models, we
do not attempt to fully exploit this information here; in-
stead, we will separately discuss the scale (‘�) dependence
and redshift evolution of the observables, pointing out
generic features of the different model predictions, and
whether these effects will be observable in future surveys.

B. Scale dependence

We first consider the galaxy-shear cross-correlation,
correlating foreground galaxies from bin ‘‘F’’ (�zf ¼ 1:1)

with the shear from galaxies in bin B (�zb ¼ 3:6). Figure 2
(left panel) shows Cg�ð‘Þ=b for �CDM and the modified
gravity models, where b is the bias of the foreground
galaxies. There are clear differences in the magnitude of
the signal, with the largest correlation coming from the
fðRÞ model, while DGP and TeVeS yield weaker correla-
tions than the corresponding GRþ DE models with iden-
tical HðzÞ (thin lines). Qualitatively, this is what we
expected after the discussion of the models in Sec. III
(see also Fig. 1). The differences to the predictions of the
GRþ DE models with the same expansion history are of
order 50% or more in the case of fðRÞ and TeVeS, and of
order 10% in the case of DGP (right panel of Fig. 2). A
scale-dependence of the ratio is also apparent; in the case
of the DGP model, the deviations become slightly smaller
towards smaller scales, while the opposite scale depen-
dence is apparent for the fðRÞ model. This is due to the
different values of the metric ratio in the quasistatic (small-
scale) regime for the different models (Sec. III). Note that
for DGP and fðRÞ, we expect the GR behavior to be
restored on sufficiently small (nonlinear) scales. In the
case of TeVeS, the differences to GR are also sourced by
the modified Poisson equation, and hence remain present

even at small scales. Apparently, for the redshift bins
chosen, nonlinear evolution becomes relevant for ‘ *
300 in the �CDM case. Hence, any predictions at larger
‘ should not be taken at face value. We found that the

deviations from GR in terms of Rg�ð‘Þ ¼ Cg�ð‘Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cggð‘Þp

,
which is independent of the linear galaxy bias, are very
similar to those of Cg�.
In Fig. 3 we show the corresponding results for the

shear-shear correlation of the high-z B bin. The results
are quite similar to those for the galaxy-shear correlation.
The shear-shear correlation offers the advantage of being
independent of any galaxy bias. However, small-scale
modes at low redshifts contribute to the shear-shear corre-
lation, so that the effects of nonlinear evolution become
relevant already at ‘� 200. In contrast, the contribution to
the galaxy-shear correlation we considered is concentrated
around �zf ¼ 1:1, where the nonlinear evolution is some-

what less relevant.
Finally, we determine whether the differences in magni-

tude and scale-dependence of weak lensing correlations
will be observable in future surveys. Figure 4 shows the
deviations for Cg�ð‘Þ and C��ð‘Þ for the same redshift bins
as above, binned in ‘ with �‘ ¼ 50. Also shown are 1	
statistical errors expected for an LSST-like survey, using
Eq. (24). Apparently, the overall difference in the lensing
signal is distinguishable at very high significance, to a
comparable degree in both galaxy-shear and shear-shear
correlations. As both observables are prone to different
experimental systematics, the possibility of measuring
both correlations in the same survey will enable powerful
cross-checks of any signs of deviations from the GR pre-
dictions. Choosing a more conservative background red-
shift bin from z ¼ 2 to 3, with median redshift �zb ¼ 2:4,
degrades the expected signal-to-noise of the deviations in
Cg� and C�� by not more than 20%.

FIG. 2 (color online). Left panel: The galaxy-shear cross power Cg�ð‘Þ=b for �CDM (black/solid line) and modified gravity
theories: fðRÞ (red/dotted line), DGP (blue/short-dashed line), and TeVeS (green/long-dashed line). In case of DGP and TeVeS, the thin
lines show the corresponding predictions for a GRþ DEmodel with the same expansion history. The foreground galaxies are from bin
F with median redshift of �zf ¼ 1:1, and background (sheared) galaxies are from bin B with �zb ¼ 3:6 (see text). Right panel: Relative

deviation of the galaxy-shear cross power Cg�ð‘Þ of modified gravity models from that of a GRþ DE model with identical expansion
history, for the same redshift bins as in the left panel.
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In addition to the overall magnitude, the different scale
dependence of Cg�ð‘Þ and C��ð‘Þ in the fðRÞ and TeVeS
models should be clearly distinguishable, while the scale
dependence of the deviation of the DGP model might be
difficult to detect. A scale dependence of the deviation of
lensing correlations from the GRþ DE prediction should
break degeneracies with other cosmological parameters
such as b and 	8. The redshift evolution of the lensing
signal, to which we now turn, can serve as an additional
tool for this purpose.

C. Redshift evolution

In order to study the redshift evolution of lensing corre-
lations in GR and modified gravity scenarios, we keep the
background galaxy bin B (z ¼ 3–5, median �zb ¼ 3:6) fixed
while considering foreground redshift bins with various
median redshifts as explained in Sec. IVA. We keep the
width of the foreground redshift bins fixed at �z ¼ 0:4.

This is only a subset of the cross-correlations possible,
which for our purposes serves to show how the evolution
of correlations differs in modified gravity theories.
Let us begin with the galaxy-shear correlation, shown in

Fig. 5 (left panel) for a fixed ‘ ¼ 100 as a function of the
median redshift �zf of the foreground galaxies. The overall

behavior as a function of �zf is due to the lensing weight

functionWL, which peaks at z� 0:5, corresponding to half
of the distance to the lensed galaxies, of order �ð�zbÞ. The
precise evolution with redshift however depends on the
evolution of the potentials / ð1þ zÞDmðzÞ, which differs
in modified gravity theories (right panel of Fig. 5). We
again find the expected result that fðRÞ shows a larger
lensing signal, while DGP and TeVeS predict smaller
lensing signals than the corresponding GRþ DE models.
In all cases, we see a significant redshift evolution of the
deviations. In the case of fðRÞ and DGP, the deviations
become smaller at higher z, as GR becomes restored in the

FIG. 4 (color online). Left panel: Relative deviation of the cross power Cg�ð‘Þ from that of the corresponding GRþ DE models, for
the same redshift bins as in Fig. 2, but in bins of �‘ ¼ 50 with statistical errors expected from LSST. Right panel: Same as the left
panel, but for the shear-shear correlation of high-z galaxies (as in Fig. 3).

FIG. 3 (color online). Left panel: The shear-shear autocorrelation C��ð‘Þ for �CDM and modified gravity theories, for high-redshift
galaxies with median redshift �zb ¼ 3:6. The different colors and line styles correspond to the same modified gravity and GRþ DE
models as in Fig. 2. Right panel: Relative deviation of the shear power spectrum C��ð‘Þ from that of GRþ DE models with the same
expansion history, for the same high-redshift galaxies as in the left panel.
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matter-dominated epoch in these models. Thus, ratios of
correlations such asCg�ð‘; �zf ¼ 0:5Þ=Cg�ð‘; �zf ¼ 1:5Þ can
serve as probes of gravity. A large part of the observational
systematics can be expected to drop out in such a ratio, as
will the power spectrum normalization 	8. However, the
different galaxy biases of the two foreground samples have
to be taken into account. Alternatively, one can measure
ratios of Rg� [Eq. (14)] instead of Cg�, where similar
deviations from GR are seen. It is apparent that at ‘ ¼
100, nonlinearities only become important for very low z
foreground galaxies in the galaxy-shear correlation.

The shear-shear correlation shows a complementary
redshift evolution, growing with the foreground galaxy
redshfit �zf, as the amount of mass along the line of sight

as well as the geometrical lever arm increase with �zf. The

deviations in the predicted redshift evolution of the shear-

shear correlation for modified gravity models are similar in
sign and magnitude as those for the galaxy-shear correla-
tion. Again, with its different redshift evolution and set of
observational systematics, the shear-shear correlation can
serve as a cross-check of the galaxy-shear correlation.
In Fig. 6 we show how precisely the redshift of evolution

of Cg� and C�� is expected to be measurable with a survey
like LSST. We assume a bin in ‘ from 50–150, and con-
sider foreground redshift bins spaced by �z ¼ 0:4, so that
these bins are independent. Note however that the back-
ground redshift bin is the same in all cases. It is clear that
future surveys should be able to resolve the redshift evo-
lution of weak lensing correlations to high precision, and
distinguish the models discussed here based on this evolu-
tion. This also holds when choosing a lower-z background
redshift bin, e.g. z ¼ 2–3, although the redshift range

FIG. 5 (color online). Left panel: The galaxy-shear cross power Cg�ð‘Þ=b at ‘ ¼ 100 for a fixed background galaxy sample with
median redshift �zb ¼ 3:6, as a function of the redshift �zf of foreground galaxies. The different lines correspond to the same modified

gravity and GRþ DE models as in Fig. 2. Right panel: Relative deviation of the galaxy-shear power predicted by the modified gravity
models from those of the corresponding GRþ DE models.

FIG. 6 (color online). Left panel: The relative difference of the galaxy-shear cross power in modified gravity models, as shown in
Fig. 5 (right panel), but with statistical error bars expected from LSST. Each point corresponds to an independent foreground galaxy
redshift bin with �z ¼ 0:4; note that errors are correlated as the same background galaxy sample is used for each point. Right panel:
Same as the left panel, but for the shear power spectrum for a fixed high-z redshift bin with �zb ¼ 3:6 and the same foreground redshift
bins as in the left panel.
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usable for probing the evolution of deviations fromGRwill
be restricted to z & 1:5 in this case.

D. Poisson ratio

We now discuss forecasts for the measurement of the
‘‘Poisson ratio’’ P ð‘Þ � Cg�ð‘Þ=Cggð‘Þ presented in
section II B. Figure 7 shows P ð‘Þ as a function of ‘ for
the foreground galaxy bin F ( �zf ¼ 1:1) and the background

bin B (�zb ¼ 3:6). It is not completely scale-independent
even in the case of �CDM due to the finite width of the
foreground galaxy bin (�z ¼ 0:4); in section II B we had
assumed a �-distribution in redshift for the foreground
galaxies. As expected from Fig. 1, TeVeS shows the largest
differences in P ð‘Þ. The modifications to the Poisson
equation are very small for the assumed fðRÞ model, while
the DGP model shows an offset in P ð‘Þ due to the different
�m adopted for this model (Sec. III B). Some of the gen-
eralizations of the DGP model considered in [49] have a
modified Poisson equation which should also leave an
observable signature in P ð‘Þ.

The right panel of Fig. 7 shows the statistical error
expected for LSST on the measurement of P ð‘Þ, in bins
of �‘ ¼ 50. For simplicity, the errors on Cgg and Cg�

where assumed to be independent. In this robust test of
the Poisson equation, the present TeVeS model should
leave an observational signature, as should any modified
gravity model that shows modifications to the Poisson
equation on the order of 5% or greater. Signatures of
appreciable dark energy density perturbations on scales
less than �Gpc should be detectable in P ð‘Þ as well.

V. CONCLUSIONS

Uncovering the physics behind the accelerated expan-
sion of the Universe is one of the most compelling open
problems in astrophysics today. One fundamental question
to answer is whether the cause lies in an additional com-
ponent in the energy budget of the Universe, or in a

modification of general relativity on cosmological scales.
By considering galaxy-shear and shear-shear correlations
on large scales, we showed that weak lensing, with its
ability to probe the scale dependence and redshift evolution
of the cosmological gravitational potentials and their rela-
tion to matter, can serve as a very sensitive probe in
discerning between modified gravity and dark energy. We
focused on the effects of modified gravity on the growth of
structure, effectively assuming that the expansion history is
very well constrained through supernovae Ia, the CMB,
and baryon acoustic oscillation measurements. In practice,
distance and growth measures should be used jointly to
place constraints on modified gravity models.
Weak lensing is also a sensitive probe of the background

expansion history, both through geometry and the growth
of structure. However, when using the growth of structure
to infer the background expansion history (parametrized,
e.g., by the dark energy equation of state w), one relies on
the validity of general relativity on cosmological scales: as
we have shown here, modified gravity affects the growth of
structure and weak lensing observables independently of
the expansion history. Fortunately, it is possible to isolate
the dependence on the spacetime geometry of lensing
observables via shear ratios [40,41]. These techniques
will not be affected by modifications to gravity.
By cross-correlating foreground galaxies with the shear

of background galaxies, it is possible to probe the relation
between matter and potentials, i.e. the Poisson equation.
For this purpose, we introduced the weak lensing correla-
tion ratio P ð‘Þ [Eq. (17)], which is, in the limit of narrow
redshift bins, independent of growth effects and the matter
power spectrum, and thus isolates modifications to the
matter-potential relation. However, galaxy-shear correla-
tions necessarily depend on the a priori unknown galaxy
bias. On linear scales, the degeneracy with the bias can
presumably be broken by considering the nontrivial scale
dependence of the modified gravity signatures; alterna-
tively, one can consider the reduced correlation, Rg�ð‘Þ

FIG. 7 (color online). Left panel: The ‘‘Poisson ratio’’ of correlations scaled by the bias, bP ð‘Þ [Eq. (17)], for foreground galaxies
with mean redshift �zf ¼ 1:1 and (sheared) background galaxies with �zb ¼ 3:6, in �CDM and modified gravity theories. Right panel:

The same as the left panel, in bins of �‘ ¼ 50 and with statistical error bars expected from LSST.
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[Eq. (14)]. In contrast, the shear-shear correlation is inde-
pendent of any galaxy bias, while it is more affected by the
nonlinear gravitational evolution at late times. We stress
that any modification of gravity should leave a signature in
both galaxy-shear and shear-shear correlations, and the two
methods with their different experimental systematics can
serve as cross-checks of the results.

In this paper, we considered three viable modified grav-
ity models which are, in broad terms, consistent with
current measurements of the CMB and the expansion
history. We compared each model to a GRþ DE scenario
with identical expansion history, showing that weak lens-
ing can break this degeneracy even in the case of an
extremely tightly constrained expansion history. Further-
more, all of these models make definite predictions for
weak lensing in the linear regime: the fðRÞ model generi-
cally predicts a larger lensing signal than expected in GR;
the DGP braneworld model predicts a smaller lensing
signal than a GRþ DE model with the same expansion
history; and TeVeS predicts a weaker lensing signal with
considerably modified scale dependence. In all cases, these
are robust features of the underlying model, linked to the
nonzero difference between the cosmological potentials,
and modifications to the Poisson equation.

We showed that future wide-field weak lensing surveys,
such as LSST and the wide survey of SNAP, can detect
deviations in weak lensing correlations predicted by these
three models with high significance. As an example, Fig. 8
shows, as a function of ‘, the signal-to-noise of the devia-
tion of the modified gravity model predictions expected for
LSST, in the case of the galaxy-shear correlation. For
comparison, we also show the corresponding signal-to-
noise expected for the galaxy-CMB cross-correlation in-
duced by the late-time ISW effect, which is clearly much
smaller: weak lensing is considerably more powerful in
distinguishing modified gravity models from dark energy
models with the same expansion history. As these conclu-
sions hold for the three independent modified gravity
scenarios considered here, one might expect them to be
valid in general for gravity theories that differ significantly
from GR on cosmological scales. While constraints similar
to those of LSST are expected from other proposed sur-
veys, such as the SNAPwide survey, these conclusions also
hold for less demanding survey specifications.

Apart from relying on data from future experiments,
progress in the theoretical understanding of modified grav-
ity will be crucial in order to improve on the sensitivity of
probes of gravity. Using weak lensing to probe gravity on
smaller scales requires that the nonlinear process of struc-
ture formation be understood in modified gravity theories.
Once this is the case, the amount of useful information for
probing gravity grows dramatically, say by raising ‘max

from a few hundred to greater than 1000. In addition, one

might hope that the degeneracy between modified gravity
and general, nonsmooth dark energy models present in the
linear theory will be broken in the nonlinear regime, at
least for a class of dark energy models restricted by physi-
cal constraints on, e.g., the coupling to matter.
Finally, we point out that the information in weak lens-

ing correlations should be sufficient to place constraints on
‘‘post-GR’’ parameters independently of an underlying
modified gravity theory, especially for the metric ratio
gðk; zÞ and the rescaled gravitational constant Geff . A de-
tailed investigation of this, using all information contained
in galaxy and shear correlations, is left for future study.
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FIG. 8 (color online). Signal-to-noise ðCMGð‘Þ �
CGRþDEð‘ÞÞ=�CMGð‘Þ in ‘ bins (points) of the deviation of
modified gravity (MG) predictions from GRþ DE models
with the same expansion history, for the galaxy-shear correlation
shown in Fig. 4 (left panel). The lines show the corresponding
signal-to-noise of the deviation in the galaxy-CMB cross-
correlation via the ISW effect, for the same foreground galaxy
redshift bin centered at �zf ¼ 1:1.
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