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Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general

relativity. We begin by explaining the nonrelativistic calculation of the phase shift in an atom interfer-

ometer and deriving its range of validity. From this, we develop a method for calculating the phase shift in

general relativity. Both the atoms and the light are treated relativistically and all coordinate dependencies

are removed, thus revealing novel terms, cancellations, and new origins for previously calculated terms.

This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational

field for application to laboratory tests of general relativity. The potentially testable relativistic effects

include the nonlinear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We

propose specific experiments, one currently under construction, to measure each of these effects. These

experiments could provide a test of the principle of equivalence to 1 part in 1015 (300 times better than the

present limit), and general relativity at the 10% level, with many potential future improvements. We also

consider applications to other metrics including the Lense-Thirring effect, the expansion of the Universe,

and preferred frame and location effects.
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I. INTRODUCTION

Atomic physics has made rapid progress recently, yield-
ing several high precision techniques and experiments.
Atomic clocks can remain synchronous to 16 decimals
[1] and have been used to search for the time variation of
the fine structure constant [2–4]. In particular, atom inter-
ferometry has become a high precision tool that has been
used successfully for a variety of applications including
gyroscopes [5], gradiometers [6,7], and gravimeters [8,9].
In light of this, it is interesting to consider the possibilities
for using atom interferometry to test general relativity in
the lab. Indeed, the first atom interferometry experiment to
push the limits on the principle of equivalence (POE) [10]
is currently under construction.

Experimental tests of general relativity (GR) have gone
through two major phases. The original tests of the peri-
helion precession and light bending were followed by a
golden era from 1960 until today (see e.g. [11]). These tests
were in part motivated by alternatives to Einstein’s theory,
such as Brans-Dicke, designed to incorporate Mach’s prin-
ciple [12]. More recently, the cosmological constant prob-
lem suggests that our understanding of general relativity is
incomplete, motivating a number of proposals for modify-
ing gravity at large distances [13–15]. In addition, possible
alternatives to the dark matter hypothesis have led to
theories where gravity changes at slow accelerations or
galactic scales [16–18].

In a previous paper [10] we discussed the possibility of
testing general relativity with atom interferometry. We
found that many relativistic effects will be large enough
to be seen in the upcoming generation of experiments. In
this work we give the details of the framework for calcu-

lating the effects of general relativity in an atom interfer-
ometer. We then apply this to an interferometer in the
Earth’s gravitational field with the motivation of using
the high precision of atom interferometry to test general
relativity in a laboratory experiment. The ability to find GR
effects in an atom interferometer is more widely applicable
as well. In particular we consider other effects such as the
Lense-Thirring effect. Further, in [19,20] we apply this
technique to find the effect of a gravitational wave.
Wewill also discuss a few ideas for strategies to measure

several of these GR effects in the lab. We do not attempt to
prove that such experiments are feasible, since this would
require a very detailed analysis of the many relevant back-
grounds. Instead, we give a few arguments why the most
important backgrounds may be controllable. We wish
mainly to motivate a more careful consideration of these
experiments, given the interest in laboratory tests of gen-
eral relativity.
An attempt was made to make the different sections of

this paper as independent as possible. Section II will dis-
cuss the experimental setup of an atom interferometer and
give a description of the usual, nonrelativistic calculation
of the final phase shift. Section III will describe our method
for finding the final phase shift in an atom interferometer in
any space-time in general relativity. Section IVA will
specialize this discussion to the Schwarzschild metric for
application to an atom interferometer in a weak gravita-
tional field such as the Earth’s. Section IVB will give our
results for the GR effects in an atom interferometer near
the Earth and discuss their physical origin in general
relativity. Section V will discuss a few ideas for measuring
these GR terms in an actual experiment. Section VI will
discuss other applications of this work including using
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atom interferometry to measure the Lense-Thirring effect
and the expansion of the Universe.

II. ATOM INTERFEROMETRY

A. Experimental setup

Atom interferometry can be used to measure accelera-
tions precisely. In an atom interferometer, the atom is
forced to follow a superposition of two spatially and tem-
porally separated free-fall paths. When recombined, the
resulting interference pattern depends on the relative phase
accumulated along the two paths. This phase shift is ex-
quisitely sensitive to inertial forces present during the
interferometer sequence. For example, the goal sensitivity
of the next generation apparatus exceeds 10�14 m=s2 [10].

A single measurement of acceleration in an atom inter-
ferometer consists of three steps: atom cloud preparation,
interferometer pulse sequence, and detection. In the first
step, the cold atom cloud is prepared. Using laser cooling
and evaporative cooling techniques [21], a submicrokelvin
cloud of 107 87Rb atoms is formed in �10 s. Cold atom
clouds are needed so that as many atoms as possible will
travel along the desired trajectory and contribute to the
signal. In addition, many potential systematic errors (e.g.,
gravity gradients) are sensitive to the atom’s initial con-
ditions, so cooling can mitigate these unwanted effects.
Here, evaporative cooling is used since it yields the re-
quired tight control of the initial position and velocity of
the cloud that cannot be achieved with laser cooling alone.
At the end of the cooling procedure, the final cloud number
density is kept low enough so that atom-atom interactions
within the cloud are negligible (Sec. V contains a quanti-
tative discussion of this point). This dilute ensemble of
cold atoms is then launched with velocity vL by trans-
ferring momentum from laser light. To avoid heating the
cloud during launch, the photon recoil momenta are trans-
ferred to the atoms coherently, and spontaneous emission is
avoided [22].

In the second phase of the measurement, the atoms
follow free-fall trajectories and the interferometry is per-
formed. A sequence of laser pulses serves as beam splitters
and mirrors that coherently divide each atom’s wave packet
and then later recombine it to produce the interference.
Figure 1 is a space-time diagram illustrating this process
for a single atom. The atom beam splitter is implemented
using a stimulated two-photon transition. In this process,
laser light incident from the right of Fig. 1 with wave
vector k1 is initially absorbed by the atom. Subsequently,
laser light with wave vector k2 incident from the left
stimulates the emission of a k2 photon from the atom,
resulting in a net momentum transfer of keff ¼ k2 � k1 �
2k2. These two-photon atom optics are represented in
Fig. 1 by the intersection of two counter-propagating pho-
ton paths at each interaction node.

There are several schemes for exchanging momentum
between the atoms and the lasers. Figure 2(a) shows the

case of a Raman transition in which the initial and final
states are different internal atomic energy levels. The light
fields entangle the internal and external degrees of freedom
of the atom, resulting in an energy level change and a
momentum kick. As an alternative to this, it is also possible
to use Bragg transitions in which momentum is transferred
to the atom while the internal atomic energy level stays
fixed (see Fig. 3). In both the Raman and Bragg scheme,
the two lasers are far detuned from the optical transitions,
resulting in a negligibly small occupancy of the excited
state jei. This avoids spontaneous emission from the short-
lived excited state. To satisfy the resonance condition for
the desired two-photon process, the frequency difference
between the two lasers is set equal to the atom’s recoil
kinetic energy (Bragg) plus any internal energy shift
(Raman). While the laser light is on, the atom undergoes
Rabi oscillations between states jpi and jpþ keffi (see
Fig. 2(b)). A beam splitter results when the laser pulse
time is equal to a quarter of a Rabi period ( �2 pulse), and a

mirror requires half a Rabi period (� pulse).
After the initial beam splitter, the atom is in a superpo-

sition of states which differ in velocity by keff=m. The
resulting spatial separation of the halves of the atom is
proportional to the interferometer’s sensitivity to accelera-
tion along the direction of keff . In this work we consider
the beam splitter-mirror-beam splitter ( �2 � �� �

2 ) se-

quence [23], the simplest implementation of an acceler-

FIG. 1. A space-time diagram of a light-pulse atom interfer-
ometer. The black lines indicate the motion of a single atom.
Laser light used to manipulate the atom is incident from above
(light gray) and below (dark gray) and travels along null geo-
desics. Here the lasers’ worldlines are taken to be the two
vertical lines on the left and right edges of the graph.
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ometer and the matter-wave analog of a Mach-Zender
interferometer.

The third and final step of each acceleration measure-
ment is atom detection. At the end of the interferometer
sequence, each atom is in a superposition of the two output
velocity states, as shown by the diverging paths at the top
of Fig. 1. Since these two states differ in velocity by
�keff=m, they spatially separate. After an appropriate drift
time, the two paths can be separately resolved, and the
populations are then measured by absorption imaging.
These two final velocity states are directly analogous to
the two output ports of a Mach-Zender light interferometer
after the final recombining beam splitter. As with a light
interferometer, the probability that an atom will be found
in a particular output port depends on the relative phase
acquired along the two paths of the atom interferometer.

Recent atom interferometers have demonstrated sensor
noise levels limited only by the quantum projection noise
of the atoms (atom shot noise) [24]. Assuming a typical
time-average atom flux of n ¼ 106 atoms=s, the resulting

phase sensitivity is �1=
ffiffiffi
n

p ¼ 10�3 rad=
ffiffiffiffiffiffi
Hz

p
and the ulti-

mate phase uncertainly is �10�6 rad after 106 s of inte-
gration. This noise performance can potentially be
improved by using entangled states instead of uncorrelated
atom ensembles [25]. For a suitably entangled source, the
Heisenberg limit is SNR� n, a factor of

ffiffiffi
n

p
improvement.

For n� 106 entangled atoms, the potential sensitivity im-
provement is 103. Recent progress using these techniques
may soon make improvements in the signal-to-noise ratio
(SNR) on the order of 10 to 100 realistic [26]. Of course,
improvements in SNR may be easier to achieve simply
with increased atom flux without using entanglement.
Another sensitivity improvement involves the use of

more sophisticated atom optics. The acceleration sensitiv-
ity of the interferometer is proportional to the effective
momentum @keff transferred to the atom during interac-
tions with the laser. Both the Bragg and Raman schemes
described above rely on a two-photon process for which
@keff ¼ 2@k, but large momentum transfer (LMT) beam
splitters with up to 10@k or perhaps 100@k are possible
[27]. Promising LMT beam splitter candidates include
optical lattice manipulations [22], sequences of Raman
pulses [28], and adiabatic passage methods [29]. Figure 3
illustrates an example of a LMT process consisting of a
series of sequential two-photon Bragg transitions as may
be realized in an optical lattice. As the atom accelerates,
the resonance condition is maintained by increasing the
frequency difference between the lasers.
Finally, we consider the expected acceleration sensitiv-

ity of the coming generation of atom interferometers. We
are currently building a rubidium interferometer that takes
advantage of an L � 10 m vacuum system which allows
for a long interrogation time of T ¼ 1:34 s [10,30]. The
phase response of the interferometer to an acceleration g is

FIG. 2 (color online). (a) shows an energy level diagram for a stimulated Raman transition between atomic states j1i and j2i through
a virtual excited state using lasers of frequency!1 and!2. (b) shows the probability that the atom is in states j1i and j2i in the presence
of these lasers as a function of the time the lasers are on. A �

2 pulse is a beam splitter since the atom ends up in a superposition of states

j1i and j2i while a � pulse is a mirror since the atom’s state is changed completely.

FIG. 3. The atomic energy level diagram for a series of se-
quential two-photon Bragg transitions plotted as energy versus
momentum. The horizontal lines indicate the states through
which the atom is transitioned. The diagonal lines connecting
the states represent the laser frequencies used in the transition.
The result of this transition is to give the atom a large momen-
tum.
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kgT2. Using 10@k LMT beam splitters and shot-noise
limited detection of 106 atoms=s for this apparatus results

in a sensitivity of � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
106 atoms

s

p
ð10 2�

780 nmÞð1:34 sÞ2 � 7� 10�13g=
ffiffiffiffiffiffi
Hz

p

and a precision of �10�15g after a day of integration.
This estimate is based on realistic extrapolations from
current performance levels, which are at 10�10g [31].

B. Nonrelativistic phase shift calculation

In this section we review our nonrelativistic method for
calculating the phase difference between the two halves of
the atom at the end of the atom interferometer. These
results are well-known [32,33], but we are not aware of a
complete, formal derivation of these rules in the literature.
Other equivalent formalisms for this calculation do exist
(see, for example, [34,35]); however, here we review our
formalism because the relativistic calculation we discuss in
Sec. III has the same structure. For Sec. III it is necessary to
understand the formulae for the phase difference
(Sec. II B 1). The proof of these formulae as well as a
discussion of their range of validity is given in Sec. II B 2
but is not necessary for the rest of the paper.

1. Phase shift formulae

The main result we will show is that the total phase
difference ��tot between the two paths of an atom inter-
ferometer may be written as the sum of three easily calcu-
lated components:

��tot ¼ ��propagation þ ��separation þ ��laser: (1)

For this calculation and the rest of the paper we take @ ¼
c ¼ 1.

The propagation phase��propagation arises from the free-

fall evolution of the atom between light pulses and is given
by

��propagation ¼
X
upper

�Z tF

tI

ðLc � EiÞdt
�

� X
lower

�Z tF

tI

ðLc � EiÞdt
�
; (2)

where the sums are over all the path segments of the upper
and lower arms of the interferometer, and Lc is the classical
Lagrangian evaluated along the classical trajectory of each
path segment. In addition to the classical action, Eq. (2)
includes a contribution from the internal atomic energy
level Ei. The initial and final times tI and tF for each path
segment, as well as Lc and Ei, all depend on the path
segment.

The laser phase ��laser comes from the interaction of
the atom with the laser field used to manipulate the wave
function at each of the beam splitters and mirrors in the
interferometer. At each interaction point, the component of
the state that changes momentum due to the light acquires
the phase of the laser �Lðt0;xcðt0ÞÞ ¼ k � xcðt0Þ �!t0 þ

� evaluated at the classical point of the interaction:

��laser ¼
�X
j

��Lðtj;xuðtjÞÞ
�
upper

�
�X
j

��Lðtj;xlðtjÞÞ
�
lower

: (3)

The sums are over all the interaction points at the times tj,

and xuðtÞ and xlðtÞ are the classical trajectories of the upper
and lower arm of the interferometer, respectively. The sign
of each term depends on whether the atom gains (þ ) or
loses (� ) momentum as a result of the interaction.
The separation phase ��separation arises when the classi-

cal trajectories of the two arms of the interferometer do not
exactly intersect at the final beam splitter (see Fig. 4). For a
separation between the upper and lower arms of �x ¼
xl � xu, the resulting phase shift is

��separation ¼ �p ��x; (4)

where �p is the average classical canonical momentum of
the atom after the final beam splitter. Of course, the sepa-
ration phase is really an artifact of our semiclassical cal-
culation method based on classical atom trajectories. The
observable is just the total phase shift at the end of the
experiment.

2. Proof

The interferometer calculation amounts to solving the
Schrodinger equation with the following Hamiltonian:

FIG. 4 (color online). Separation phase. This is a magnified
view of the end of the interferometer which shows the upper and
lower arms converging at the final beam splitter at time t0, and
the resulting interference. The dashed and solid lines designate
the components of the wave function in internal states jA1i and
jA2i, respectively. After the beam splitter, each output port
consists of a superposition of wave packets from the upper and
lower arm. Any offset �x ¼ xl � xu between the centers of the
wave packet contributions to a given output port results in a
separation phase shift.
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Ĥ tot ¼ Ĥa þ Ĥext þ V̂ intðx̂Þ: (5)

Here Ĥa is the internal atomic structure Hamiltonian, Ĥext

is the Hamiltonian for the atom’s external degrees of free-
dom (center of mass position and momentum), and

V̂ intðx̂Þ ¼ ��̂ � Eðx̂Þ is the atom-light interaction, which
we take to be the electric dipole Hamiltonian with �̂ the
dipole moment operator.

The calculation is naturally divided into a series of light

pulses during which V̂int � 0, and the segments between

light pulses during which V̂int ¼ 0 and the atom is in free-
fall. When the light is off, the atom’s internal and external
degrees of freedom are decoupled. The internal eigenstates
satisfy

i@tjAii ¼ ĤajAii ¼ EijAii (6)

and we write the solution as jAii ¼ jiie�iEiðt�t0Þ with time-
independent eigenstate jii and energy level Ei.

For the external state solution j i, we initially consider

Ĥext ¼ Hðx̂; p̂Þ to be an arbitrary function of the external
position and momentum operators:

i@tj i ¼ Hðx̂; p̂Þj i: (7)

It is now useful to introduce a Galilean transformation
operator

Ĝ c � Ĝðxc;pc; LcÞ ¼ ei
R
Lcdte�ip̂�xceipc�x̂ (8)

which consists of momentum boost by pc, a position trans-
lation by xc, and a phase shift. We choose to write

j i ¼ Ĝcj�CMi: (9)

We will show that for a large class of relevant
Hamiltonians, if xc, pc, and Lc are taken to be the classical
position, momentum, and Lagrangian, respectively, then
j�CMi is a wave packet with hx̂i ¼ hp̂i ¼ 0, and the dy-
namics of j�CMi do not affect the phase shift result (i.e.,
j�CMi is the center of mass frame wave function).
However, for now we maintain generality and just treat
xc, pc, and Lc as arbitrary functions of time. Combining (7)
and (9) results in

i@tj�CMi ¼ fĜy
cHðx̂; p̂ÞĜc � iĜy

c @tĜcgj�CMi
¼ fHðx̂þ xc; p̂þ pcÞ þ _pc � x̂� ðp̂þ pcÞ

� _xc þ Lcgj�CMi; (10)

where we used the following identities:

Ĝ y
c x̂Ĝc ¼ x̂þ xc Ĝy

c p̂Ĝc ¼ p̂þ pc

Ĝy
cHðx̂; p̂ÞĜc ¼ Hðx̂þ xc; p̂þ pcÞ:

(11)

Next, we Taylor expand Hðx̂þ xc; p̂þ pcÞ about xc and
pc,

Hðx̂þ xc; p̂þ pcÞ ¼ Hðxc;pcÞ þ rx̂Hðxc;pcÞ � x̂
þrp̂Hðxc;pcÞ � p̂þ Ĥ2; (12)

where Ĥ2 contains all terms that are second order or higher

in x̂ and p̂. (We will ultimately be allowed to neglect Ĥ2 in
this calculation.) Inserting this expansion and grouping
terms yields

i@tj�CMi ¼ fðHc � _xc � pc þ LcÞ þ ðrxcHc þ _pcÞ � x̂
þ ðrpcHc � _xcÞ � p̂þ Ĥ2gj�CMi; (13)

where we have defined the classical Hamiltonian Hc �
Hðxc;pcÞ. If we now let xc, pc, and Lc satisfy
Hamilton’s equations,

_x c ¼ rpcHc _pc ¼ �rxcHc Lc ¼ _xc � pc �Hc

(14)

with pc � r _xcLc the classical canonical momentum, then

j�CMi must satisfy

i@tj�CMi ¼ Ĥ2j�CMi: (15)

Next we show that it is possible to choose j�CMi with
hx̂i ¼ hp̂i ¼ 0 for a certain class of Ĥ2, so that xc and pc
completely describe the atom’s classical center of mass
trajectory. This is known as the semiclassical limit. Starting
from Ehrenfest’s theorem for the expectation values of
j�CMi,

@thx̂ii ¼ ih½Ĥ2; x̂i�i ¼ h@p̂iĤ2i (16)

@thp̂ii ¼ ih½Ĥ2; p̂i�i ¼ �h@x̂iĤ2i (17)

and expanding about hx̂i and hp̂i,

@thx̂ii ¼
�
@p̂iĤ2jhx̂i;hp̂i þ @p̂j@p̂iĤ2jhx̂i;hp̂iðp̂j � hp̂jiÞ

þ @x̂j@p̂i Ĥ2jhx̂i;hp̂iðx̂j � hx̂jiÞ

þ 1

2!
@p̂i@p̂j@p̂kĤ2jhx̂i;hp̂iðp̂j � hp̂jiÞðp̂k � hp̂kiÞ

þ � � �
�

(18)

@thp̂ii ¼
�
@x̂i Ĥ2jhx̂i;hp̂i þ @x̂j@x̂i Ĥ2jhx̂i;hp̂iðx̂j � hx̂jiÞ

þ @p̂j@x̂i Ĥ2jhx̂i;hp̂iðp̂j � hp̂jiÞ

þ 1

2!
@x̂k@x̂j@x̂i Ĥ2jhx̂i;hp̂iðx̂j � hx̂jiÞðx̂k � hx̂kiÞ

þ � � �
�

(19)

we find the following:
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@thx̂ii ¼ @p̂iĤ2jhx̂i;hp̂i þ 1

2!
@p̂k@p̂j@p̂i Ĥ2jhx̂i;hp̂i�p2

jk þ � � �
(20)

@thp̂ii ¼ �@x̂i Ĥ2jhx̂i;hp̂i � 1

2!
@x̂k@x̂j@x̂i Ĥ2jhx̂i;hp̂i�x2jk

þ � � � ; (21)

where �x2jk � hx̂jx̂ki � hx̂jihx̂ki and �p2
jk � hp̂jp̂ki �

hp̂jihp̂ki are measures of the wave packet’s width in phase

space [36]. This shows that if Ĥ2 contains no terms higher
than second order in x̂ and p̂, then Ehrenfest’s theorem
reduces to Hamilton’s equations, and the expectation val-
ues follow the classical trajectories. Furthermore, this im-
plies that we can choose j�CMi to be the wave function in
the atom’s rest frame, since hx̂i ¼ hp̂i ¼ 0 is a valid solu-

tion to Eqs. (20) and (21) so long as all derivatives of Ĥ2

higher than second order vanish. In addition, even when
this condition is not strictly met, it is often possible to
ignore the nonclassical corrections to the trajectory so long
as the phase space widths �xjk and �pjk are small com-

pared to the relevant derivatives of Ĥ2 (i.e., the semiclas-
sical approximation). For example, such corrections are
present for an atom propagating in the nonuniform gravi-

tational field g of the Earth for which @r̂@r̂@r̂Ĥ2 � @2rg.
Assuming an atom wave packet width �x & 1 mm, the
deviation from the classical trajectory is @thp̂i �
ð@2rgÞ�x2 & 10�20g, which is a negligibly small correction
compared to the �10�15g effects we are considering.

The complete solution for the external wave function
requires a solution of Eq. (15) for j�CMi, but this is non-
trivial for general Ĥ2. In the simplified case where Ĥ2 is
second order in x̂ and p̂, the exact expression for the
propagator is known [37] and may be used to determine
the phase acquired by j�CMi (see also [38]). However, this
step is not necessary for our purpose, because for second

order external Hamiltonians the operator Ĥ2 does not
depend on either xc or pc. In this restricted case, the
solution for the rest frame wave function j�CMi does not
depend on the atom’s trajectory. Therefore, any additional
phase evolution in j�CMimust be the same for both arms of
the interferometer and so does not contribute to the phase
difference. This argument breaks down for more general

Ĥ2, as does the semiclassical description of the atom’s
motion, but the corrections will depend on the width of
j�CMi in phase space as shown in Eqs. (20) and (21). We
ignore all such wave packet-structure induced phase shifts
in this analysis by assuming that the relevant moments
f�xjk;�pjk; . . .g are sufficiently small so that these correc-

tions can be neglected. As shown above for the nonuniform
(@2rg � 0) gravitational field of the Earth, this condition is
easily met in many experimentally relevant situations.

Finally, we can write the complete solution for the free
propagation between the light pulses:

hxj ; Aii ¼ hxjĜcj�CMijAii
¼ e

i
R
tF
tI
Lcdteipc�ðx�xcÞ�CMðx� xcÞjiie�iEiðtF�tIÞ:

(22)

We see that this result takes the form of a traveling wave
with de Broglie wavelength set by pc multiplied by an
envelope function �CMðxÞ, both of which move along the
classical path xc. Also, the wave packet accumulates a
propagation phase shift given by the classical action along
this path, as well as an additional phase shift arising from
the internal atomic energy:

��propagation ¼
X
upper

�Z tF

tI

ðLc � EiÞdt
�

� X
lower

�Z tF

tI

ðLc � EiÞdt
�
; (23)

where the sums are over all the path segments of the upper
and lower arms of the interferometer, and tI, tF, Lc, and Ei
all depend on the path.
Next, we consider the time evolution while the light is

on and V̂ int � 0. In this case, the atom’s internal and
external degrees of freedom are coupled by the electric
dipole interaction, so we work in the interaction picture
using the following state ansatz:

j�i ¼
Z
dp
X
i

ciðpÞj pijAii; (24)

where we have used the momentum space representation of

j�CMi and so j pi � Ĝce
�iĤ2ðt�t0Þjpi. Inserting this state

into the Schrodinger equation gives the interaction picture
equations,

i@tj�i ¼ i
Z
dp
X
i

@ciðpÞ
@t

j pijAii þ Ĥaj�i þ Ĥextj�i

¼ Ĥtotj�i (25)

) _ciðpÞ � @ciðpÞ
@t

¼ 1

i

Z
dp0X

j

cjðp0ÞhAijh pjV̂ intðx̂Þj p0 ijAji; (26)

where we used (6) and (7) as well as the orthonormality of
jAii and j pi. The interaction matrix element can be fur-

ther simplified by substituting in j pi and using identity

(11):

h pjV̂ intðx̂Þj p0 i¼ hpjeiĤ2ðt�t0ÞV̂ intðx̂þxcÞe�iĤ2ðt�t0Þjp0i
¼ hpjV̂intðx̂þxcÞjp0ieiððp2=2mÞ�ðp02=2mÞÞðt�t0Þ;

(27)

where we have made the simplifying approximation that

Ĥ2 � p̂2

2m . This approximation works well as long as the
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light-pulse time � � t� t0 is short compared to the time

scale associated with the terms dropped from Ĥ2. For
example, for an atom in the gravitational field of Earth,
this approximation ignores the contributionmð@rgÞx̂2 from
the gravity gradient, which for an atom of size�x � 1 mm
leads to a frequency shift �mð@rgÞ�x2 � 1 mHz. For a
typical pulse time � < 1 ms, the resulting errors are &
1 �rad and can usually be neglected. Generally, in this
analysis we will assume the short pulse (small �) limit and
ignore all effects that depend on the finite length of the
light pulse. These systematic effects can sometimes be
important, but they are calculated elsewhere [39,40] and
do not affect our main result for the largest general rela-
tivistic effects.

As mentioned before, we typically use a two-photon
process for the atom optics (i.e., Raman or Bragg) in order
to avoid transferring population to the short-lived excited
state. However, from the point of view of the current
analysis, these three-level systems can typically be reduced
to effective two-level systems [41,42]. Since the resulting
phase shift rules are identical, we will assume a two-level

atom coupled to a single laser frequency to simplify the
analysis. Assuming a single traveling wave excitation
Eðx̂Þ ¼ E0 cosðk � x̂�!tþ�Þ, Eq. (26) becomes

_c iðpÞ ¼ 1

2i

Z
dp0X

j

�ijcjðp0Þhpjðeiðk�ðx̂þxcÞ�!tþ�Þ

þ H:c:Þjp0iei
R
t

t0
!ijþðp2=2mÞ�ðp02=2mÞdt

; (28)

where the Rabi frequency is defined as �ij � hijð��̂ �
E0Þjji and !ij � Ei � Ej. Now we insert the identity

k � ðx̂þ xcÞ �!tþ�

¼ k � x̂|{z}
boost

þ ðk � xcðt0Þ �!t0 þ�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
laser phase

þ
Z t

t0

ðk � _xc �!Þdt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Doppler shift

(29)

into Eq. (28) and perform the integration over p0 using
hpje�ik�x̂jp0i ¼ hpjp0 � ki:

_ciðpÞ ¼ 1

2i

X
j

�ij

�
cjðp� kÞei�Le

i
R
t

t0
ð!ij�!þk� _xcþðk�p=mÞ�ðk2=2mÞÞdt

þ cjðpþ kÞe�i�Le
�i
R
t

t0
ð�!ij�!þk� _xcþðk�p=mÞ�ðk2=2mÞÞdt

�
; (30)

where we define the laser phase at point ft0;xcðt0Þg as �L � k � xcðt0Þ �!t0 þ�. Finally, we impose the two-level
constraint (i ¼ 1; 2) and consider the coupling between c1ðpÞ and c2ðpþ kÞ:

_c 1ðpÞ ¼ 1

2i
�c2ðpþ kÞe�i�Le

�i
R
t

t0
�ðpÞdt

_c2ðpþ kÞ ¼ 1

2i
�	c1ðpÞei�Le

i
R
t

t0
�ðpÞdt

: (31)

Here the detuning is �ðpÞ � !0 �!þ k � ð _xc þ p
mÞ þ k2

2m , the Rabi frequency is� � �12 ¼ ð�21Þ	, and!0 � !21 > 0.
In arriving at Eqs. (31) we made the rotating wave approximation [43], dropping terms that oscillate at (!0 þ!) compared
to those oscillating at (!0 �!). Also, �ii ¼ 0 since the jAii are eigenstates of parity and �̂ is odd.

The general solution to (31) is

c1ðp; tÞ
c2ðpþ k; tÞ

� �
¼ �cðpÞe�ði=2Þ�ðpÞ� �i�sðpÞe�ði=2Þ�ðpÞ�e�i�L

�i�	
sðpÞeði=2Þ�ðpÞ�ei�L �	

cðpÞeði=2Þ�ðpÞ�
 !

c1ðp; t0Þ
c2ðpþ k; t0Þ

� �
(32)

�cðpÞ ¼ cos

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðpÞ2 þ j�j2

q
�

�
þ i

�ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðpÞ2 þ j�j2p sin

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðpÞ2 þ j�j2

q
�

�
(33)

�sðpÞ ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðpÞ2 þ j�j2p sin

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðpÞ2 þ j�j2

q
�

�
: (34)

In integrating (31) we applied the short pulse limit in the
sense of k � €xc�2 
 1, ignoring changes of the atom’s
velocity during the pulse. For an atom falling in the gravi-
tational field of the Earth, even for pulse times �� 10 �s
this term is �kg�2 � 10�2 rad which is non-negligible at
our level of required precision. However, for pedagogical

reasons we ignore this error here. Corrections due to the
finite pulse time are calculated elsewhere [44,45] and they
do not affect our results to leading order.
For simplicity, from now on we assume the light pulses

are on resonance: �ð0Þ ¼ 0. We also take the short pulse
limit in the sense of j�ðpÞ ��ð0Þj�
 1 so that we can
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ignore all detuning systematics. This condition is automati-
cally satisfied experimentally, since only the momentum
states that fall within the Doppler width ���1 of the pulse
will interact efficiently with the light.

c1ðp; tÞ
c2ðpþ k; tÞ

 !
¼ �c �i�se

�i�L

�i�	
se
i�L �c

 !

� c1ðp; t0Þ
c2ðpþ k; t0Þ

 !
�c ¼ cosj�j�

2

�s ¼ �
j�j sin

j�j�
2

: (35)

In the case of a beam splitter ( �2 pulse), we choose j�j� ¼
�
2 , whereas for a mirror (� pulse) we set j�j� ¼ �:

��=2 ¼
1ffiffi
2

p �iffiffi
2

p e�i�L

�iffiffi
2

p ei�L 1ffiffi
2

p

0@ 1A
�� ¼ 0 �ie�i�L

�iei�L 0

 !
:

(36)

These matrices encode the rules for the imprinting of the
laser’s phase on the atom: the component of the atom
c1ðp; t0Þ that gains momentum from the light (absorbs a
photon) picks up a phase þ�L, and the component of the
atom c2ðpþ k; t0Þ that loses momentum to the light (emits
a photon) picks up a phase ��L. Symbolically,

jpi ! jpþ kiei�L (37)

jpþ ki ! jpie�i�L : (38)

As a result, the total laser phase shift is

��laser ¼
�X
j

��Lðtj;xuðtjÞÞ
�
upper

�
�X
j

��Lðtj;xlðtjÞÞ
�
lower

; (39)

where the sums are over all of the atom-laser interaction
points ftj;xuðtjÞg and ftj;xlðtjÞg along the upper and lower

arms, respectively, and the sign is determined by Eqs. (37)
and (38).

The final contribution to ��tot is the separation phase
��separation. As shown in Fig. 4, this shift arises because the

end points of the two arms of the interferometer need not
coincide at the time of the final beam splitter. To derive the
expression for separation phase, we write the state of the
atom at time t ¼ t0 þ � just after the final beam splitter
pulse as

j�ðtÞi ¼ j�uðtÞi þ j�lðtÞi; (40)

where j�uðtÞi and j�lðtÞi are the components of the final
state that originate from the upper and lower arms, respec-
tively. Just before the final beam splitter pulse is applied,

we write the state of each arm as

j�uðt0Þi ¼
Z
dpc1ðp; t0ÞĜuðt0ÞjpijA1iei�u (41)

j�lðt0Þi ¼
Z
dpc2ðp; t0ÞĜlðt0ÞjpijA2iei�l ; (42)

where Ĝu � Ĝðxu;pu; LuÞ and Ĝl � Ĝðxl;pl; LlÞ are the
Galilean transformation operators for the upper and lower
arm, respectively. These operators translate each wave
packet in phase space to the appropriate position (xu or
xl) and momentum (pu or pl). Here we have assumed for
clarity that prior to the final beam splitter the upper and
lower arms are in internal states jA1i and jA2i with ampli-
tudes c1ðp; t0Þ and c2ðp; t0Þ, respectively; identical results
are obtained in the reversed case. We have also explicitly
factored out the dynamical phases �u and �l accumulated
along the upper and lower arms, respectively, which con-
tain by definition all contributions to laser phase and
propagation phase acquired prior to the final beam splitter.
We write the wave function components after the beam

splitter in the form of Eq. (24):

j�uðtÞi ¼
Z
dp
X
i

cðuÞi ðp; tÞĜujpijAii (43)

j�lðtÞi ¼
Z
dp
X
i

cðlÞi ðp; tÞĜljpijAii; (44)

where we invoked the short pulse limit so that e�iĤ2� � 1.
Next we time evolve the states using Eq. (35) assuming a
perfect �2 pulse and using the initial conditions given in

Eqs. (41) and (42), namely, cðuÞ1 ðp; t0Þ ¼ c1ðp; t0Þei�u and

cðuÞ2 ðp; t0Þ ¼ 0 for the upper arm and cðlÞ1 ðp; t0Þ ¼ 0 and

cðlÞ2 ðp; t0Þ ¼ c2ðp; t0Þei�l for the lower arm:

j�uðtÞi ¼
Z
dpc1ðp; t0Þ

�
1ffiffiffi
2

p ĜujpijA1i

þ �iffiffiffi
2

p ei�LðxuÞĜujpþ kijA2i
�
ei�u (45)

j�lðtÞi ¼
Z
dpc2ðpþ k; t0Þ

��iffiffiffi
2

p e�i�LðxlÞĜljpijA1i

þ 1ffiffiffi
2

p Ĝljpþ kijA2i
�
ei�l : (46)

We now project into position space and perform the p
integrals,

hxj�uðtÞi ¼ c1ðx� xu; t0Þffiffiffi
2

p feipu�ðx�xuÞjA1i

� iei�LðxuÞeiðpuþkÞ�ðx�xuÞjA2igei�u (47)
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hxj�lðtÞi ¼ c2ðx� xl; t0Þffiffiffi
2

p f�ie�i�LðxlÞeiðpl�kÞ�ðx�xlÞjA1i

þ eipl�ðx�xlÞjA2igei�l ; (48)

where we identified the Fourier transformed amplitudes
using ciðx� xc; t0Þ ¼

R
dphx� xcjpiciðp; t0Þ. The result-

ing interference pattern in position space is therefore

hxj�ðtÞi ¼ hxj�uðtÞi þ hxj�lðtÞi
¼ 1ffiffiffi

2
p jA1ifc1ðx� xu; t0Þei�ueipu�ðx�xuÞ

� ic2ðx� xl; t0Þei�le�i�LðxlÞeiðpl�kÞ�ðx�xlÞg
þ 1ffiffiffi

2
p jA2ifc2ðx� xl; t0Þei�leipl�ðx�xlÞ

� ic1ðx� xu; t0Þei�uei�LðxuÞeiðpuþkÞ�ðx�xuÞg:
(49)

The probability of finding the atom in either output port
jA1i or jA2i is

jhA1jhxj�ðtÞij2 ¼ jc1j2 þ jc2j2
2

þ 1

2
ðic1c	2ei��1 þ c:c:Þ

(50)

jhA2jhxj�ðtÞij2 ¼ jc1j2 þ jc2j2
2

� 1

2
ðic1c	2ei��2 þ c:c:Þ

(51)

with c1 � c1ðx� xu; t0Þ and c2 � c2ðx� xl; t0Þ. For the
total phase shift we find

��1 � f�u þ pu � ðx� xuÞg
� f�l ��LðxlÞ þ ðpl � kÞ � ðx� xlÞg (52)

¼ �u � ð�l ��LðxlÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��propagation;1þ��laser;1

þ �p1 ��x|fflfflffl{zfflfflffl}
��separation;1

þ�p � ðx� �xÞ (53)

and

��2 � f�u þ�LðxuÞ þ ðpu þ kÞ � ðx� xuÞg
� f�l þ pl � ðx� xlÞg (54)

¼ ð�u þ�LðxuÞÞ � �l|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��propagation;2þ��laser;2

þ �p2 ��x|fflfflffl{zfflfflffl}
��separation;2

þ�p � ðx� �xÞ;

(55)

where �p1 ¼ puþðpl�kÞ
2 and �p2 ¼ ðpuþkÞþpl

2 are the average

momenta in the jA1i (slow) and jA2i (fast) output ports,
respectively. In general, the separation phase is

��separation ¼ �p ��x (56)

which depends on the separation �x � xl � xu between
the centers of the wave packets from each arm as well as

the average canonical momentum �p in the output port. We
point out that even though the definitions (52) and (54) use
the same sign convention as our previous expressions for
laser (39) and propagation (23) phase in the sense of
ðÞupper � ðÞlower, the separation vector �x is defined as

ðxÞlower � ðxÞupper.
Notice that the phase shift expressions (53) and (55)

contain a position dependent piece �p � ðx� �xÞ, where
�x � xuþxl

2 and�p ¼ ðpu þ kÞ � pl ¼ pu � ðpl � kÞ, ow-
ing to the fact that the contributions from each arm may
have different momenta after the last beam splitter.
Typically this momentum difference is very small, so the
resulting phase variation has a wavelength that is large
compared to the spatial extent of the wave function.
Furthermore, this effect vanishes completely in the case
of spatially averaged detection over a symmetric wave
function.
Finally, we show that the total phase shifts ��1 and

��2 for the two output ports are actually equal, as required
by conservation of probability. According to Eqs. (53) and
(55), the contributions to the total phase differ in the
following ways:

ð��propagation;1 þ ��laser;1Þ � ð��propagation;2 þ ��laser;2Þ
¼ �LðxlÞ ��LðxuÞ ¼ k � ðxl � xuÞ ¼ k ��x (57)

��separation;1 � ��separation;2 ¼ �p1 ��x� �p2 ��x

¼ �k ��x: (58)

Together these results imply that ��1 ¼ ��2 and prove
that the total interferometer phase shift ��tot is indepen-
dent of the output port.
The accuracy of the above formalism is dependent on

the applicability of the aforementioned stationary phase
approximation as well as the short pulse limit. The sta-
tionary phase approximation breaks down when the exter-
nal Hamiltonian varies rapidly compared to the phase
space width of the atom wave packet. The short pulse limit
requires that the atom’s velocity not change appreciably
during the duration of the atom-light interaction. Both
approximations are justified to a large degree for a typical
light pulse atom interferometer, but in the most extreme
high precision applications such as we consider here, im-
portant corrections are present. However, we emphasize
that these errors due to finite pulse duration and wave
packet size are well-known, previously established back-
grounds. Although they must be accounted for experimen-
tally, these corrections do not affect the leading order
general relativistic effects which we seek to calculate.

III. GENERAL RELATIVISTIC DESCRIPTION OF
ATOMIC INTERFEROMETRY

We are interested in the leading order effects of general
relativity in an atom interferometer. Section II B described
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our nonrelativistic calculation. Here we build on the results
of that section to create a formalism which treats the entire
calculation in a relativistic manner. It is very difficult to
solve for the quantum mechanical evolution of the atom in
a general metric background. Thus, we will use the semi-
classical approximation method outlined for the nonrela-
tivistic calculation. This method can be used in relativity,
with some minor modifications, since in general relativity
the concept of potential is replaced by the least action
principle.

In brief, the method is as follows. Using the prescription
in Sec. II B 1, the free propagation of the atoms and the
light in Fig. 1 is treated nonquantum mechanically. Thus,
both the laser pulses and the atoms are taken to move along
geodesics of the space-time. The description of the atom-
light interaction is taken from nonrelativistic quantum
mechanics, but must be described in a covariant manner
as will be discussed below. Finally, the total resulting phase
shift must be a coordinate invariant. Further, to understand
the result it is necessary to write it in terms of the physical
variables of the problem as measured by an experiment,
thus removing any coordinate dependence from the
answer.

Our objective is to calculate the leading order general
relativistic effects in order to explore interesting and pos-
sibly measurable signals. In order to simplify the calcula-
tion, many subleading order effects will be dropped
including effects due to the finite pulse time of the lasers,
AC Stark shifts, and the errors in the semiclassical approxi-
mation due to the finite size of the atom’s wave function.
All these may give important backgrounds but they can be
and have been calculated easily in the nonrelativistic for-
malism. We are interested in the largest effects that arise
due to general relativity and so we can ignore all these
effects.

We will consider an atom interferometer in a back-
ground space-time with metric g��. The proper time for

a particle in this space-time is then given by d�2 ¼
g��dx

�dx�. We will take @ ¼ c ¼ 1.

A. Dynamics of the interferometer

The trajectories of the atoms and the laser pulses are
found by solving the geodesic equation

d2x�

d�2
þ ����

dx�

d�

dx�

d�
¼ 0; (59)

where � is the affine connection and Greek indices run 0 to
3. In order to compute the leading order GR effects we will
calculate the phase shift using the approximations ex-
plained in Sec. II, for which it is sufficient to find the
motion of the center of the atomic wave function. Of
course, there are corrections to this semiclassical (or sta-
tionary phase) approximation due to the finite size of the
atomic wave function which have been discussed in
Sec. II B. However, the leading order GR effects are just

large enough to be experimentally measured and therefore
these corrections to our GR results are negligible and will
be ignored. The interferometer is then defined by the initial
space-time position and velocity of the atom before the first
beam splitter pulse, and by the starting positions of the
three laser pulses which define the interferometer, the
beam splitter-mirror-beam splitter sequence. Once these
are given, the rest of the interferometer is found by calcu-
lating the intersection of the geodesics as shown in Fig. 1.
We assume atomic transitions only occur when the atom is
simultaneously in the presence of both laser beams. We
will assume that for every atom-light interaction point, the
right laser is always turned on sufficiently far before the
left laser so that the atom is already in the presence of the
light from the right laser when the light from the left laser
hits it. Thus the atomic transitions will always occur when
the light from the left laser reaches the atom. This choice
makes a small but potentially measurable effect that will be
discussed below. We will call the left laser the ‘‘control
laser,’’ because its timing determines the timing of the
interferometer, and the right laser the ‘‘passive laser.’’
The intersection of the initial beam splitter pulse (from

the control laser) and the initial atomic trajectory defines
point A. After the first beam splitter interaction, the half of
the atom which is not affected by the light travels on to B
along the same trajectory. The half of the atom which is
affected travels on a new trajectory originating from point
A but with a new velocity which is a function of the
incoming momenta of the atom and the light pulse as
will be described below. The two halves then travel to B
and C respectively, which are defined by the intersections
with the mirror pulse. At B, the atom gets a kick from the
light in the same way as before. At C, it loses momentum
via stimulated emission. These halves then travel on to D
and E respectively, where they interact with the final beam
splitter and interference is assumed to occur as described
above. The relativistic calculation of the final phase shift is
described below. Thus, given the initial conditions for the
atom and laser pulses, the interferometer can be calculated
in a fully covariant manner.
We must now give a coordinate-invariant description of

these initial conditions. This means they must be written in
terms of the physical variables measured by the experi-
mentalist. For all the calculations described here we will
consider the laser to be at a fixed spatial coordinate loca-
tion ~xL. As we will see, for all the metrics we consider, we
will choose coordinates such that this is a suitable model
for the laser. The initial beam splitter pulse then defines the
start of the interferometer and should be considered to be at
an arbitrary time coordinate t1 (unless the experimenter
somehow has independent knowledge of the metric). The
mirror pulse is then taken to leave the laser at ~xL a time T
later as measured on the laser’s clock. Similarly, a time T
later on the laser’s clock the final beam splitter pulse is
emitted from the laser. The laser’s proper time is given by
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T ¼
Z
d� ¼

Z t2

t1

ffiffiffiffiffiffiffi
g00

p
dt ¼

Z t3

t2

ffiffiffiffiffiffiffi
g00

p
dt: (60)

Solving these two equations for t2 and t3 yields the time
coordinates at which the mirror and final beam splitter
pulses originate from the laser. This then defines the three
laser pulses in a coordinate-invariant way. The atom’s
initial position may be changed depending on the applica-
tion and thus it is harder to give a single, relativistic
description of it. One natural way to define it is to take
the atom to begin at the same position as the laser (and thus
at a well-defined time on the laser’s clock), and then to
travel for a certain amount of time (again on the laser’s
clock) before the first beam splitter pulse is emitted. This
defines the initial position in a relativistically invariant
manner. The atom’s initial velocity can also be defined in
several ways. For example, it could be taken as the radar-
ranging velocity that the laser sees. Where it is relevant, we
will usually consider it to be the more experimentally
realistic velocity that would result from getting some large
number of momentum kicks from the laser. Once the initial
conditions for the atom interferometer have been defined in
a coordinate-invariant manner, we can calculate the entire
interferometer sequence.

The atom-light interaction can most easily be thought
about in a local Lorentz frame (LLF) , x0, of the atom
(essentially Riemann normal coordinates). This is a choice
of coordinates such that the atom is at rest at the origin of
these coordinates and space-time is locally flat near the
atom. Specifically, in the LLF the metric is locally flat with
vanishing first derivatives at the position of the atom so that

�
�0
�0�0 jx0¼0 ¼ 0 (61)

and near the origin (the position of the atom)

g�0�0 ðx0Þ ¼ 	�0�0 þOðx02Þ; (62)

where 	 is the flat metric. In these coordinates, the leading
order effects of the interaction with the light on the atom
are just the nonrelativistic quantum mechanical rules given
in Sec. II. So in this frame the spatial momentum of the
atom after the transition is equal to the sum of the spatial
momenta of the atom before the transition and the incom-
ing light which causes the transition, namely

min

dx0iatom
d�

								after
¼ mfi

dx0iatom
d�

								before
þdx0ilight

d

ðin LLFÞ;

(63)

where i ¼ 1; 2; 3, min and mfi are the rest masses of the
atom before and after the atomic transition, and 
 is the
affine parameter for the laser’s null geodesic [the analogue
of � in Eq. (59) but with different units]. Typically min ¼
mfi �!a where!a is the frequency difference between the
initial and final (internal) atomic states that are coupled by
the laser interaction [46]. Note that in the case of a multi-
photon transition (e.g., the two-photon transitions shown in

Fig. 1) the photon momentum
d~xi

light

d
 in Eq. (63) must be

replaced by the sum of the momenta of all photons that
contribute to the transition. Since the metric deviates
slightly from flat, there are small corrections due to the
tidal effects of gravity over the size �x of the atomic wave
function which are OðR�x2Þ, where R represents the
Riemann curvature tensor. Thus any effects of gravity are
suppressed by the size of the atomic wave function, so even
the leading order Newtonian contributions to Riemann can
be neglected during the atom-light interaction (see the
discussion of the semiclassical approximation in
Sec. II B 2). For a description of transforming coordinates
to the LLF see [47].
To find these spatial momenta in the LLF (x0) it is

necessary to know them in the main coordinate system
(x) being used and then transform them to the LLF. The
atom’s spatial momenta are simply determined from its
geodesic and proper time coordinate �. However, a light
ray travels on the same geodesic no matter what its mo-
mentum is. We must then know the correct affine parame-

trization x�lightð
Þ of the null geodesic such that
dxi

light

d
 is

actually the spatial momentum and not just proportional
to it. This is determined by the initial conditions for the
laser pulse. However, we cannot simply take the spatial

momentum
dxi

light

d
 jxL of the laser pulse at emission to be

equal to ki, the laser’s wave vector, because the coordinates
xi do not necessarily have any physical meaning and so
such a choice would be coordinate dependent. We must
instead write our answers only in terms of physical varia-
bles; in this case we must use the k which an observer
would measure the laser to have. For definiteness we will
assume the laser’s frequency is measured by an observer at
the same position xL as the laser and not moving with
respect to it. Then this defines�

g��U
�
dx�light

d


�								xL

� ! ¼ k; (64)

where ! is the frequency of the laser and U� ¼ dx
�
obs

d� is the

four-velocity of the observer. This equation implicitly
defines the 
 such that our observer sitting on the laser
(in the laser’s LLF) measures the emitted pulses to have the
proper frequency !. This pulse is then propagated to the
atom in the main coordinate system of the problem (x).
When the light reaches the atom, its momentum is trans-
formed to the atom’s LLF (x0) in order to find the momen-
tum transferred to the atom. Equation (64) is critical as it
modifies the result for the GR corrections at leading order
as we will see explicitly below.
Note that this rule [Eq. (63)] of adding the momenta only

applies in the LLF, and there is in fact some ambiguity
about which LLF to use: the rest frame of the atom before
or after the interaction. This ambiguity implies relativistic
corrections to the recoil velocity that are Oðv2rÞ, thus
changing the atom’s velocity atOðv3rÞ. This is far too small
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to be visible in the experiments we are considering; how-
ever if it becomes necessary to compute such corrections,
the formalism given here would have to be adapted.

We have now completely determined the dynamics of
the interferometer in a fully relativistic framework.
Importantly, the initial conditions have been given in terms
of physical variables of the problem and so there is no
coordinate dependence left. All that remains is to deter-
mine the rules for calculating the final phase difference in
general relativity.

B. Relativistic phase shift formulae

The propagation phase is proportional to the integral of
the Lagrangian, i.e., the action. In general relativity, the
action for a particle moving in a background space-time is
the length of its worldline, S ¼ R

md�, where the mass m
of the particle is irrelevant for the equations of motion but
is inserted so that the Lagrangian reduces to the normal
nonrelativistic Lagrangian in the appropriate limit. Since
S ¼ R

Ldt, the Lagrangian is L ¼ md�
dt . To demonstrate

that this reduces to the expected Lagrangian in a weak
gravitational field, insert the Schwarzschild metric
[Eq. (71)] and take a post-Newtonian expansion in � and

~vi � d~xi

dt . Then L ¼ m� 1
2m ~v

2 þm�þOðv4; �2; v2�Þ
as expected. By analogy with the nonrelativistic formula
in Sec. II, the general relativistic action is the propagation
phase

�propagation ¼
Z
Ldt ¼

Z
md� ¼

Z
p�dx

�; (65)

where p� � mdx�

d� is the particle’s momentum. The last

equality follows from p�dx
� ¼ mg��

dx�

d� dx
� ¼ md�

d� d�.

Notice that this is the opposite sign convention from the
nonrelativistic expression for propagation phase from
Sec. II.

The separation phase follows essentially from the for-
mula outlined in Sec. II applied in the LLF. The separation

phase in the LLF is �E�t0 � ~�p �� ~x0. We then employ the
standard trick, to write the formula in this frame as a
coordinate invariant

�separation ¼
Z D

E
�p�0dx0�0 � �E�t0 � ~�p � � ~x0; (66)

where the integral is taken along the null geodesic con-
necting points E and D (the final beam splitter pulse from
laser 1). Since this is a coordinate invariant and is true in
the local Lorentz frame (x0), it is then valid in all frames.
Then in any coordinate system (x) the separation phase is

�separation ¼
Z D

E
�p�dx

�: (67)

Here �p� is the average momentum of the two halves of the
atom at points D and E

�p� ¼ 1

2

�
mo

dx�

d�

								D
þmo

dx�

d�

								E

�
(68)

and the momenta are evaluated at points D and E after the
final beam splitter pulse and in the same output port (either
slow jA1i, or fast jA2i, whichever is being used to compute
the final phase shift; see Fig. 4). Here mo is the mass of the
atom in the chosen output port. The small coordinate
ambiguities in this formula are negligible for every metric
considered, as will be shown below. As is clear from the
formulas, the separation phase (67) can be thought of as the
last piece of propagation phase (65). The term �E�t is then
roughly the phase acquired by bringing the half of the atom
that transitioned earlier at the second beam splitter up to
the same time as the second half of the atom, so they can
interfere. We have chosen to define the separation phase
along the null geodesic which is the final beam splitter
pulse because this is the first hypersurface on which inter-
ference can be considered to have occurred. Of course,
since quantummechanics is linear, we can choose any later
hypersurface, add the two halves of the atom’s wave func-
tion and calculate a separation phase then (of course we
would also need the correct rule for propagating the atoms
forward after the final beam splitter). In other words, in
order to find the total phase shift, the atom’s wave function
can be evaluated at any point in space-time after the final
beam splitter pulse. For example, the number of atoms in
each output port is often measured with a detection laser
pulse. This would correspond to a final null geodesic which
is equivalently good for calculating the final phase shift.
As shown in Sec. II, the laser phase imparted to the atom

during a beam splitter or mirror pulse is the phase of the
light at the interaction point. Since this applies in the LLF
and is also a coordinate-invariant statement, it can be
applied in any frame. A null geodesic is a line of constant
phase for the laser since e.g. it is the worldline in space-
time that a crest of the laser pulse follows. Thus the light’s
phase at an interaction point is the same as its phase at the
time of emission of that light-pulse from the laser. For
example, the laser phase of the pulse from laser 1, the
control laser, at point A is just the phase of laser 1 at time t1
in Fig. 1. The total laser phase shift is then the sum of the
laser phases from each laser over all the interaction points.
For example, in the slow output port, the total laser phase is

��slow
laser ¼ �L1ðt1Þ � 2�L1ðt2Þ þ�L1ðt3Þ ��L2ðtð2ÞA Þ

þ�L2ðtð2ÞB Þ þ�L2ðtð2ÞC Þ ��L2ðtð2ÞD Þ; (69)

where �LiðtÞ means the phase of laser i at time t. Because
we have assumed that laser 2 is always on [48], the
transition points are defined by the intersection of the
atom’s geodesic with the light pulse from laser 1. Of
course, the interaction takes some small amount of time,
but we assume that the phase of the laser at the beginning
of the interaction is the one imparted because the correc-
tions to this approximation are typically small and do not
affect the leading order GR result (see the discussion of the
short pulse limit in Sec. II B 2). Thus the phase which
laser 2 imprints on the atom is the phase of the light
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from laser 2 (the passive laser) which is passing the atom at
the first instant of the interaction as set by laser 1 (the
control laser). Finding this phase requires determining the
time that this part of the light left laser 2, which we label

tð2ÞA , tð2ÞB , etc. Wewill usually assume that the phase of laser i
is just its frequency [as defined by Eq. (64)] times its proper
time �LiðtÞ ¼ !i�LiðtÞ. For a time-independent metric this
is also �LiðtÞ ¼ !i

ffiffiffiffiffiffiffi
g00

p
t. So in this case, the contributions

to laser phase from laser 1, the control laser, completely
cancel.

We now have rules for finding the final phase shift in an
atom interferometer,

��tot ¼ ��propagation þ��separation þ��laser (70)

in general relativity.
It can be seen that this formula is independent of the

output port used to calculate the phase. The propagation
phase does not depend on output port. Laser phase depends
on output port since in the slow output port it includes the
phase of the laser at pointD, while in the fast output port it
includes the phase of the laser at point E. As can be seen

from Fig. 1, this is a difference of �!ðtð2ÞE � tð2ÞD Þ where !
is the frequency of laser 2. The separation phase also
differs between ports because the momentum used in
Eq. (67) is the average momentum of the relevant compo-
nent of the atom’s state after the final beam splitter pulse.
In the fast output port this momentum is �mvr � keff
larger than in the slow output port. So the difference in
separation phase between the fast and the slow output port
is �keffðxE � xDÞ � 2!ðxE � xDÞ, since keff � 2! for a
two-photon transition. But xE � xD � tE � tD since points
D and E lie on a null geodesic, and as a result we find that

xE � xD � 1
2 ðtð2ÞE � tð2ÞD Þ. Therefore, the difference in the

separation phase between the two output ports is exactly
compensated by the change in the laser phase, and Eq. (70)
is independent of which output port is used.

IV. GR EFFECTS IN THE EARTH’S
GRAVITATIONAL FIELD

The methods of the previous section can be used to find
the effects of general relativity in an atom interferometer in
the Earth’s gravitational field. The space-time can be mod-
eled with the Schwarzschild metric

ds2 ¼ ð1þ 2�Þdt2 � 1

1þ 2�
dr2 � r2d�2; (71)

where � ¼ � GM
r is the gravitational potential. For sim-

plicity, in this section the rotation of the Earth is neglected.
It will not modify the GR effects given here, and the
possibility of measuring relativistic effects associated
with that rotation will be considered in Sec. VI B. Of
course, this rotation will contribute nonrelativistic terms
that can be backgrounds, which can easily be calculated
using simpler, nonrelativistic methods. Because the Earth’s
gravitational field is weak,�� 10�9 at the surface, we can
take a post-Newtonian expansion in �. In order to study
effects beyond GR as well, we will calculate the phase shift
in the parametrized post-Newtonian (PPN) expansion of
the Schwarzschild metric

ds2 ¼ ð1þ 2�þ 2��2Þdt2 � ð1� 2��Þdr2 � r2d�2:

(72)

Here � and � parametrize modifications of general rela-
tivity and � ¼ � ¼ 1 gives normal GR. For the results
presented in this section we will generally be considering
this PPN expansion of the Schwarzschild metric, though
there is little difference in a weak gravitational field.
Section IVA contains the details of the phase shift calcu-
lation for this metric. In Sec. IVB we present the results of
this calculation and explain their physical significance. It
can be read without the previous Sec. IVA.

A. Interferometer calculation in the Schwarzschild
metric

The geodesic equation (59) for the metric (72) cannot in
general be solved exactly. We approximate the solution
using a power series solution in �. By varying the order of
the series, we ensure that we use a sufficiently high order to
include all measurably large terms in the final phase shift.
For simplicity, we present first the approximate solutions
using the metric (71) for a radial geodesic:

rð�Þ ¼ r0 þ vr0�� 	

2
ð@r�ðr0ÞÞ�2 � 	

6
vr0ð@2r�ðr0ÞÞ�3

þOð�4Þ (73)

tð�Þ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r0 þ 	þ 2	�ðr0Þ

q
1þ 2�ðr0Þ �� vr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r0 þ 	þ 2	�ðr0Þ

q
@r�ðr0Þ

ð1þ 2�ðr0ÞÞ2
�2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r0 þ 	þ 2	�ðr0Þ

q
ðð4v2r0 þ 	þ 2	�ðr0ÞÞ@r�ðr0Þ2 � v2r0ð1þ 2�ðr0ÞÞ@2r�ðr0ÞÞ�3

3ð1þ 2�ðr0ÞÞ3
þOð�4Þ; (74)

where	 ¼ g��
dx�

d�
dx�

d� is 0 for null geodesics and 1 for timelike geodesics. Note that these are roughly the normal parabolic
paths with some relativistic corrections. Also, light rays do ‘‘bend’’ under gravity, but in these coordinates that effect shows
up in the equation for tð�Þ only. In these solutions, the potential � has effectively been expanded around r0, making this
approximation better the closer the paths are to r0 or, roughly, the smaller � is. The scale this is to be compared to is the

GENERAL RELATIVISTIC EFFECTS IN ATOM . . . PHYSICAL REVIEW D 78, 042003 (2008)

042003-13



radius of the Earth RE as this determines the size of the higher r derivatives of �. Since the atom travels a distance much
smaller than RE, this approximation works very well here. The paths in the PPN metric (72) are

rð�Þ ¼ r0 þ vr0�þ ð�v2r0ð�1þ �Þ þ 	þ 2ðv2r0ð�� 2�Þ þ �	Þ�ðr0Þ � 6v2r0���ðr0Þ2Þ@r�ðr0Þ
2ð�1þ 2��ðr0ÞÞð1þ 2�ðr0Þ þ 2��ðr0Þ2Þ

�2

þ 1

6
vr0

�
2�ðv2r0ð�1þ 2�Þ � 	� 2ðv2r0ð�� 3�Þ þ �	Þ�ðr0Þ þ 8v2r0���ðr0Þ2Þ@r�ðr0Þ2

ð1� 2��ðr0ÞÞ2ð1þ 2�ðr0Þ þ 2��ðr0Þ2Þ
þ 2ð�v2r0 � 	þ 2v2r0��ðr0ÞÞð�2þ �þ �� 6ð�� �Þ�ðr0Þ � 6�ð�� 3�Þ�ðr0Þ2 þ 16�2��ðr0Þ3Þ@r�ðr0Þ2

ð1� 2��ðr0ÞÞ2ð1þ 2�ðr0Þ þ 2��ðr0Þ2Þ2

þ v2r0�@
2
r�ðr0Þ

1� 2��ðr0Þ þ
ð1þ 2��ðr0ÞÞðv2r0 þ 	� 2v2r0��ðr0ÞÞ@2r�ðr0Þ

ð�1þ 2��ðr0ÞÞð1þ 2�ðr0Þ þ 2��ðr0Þ2Þ
�
�3 þOð�4Þ (75)

tð�Þ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2r0 þ 	� 2v2r0��ðr0Þ
1þ 2�ðr0Þ þ 2��ðr0Þ2

s
��

vr0ð1þ 2��ðr0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
r0
þ	�2v2

r0
��ðr0Þ

1þ2�ðr0Þþ2��ðr0Þ2
r

@r�ðr0Þ
1þ 2�ðr0Þ þ 2��ðr0Þ2

�2

�
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2r0 þ 	� 2v2r0��ðr0Þ
1þ 2�ðr0Þ þ 2��ðr0Þ2

s
ðð�v2r0ð�5þ 2�þ �Þ þ 	þ 2ðv2r0ð�6�þ �ð8þ �ÞÞ þ 2�	Þ�ðr0Þ

þ 2�ðv2r0ð8�� 19�Þ þ 2�	Þ�ðr0Þ2 � 36v2r0�
2��ðr0Þ3Þ@r�ðr0Þ2 þ v2r0ð�1þ 2��ðr0ÞÞð1þ 2ð1þ �Þ�ðr0Þ

þ 6��ðr0Þ2 þ 4�2�ðr0Þ3Þ@2r�ðr0ÞÞ
�
�3
�
=ð3ðð�1þ 2��ðr0ÞÞð1þ 2�ðr0Þ þ 2��ðr0Þ2Þ2ÞÞ þOð�4Þ: (76)

These geodesics are calculated on a computer with a
symbolic algebra package and so can easily be found to
higher orders. We present here the results up to third order
to illustrate the method without overcomplicating the
equations.

Theoretically, the intersection points of the laser pulses
with the atom geodesics can now be found as discussed
above. However, these geodesics are too complicated to
solve exactly so we must make two approximations. First,
the equations are solved self-consistently only to the order
in � to which the entire calculation is done. In practice this
means, for example, inverting the series to find �ðtÞ which
can then be plugged in to xð�Þ to give xðtÞ for the atom. An
analogous procedure is used to find xðtÞ for the light. The
atom and light coordinate trajectories are then equated and
solved perturbatively order by order in t. Second, we must
still expand in the variables which are small in order to
simplify the results sufficiently so that they remain trac-
table. The correct way to do this expansion that keeps only
relevant terms and avoids an ‘‘order of limits’’ problem is
to Taylor expand in all the variables simultaneously, taking
into account their relative sizes. Specifically, let � signify
10�1 and plug in �9� for � everywhere (since �� 10�9),
and similarly for the other dimensionless variables: vL �
10�7, keffm � vr � 10�10, !a

m � 10�15, RET � 10�2, and mT �
1026. Since the corrections to the parabolic paths are small,
we have a few large terms at low orders which give easily
solved equations and then very many small corrections. So
we can Taylor expand all our results in � and keep only
terms which are large enough to possibly affect the final
answer. For the intersection points, we usually keep any

terms which are * 10�30RE. We vary this order to make
sure we have not neglected any relevant terms in the final
phase shift. The entire calculation is done on a computer
using a symbolic algebra package.
We take each laser to be at a fixed coordinate location

because the lasers are assumed to be fixed to the Earth.
Note that this is not a geodesic. A fixed radial coordinate
implies a fixed physical position since this is a static, time-
independent metric. Effects such as time variations in the
Earth’s gravitational field or oscillations of the laser plat-
form which cause the laser’s effective coordinate location
(or the whole metric) to vary are very small and so will
affect the leading order GR signal at an unmeasurable
level. Of course, depending on the phenomenological char-
acteristics of the signal being searched for, such effects
crossed into the zeroth order Newtonian signal could be
relevant backgrounds. They can then be calculated simply
in a nonrelativistic fashion. For now we ignore them since
we are interested in calculating the effects of general
relativity. In Sec. V we consider measuring these GR
signals and there we discuss the relevant backgrounds.
The rest of the calculation will be illustrated using

metric (72). The interferometer is defined, as shown above,
by the initial positions and momenta of the laser pulses and
the atom. For simplicity, and because it illustrates all the
effects we will be interested in, we make the following
choices. The lasers will be at positions r ¼ rL1

and rL2
with

frequencies !1 and !2, with laser 2 above laser 1. We will
take the usual definitions keff ¼ !1 þ!2 and !eff ¼
!1 �!2. The pulses from laser 1 will originate at t1 ¼
0, t2 ¼ Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2�ðrL1 Þþ2��ðrL1 Þ2
p , and t3 ¼ 2t2. Following the
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prescription given in Eq. (64) for referencing the light momenta, an observer at the laser has coordinate velocity

U� ¼ dx�obs
d�

¼
�
dtobs
d�

;
dxobs
d�

�
¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðrL1

Þ þ 2��ðrL1
Þ2

q ; 0

�
(77)

giving an initial light momentum for the pulses from laser 1 of

dx
�
light

d

¼
�
dtlight

d

;
dxlight

d


�
¼ !1

�
1þ�ðrL1

Þ þ 3

2
�ðrL1

Þ2 � ��ðrL1
Þ2; 1� ��ðrL1

Þ þ 3

2
�2�ðrL1

Þ2
�
: (78)

This is close to (!1,!1) but with small GR corrections. These corrections will modify the GR effects in the final answer at
leading order and so they must be included.

We will take the atom to be initially at r ¼ rL1
at t ¼ 0. For now we leave all expressions in terms of the unphysical

coordinate launch velocity vL ¼ dr
dt . We show below that this makes no important difference to the final phase shift and it

keeps the expressions simpler. The geodesics and intersections can now all be found as explained in Sec. III.
As one example, we describe the calculation of intersection point C. The initial velocity of the fast half of the atom at

point A is found by adding the light momentum to the atom’s initial momentum as described above. For the atom-light
interaction at A, the coordinate transformations to the LLF take a vector V� to

V
�0
LLF ¼ b

�0
� V� (79)

with

b00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ v2L þ 2v2L��ðrL1

ÞÞð1� 2�ðrL1
Þ þ 2��ðrL1

Þ2Þ
q

(80)

b01 ¼ �vLð1þ 2��ðrL1
ÞÞ (81)

b10 ¼ vL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2��ðrL1

ÞÞð1� 2�ðrL1
Þ þ 2��ðrL1

Þ2Þ
q

(82)

b11 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2��ðrL1

ÞÞð1þ v2L þ 2v2L��ðrL1
ÞÞ

q
: (83)

The velocity of the half of the atom going from A to C in the main coordinate system [metric (72)] is then

dr

d�

								A
¼ vL þ keff

m
þ k2effvL

2m2
þ keff

m
v2L �

keff
m

!a

m
� vL

!eff

m
� keff

m
�@r�ðrL1

Þ þ 3

2

keff
m
�2@r�ðrL1

Þ2 (84)

which is roughly vL þ vr with relativistic corrections.
Intersecting the atom and light geodesics using the approx-
imations described above gives point C. The expressions
for the coordinates are very long and so are given in the
Appendix. Of course, these are roughly just rC � rL1

þ
ðvL þ keff

m ÞT and tC � T as they would be in the nonrela-
tivistic case.

Computing the laser phase requires finding the times tð2ÞA ,

tð2ÞB , etc. [see (69)] by dropping null geodesics from these
intersection points to the second laser at rL2

.

The entire calculation is done on a computer using a
symbolic algebra package (MATHEMATICA) so all Taylor
series orders, initial conditions, and such can be changed
easily. The calculation was written for a general metric so
the same code is used to calculate the phase shift for
several different metrics including (71) and (72).

B. General relativistic effects and interpretation

We present here the results of the calculation of the
phase shift in an atom interferometer placed in a weak
gravitational field such as the Earth’s. The physical origins
of the important terms in the phase shift will be discussed,
focusing on the GR terms and their interpretation.
To summarize the variables we are using, T is the inter-

rogation time between pulses on the laser’s clock,!i is the
frequency of laser i, keff � !1 þ!2, !eff � !1 �!2, !a

is the frequency of the atomic transition between states 1
and 2 of the atom (see Fig. 2(a)), m is the rest mass of the
atom in the lower ground state, vL is the atom’s launch
velocity in the radial (vertical) direction, rLi is the position

of laser i, �ðrÞ is the local gravitational potential (for a
perfect Schwarzschild metric �ðrÞ ¼ � GM

r ), g ¼ �r�,
� and � are PPN parameters in the metric, and c ¼ @ ¼ 1.
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We present the results for the final phase shift for metric
(72) in Table I. The phase shift has been expanded into a
sum of terms and we have grouped terms that have the
same scalings with experimental control parameters.
Table I also displays the results of a nonrelativistic (NR)
calculation for the phase shift in a gravitational potential
(see Sec. II for a description of the NR calculation). Note
that we have kept the laser frequencies the same for all
three pulses, though in a real experiment these would have
to be tuned to keep the transitions on resonance in order to
compensate for the Doppler shift due to the atom’s accel-
eration under gravity [49].

To understand the GR effects underlying some of these
phases, recall that, roughly, the atom interferometer is
sensitive to accelerations. The following discussion will
be highly coordinate dependent and not rigorous, but its
only purpose is to gain some intuition for the GR effects we

find. Combining the geodesic equations (59) for the spatial
~xi (i ¼ 1; 2; 3) and t, the coordinate acceleration of an atom
in the frame of Eq. (72) is

d ~v

dt
¼ � ~rð�þ ð�þ �Þ�2Þ þ �ð3ð ~v � r̂Þ2 � 2 ~v2Þ ~r�

þ 2 ~vð ~v � ~r�Þ (85)

with ~v ¼ d~x
dt for this equation only. The acceleration is

approximately that from Newtonian gravity � ~r� but
with leading order GR corrections. These corrections fall
into two classes, both of which will interest us.
The r�2 terms are related to the nonlinear nature of

gravity, the fact that a gravitational field seems to source
itself in general relativity. This could also be called the
non-Abelian nature of gravity since gravitational energy
gravitates through a three-graviton vertex. To see that this

TABLE I. A list of all the terms above a certain size in the phase shift from the full GR calculation for metric (72), along with their
numerical size in radians and an interpretation. The NR phase shift column shows the results of a completely nonrelativistic phase shift
calculation for comparison. The sizes of the terms assume the initial design, sensitive to accelerations �10�15g, which has L ¼ 9 m,
T ¼ 1:3 s, vL ¼ 13 m

s , keff ¼ 2 2�
780 nm , !a ¼ 6:8 GHz, and m ¼ 81 GeV (for 87Rb). All detuning terms assume !eff �!a ¼ 1 kHz.

Note that there is some ambiguity in how some of the terms are grouped since by definition g ¼ �@r�.
GR phase shift Size (rad) Interpretation NR phase shift

1. �keffgT2 3� 108 Newtonian gravity �keffgT2

2. �keffð@rgÞvLT3 �2� 103 1st gradient �keffð@rgÞvLT3

3. � 7
12 keffð@rgÞT4 9� 102 � 7

12 keffð@rgÞT4

4. �3keffg
2T3 �4� 101 finite speed of light and

5. �3keffgvLT
2 4� 101 Doppler shift corrections

6. � k2
eff

2m ð@rgÞT3 �7� 10�1 1st gradient recoil � k2
eff

2m ð@rgÞT3

7. ð!eff �!aÞgT2 �4� 10�1 detuning

8. ð2� 2�� �Þkeffg�T2 �2� 10�1 GR (nonlinearity)

9. � 3k2
eff

2m gT
2 2� 10�2

10. � 7
12 keffv

2
Lð@2rgÞT4 8� 10�3 2nd gradient � 7

12 keffv
2
Lð@2rgÞT4

11. � 35
4 keffð@rgÞgvLT4 6� 10�4

12. �4keffð@rgÞv2LT3 �3� 10�4

13. 2!ag
2T3 2� 10�4

14. 2!agvLT
2 �2� 10�4

15. � 7k2
eff

12m vLð@2rgÞT4 7� 10�6 2nd gradient recoil � 7k2
eff

12m vLð@2rgÞT4

16. �12keffg
2vLT

3 �7� 10�6

17. �7keffg
3T4 4� 10�6

18. �5keffgv
2
LT

2 3� 10�6 GR (velocity-dependent force)

19. ð2� 2�� �Þkeff@rðg�ÞvLT3 2� 10�6 GR 1st gradient

20. 7
12 ð4� 4�� 3�Þkeff�ð@rgÞgT4 �2� 10�6 GR

21. ð!eff �!aÞð@rgÞvLT3 2� 10�6

22. 7
12 ð!eff �!aÞð@rgÞgT4 �1� 10�6

23. � 7
12 ð2� 2�� �Þkeffg3T4 �3� 10�7 GR

24. � 7k2
eff

2m ð@rgÞvLT3 �2� 10�7

25. � 27k2
eff

8m ð@rgÞgT4 2� 10�7

26. keff!a

m gT2 �1� 10�7

27. 6ð2� 2�� �Þkeff�g2T3 5� 10�8 GR

28. 3ð!eff �!aÞg2T3 4� 10�8

29. 3ð!eff �!aÞgvLT2 �4� 10�8

30. 6ð1� �Þkeff�gvLT2 3� 10�8 GR
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is the origin of the r�2 terms, note that, because of these
terms, the divergence of the gravitational field given in
Eq. (85) is nonzero [here by gravitational field we mean

~g � d ~v
dt from Eq. (85)]. Just as for an electric field, a non-

zero divergence of the gravitational field implies a local
source density (in general relativity this means a local
energy density) that is proportional to that divergence. So
Eq. (85) implies that there is a local energy density in free
space proportional to r � ~g / r � r�2 ¼ 2ðr�Þ2. But
note that to leading order r� � ~g so that r � ~g / ~g2. In
other words, the local energy density is proportional to the
field squared, exactly as expected from the electric field
analogy. This energy is then the source of the r�2 terms.
The nonlinearity of gravity is parametrized in the standard
way by the PPN parameter �.

The other terms in Eq. (85) proportional to ~v2r� are
velocity-dependent forces. These terms are related to the
gravitation of the atom’s kinetic energy (or the kinetic
energy of the source mass in the frame where the atom is
stationary and the source is moving), since all energy, not
just mass, gravitates in general relativity.

The nonlinear GR corrections in Eq. (85) are smaller
than Newtonian gravity by a factor of �� 10�9, while the
velocity-dependent force terms are smaller by v2 � 10�15

for the atom velocities we are considering. We will see that
the nonlinear terms can only be measured through a gra-
dient of the force produced and so are reduced by an
additional factor of 10 m

Rearth
� 10�6 for a 10 m long experi-

ment. Both effects are then �10�15g.
These effects can be seen in the total phase shift in the

interferometer. Table I presents the answer for the total
phase shift as found by the relativistic calculation outlined
above. It lists all the terms in the total phase shift large
enough to be measured by the initial apparatus. Effectively,
the local gravitational acceleration is expressed as a Taylor
series in the height above the Earth’s surface. The first
phase shift in Table I represents the effect of the leading
order (constant) piece of the local acceleration while the
2nd and 10th terms are the next gradients in the Taylor
series. Notice that even the second gradient of the gravita-
tional field is relevant for this interferometer. The terms in
this list that have been measured agree with the results of
previous experiments. The largest two phase shifts due to
the first two terms in the Taylor expansion of the local g
field were known and measured several times (e.g. [8,23]).
The 4th and 5th terms arise from the second order Doppler
shift of the laser’s frequency as seen by the moving atom.
These Doppler shift and finite speed of light corrections
(terms 4 and 5) were known and measured to cancel each
other in a ‘‘symmetric’’ interferometer [50]. The 7th term
is proportional to the two-photon detuning between the
difference in the two lasers’ frequencies !eff and the
resonant frequency of the atomic transition !a. In any
practical experiment this detuning is kept quite small and
this term will be negligible. The terms proportional to !a

and !eff almost cancel since the lasers’ frequencies are
usually chosen to be on resonance with the atomic tran-
sition and so could never have been measured given the
precision of previous interferometers. These terms were
not previously known because their calculation requires a

fully relativistic calculation. The recoil shift
k2
eff

m T
3@rg was

known and measured [51,52].
The 8th, 18th through 20th, 23rd, 27th, and 30th terms

arise only from GR and are not present in the results of our
Newtonian calculation. The 8th and 19th terms arise in part
from the nonlinear nature of gravity. This is clear since
they look like the analogue of kgT2 and the 1st gradient
terms but with g replaced by the part of the acceleration
coming from the nonlinearity of gravity g� in Eq. (85).
Similarly the 18th term arises in part from the velocity-
dependent forces in Eq. (85) since it appears to be an
acceleration �gv2L. Note that of course the acceleration
from these velocity-dependent forces is actually propor-
tional to the integrated effects along the entire trajectory of
the atom. However, this is obscured by the expansion we
are taking, and so we just see the largest term / v2L, with
terms proportional to the other velocities vr, gT and so on,
farther down the list. In fact, for every term / vL, we
expect and see a term with vL replaced by gT also on the
list, since the velocity changes over the course of the
interferometer by roughly this amount.
We now address the fact that we have left the phase shift

in Table I in terms of the unphysical (coordinate-
dependent) launch velocity. This is the only coordinate-
dependent variable in Table I; all others (keff , T, etc.) have
coordinate-invariant definitions. Ultimately, in any real
experiment the experimenter determines how to measure
the launch velocity, and this gives the physical, coordinate-
invariant definition. On this point, different experiments
will surely vary, so here we assume a simple prescription
but leave Table I in the general form in terms of vL, which
should allow any prescription to be applied. We assume
that the atom is launched by the lasers using nL photon
kicks (Raman or Bragg transitions). The experimental

definition of the physical launch velocity will then be vp ¼
nL

keff
m . Note that nL, keff , and m all have physical,

coordinate-indepedent definitions. Repeating the normal
atom-light interaction calculation [Eq. (63) and ensuing
discussion] nL times then gives the relation

vL � vp

�
1� ���!a

m
ð1� ��Þ

� nL � 1

2

!eff

m
ð1� ��Þ

�
(86)

with higher order terms dropped. It is not surprising that
there are higher order GR corrections when the coordinate
launch velocity is written in terms of a physically measur-
able parameter. Here we are only interested in this if it
changes the GR effects we seek to measure, for example,
by changing the dependence on the PPN parameters. It is
clear that substituting Eq. (86) into the phase shift in
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Table I will not affect the two GR terms we are most
interested in, 8 and 18. It can affect other GR terms at
the level of 10�6 rad and below, but it cannot remove
totally the dependence on the PPN parameters of GR terms
8 and 18, and so it does not qualitatively change their
interpretation.

The origin of some of the largest terms in the phase shift
list highlights important differences between a relativistic
calculation and a nonrelativistic one. From Table II we see
that frequently the contributions to a given term in the
phase shift lift from the propagation and separation phases
cancel, and so the term can be considered to come from
laser phase. There is even a term in the propagation and
separation phases that is larger than kgT2 which cancels.
Note that this term is keffcT

3ð@rgÞ if we do not take c ¼ 1.
Many of the terms in propagation and separation phase can
be considered to arise from the fact that, in a relativistic
calculation, the end points of the interferometer (points D
and E in Fig. 1) are not simultaneous. This has a large
effect because the phase of the atom evolves at a rate
proportional to its mass m, as follows from the separation
phase formula (67). In other words, the Compton wave-
length measures separation in time just as the de Broglie
wavelength does in space.

It is interesting to consider an atom interferometer with
only a single laser driving the atomic transitions directly
between two levels, instead of the normal two-photon
transition through a virtual intermediate level. In this
case, there is no passive laser and the laser phase is zero,
as mentioned in Sec. III B. This means that the keffgT

2

term is removed as are most of the keff terms. However we
must now have the two atomic levels spaced by an energy
which is roughly the frequency of a laser, so !a � k
instead of !eff . After doing such a single laser calculation
we find that the largest term in the phase shift is !agT

2,
which is roughly the same size as kgT2. This phase shift
now comes from propagation phase instead of laser phase,
as would be guessed from Table II. This term arises be-

cause the rest mass of the atom is different in the two
atomic states. This means that the dominant phase shift
does not depend on the laser frequency and is instead set by
the intrinsic structure of the atom. In the normal nonrela-
tivistic calculation there is only the keffgT

2 term which
comes from laser phase (not from propagation phase), and
there is no !agT

2 term at all. So the nonrelativistic single
laser calculation gets the origin of the major part of the
phase shift wrong, and it gives an answer which is off by
the amount the laser frequency ! is detuned from reso-
nance !a.
The term �5keffgT

2v2L (term 18) receives contributions
from the velocity-dependent forces in Eq. (85), but its
coefficient is independent of �. There are two canceling
contributions to this term coming from the � terms in the
force law for the atom and the photon. Note that the �
terms in the equation of motion for the light are not sup-
pressed by any small velocity factors (since c ¼ 1), so they
are just as large as the ‘‘normal’’ Newtonian gravity term
(this is the origin of the famous factor of 2 in the equation
for the bending of light by the Sun). This phase shift term
thus measures both the effect of gravity on light and the
velocity-dependent force on the atom. If we put a different
parameter light in front of the � in the component g00 of

the metric governing the motion of the light and redo the
entire calculation, this term becomes ð4þ light þ �light �
�atomÞkeffgT2v2L, where the �’s are the PPN parameters in
the metrics for the light and the atom. This term then tests a
matter-light principle of equivalence, namely, that they
both feel the same metric. A new force may well couple
to light and matter in a different manner than gravity and so
may be testable in this way.

V. MEASUREMENT STRATEGIES

In this section we consider several ideas for measuring
GR or beyond GR effects using atom interferometry.
Possible measurement strategies are discussed for testing

TABLE II. A breakdown of some of the terms in the phase shift, Table I, list by origin. The sizes are given for the coefficient of the
term in the total phase shift. Note that there is some ambiguity in dividing terms 9 and 10 since by definition g ¼ �@r�.

Parameter

dependence

Total phase

shift coefficient

Propagation phase

coefficient

Separation phase

coefficient

Laser phase

coefficient

Size

(rad)

1. keffT
3ð@rgÞ 0 1 �1 0 4� 1010

2. keffgT
2 �1 �1 1 �1 3� 108

3. !effgT
2 1 2 �2 1 3� 103

4. !agT
2 �1 �1 0 0 3� 103

5. keffð@rgÞT3vL �1 2 �2 �1 2� 103

6. keffð@rgÞ�T3 0 2�þ 2�� 2 �2�� 2�þ 2 0 3� 101

7. keffgT
2vL �3 �5 5 �3 1� 101

8. keffg�T
2 2� 2�� � 2� 2�� � �2þ 2�þ � 2� 2�� � 2� 10�1

9. keffg
2T3vL �12 �17 17 �12 7� 10�6

10. keff@rðg�ÞT3vL 2� 2�� � �4þ 4�þ 2� 4� 4�� 2� 2� 2�� � 2� 10�6

11. keffgT
2v2L �5 �9 9 �5 5� 10�7
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the principle of equivalence (POE) and measuring the
effects of the velocity-dependent forces arising from GR,
the nonlinear nature of gravity, and the bending of light in a
gravitational field. We have discussed some of these ideas
in a previous paper [10] but here we give a few more
thoughts. Our main motivation is to describe some phe-
nomenological differences between the GR effects we have
calculated and classical, nonrelativistic effects in order to
show that these GR effects are not coordinate artifacts, and
are possibly distinguishable from Newtonian gravity and
other backgrounds. We do not claim to have proven that
every conceivable background is under control. Instead we
only wish to argue that it may be possible to test GR in the
lab using this technology, and so it is well worth trying to
design experiments to do so.

In general we consider a �10 m long interferometer
with T � 1 s and �106 atoms cooled and launched per
shot, resulting in a final phase sensitivity of �10�6 rad
after about 106 shots. This implies sensitivity above atom
shot noise of 10�15g where g is the acceleration due to
gravity on Earth. As we have seen, this is enough to start
measuring GR effects in the lab. Of course, there are many
possible improvements to this technology, and the poten-
tially achievable sensitivities (at least above shot noise)
were discussed in [10].

A. Principle of equivalence

Atomic interferometers have been used to test the prin-
ciple of equivalence (POE) [8,53]. We intend to perform a
similar test to 10�15 accuracy using a rubidium apparatus
currently under construction (see Sec. II) [30]. The basic
idea is to colocate two atomic clouds of different species or
isotope (e.g., 85Rb and 87Rb) and run simultaneous atom
interferometers using the same laser pulses on these two
clouds (a simultaneous dual species fountain has been
demonstrated [54]). This test is essentially looking for
the presence of new forces that act in a POE-violating
way, namely, that are not proportional simply to the mass
of the atoms but instead depend on the atomic species or
isotope. It seems likely that any new force would be POE-
violating since it is hard to design a force other than gravity
that does not violate the POE. Indeed most examples of
new forces in the literature do violate the POE. This
experiment, being done on the surface of the Earth, has
maximal sensitivity to POE-violating forces with a range
greater than the Earth’s radius. An infinite range force
would also be detectable in this manner. As the range 

of the new force decreases below the Earth’s radius, the

sensitivity of the experiment decreases as �� 10�15ðRE
 Þ
(with the overly simplistic assumption of uniform Earth
density) since the volume sourcing the new Yukawa force
goes as�
3. Notice that this does give sensitivity to forces
with shorter ranges, down to �10 m, the rough size of the
experiment and the distance over which it is not clear what
the local mass distribution is. Figure 5 shows projected

limits from this experiment on a new force that couples to
baryon number (B) and baryon minus lepton number (B�
L), and arising from a light dilaton [55]. The large sup-
pression factors come from the fact that 85Rb and 87Rb
have similar couplings to these new forces and also roughly
equal masses. Also shown in Fig. 5 are the current experi-
mental limits on a force coupling to B coming from an
equivalence principle experiment [56]. This line shows the
difference that a realistic Earth model makes for the limits.
One possible background to the POE measurement

arises from the fact that the Earth’s gravitational field is
not constant but in fact has a gradient� g

Re
, where Re is the

radius of the Earth. Thus an increase in height of h�
10 nm changes the acceleration by�g hRe � 10�15g, which

is at the desired sensitivity. The primary way to reduce this
is to use a differential measurement between two simulta-
neous atom interferometers run with the same laser pulses.
In the POE measurement it is necessary to colocate the two
isotopes in the initial atomic trap to & 10 nm in order to
avoid this systematic. The differential sag in the combined
gravity plus magnetic trap depends only on the isotope
masses since we can trap 85Rb and 87Rb using states with
the same magnetic moment. For our designed magnetic
trap curvature, the expected differential sag is �10 nm.
Further, this differential position can be measured by char-

FIG. 5 (color online). Projected limits to be set by the principle
of equivalence measurement. Limits are shown (labeled solid
lines) for several possible new Yukawa forces arising from a
coupling to baryon number (B), baryon minus lepton number
(B� L) and the dilaton. These assume a uniform Earth density.
Previous limits are shown in solid shading [78]. The dashed line
is the current limit on a force coupling to B from an equivalence
principle experiment using a realistic Earth model [56].
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acterizing the magnetic trap in situ, which can be used to
reduce the systematic phase error below 10�15g.

B. Velocity-dependent forces

In order to measure the GR effects of the velocity-
dependent forces and the gravitational effect on the laser
light, we must pick out the phase shift term with the v2L
scaling. The basic idea is that it is very difficult for clas-
sical gravity to mimic the effect of a true velocity-
dependent force. Again we will consider a differential
measurement between simultaneous atom interferometers
since this aids greatly in the control of many backgrounds.
Here we consider two atom interferometers with differing
launch velocities in order to select the velocity-dependent
term we are looking for. This will naturally cancel many
phase shifts, including the leading order one from gravity
keffgT

2. Of course, there are still several possible back-
ground terms that are larger than the signal and scale with
launch velocity. These include terms coming from the
Earth’s gravity gradient keffð@rgÞT3vL, the effect of the
Doppler shift of the laser as seen by the moving atom
keffgT

2vL, and the effect of the Earth’s rotation
keffvL�

2T3, where � is the component of the Earth’s
rotation rate perpendicular to the launch velocity [33].
Magnetic fields do not induce velocity-dependent phase
shifts when the internal atomic state remains unchanged, as
in a Bragg beam splitter. All of these background terms,
although much larger than our signal, scale differently with
vL and T than our signal. There are no terms which scale as
v2LT

2; this is a unique sign of GR. Varying these around the

typical values (vL ¼ 13 m
s and T ¼ 1:3 s) then allows the

GR term to be picked out from the backgrounds with a
sensitivity limited only by the atom shot noise. It is crucial
for this fit that vL can be known experimentally very
precisely (better than the ratio of the background to the
signal). This is possible since the launch velocity is pre-
cisely linked to laser frequencies [see the discussion of
physical velocity and Eq. (86)] which can be known ex-
tremely well.

Additionally, in case backgrounds do become a problem,
it is possible to reduce the measured size of the background
terms even before this fit. Because the GR term scales as
ðvLTÞ2, there is no loss in the signal by going to the regime
where the launch velocity is large. In this regime, the
atom’s velocity is roughly constant over the length L of
the interferometer and L ¼ vLT. If vL and T are then
always scaled inversely so that L is fixed, then the signal
does not change but all the background terms do. Further,
by taking vL large, all the background terms are suppressed
by at least one power of vL because they all have more
powers of T than of vL. For example, the gravity gradient

term becomes keffð@rgÞ L3

v2L
. Thus, the sizes of the phase

shifts from these backgrounds can be directly reduced even
before data analysis.

C. Nonlinearity of gravity

To measure the terms which arise from the nonlinearity
of gravity, it may help to run three simultaneous atomic
gradiometers along three mutually orthogonal axes in a
‘‘divergence configuration’’. Such a configuration effec-
tively measures the divergence of the local gravitational
field, which must be zero in Newtonian gravity outside the
source mass. This should then allow the nonlinear GR
effect keffg�T

2 to be picked out. In particular, the atoms
can be launched along a single, large (e.g. 10 m) vertical
axis. Then three perpendicular atom interferometers can be
run along this same axis using three perpendicular sets of
lasers. Thus the atoms can be split vertically or in either
horizontal direction to make the three perpendicular atom
interferometers. Yet all three interferometers are in essen-
tially the same position, separated only by the much
smaller vrT � 1 cm.
One question which arises is the extent to which the

three laser axes can be made mutually orthogonal, since
they must be perpendicular to one part in 109 (since on the
Earth �� 10�9) in order to reduce the Earth’s gravity
gradient below the GR signal. Methods for measuring
angles with nanoradian precision have already been dem-
onstrated, albeit for angles much smaller than 90 degrees
[57]. It may also be possible to geometrically construct
laser axes which are perpendicular to very high accuracy
by using the ability to accurately measure distances with a
laser interferometer.
It is also possible to ameliorate the requirement on the

perpendicularity of the laser axes by reducing the local
gravity gradient with an appropriately constructed local
mass distribution. We will show that it is possible to reduce
the gravity gradient along all three perpendicular axes by
Oð1Þ of its natural size on the Earth. With such a construc-
tion, the three gravity gradients can then be measured by
the atom interferometer itself. It should then be possible to
make minor modifications to the mass distribution to can-
cel the gravity gradients with increasing precision, without
an exact knowledge of the angles of the atom interferome-
ters. Every order of magnitude reduction in the size of the
local gravity gradient reduces the requirement on perpen-
dicularity of the laser axes by an order of magnitude. Since
the atom interferometer can measure gravity gradients very
precisely, it may be possible to align the lasers to sufficient
accuracy without a complicated alignment mechanism.
Now we must show that the Earth’s gravity gradients in

all three directions (i.e. @x ~gx, @y ~gy, and @z ~gz) can be

cancelled to Oð1Þ. If the z axis runs perpendicularly to
the local surface of the Earth at the point in question, then

~gz � � GMearth

R2
earth

[58] is negative and the gradient @z ~gz �
�2

~gz
Rearth

is positive. Adding more mass on the z axis either

completely above or completely below the atom interfer-
ometer will only add a positive quantity to @z ~gz, thus
increasing the gravity gradient. Therefore we must add
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mass around the atom interferometer. As a proof of prin-
ciple, take a sphere of mass centered on the point in
question with a cylindrical hole along the z axis (the
atom interferometer apparatus would be placed in this
hole). Assuming the radius of the cylinder is small com-
pared with the radius of the sphere, the Newtonian gravi-
tational field due to the sphere inside itself has a derivative
with an opposite sign compared to the Earth’s gradient:
@z ~gz ¼ � 4

3�G�sphere. Since in vacuum the divergence is

zero in Newtonian gravity (@x ~gx þ @y ~gy þ @z ~gz ¼ 0) and

there is a rotational symmetry about the z axis, the other
two components of the sphere’s gravity gradient are
@x ~gx ¼ @y ~gy ¼ � 1

2@z ~gz. With an appropriate choice of

�sphere then, the Earth’s gravity gradient can be canceled

off. Notice that the sphere cancelled the z component of the
Earth’s gradient while the cylindrical hole cancelled the x
and y components, since in the infinite limit the cylinder
only has x and y components of acceleration.

D. General backgrounds

One possible background to any measurement made
with an atom interferometer arises from the interaction of
the atoms with ambient electromagnetic fields. The electric
fields present in any realistic setup are too small to give
detectable phase shifts as they are easily screened. Surface
effects such as the Casimir interaction are negligible as the
atoms are kept far from all surfaces. Only ambient mag-
netic fields can give large enough phase shifts to be poten-
tial backgrounds. An atom responds strongly to a
background magnetic field, so we usually consider a mag-
netically shielded interferometer. Ambient magnetic fields
can be shielded down to the nT level (see for example [59])
which leads to appropriately small phase shifts. The atoms
are prepared in a magnetically insensitive m ¼ 0 state and
so the energy shifts that arise are second order in the
magnetic field �E ¼ 1

2�B
2, where � is the second order

Zeeman coefficient of the state. Since the internal levels of
the atom can have different values of �, magnetic phase
shifts are generally smaller when the internal state is fixed,
as is the case in an interferometer that uses Bragg transi-
tions. Systematic phase shifts can then only result from
spatial variations in the field:

�� � �keff �mB0

@B

@z
T2;

where B ¼ B0 þ B, B0 � 100 nT is the constant bias
magnetic field and B is a small field perturbation.
Variations of B� 1 nT over the length of the interfer-
ometer give negligible phase shifts for a 87Rb apparatus.
The above formula generally holds for field perturbations
that vary on length scales that are long compared to the
interferometer arm splitting. In the opposite limit, the
interferometer averages over perturbations with wave-
lengths that are small compared to the overall interferome-
ter length. This spatial averaging behavior also occurs for

short wavelength gravity perturbations, as we describe in
more detail below.
Another potential background in the interferometer

arises from atom-atom collisions within the atom cloud.
For 87Rb, the frequency shift of the atomic state jF ¼
2; mF ¼ 0i due to atom-atom collisions is

� � ð�0:9 mHzÞ
�

n

109 cm�3

� ffiffiffiffiffiffiffiffiffiffiffiffi
�

1 �K

s
for a cloud of number density n and temperature � [60,61].
Unlike in atomic clocks, phase errors due to this effect in a
�
2 -�-

�
2 pulse sequence atom interferometer implemented

using Bragg atom optics are the result of unequal densities
between the two arms. Nominally, the upper and lower
arms of the interferometer have the same atom number
density but an imperfect initial beam splitter can cause an
asymmetry between the arms, resulting in a phase shift

�collision ¼ 4��T

� ð1:1� 10�2 radÞ
�

n

109 cm�3

� ffiffiffiffiffiffiffiffiffiffiffiffi
�

1 �K

s �
T

1 s

�

�
�
�n

n

�
for a density difference�n. This represents an upper bound
on the atom-atom phase shift, since in reality the cloud
density decreases in time during the experiment due to
ballistic expansion [62]. Making the conservative assump-
tion that the density difference can be controlled at the

level of �n
n � 10�2 implies a phase error of �10�4 rad.

However, this systematic offset is not a concern for many
of the experiments we consider since it is expected to
cancel as a result of our differential measurement strat-
egies. This cancellation relies on the condition that the
density does not depend on any of the other control pa-
rameters in the experiment, an assumption that must be
verified experimentally [63].
An additional tool that may be useful for reducing back-

grounds and picking out the signal terms is the possibility
of running the atom interferometer with different pulse
sequences. While the �2 -�-

�
2 sequence is an accelerometer,

more complicated sequences can be used which suppress
accelerations and leave the gravity gradients, or vice versa.
In general, either T2 or T3 terms, or both, can be removed
by a suitable choice of pulse sequence [35,64]. This can
remove most of the relevant backgrounds to the velocity-
dependent force measurement since they scale with higher
powers of T. These different pulse sequences improve the
ability to pick out a term that scales in a particular way with
the control parameters.
Finally, it is possible that small gravitational ‘‘anoma-

lies’’ due to local masses may be a background. In fact,
only the small wavelength variations in the local g field can
be a relevant background for these experiments.
Perturbations to local g at wavelengths larger than the
rough size of the experiment (e.g. 10 m) are well described
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by the Taylor series expansion that we have assumed for
the Earth’s field. Since these perturbations are naturally
small compared to the Earth’s field, the differential mea-
surement strategies discussed above for the principle of
equivalence, velocity-dependent force, and nonlinearity of
gravity measurements will remove these long wavelength
perturbations in exactly the same way as they removed the
Earth’s field.

Short wavelength perturbations in the local gravitational
field can be relevant. Luckily, the atom interferometer
naturally averages over these perturbations because of its
spatial length. We write the total phase shift due to gravity
anomalies along the vertical (z) direction summed over all
wavelengths 
 as

��g ¼
Z
Tgzð
Þfgzð
Þd
; (87)

where the gravitational field at a position z in the interfer-

ometer is gzðzÞ ¼
R fgzð
Þeði2�zÞ=
d
, fgzð
Þ is the

Fourier component of a gravity perturbation with wave-
length 
, and Tgzð
Þ is the interferometer’s gravity pertur-

bation response function. Figure 6 shows the response of
an atom interferometer in the example 10 m configuration
to perturbations in the local g field of wavelength 
. The
top curve is for the atom interferometer run in the ‘‘sym-
metric’’ configuration where the atoms are launched from
the bottom of the interferometer region with exactly the
right velocity to stop at the top, vL ¼ gT, and the first and
last beam splitter pulses happen when the atom is at the
bottom on its way up and on its way down, respectively.
The next lower curve assumes the atom is dropped from
rest at the top. The next two curves assume the atom is
launched downwards from the top with velocities 1 m

s and

10 m
s , respectively. As expected, the atom interferometer

always averages down the perturbations on scales below its
size, here 10 m. If the atom is launched so that its velocity
is never zero then the suppression is much bigger at shorter
lengths. For the lower two curves, the phase falls off as 
2,
as compared with 
 for the case in which the atom comes
to rest during the interferometer. Roughly, the more uni-
form the atoms’ velocity, the larger the reduction that
comes from averaging over the small scale gravity pertur-
bations. This is a very useful tool for reducing backgrounds
from local masses. It also scales favorably with the length
of the interferometer, since a longer interferometer sup-
presses larger distance scales, leading to an even greater
suppression at short distances.
The differential measurement strategies suppress the

longer wavelength contributions. In fact, at very long
wavelengths there is no difference between what we have
called a ‘‘perturbation’’ and the previously included part of
Earth’s gravitational field. The differential measurement
strategies were designed to allow us to control systematics
arising from the Earth’s gravitational field. For the pro-
posed principle of equivalence measurement, atom clouds
of the two isotopes are separated by less than 1 �m. This
provides a large suppression to longer wavelength gravita-
tional perturbations. Similarly, in the divergence strategy
measurement (see Sec. VC) the three atom interferometers
are separated by �1 cm. For wavelengths longer than this
scale the divergence measurement looks like a true diver-
gence (instead of a finite difference approximation to the
derivative) and so the longer wavelength gravitational
modes are suppressed. As discussed above, the velocity-
dependent force measurement benefits greatly from the
ability to launch the atoms with a large initial velocity to
suppress all Newtonian gravitational effects without sup-
pressing the GR signal. This suppression of all wave-
lengths can be seen by comparing the lowest two curves
in Fig. 6. The lowest curve has a larger launch velocity and
is therefore suppressed at all wavelengths as expected.
If we know the magnitude of the perturbation in the local

gravitational field, we can compute the phase shift induced
in an interferometer from Eq. (87). This implies some
constraints on the mass and distance of nearby objects
that must be taken into account when designing an actual

experiment. Figure 7 displays fgzð
Þ for several example
sources. Each source is taken to be some perpendicular
distance from the center of the atom interferometer. We
have always plotted the magnitude of the Fourier trans-
forms in Figs. 6 and 7 (i.e. we have taken the sum in
quadrature of the sine and cosine components). An object
that is farther away than its size looks like a point mass. Its

gravitational field has a Fourier transform fgzð
Þ that is
sharply peaked around its distance from the interferometer.
An object that is large compared to its distance (repre-

sented by the rod in Fig. 7) produces a fgzð
Þ that is
sharply peaked around the object’s size. This analysis

FIG. 6 (color online). The response function Tgz as defined in
Eq. (87). It gives the phase shift response of the atom interfer-
ometer to a Fourier component of the local gravitational field
with wavelength 
 and amplitude 10�9gearth. All curves assume
the example 10 m atom interferometer. The top curve assumes it
is run in a ‘‘symmetric’’ configuration (see text), the next lower
curve assumes the atoms are dropped from rest at the top of the
device and the following two curves assume a downward launch
velocity of 1 m

s and 10 m
s respectively.
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allows us to predict the expected size of local gravitational
perturbations as a function of wavelength.

The differential response curve allows us to compute
systematic errors arising from the specific gravity environ-
ment of our interferometer. Quantitative estimates of these
effects require knowledge of the local gzðzÞ, which may
be obtained through a combination of modeling and char-
acterization. The atom interferometer itself can be used as
a precision gravimeter for mapping gzðzÞ in situ. By
varying the interrogation time T, a local gravity measure-
ment can be made over a small spatial region. Many such
measurements in different positions can be made by vary-
ing the launch velocity and time of the initial beam splitter,
resulting in a measurement of gzðzÞ.

The interferometer’s response to the short wavelength
modes can be quite suppressed as in Fig. 6. Additionally,
the amplitudes of the gravitational perturbations can be
kept small as in Fig. 7. Further, depending, to some extent,
on the nature of the gravitational source, the phase shifts
due to these local gravitational anomalies are unlikely to
vary at order one with the control parameters used in the
experiment, or to vary at order one from shot to shot. This
leads to a further suppression, since a truly constant phase
shift would not be a background to many of these proposed
experiments. Thus, it seems possible to reduce the back-
ground phase shifts due to local gravitational effects below
the required 10�6 rad level.

There are, of course, many details we have not addressed
here that are important for a real experiment. Here we have
given our ideas for ways of distinguishing the main GR
effects of the Earth’s gravitational field from the relevant
backgrounds. These effects are found to be possibly phe-
nomenologically distinguishable from Newtonian gravity
and other backgrounds, and are thus true GR (or beyond

GR) effects, indescribable in a Newtonian model. We have
tried to motivate why these or similar experiments may be
possible, but we have not proven that they will work in the
full detail necessary for a real experiment. We just wish to
motivate future work.

VI. OTHER GR EFFECTS?

A. Hubble expansion (vacuum energy)

The cosmological expansion of the Universe can be
described by the metric

ds2 ¼ dt2 � e2Htd ~x2; (88)

where H is the Hubble constant. Using the geodesic equa-
tion (59), a particle moving in this metric has an accelera-
tion

d2 ~x

d�2
¼ 2H

d~x

d�

dt

d�
� 2Hv: (89)

For laboratory atomic velocities this would be �10�18g,
large enough to be very interesting compared to the initial
sensitivity of the interferometer under construction
�10�15g. We would like to consider whether it is then
possible to measure the expansion rate of the Universe in
an atom interferometer. Since the local neighborhood has
collapsed gravitationally, the normal cosmological expan-
sion of the metric is presumably not occurring inside the
Solar System. However, a true cosmological constant
would necessarily be present everywhere and must there-
fore affect the metric locally. We will loosely model the
local effects of the vacuum energy using metric (88) (to
include the effects of local mass, a McVittie metric [65]
should really be used) but it must be remembered that H
will then presumably refer only to the contribution of the
vacuum energy.
Unfortunately, this is just an artificial, coordinate accel-

eration, not the physical acceleration that would be mea-
sured by any experiment. A calculation of the acceleration
that would be measured in an actual experiment, either an
observer using radar-ranging to determine the atom’s po-
sition or using an atom interferometer, shows that the
physically observable accelerations are of OðH2Þ.
Another way to see an effect linear in H is to consider

two observers on geodesics of (88) which are at constant ~x
positions. The spatial distance (defined by integrating only
the spatial terms in the metric at a fixed time) between
these observers is eHt� ~x and so it would appear that there
is a relative velocity of OðH�xÞ. In fact a radar-ranging
calculation of the distance or velocity shows essentially the
same thing. This is not a surprise, since this is in fact just
the normal observation of Hubble’s law for the expansion
of the universe. Such observers represent galaxies, which
are measured to recede from each other at velocities of
order H. However we cannot create a similar laboratory
version of this experiment in order to measure the Hubble
constant (really vacuum energy) without starting the atom

FIG. 7 (color online). The magnitude of the power spectra of
the local gravitational field ~gzð
Þ from Eq. (87) for several
example sources. The solid curve is a 10�2 kg point source,
10 cm from the center of the interferometer. Similarly, the dotted
curve is a 1 kg source at 1 m and the dash-dotted curve is
1000 kg at 10 m. The long-dashed curve is a thin 10 m long rod
of mass 10 kg, parallel to the interferometer, whose center is 1 m
from the interferometer.

GENERAL RELATIVISTIC EFFECTS IN ATOM . . . PHYSICAL REVIEW D 78, 042003 (2008)

042003-23



with an initial velocity ofOðHÞ, which defeats the purpose.
The galaxies naturally have such velocities, and so tend to
mark the cosmological expansion, due to the action of the
OðH2Þ acceleration acting for the age of the UniverseH�1.

More generally, it seems there cannot be effects linear in
H, at least in ‘‘normal’’ variables such as position, velocity,
or acceleration, in any experiment we can set up. Without
access to observers in some special reference frame such as
the galaxies provide, any experiment will be free-falling in
the cosmological expansion. By the principle of equiva-
lence, such an experiment will then see a metric that is
locally flat with corrections proportional to the Reimann
curvature. But this is R / H2 (all components are either 0,
�H2, or �H2e2Ht). This is very similar to transforming
Eq. (88) to the static patch

ds2 ¼ ð1�H2r2Þdt2 � 1

1�H2r2
dr2 � r2d�2: (90)

In these coordinates it is clear that all accelerations (all
Christoffel symbols), the Reimann curvature, and other
similar quantities will be OðH2Þ. Of course, the argument
that in a LLF the answer will just be proportional to the
curvature and therefore to H2 misses the important point
that the Reimann tensor [at least in either of the coordinates
(88) or (90)] still has coordinate dependence, and therefore
cannot actually be observable. This problem highlights the
importance of working entirely in physical variables, as we
stressed for the atom interferometer in Sec. III.

The expansion of the Universe is occasionally proposed
as an explanation for the Pioneer anomaly [66] which is an
anomalous acceleration of the Pioneer spacecrafts of order
H. Radar-ranging the Pioneer is quite similar in spirit to the
atom interferometer, which can be thought of as laser
ranging the atom to find its acceleration. Thus, similar
arguments apply to this case as well, and the Pioneer
anomaly cannot be explained within general relativity as
being due to the cosmological expansion.

Intuitively, it is impossible to observe effects linear in
Hubble in a local experiment because of the equivalence
principle. Essentially, everything in the experiment is
‘‘falling’’ together in the expansion of the Universe.
Similarly, it is impossible to detect (at leading order) the
acceleration toward the dark matter of the galaxy. Only the
gradient of this force is detectable and this is too small to
be measured. However, violations of the equivalence prin-
ciple could in principle lead to observable effects both for
the expansion of the universe and dark matter. These would
probably be suppressed by a small factor which is the
extent to which the equivalence principle is known to be
valid.

B. Lense-Thirring

The Lense-Thirring effect is a gravitomagnetic effect
due to the rotation of a source mass. It is difficult to
measure and has been searched for in several experiments
[67–71] but no undisputed, conclusive measurements exist

yet to better than Oð1Þ. Given the success of atom inter-
ferometers used as gyroscopes, it seems worthwhile to
consider whether gravitomagnetic effects could be mea-
sured in an atom interferometer. To understand the effect,
the metric outside a spinning body can be written as [47]

ds2 ¼ ð�1� 2�� 2�2 � 2 Þdt2 þ ð1� 2�Þd~x2
þ 2 ~� � d~xdt: (91)

Using this in the geodesic equations (59) gives the
coordinate acceleration as

d ~v

dt
¼ �rð�þ 2�2 þ  Þ � d ~�

dt
þ ~v� ðr� ~�Þ

þ 3 ~v
d�

dt
þ 4 ~vð ~v � rÞ�� ~v2r�; (92)

where ~v ¼ d~x
dt . The terms proportional to ~� give the grav-

itomagnetic terms we are interested in. Outside a spinning,

spherical body with angular momentum ~J / MR2 ~�

~�ð ~xÞ ¼ 2G

r3
ð ~x� ~JÞ: (93)

The relevant acceleration of a test body caused by this
effect is then

aLT ¼ ~v� ðr� ~�Þ �GMR2
E�v

r3
: (94)

Near the Earth’s surface, using the launch velocity v�
10�7, the highest this acceleration can be is aLT � 10�13g,
which is certainly above the planned sensitivity of upcom-
ing interferometers [10]. Though we have not done a full
GR calculation as outlined above, following the usual
guess the phase shift is kaLTT

2 � 10�4 rad. Unfor-
tunately, this phase shift scales very similarly with control
parameters as the phase shift due to the Coriolis effect
(assuming an earth-bound atom interferometer). The
Coriolis effect gives a phase shift

~k � ~aCT2 � ~k � ð ~�� ~vLÞT2: (95)

On the Earth this acceleration is �10�4g. Then, by (94),
the Lense-Thirring effect is roughly a factor of � smaller
than Coriolis in magnitude: aLT ��aC � 10�9aC.
Further, they scale the same way with the control parame-
ters k, vL, and T, although their directions and dependen-

cies on the directions of the vectors involved, ~vL, ~x, and ~�,
are different. This means the Lense-Thirring effect cannot
be directly measured beneath the much larger Coriolis
background. However, the Coriolis effect is a kinematical
effect and is thus qualitatively different from the dynamical
Lense-Thirring effect which depends on the rotation of the
source mass itself and not just of the laboratory in which
the experiment is being performed. For one thing, it means
that the Lense-Thirring effect depends on the distance to
the source mass and not just the angular velocity. Our idea
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to measure the Lense-Thirring effect in an atom interfer-
ometer exploits this difference to isolate the effect from the
much larger Coriolis background.

To subtract off the Coriolis background, we can use a
differential measurement between two simultaneous inter-
ferometers that measure a different Lense-Thirring accel-
eration but the same Coriolis acceleration. Our idea for
accomplishing this is to have the two interferometers differ
in only one control parameter, their height above the
Earth’s surface. This gives the same Coriolis force, up to
the level that the other control parameters can be made
equal between the two interferometers (note that time
variations are not relevant here so long as the two interfer-
ometers remain identical in everything but height).
However there are constraints on how identical the two
interferometers can be. One of the most important is the
need to make the launch velocities equal to high precision,
since the Coriolis force scales directly with vL. One idea
for doing this is a common launch of a single cloud that is
subsequently split into two at differing heights. This limits
how far apart the interferometers can be. We will take a
height difference of 1 m as an optimistic but not unreason-
able guess. Then the size the Lense-Thirring effect that can
be measured is reduced by a gradient factor to aLT

1 m
RE

�
10�19. This is roughly a factor of 104 below the initial
sensitivity we are considering. As mentioned in Sec. II,
there are many possibilities for improving this sensitivity
by orders of magnitude. However this number seemed
challenging enough that we have not pursued this idea
further (we are explicitly not considering tying an atom
interferometer to a telescope in a configuration like Gravity
Probe B, since that has already been proposed [71]). It is
also possible that there are better ideas for isolating Lense-
Thirring from the Coriolis backgrounds that would allow a
measurement, since the Lense-Thirring effect is naturally
quite large compared to the sensitivities of upcoming atom
interferometers. This is left to future work.

C. Preferred frame

There are many possible modified theories of gravity
beyond those parametrized by the PPN parameters� and �
in metric (72). As one example, the PPN formalism in-
cludes eight other parameters that parametrize the possible
metric modifications of general relativity [11]. There are
many other nonmetric theories as well. The full PPN
metric [11] would still fall under the calculation method
outlined above.

We have not performed the full calculation to see what
other effects from the PPN metric would be present in an
atom interferometer, but we can easily guess one. Often,
the new effects introduced by the full PPN metric can
usefully be thought of as preferred frame or location ef-
fects, usually called violations of Lorentz invariance. Such
effects have been pursued before as modulations of the
local acceleration in an accelerometer on the Earth’s sur-

face with periods of a day, a year, and so on [9,11,72].
While the atom interferometer can yield an impressive
increase in sensitivity over the accelerometers used to do
the previous searches (and has already led to improved
limits [9]), the previous experiments were ultimately lim-
ited by geophysical uncertainties. Thus, it is not clear that
an increase in accelerometer sensitivity would lead to an
improved ability to search for such Lorentz-violating ef-
fects without an equally improved geophysical model. Of
course, the atom interferometer is much more than just an
accelerometer, as attested to by the many control parame-
ters and measurement strategies employing simultaneous
differential measurements outlined above. Further, there
may be signals from these PPN and Lorentz-violating
effects that are more than just modulations of the local
acceleration. We cannot exclude the possibility that there
are novel search techniques that would allow atom inter-
ferometers to provide stringent tests of Lorentz violating
theories, but we leave such considerations to future work.

VII. SUMMARYAND COMPARISON

Relativistic effects in interferometry have been dis-
cussed before in several contexts [73–77]. None of these
discussed specific, viable experiments for the post-
Newtonian relativistic effects we have considered.
Mostly, they focus on calculation methods instead of spe-
cific laboratory experiments. These methods are not appli-
cable to our experimental setup.
In [73], general discussion and motivation was given for

considering the effects of general relativity on devices such
as atom or neutron interferometers. Relativistic calcula-
tions for a certain type of interferometer were given in
[74,75] and were used to give a rough estimate of the phase
shift that might arise in a setup similar to neutron inter-
ferometry. While it is possible that a similar estimate could
be given for the atom interferometer, it would miss most of
the important effects since their analysis does not take into
account the laser pulses which actually form a light-pulse
atom interferometer like the ones we consider here. None
of these calculations can be applied directly to the atom
interferometer for several reasons, including the lack of
description of the laser pulses and the difficulty of solving
the necessary equations for the full atom interferometer
sequence in a general metric background. Essentially, these
calculations only have what we call propagation phase.
Further, this phase is not calculated along the trajectories
that are relevant for light-pulse atom interferometry. The
measurements suggested in these papers are also quite
different from our proposals.
Atom interferometry is considered in [76] as a way to

measure space-time curvature, which is essentially the
leading order effect of (Newtonian) gravity. We are inter-
ested in measuring the post-Newtonian corrections. We are
thus led to consider a specific setup in which the effect of
the laser pulses and the platform on which the laser rests is
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crucial and must be taken into account. The formalism
given in [77] does not give the final phase shift for the
general relativistic effects we are interested in, though
some of the effects are mentioned. We cannot use this
calculation because the equations become too difficult to
solve when all the post-Newtonian terms are kept to the
order which is necessary given the precision of the experi-
ment. Further, the effect of gravity on the laser pulses that
serve as our beam splitters and mirrors is not taken into
account, and thus a relativistic prescription for the atom-
light interaction is not included. Thus, in order to have a
fully relativistic, coordinate-invariant calculation, we use
our semiclassical method for calculating the phase shift in
the interferometer. Additionally, in order to simplify the
calculations, many of these previous papers worked in the
linearized gravity approximation where the metric is ex-
panded as g�� � 	�� þ h��. This cannot yield a correct

result for the nonlinear effects in general relativity.
We build and expand upon this previous work by con-

sidering a specific experimental scenario for a light-pulse
atom interferometer, in which the GR effects can be calcu-
lated in a fully relativistic framework. This includes im-

portant effects such as a relativistic treatment of the laser
pulses forming the beam splitters and mirrors which ac-
counts for the influence of gravity on the propagation of the
light, as well as changes to the phase shift formulas. This
framework is able to go beyond linearized gravity to reveal
the effect of the nonlinearity of gravity on an atomic
interferometer. This requires calculating phase shifts for
terms in the Hamiltonian higher than quadratic order. We
also consider several specific experimental strategies for
testing general relativity in an atom interferometer.
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APPENDIX: EARTH FIELD CALCULATION
RESULTS

The coordinates for point C using metric (72) as dis-
cussed in Sec. IVA are
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