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We present an analytic derivation of Hawking radiation for an arbitrary (spatial) dispersion relation

!ðkÞ as a model for ultrahigh-energy deviations from general covariance. It turns out that the Hawking

temperature is proportional to the product of the group d!=dk and phase !=k velocities evaluated at the

frequency ! of the outgoing radiation far away, which suggests that Hawking radiation is basically a low-

energy phenomenon. Nevertheless, a group velocity growing too fast at ultrashort distances would

generate Hawking radiation at ultrahigh energies (‘‘ultraviolet catastrophe’’) and hence should not be a

realistic model for the microscopic structure of quantum gravity.
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I. INTRODUCTION

In the history of physics, unexplained coincidences were
often the precursor of striking discoveries. For example,
the limiting propagation velocity derived from the proper-
ties of coils and capacitors in tabletop experiments turned
out to be strikingly close to the speed of light measured via
planetary motion, which guided the unification of these
phenomena by the laws of electrodynamics and ultimately
led to the theory of relativity. Today, a similar riddle is the
question of why black holes seem to behave like thermal
objects [1] and evaporate by emitting Hawking radiation
[2–4].

One way of achieving a better understanding of these
links is to study the origin of the particles in black-hole
evaporation, i.e., the question of where they are created.
For example, it has been suggested to resolve the black-
hole ‘‘information paradox’’ (i.e., the apparent contradic-
tion between unitarity and the second law of thermody-
namics in this system) by encoding information into the
outgoing Hawking particles. Clearly, this (hidden) encod-
ing mechanism should then occur at the origin of the
particles (or on their way to infinity). Since the event
horizon marks the ‘‘point of no return,’’ the modes con-
taining the Hawking particles originate from the region
very close to the horizon, i.e., from very short wavelengths
(gravitational redshift). However, the origin of themodes is
not necessarily the place where the particle creation pro-
cess occurs.

In order to address this problem, we derive Hawking
radiation in the presence of a very general dispersion
relation ! ¼ ck ! ! ¼ !ðkÞ associated with the propa-
gating degrees of freedom. Such a modified dispersion
relation is inspired by the analogy to condensed matter,

i.e., the sonic black-hole analogues (silent or ‘‘dumb’’
holes), which rely on the quantitative analogy between
quantum fields in curved space-times and phonons (or

other quasiparticles) propagating in fluids with a general

flow velocity vðt; rÞ, cf. [5,6]. In this case, the phase !=k

and group d!=dk velocities vary with wavelength and thus
the dependence of Hawking radiation on the dispersion
relation should show us which wave numbers k are most
important for particle creation: The emitted radiation at
various frequencies ! will ‘‘see’’ different horizons. The
question this paper will try to answer is what determines
the temperature of the radiation emitted at any particular
frequency !. If the temperature is determined when the
wavelengths are very small, and frequencies large—i.e.,
when the horizon first splits the incoming wave packet (in
its vacuum state) into positive pseudonorm modes outside
the horizon (which will turn into the Hawking particles)
and negative pseudonorm modes (their infalling partner
particles) inside—then one would expect a universal tem-
perature for all of the low-frequency modes. On the other
hand, if it is the low-frequency aspects of the modes which
determine the temperature, one might expect the properties
of the horizon defined via one of the velocities (phase,
group, or other) associated with the wave at low frequen-
cies to dictate the temperature (via dv=dr at that horizon
location) of that mode.
Previous analytic calculations were restricted to low

energies ! and a small vicinity of horizon, see, e.g., [7],
while numerical studies necessarily involved a given
(mostly subluminal) dispersion relation within a restricted
parameter range. In the following, we present an analytic
derivation of Hawking radiation valid for any frequency !
and almost arbitrary (spatial) dispersion relations!ðkÞ; the
only assumption we make is that the black or dumb hole
should be large, i.e., macroscopic, and that the velocity
profile of the background flow has a specific form.
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II. DISPERSION RELATION

Since Hawking/dumb-hole radiation is basically a 1þ
1-dimensional effect, we consider the Painlevé-Gullstrand-
Lemaı̂tre metric in 1þ 1 dimensions (@ ¼ c ¼ GN ¼
kB ¼ 1)

ds2 ¼ ½1� v2ðxÞ�dt2 � 2vðxÞdtdx� dx2; (1)

with the local frame-dragging velocity vðxÞ, which corre-
sponds to the flow velocity of the fluid analogue [5]. It
determines the position of the horizon via vðxÞ ¼ �c
where c is the velocity of the propagating modes, which
is assumed to be constant and set to unity here. The
propagation of a massless scalar field � in this metric
(or, equivalently, phonons in the fluid) is governed by the
d’Alembertian

h� ¼ ðð@t þ @xvÞð@t þ v@xÞ � @2xÞ�
¼ ð@t þ @xvþ @xÞð@t þ v@x � @xÞ�: (2)

Because of the conformal invariance in 1þ 1 dimensions,
the left-moving modes ð@t þ @xv� @xÞ� ¼ 0 propagating
against the frame-dragging velocity are decoupled from the
right-moving solutions � ¼ ð@t þ @xv� @xÞ�. However,
an arbitrary modification of the dispersion relation would
not preserve this decoupling in general. The choice

hh ¼ ð@t þ @xvÞð@t þ v@xÞ � hð@2xÞ; (3)

for example, does not factorize for a general function h. On
the other hand, if we modify the left- and right-moving
branches separately with an arbitrary function f via

hf ¼ ð@t þ @x½1þ vþ fð�@2xÞ�Þ
� ð@t � ½1� vþ fð�@2xÞ�@xÞ; (4)

the left-moving modes ð@t � ½1� vþ fð�@2xÞ�@xÞ� ¼ 0
are again decoupled from the right-moving solutions given
by � ¼ ð@t � ½1� vþ fð�@2xÞ�@xÞ�. The difference be-
tween the two options (3) and (4) scales with the derivative
of vðxÞ compared with the characteristic scale of the dis-
persion relation ½vðxÞ; fð�@2xÞ�, which is negligibly small
in the hydrodynamic limit (which corresponds to the black
hole being large). The coupling occurs at high frequencies
over long scales (the scale of variation of v) which means
the response will be adiabatic and left-moving waves will
not convert to right-moving. This is the reason why the
numerical simulations using the first option (3) never saw a
mixing between left and right movers one might expect
from the coupling between the two sets of modes.

III. DERIVATION

Even though the Schwarzschild metric corresponds to

vðxÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=x

p
, we consider two different velocity pro-

files vðxÞ ¼ ��=x and vðxÞ ¼ �x in the following, be-
cause they admit analytic solutions. The latter of course

has no asymptotically flat region, and calling it a black, or
dumb, hole is metaphorical.
Let us first study the case vðxÞ ¼ ��=x. After a Fourier-

Laplace transformation with @x ! ik and x ! i@k as well
as @t ! �i!, the left-moving solutions satisfy the integral
equation (since @�1

k ¼ R
dk)

ð!� k½1þ i�@�1
k þ fðk2Þ�Þ�!ðkÞ ¼ 0; (5)

which can be solved via separation of variables and differ-
entiation

�!ðkÞ ¼ 1

gðkÞ exp
�
�i�

Z dk0

gðk0Þ
�
; (6)

with the spectral function

gðkÞ ¼ 1þ fðk2Þ �!

k
: (7)

The inverse Fourier-Laplace transformation,

�!ðrÞ ¼
Z dk

gðkÞ exp
�
ikx� i�

Z dk0

gðk0Þ
�
; (8)

yields the spatial modes�!ðxÞwith the integration contour
being determined by the boundary conditions. In the fol-
lowing, we shall assume the length scale � on which vðxÞ
changes to be very large compared with the typical wave
number of the dispersion relation fðk2Þ and the frequency
!. In terms of the fluid analogue, this is precisely the
hydrodynamic limit; whereas, for real black holes, it cor-
responds to demanding that the size of the black hole is
much larger than the Planck scale. Note, however, that we
do not restrict ! relative to the Planck scale (i.e., ! could
be Planckian). Since the exponent in the integral above
contains the large numbers x and �, it is very useful to
deform the integration contour into the complex plane
(assuming that f is an analytic function), where the leading
contributions will be determined by singularities and the
associated branch cuts as well as saddle points. The saddle
points (stationary phase),

x ¼ �

gðkÞV! ¼ k

�
1� �

x
þ fðk2Þ

�
; (9)

are solutions of dispersion relation !þ vk ¼ k½1þ
fðk2Þ�. For large wave numbers jkj � !, we get pairs of
saddle points k� satisfying fðk2�Þ ¼ �=x� 1. The singu-
larities of the integrand at gðkÞ ¼ 0 correspond to solutions
of the dispersion relation far away from the black hole x !
1. Assuming simple poles at k� only, we may employ the
residual expansion

1

gðkÞ ¼ X
�

c�
k� k�

$ c� ¼ 1

2�i

I
C�

dk

gðkÞ ¼
k�

vgrðk�Þ :

(10)

The contours C� denote small circles around the poles at
k� and the residual coefficients c� are related to the group
velocity at these points. Insertion of the residual expansion
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(10) into Eq. (8) yields

�!ðxÞ ¼
Z dk

gðkÞ e
ikx
Y
�

ðk� k�Þ�i�c� : (11)

Consequently, there are branch cuts starting from each
singularity unless i�c� 2 Z, cf. Fig. 1.

IV. SUBLUMINAL CASE

In order to determine the most suitable integration con-
tour in the complex plane, we have to incorporate some
assumptions about the function fðk2Þ. First, we assume that
the asymptotic (x ! 1) dispersion relation ! ¼
k½1þ fðk2Þ� is convex, i.e., subluminal fðk2Þ< 0, and
always monotonically increasing, i.e., with a positive
group velocity. In this case, saddle points in Eq. (9) occur
outside the horizon x > � and yield the following contri-
butions to the integral in Eq. (8):

��
!ðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i�

�g0ðk�Þ

s
eik�x

Y
�

ðk� � k�Þ�i�c� : (12)

In view of their spatial behavior, these are the positive �þ
!

and negative ��
! pseudonorm in-modes with large wave

numbers jk�j � ! and therefore small group velocities,
which are swept towards the horizon. After quantizing the
field �, these positive/negative pseudonorm solutions
yield the creation/annihilation operators of the in-modes
at large k (in the freely falling frame).

In order to close the integration contour, we have to
circumvent the branch cuts in the upper complex half plane
=ðkÞ> 0, cf. Fig. 1. In the limit x ! 1, the contributions
of the branch cuts starting from the singularities k� away
from the real axis =ðk�Þ> 0 are exponentially suppressed
and only the branch cut starting at the real axis =ðk�Þ ¼ 0
contributes. This wave number k� represents a real solution
of the dispersion relation far away from the horizon and
just corresponds to the outgoing Hawking radiation with
frequency !> 0. Hence, at x ! 1, the integral in Eq. (8)
corresponding to the contour C> in Fig. 1 yields a super-
position of the outgoing Hawking modes with k� and the

large-k in-modes in (12) with k�. Continuing this solution
beyond the horizon x < �, the saddle points vanish and the
integrand in (12) decays exponentially in the lower com-
plex half plane =ðkÞ< 0. Thus, we deform the integration
contour to C<, where the main contribution stems from the
branch cut(s) starting at =ðk�Þ< 0. Again, for large �,
these contributions are exponentially suppressed.
Therefore, the outgoing Hawking mode with k� origi-

nates entirely from the in-modes in (12). Assuming that the
initial quantum state is the ground state of the large-k
modes in (12) with respect to the freely falling observer,
the amount of created particles is then determined by the
mixture between these positive and negative pseudonorm
solutions with large k contained in the outgoing k� modes
after the immense gravitational redshift near the horizon.
In view of jk�j � jk�j, the only difference between posi-
tive and negative pseudonorm modes is caused by branch
cut(s) ���������

þ
!ðxÞ

��
!ðxÞ

��������� exp

�
��

X
�

ð�1Þs�<ðc�Þ
�
; (13)

where ð�1Þs� is the sign associated with the direction of
the branch cut. Since gðkÞ is a real function, the singular-
ities k� occur symmetric with respect to the real axis k� !
k�� and c� ! c��. Choosing the branch cuts suitably (see
Fig. 1), the contributions from the symmetric pairs cancel
each other and hence only the singularity at the real axis
k� ¼ k� 2 R contributes. Together with the unitarity rela-
tion j�!j2 � j�!j2 ¼ 1, the ratio (13) directly determines
the size of the Bogoliubov coefficients via j�!=�!j2 ¼
j�þ

!=�
�
! j2 ¼ expf!=Tg. Hence we may read off the effec-

tive Hawking temperature

THawkingð!Þ ¼ vgrðk�Þvphðk�Þ
2��

: (14)

We observe that the geometric mean of group and phase
velocity [8] evaluated at the frequency ! of the outgoing
radiation far away x ! 1 determines the Hawking tem-
perature. Therefore, the behavior of the dispersion relation
at large k is not relevant—even though the Hawking radia-
tion originates from large-k modes—which indicates that
the Hawking effect is basically a low-energy phenomenon.
The ! dependence of the Hawking temperature can be
explained by the fact that high-energy wave packets have a
different group velocity than those at low energy and hence
the various modes see different horizons and thus other
values for the surface gravity, i.e., velocity gradient
dv=dx ¼ �=x2 / v2=�.
This explanation can further be supported by consider-

ing the second case vðxÞ ¼ �x, where the velocity gradient
� is constant and Eq. (8) should be replaced by

�!ðxÞ ¼
Z

dkk�i!=� exp

�
ikx� i�

Z
dk0fðk02Þ

�
: (15)

Hence the weight of the branch cut starting at k ¼ 0 is just

Im(k)k*

k−

C<

k+

Re(k)

C>

C

Im(k)

k+

k−

k

C

*

<

>

Re(k)

FIG. 1 (color online). Sketch (not to scale) of integration
contours in the complex plane for the subluminal (left) and the
superluminal case (right). The dots denote saddle points k� at
the real axis and the squares are the singularities k� with the
associated branch cuts (dashed lines).
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determined by the ratio !=� and the Hawking temperature
does not depend on! at all because all modes see the same
surface gravity �

THawking ¼ �

2�
¼ const: (16)

Note, however, that this simple explanation based on the
two solvable profiles vðxÞ ¼ ��=x and vðxÞ ¼ �x does
not provide quantitative results THawkingð!Þ for the case of
general vðxÞ, which is still not fully understood [9].

V. SUPERLUMINAL CASE

A superluminal dispersion relation fðk2Þ can be treated
in a completely analogous way. As the only difference, the
large-k in-modes determined by the saddle points k� origi-
nate from inside the horizon x < � and thus the contours in
the complex plane (C> for x > � and C< for x < �,
cf. Fig. 1) are slightly different.

In view of this observation, one might wonder whether

the ansatz vðxÞ ¼ ��=x instead of vðxÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=x

p
is

justified. To address this question, let us consider the
Schwarzschild geometry in 1þ 1 dimensions using the
Eddington-Finkelstein coordinates ðV; rÞ

ds2 ¼
�
1� 2M

r

�
dV2 � 2dVdr: (17)

For a massless scalar field �, the wave equation reads�
2@V@r þ @r

�
1� 2M

r
þ fð�@2rÞ

�
@r

�
� ¼ 0; (18)

where we have again included a modification fðk2Þ of the
dispersion relation. Comparison with the previous deriva-
tion yields completely the same results for the outgoing
solutions � ¼ @r� up to the replacement ! ! 2! due to
the Eddington-Finkelstein coordinate t ! V.

However, in the superluminal case, an additional com-
plication may arise: According to Eqs. (10) and (13), the
thermal Boltzmann factor expf!=ð4TÞg determining the
amount of created particles with frequency! can be recast
into the alternative form expf2�Mk�=vgrðk�Þg. Hence, if
the group velocity grows slower than linear in k, the
number of produced particles decreases with energy.
However, if vgrðkÞ rises too fast in some k region, the

amount of created particles drops at low k (where vgr ¼
1) but later increases again. In such an extremal case, the
Hawking radiation could contain a large contribution of
ultrahigh-energy particles (ultraviolet catastrophe). Going
a step further and taking the dispersion relation seriously as
a model for ultrahigh-energy deviations from general rela-
tivity [10], one would exclude such a case in view of our
observational evidence for the existence of black holes
with macroscopic lifetimes.

Let us discuss some examples: The dispersion relation
!2 ¼ k2 þ k4 which is realized for the sonic black-hole

analogues in Bose-Einstein condensates [11] does not gen-
erate an ultraviolet catastrophe and reproduces Hawking’s
prediction. In contrast, the expressions !2 ¼ expfk2g � 1

or ! ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
grow too fast and hence lead to the

aforementioned problems [12].
Note that the condition vgrðk�Þ 	 OðMk�Þ for particle

creation obtained from the Boltzmann factor precisely
marks the breakdown of the saddle-point (i.e., geometric
optics) approximation. Writing the integrand in Eq. (8) as
GðkÞ expfFðkÞg, the first-order corrections to the saddle-

point expansion scale as G0=G� Fð3Þ=ðF00Þ2, Fð4Þ=ðF00Þ2,
andG00=ðGF00Þ, evaluated at the saddle point F0 ¼ 0. In our
case (8), we have F00 ¼ �2iMG0 and hence inserting
vgrðk�Þ 	 OðMk�Þ yields ‘‘corrections’’ of order 1—i.e.,

the saddle-point approximation fails. Even if the modes
started out in their ground state (at k�), they get excited (at
k�) due to the strong gravitational redshift. Based on these
general adiabaticity arguments, one would expect that the
main result remains valid even beyond a sole modification
of the dispersion relation: If the outgoing Hawking modes
originate from the vicinity of the singularity and the spec-
tral properties of quantum gravity change too fast with
energy, one would expect a breakdown of adiabaticity at
short distances resulting in the emission of high-energy
particles. This mechanism is not necessarily restricted to a
Planck-length vicinity of the singularity since the effective
surface gravity ‘‘seen’’ by the high-energy modes scales
with 2M=r2 and hence may exceed the Planck temperature
already many Planck lengths away from the singularity.

VI. CONCLUSION

In summary, we derived Hawking radiation in the pres-
ence of a very general dispersion relation and found that it
is basically a low-energy phenomenon. The only exception
could be the aforementioned ultraviolet catastrophe, for
which the standard picture of a slowly evaporating black
hole would break down anyway. Regarding the black-hole
information paradox mentioned in the Introduction, one
should keep in mind that the link between the temperature
and the total energy which has flowed into the horizon is
missing in these dumb-hole space-times. Thus, there is no
thermodynamic relation which leads to an entropy of such
dumb holes. Therefore, while the model (which is based on
a given background metric) casts light on where and how
the particles are created in the black-hole case, it cannot be
used directly to study the black-hole entropy. However, it
still provides some indirect insight: The observation that
the particles are created at low frequencies makes it diffi-
cult to see how anything which occurs inside the horizon
(which is a well-defined concept at those low frequencies)
can affect what happens with the emitted particles (e.g.,
their phases, and even amplitudes). Since the memory of
the black hole for what was emitted in the past is presum-
ably stored in short-wavelength degrees of freedom and
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located inside the horizon [13], it is hard to see how that
memory can affect the later radiation and make the overall
formation and evaporation process a unitary process. In a
black hole, the radiation emitted when the black hole is
only about half the initial mass must be correlated with
radiation emitted in the earlier stages [14], but throughout
that time the horizon is large and well defined, and the
radiation process is a low-energy process.
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