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In this paper, the following two propositions are proven under the dominant energy condition for the

matter field in the higher-dimensional spherically symmetric spacetime in Einstein-Gauss-Bonnet gravity

in the presence of a cosmological constant �. First, for � � 0 and � � 0 without a fine-tuning to give

a unique anti–de Sitter (AdS) vacuum, where � is the Gauss-Bonnet coupling constant, vanishing

generalized Misner-Sharp mass is equivalent to the maximally symmetric spacetime. Under the fine-

tuning, it is equivalent to the vacuum class I spacetime. Second, under the fine-tuning with �> 0, the

asymptotically AdS spacetime in the higher-dimensional Henneaux-Teitelboim sense is only a special

class of the vacuum class I spacetime. This means the universal slow fall-off to the unique AdS infinity in

the presence of physically reasonable matter.
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Introduction.—Gravitation physics in higher dimensions
is a prevalent subject of current research motivated mainly
by string theory. In this context, it is well known that the
most natural extension of general relativity in higher di-
mensions as a theory of quasilinear second-order partial
differential equations is not general relativity itself but
Lovelock gravity [1].

The Lovelock Lagrangian comprises the dimensionally
extended Euler densities. In n dimensions, the first [n=2]
curvature terms appear in the field equations, where [x]
denotes the integer part of x. In the even-dimensional case,
however, the last (ðn=2Þ-th) term becomes a topological in-
variant and does not contribute to the field equations. The
Lovelock tensor G�� derived from the Lovelock Lagrang-

ian has the following properties: (1) G�� is symmetric,

(2) G�� contains up to the second derivative of the metric,

(3) r�G�� � 0, and (4) G�� is linear in the second de-

rivative of the metric.
Lovelock gravity, as well as general relativity, is a gauge

theory for the (local) Lorentz group obviously but not
for the Poincaré group in general, which is the standard
symmetry group in particle physics [2]. From the gauge-
principle viewpoint, the gravitation theory is expected to be
a gauge theory for the Poincaré group or some group which
contains the Lorentz group and the symmetry group analo-
gous to translations in a flat spacetime. Miraculously, under
the fine-tuning between the coupling constants, Lovelock
gravity can be a gauge theory for the Poincaré, de Sitter
(dS), or anti–de Sitter (AdS) group. The last two groups are
the smallest nontrivial choices of such required groups
containing the translation symmetry group on a pseudo-
sphere. Unfortunately, this miracle happens only in odd di-
mensions, nevertheless this so-called Chern-Simons grav-
ity has been of particular interest as an aesthetic way to the
unified theory [2].

On the other hand, the second-order Lovelock theory so-
called Einstein-Gauss-Bonnet gravity has been intensively
investigated because the renormalizable Gauss-Bonnet
term appears in the low-energy limit of the heterotic string
theory [3]. The history of the black hole physics in
Einstein-Gauss-Bonnet gravity began from the well-known
Boulware-Deser-Wheeler solution corresponding to the
Schwarzschild-Tangherlini solution in general relativity
[4]. This solution has been generalized [5] and occupied
the central position in the research of the Gauss-Bonnet
black holes. Based on this generalized Boulware-
Deser-Wheeler solution, the effects of the Gauss-Bonnet
term on the stability [6] and the black hole thermody-
namics [7] have been investigated. (We refer [8] for the
recent review.) Intriguingly, the solutions in Einstein-
Gauss-Bonnet gravity are classified into two branches,
one of which admits the general relativistic limit, while
the other does not. As a result, the theory generically
admits two distinct (A)dS vacua stemming from its qua-
dratic nature.
Recently, asymptotically AdS black holes with a scalar

hair have attracted much attention, which was first discov-
ered numerically as a counterexample of the black hole no-
hair conjecture [9]. In particular, theories of AdS gravity
coupled to a scalar field with mass at or slightly above the
Breitenlohner-Freedman bound [10] are called designer
gravity [11]. Designer gravity admits a large class of as-
ymptotically AdS spacetimes with slower fall-off condi-
tions than the standard ones, of which boundary conditions
are defined by an essentially arbitrary function. In the con-
text of the AdS/CFT correspondence [12], asymptotically
AdS black hole solutions in designer gravity have been
applied to the study of the cosmic censorship conjecture
[13] or big bang singularities [14].
In the present paper, we show that such remarkable slow

fall-off to the AdS infinity is universal in spherically sym-
metric spacetimes containing any matter satisfying the*hideki@cecs.cl
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dominant energy condition in Einstein-Gauss-Bonnet
gravity with a fine-tuning of the coupling constants to
give a unique AdS vacuum, where the theory becomes
Chern-Simons gravity in five dimensions. We adopt the
units in which only the n-dimensional gravitational con-
stant Gn is retained.

Preliminaries.—The field equation of Einstein-Gauss-
Bonnet gravity in the nð� 5Þ-dimensional spacetime is

G�
� þ �H�

� þ���
� ¼ �2

nT
�
�; (1)

G�� :¼ R�� � 1
2g��R; (2)

H�� :¼ 2ðRR�� � 2R��R
�
� � 2R��R����

þ R�
���R����Þ � 1

2g��ðR2 � 4R��R
��

þ R���	R
���	Þ; (3)

where �n :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8
Gn

p
and � is a cosmological constant. �

is the Gauss-Bonnet coupling constant and T�
� is the

energy-momentum tensor for matter fields.
Suppose the n-dimensional spacetime ðMn; g��Þ to be a

warped product of an ðn� 2Þ-dimensional constant curva-
ture space ðKn�2; �ijÞ with its sectional curvature k ¼ �1,

0 and a two-dimensional orbit spacetime ðM2; gabÞ under
the isometries of ðKn�2; �ijÞ. We assume that Kn�2 is

compact.
The line element in the double-null coordinates is

given by

d s2 ¼ �2e�fðu;vÞdudvþ r2ðu; vÞ�ijdz
idzj: (4)

The metric functions e�f and r2 are nonzero and finite to
avoid the coordinate singularities. Null vectors ð@=@uÞ and
ð@=@vÞ are taken to be future-pointing. The area expan-
sions along these two radial null vectors1 are given as
�þ :¼ ðn� 2Þr�1r;v and �� :¼ ðn� 2Þr�1r;u. An ðn�
2Þ surface with �þ�� > ð<Þ0 is called a trapped (un-
trapped) surface. We fix the orientation of the untrapped
surface by �þ > 0 and �� < 0, i.e., @=@u and @=@v are
ingoing and outgoing null vectors, respectively. The gen-
eralized Misner-Sharp mass is given by

m ¼ ðn� 2ÞVk
n�2

2�2
n

rn�3

�
�~�r2 þ

�
kþ 2r2ef

ðn� 2Þ2 �þ��
�

þ ~�r�2

�
kþ 2r2ef

ðn� 2Þ2 �þ��
�
2
�
; (5)

where ~� :¼ ðn� 3Þðn� 4Þ� and ~� :¼ 2�=½ðn� 1Þðn�
2Þ� and Vk

n�2 denotes the area of Kn�2 [15,17]. For 1þ
4~� ~� ¼ 0, we have

m ¼ ðn� 2ÞVk
n�2r

n�5

8 ~��2
n

�
r2 þ 2~�

�
kþ 2r2ef

ðn� 2Þ2 �þ��
��

2
;

(6)

which is non-negative (nonpositive) for �> ð<Þ0.
The most general T�� in this spacetime is given by

T��dx
�dx� ¼ Tuuðu; vÞdu2 þ 2Tuvðu; vÞdudv

þ Tvvðu; vÞdv2 þ pðu; vÞr2�ijdz
idzj: (7)

The variation of m is determined by the field equations as

m;v ¼ 1

n� 2
Vk
n�2e

frn�1ðTuv�þ � Tvv��Þ; (8)

m;u ¼ 1

n� 2
Vk
n�2e

frn�1ðTuv�� � Tuu�þÞ: (9)

We assume the dominant energy condition for the matter
field, which implies

Tuu � 0; Tvv � 0; Tuv � 0: (10)

For the proof of our main results, we review the gener-
alized Birkhoff’s theorem in Einstein-Gauss-Bonnet grav-
ity [15,18]. In the vacuum case, Eqs. (8) and (9) give
m ¼ M, where M is a constant. The vacuum spacetime
can be completely classified by the following theorem.
(See proposition 1 in [15] for the proof.)
Theorem 1 (the generalized Birkhoff’s theorem).—An

n-dimensional vacuum spacetime is isometric to one of the
following: (i) the generalized Boulware-Deser-Wheeler
solution if ðDarÞðDarÞ � 0, (ii) the Nariai-type solution
if r is constant, and (iii) the class I solution if ðDarÞ�
ðDarÞ ¼ kþ r2=ð2~�Þ, where Da is a metric compatible
linear connection on ðM2; gabÞ.
The generalized Boulware-Deser-Wheeler solution [4,5]

is given as

d s2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ r2�ijdz
idzj; (11)

fðrÞ :¼ kþ r2

2 ~�

2

41�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8�2
n ~�M

ðn� 2ÞVk
n�2r

n�1
þ 4~� ~�

s 3

5:

(12)

The Nariai-type solution [19,20] is given as

d s2 ¼ �ð1� 	�2Þdt2 þ d�2

1� 	�2
þ r20�ijdz

idzj; (13)

	 :¼
�
2ðn� 3Þ þ 2~�ðn� 5Þkr�2

0

r20 þ 2~�k

�
k; (14)

where r20 is the real and positive root of the following

algebraic equation (see [15] for the existence condition):

ðn� 1Þ~� ¼ ðn� 3Þk
r20

þ ðn� 5Þ~�k2
r40

: (15)1In [15,16], they are erroneously mentioned as the expansions
of the future-directed radial null geodesics.
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We can show r20 þ 2~�k � 0 since it gives a contradic-

tion. The quasilocal mass of the Nariai-type spacetime is
given by

m ¼ ðn� 2ÞkVk
n�2r

n�5
0

ðn� 1Þ�2
n

ðr20 þ 2k~�Þ; (16)

where we used Eq. (15) for eliminating �. Thus, m is
nonzero for k � 0.

The class I solution [15,18] exists only for 1þ 4~� ~� ¼
0 as

d s2 ¼ �gðrÞe2�ðt;rÞdt2 þ dr2

gðrÞ þ r2�ijdz
idzj; (17)

gðrÞ :¼ kþ r2

2 ~�
; (18)

where �ðt; rÞ is an arbitrary function. The class I solu-
tion is not static in general and the quasilocal mass is zero
(m � 0).

Next, we also review the vanishing mass theorem in the

asymptotically AdS spacetime for 1þ 4~� ~� ¼ 0. Equa-
tion (6) shows that the quasilocal mass is non-negative for
�> 0. Then, by the combination of the asymptotic analy-
sis and the monotonic property of m on untrapped surfaces
under the dominant energy condition, the following theo-
rem is shown. (See proposition 7 in [15] for the proof.)

Theorem 2 (Vanishing mass in asymptotically AdS

spacetime with 1þ 4~� ~� ¼ 0).—Suppose 1þ 4~� ~� ¼ 0
with �> 0 and the dominant energy condition in an
n-dimensional asymptotically AdS spacetime. Then, m �
0 holds on the untrapped spacelike hypersurface.

In the above theorem, we employed the higher-
dimensional generalization of the Henneaux-Teitelboim
asymptotically AdS boundary conditions [21]. We write

the metric as g�� ¼ gð0Þ�� þ h��, where g
ð0Þ
�� is the metric of

the AdS spacetime, from which deviation is represented by
h��. In the global coordinates x� ¼ ft; �; zig, we have

gð0Þ��dx�dx� ¼ �ð1þ ‘�2
eff �

2Þdt2 þ d�2

ð1þ ‘�2
eff �

2Þ
þ �2d�2

n�2; (19)

‘2eff :¼ � 1

2~�
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~� ~�

p
Þ; (20)

which coincide with the generalized Boulware-Deser-
Wheeler solution (11) with k ¼ 1 and M ¼ 0, where
d�2

n�2 is the line element of a unit ðn� 2Þ-sphere. We

assume 1þ 4~� ~� � 0 for ‘2eff to be real. The fall-off

conditions are

htt ¼ ctt�
�nþ3 þOð��nþ2Þ; (21a)

h�� ¼ c���
�n�1 þOð��n�2Þ; (21b)

ht� ¼ ct��
�n þOð��n�1Þ; (21c)

h�i ¼ c�i�
�n þOð��n�1Þ; (21d)

hti ¼ cti�
�nþ3 þOð��nþ2Þ; (21e)

hij ¼ cij�
�nþ3 þOð��nþ2Þ; (21f)

where ctt; . . . ; cij are functions independent of �.

Main results.—Now we show our main results. As seen
before, if the spacetime is maximally symmetric or class I
spacetime, the quasilocal mass m is identically zero. In-
deed, for k ¼ 1, � � 0, and � � 0, its inverse also holds
under the dominant energy condition.
Proposition 1 (vanishing mass spacetime).—Under the

dominant energy condition for k ¼ 1, � � 0, and � � 0,
m � 0 is equivalent to the maximally symmetric spacetime

for 1þ 4~� ~� � 0 and the class I spacetime (17) for 1þ
4~� ~� ¼ 0.
As seen in Eq. (20), the special tuning between the

coupling constants 1þ 4~� ~� ¼ 0 allows the theory to have
a unique (A)dS vacuum and become Chern-Simons gravity
in five dimensions [22]. Proposition 1 is proven by the
combination of the following two lemmas together with
theorem 1.
Lemma 1. If m � 0 for k ¼ 1, � � 0, and � � 0, then

�þ�� < 0, i.e., the spacetime consists of the untrapped
surfaces.
Proof. Trivial from Eq. (5). h
Lemma 2. Under the dominant energy condition, if m ¼

0 on the untrapped surface, then T�� ¼ 0.

Proof. By the variation formulas (8) and (9), Tuu ¼
Tvv ¼ Tuv ¼ 0 on the untrapped surface. Then, the
energy-momentum conservation equation Ta�

;� ¼ 0 gives

pr;ae
f ¼ 0. We have r;a � 0 on the untrapped surface, so

that p ¼ 0 there, which completes the proof. h
Then, by the combination of proposition 1 and theo-

rem 2, it is easy to show the following proposition about

the asymptotically AdS spacetime for 1þ 4~� ~� ¼ 0 with
�> 0.
Proposition 2 (asymptotically AdS spacetime with

1þ 4~� ~� ¼ 0).—Suppose 1þ 4~� ~� ¼ 0 with �> 0 and
the dominant energy condition in an n-dimensional asymp-
totically AdS spacetime. Then, the spacetime is repre-
sented by the class I solution (17) with k ¼ 1 and �ðt; rÞ
satisfying the fall-off condition (21).
Discussions.—Properties of the generalized Misner-

Sharp mass (5) have been fully investigated in [15]. It
inherits the characteristics such as monotonicity or posi-
tivity from the Misner-Sharp mass in general relativity and
is its natural counterpart in Einstein-Gauss-Bonnet gravity.
As an application, this quasilocal mass played an essential
role to reveal the dynamical properties of the Gauss-
Bonnet black holes [16]. Proposition 1 obtained in the

UNIVERSAL SLOW FALL-OFF TO THE UNIQUE ADS . . . PHYSICAL REVIEW D 78, 041503(R) (2008)

RAPID COMMUNICATIONS

041503-3



present paper is another remarkable property in the spheri-
cally symmetric case in addition to the results in [15],
which claims the equivalence between the vanishing qua-
silocal mass and the maximally symmetric spacetime for

� � 0 and � � 0 with 1þ 4~� ~� � 0.

The case with 1þ 4~� ~� ¼ 0 is exceptional in propo-
sition 1, which admits the theory to have a unique (A)dS
vacuum as well as the nonmaximally symmetric vacuum
solution with vanishing quasilocal mass. Proposition 2 is
concerned with this exceptional case and claims that, under
the dominant energy condition, even if the metric of some
spherically symmetric solution of the Einstein-Gauss-

Bonnet equations with 1þ 4~� ~� ¼ 0 and �> 0 reduces
to the AdS metric at infinity, the fall-off rate is necessarily
slower than the condition (21). The generalized Boulware-
Deser-Wheeler solution (11) for n � 6with positiveM is a
vacuum example with such slow fall-off. It is seen that the

fall-off rate to the AdS metric changes in the case of 1þ
4~� ~� ¼ 0. This phenomenon was first pointed out in the
study of the static black holes with and without the
Maxwell field in the class of Lovelock gravity admitting
a unique (A)dS vacuum [22]. (The case with k ¼ 2 in [22]
corresponds to ours.) Our proposition claims that it is
universal in the presence of physically reasonable matter
even in the highly dynamical situation.

In the n-dimensional Kerr-Myers-Perry-AdS spacetime,
the fall-off condition (21) is certainly satisfied. Although
its counterpart in Einstein-Gauss-Bonnet gravity has not
been found yet, it would also exhibit the slow fall-off to the

unique AdS infinity for 1þ 4~� ~� ¼ 0. Under the standard
fall-off condition (21), several definitions of the global
mass in the asymptotically AdS spacetime have been given
in Einstein-Gauss-Bonnet gravity [23]. However, the uni-

versal slow fall-off means that they are diverging in the

case of 1þ 4~� ~� ¼ 0 with �> 0. This fact forces us to
reformulate the global mass to give a finite value under the
slower fall-off condition in this special case. This problem
has been investigated in Chern-Simons gravity in [24].
Since the slow fall-off to the unique AdS vacuum has

been confirmed in the vacuum case and in the presence of
the Maxwell field [22], it is naturally expected to be a
universal property under the dominant energy condition
also in the class of Lovelock gravity admitting a single AdS
vacuum. Our main results have been obtained essentially
by using the mass variation formulas (8) and (9) and the
energy-momentum conservation equation. These variation
formulas are exactly the same as those in general relativity,
which enable us to prove the propositions in parallel with
the general relativistic case. In our recent paper [15], a
further generalization of the Misner-Sharp quasilocal mass
in general Lovelock gravity was proposed, with which the
mass variation formulas were conjectured to hold. We ex-
pect that a large part of the results obtained in the present
paper and in [15] is generalized in a very straightforward
manner. They will provide for us a firm ground in the re-
search of Lovelock gravity.
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