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We report on lattice simulations of 16 supercharge SUðNÞ Yang-Mills quantum mechanics in the ’t

Hooft limit. Maldacena duality conjectures that in this limit the theory is dual to IIA string theory, and, in

particular, that the behavior of the thermal theory at low temperature is equivalent to that of certain black

holes in IIA supergravity. Our simulations probe the low temperature regime for N � 5 and the

intermediate and high temperature regimes for N � 12. We observe ’t Hooft scaling, and at low

temperatures our results are consistent with the dual black hole prediction. The intermediate temperature

range is dual to the Horowitz-Polchinski correspondence region, and our results are consistent with

continuous behavior there. We include the Pfaffian phase arising from the fermions in our calculations

where appropriate.
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I. INTRODUCTION

String theory has provided remarkable insight into the
quantum physics underlying black holes. Much recent
progress stems from conjectured dualities, which, in an
appropriate limit, relate the finite temperature low energy
supergravity limit of the string theory to strongly coupled
thermal field theory. The entropy of the black holes that
arise in these supergravity theories can then be computed,
in principle, by counting microstates in their dual field
theories. The pioneering calculations of black hole entropy
in [1,2] are examples where the dual field theory is a 2-d
conformal field theory which allows computation of the
entropy despite the strong coupling.

For a large number N of coincident Dp-branes in the
‘‘decoupling’’ limit [3,4], the dual field theory is ð1þ
pÞ-dimensional, strongly coupled, maximally supersym-
metric, SUðNÞ Yang-Mills theory, taken in the ’t Hooft
limit. The case of D3-branes yields the original AdS-CFT
correspondence. Analytic calculation of the corresponding
black hole entropy of these theories has proven elusive
despite interesting attempts [5].

Here we use lattice methods to study the thermal gauge
theory and hence test these conjectured dualities. The
simplest case for lattice work corresponds to D0-branes
[6], where the dual is thermal 16 supercharge Yang-Mills
quantum mechanics (the ‘‘BFSS model’’ [7]). This theory
has recently been numerically studied using a nonlattice
formulation [8,9]. Earlier analytic approaches used a varia-
tional method [10,11]. Related zero temperature numerical
works are [12–14].

In this paper we simulate the super quantum mechanics
in the ’t Hooft limit over a range of temperature and present
preliminary results. We obtain intermediate temperature
results for N � 12 and low temperature results for N �
5. We pay particular attention to the continuum limit and
the behavior of the important Pfaffian phase arising from

the fermions. More details of the method and results will be
given in [15].

II. DUALITYAND BLACK HOLES

The type IIA string theory reduces to a supergravity
theory for low energies compared to the string scale

ð�0Þ�1=2. In this limit the thermal theory contains black
holes with N units of D0-charge. Their energy E is a

function of their Hawking temperature T. Defining � ¼
Ngs�

0�3=2 where gs is the string coupling, we may write a

dimensionless energy and temperature � ¼ 1
N2 E�

�1=3 and

t ¼ T��1=3. One finds that, provided we take N large and
t � 1, the black hole is weakly curved on string scales and
the quantum string corrections are suppressed. The energy
of this black hole can be precisely computed by standard
methods [4,16], giving

� ¼ ct14=5; c ¼
�
22131252

719
�14

�
1=5 ’ 7:41: (1)

Duality posits that the thermodynamics of this black hole
should be reproduced by the dual Yang-Mills quantum

mechanics at the same temperature with gs�
0�3=2 ¼ g2YM

so � is identified with the ’t Hooft coupling.
In the large N limit, at high temperatures t > 1, the

bound state of D0-branes is of order the size of the string
scale, and hence all �0 corrections are important. One
should best think of the configuration dominating the
partition function as a hot gas of D0-branes bound by
strings. Horowitz and Polchinski have argued that the
low temperature black hole and high temperature gas are
the asymptotic descriptions, and intermediate temperatures
continuously interpolate between these [17].
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III. LATTICE IMPLEMENTATION

The 16 supercharge SUðNÞ Yang-Mills quantum me-
chanics arises from dimensional reduction of N ¼ 1
super Yang-Mills theory in 10-d. The 10-d gauge field
reduces to the 1-d gauge field A and 9 scalars, Xi, i ¼
1; . . . ; 9, and the 10-d Majorana-Weyl fermion to 16 single
component fermions, ��, � ¼ 1; . . . ; 16. All fields trans-
form in the adjoint of the gauge group. In order to simulate
the theory we must integrate out the fermions giving rise to
a Pfaffian. The continuum Euclidean path integral, Z ¼R
dAdXPfðOÞe�Sbos , is then given by

Sbos ¼ N

�
Tr

I R
d�

�
1

2
ðD�XiÞ2 � 1

4
½Xi; Xj�2

�
;

O ¼ ��D� � �i½Xi; ��:
(2)

The ��, �i are the Euclidean Majorana-Weyl gamma ma-
trices, and we choose a representation where

�� ¼ 0 Id8
Id8 0

� �
:

We take Euclidean time to have period R.
We have a choice of fermion boundary conditions.

Thermal boundary conditions correspond to taking the
fermions antiperiodic on the Euclidean time circle and

correspond to a temperature t ¼ ��1=3=R. We will also
employ periodic fermions, and the continuum partition
function is the Witten index, with t the inverse volume.
The Pfaffian is, in general, complex [18]. It is important, in
principle, to include the phase of the Pfaffian in the Monte-
Carlo simulation, and we discuss this later.

We discretize this continuum model as

Sbos ¼ NL3

�R3

XL�1

a¼0

Tr

�
1

2
ðDþXiÞ2a � 1

4
½Xi;a; Xj;a�2

�
;

Oab ¼ 0 ðDþÞab
ðD�Þab 0

� �
� �i½Xi;a��ab;

(3)

where we have rescaled the fields Xi;a and �i;� by powers

of the lattice spacing a ¼ R=L where L is the number of
lattice points to render them dimensionless. We have in-
troduced a Wilson gauge link field Ua, and taken covariant

difference operators ðD�WÞa ¼ Wa �Uy
aWa�1Ua,

ðDþWÞa ¼ UaWaþ1U
y
a �Wa. Notice that the fermionic

operator is free of doublers and is manifestly antisymmet-
ric. This lattice action is finite in lattice perturbation theory
and hence will flow without fine-tuning to the correct
supersymmetric continuum theory as the lattice spacing
is reduced [6,15].

We use the rational hybrid Monte Carlo (RHMC) algo-
rithm [19,20] to sample configurations using the absolute
value of the Pfaffian. The phase may be reincorporated in
the expectation value of an observable A by reweighting

as hAi ¼
P

m
ðAei�ÞP
m
ðei�Þ . Here ei�ðOÞ is the phase of the Pfaffian

and the sum runs over all members of our phase quenched
ensemble.
We find in practice that the RHMC simulation of the

thermal theory at low temperature, t & 1, exhibits an in-
stability corresponding to the scalar fields moving out
along the flat directions of the classical potential. Hence
the algorithm never thermalizes and cannot be used to
approximate the path integral. This has been observed
before [9]. We believe this divergence may be a lattice
artifact that is related to the discretization of the fermion
operator. In previous work [6] we have simulated the 4
supercharge quantum mechanics over a range of t, using a
Weyl representation for the fermions where one obtains a
real positive determinant. However, we have also tried
using a Majorana representation where one obtains a
Pfaffian which we have discretized in analogy with the
16 supercharge case discussed here. While no divergence
of the scalars was observed in the Weyl simulations over a
large range of t [6], the Majorana implementation has the
same instability we observe in the 16 supercharge case for
t & 1. Since both representations are equivalent in the
continuum limit, this implies that the instability may not
be a property of the continuum theory as is claimed in [9],
but merely an artifact of finite lattice spacing. More details
will be given in [15].
We find no such problem simulating the periodic theory

at small t. At low temperature we expect the thermal and
periodic theories to be similar, and the configurations that
dominate the path integral will be similar. Hence in order
to simulate the thermal theory at low temperature, t & 1,
we have employed a reweighting of the periodic theory. We
can expect to get good results for the thermal theory at low
temperature by computing expectation values using the
periodic theory, and reweighting as

hAiT ¼
PðPÞ

m ðAPfðOTÞ=jPfðOPÞjÞPðPÞ
m ðPfðOTÞ=jPfðOPÞjÞ

(4)

where
PðPÞ

m is a sum over the phase quenched ensemble
generated for the periodic theory, OP and OT are the
periodic and thermal fermion operators, respectively, and
h. . .iT is the expectation value for the thermal theory.

IV. RESULTS

We have simulated the thermal and periodic theories
concentrating on the range 0:3< t < 5. We have focused
on two observables—the mean energy � and absolute value
of the trace of the Polyakov loop, P. In the Yang-Mills
theory these are given by [6,15]

h�=ti ¼ 3

N2

�
9

2
LðN2 � 1Þ � hSbosi

�
;

P ¼ 1

N

���������Tr
YL�1

a¼0

Ua

��������
	
:

(5)
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The inclusion of 1=N2, 1=N in these definitions is to ensure
these quantities are finite in the ’t Hooft limit for a decon-
fined phase. In the periodic case, since Z is an index, it
should not depend continuously on the inverse volume t,
and hence in the continuum � ¼ 0. The data we present
required approximately 50 000 processor hours to obtain.

To check for a restoration of supersymmetry we have
computed �=t in the periodic theory for a variety of lattice
sizes L ¼ 5, 10, and 20. The upper plot of Fig. 1 shows �=t
for SUð2Þ. For large t the index � is already consistent with
zero for L ¼ 5, while at small t it appears to approach zero
as L increases. Notice that, while this quantity is a sensitive
test of the restoration of supersymmetry in the continuum
limit L ! 1, other observables such as P shown in the
lower plot are relatively insensitive to the number of lattice
sites for L � 5.

We have also examined the continuum limit of the
thermal theory. In Fig. 2 we show L ¼ 5 and 10 data for
the thermal energy for SUð5Þ (in the phase quenched
approximation—which we discuss shortly). As noted
above, we find a lattice instability for the thermal theory
with t & 1 (with some dependence on N and L). However,
for larger t this does not occur. As argued above we believe
this is an artifact of our lattice formulation and has nothing
to do with continuum physics. The points plotted in the
figure are taken only from simulations where the scalar

distribution remained bounded for hundreds of physical
RHMC times (the observed instability sets in very quickly
in RHMC time, so the change in behavior is easy to
identify). The plot shows that these lattice spacing effects
are small, and hence for the remainder of our results we
show only data from L ¼ 5 point lattices.
In the lower plot of Fig. 2 we show the mean cosine of

the Pfaffian phase for the thermal SUð5Þ theory with L ¼ 5
lattice sites. As expected, this phase becomes more impor-
tant at lower temperatures but the actual value is close to 1
over the range of temperatures where we can directly
simulate the thermal theory. Indeed, the effects of re-
weighting are negligible in this temperature regime.
Hence for the data we present later for direct simulation
of the thermal theory, we use the phase quenched approxi-
mation. Since the Pfaffian is very costly to compute, this
allows us to work at larger N.
We now turn to the main results of this paper. In Fig. 3

we plot the energy and Polyakov loop for various N and
L ¼ 5 point lattices. For high temperatures we have used
direct simulation of the thermal theory (phase quenched as
discussed above), and we are able to obtain results up to
N ¼ 12. At low temperatures we obtain results by a re-
weighting of the periodic simulations as discussed above.
The results from both methods agree in the regime where
they overlap t� 1.
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FIG. 1 (color online). Top panel: Plot showing �=t versus
dimensionless temperature t for the periodic SUð2Þ theory for
various numbers of lattice points. Bottom panel: Plot of the
Polyakov loop against temperature for the same theory.
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FIG. 2 (color online). Top panel: Plot of dimensionless energy
�=t versus dimensionless temperature t for direct simulation of
the SUð5Þ theory with thermal fermion boundary conditions
using 5 and 10 lattice points. Bottom panel: Plot of the cosine
of the Pfaffian argument for the thermal SUð5Þ theory with 5
points.
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At very high temperatures the curves approach a con-
stant corresponding to the result from classical equiparti-
tion assuming N2 deconfined gluonic states (the fermions
are lifted out of the dynamics by their thermal mass in this
limit). In contrast, for low temperatures the energy ap-
proaches zero, signaling the presence of a supersymmetric
vacuum at vanishing temperature.

As seen before [6], we see that ’t Hooft scaling sets in for
small N, with N ¼ 3 already giving results close to an
extrapolated large N result. The high temperature asymp-
totics computed in [21] are also plotted and agree with our
data. Our results also appear consistent with those found
recently using nonlattice methods [9].

There are two important physical observations. First, the
curves appear to interpolate from high to low temperatures
continuously, and apparently smoothly. This is to be con-
trasted with the quenched version of this theory which has
a large N confinement/deconfinement phase transition at
t ’ 0:9 [22,23], and a discontinuous Polyakov loop. Since
the intermediate temperature range t� 1 is dual to the
regime where the thermal D0-branes have a radius compa-
rable to the string scale, we are probing the Horowitz-
Polchinski correspondence regime, and seeing apparently
smooth behavior there. Of course, there may be a non-
analyticity here that would be difficult to resolve at the
order of these numerical results, and work on the AdS/CFT
correspondence suggests a possible Gross-Witten-Wadia
phase transition [24,25].
Second, the low temperature behavior of the theory

appears consistent with the prediction from supergravity,
also shown in the plots. This is to be contrasted with the
quenched energy curve shown for comparison in Fig. 4
which departs strongly from the black hole prediction at
low temperature. In this figure we also show the periodic
theory which shows that the degree of supersymmetry
breaking for these lattices is small.
It would be very interesting to extendthese calculations

to 2- and 3-dimensional Yang-Mills systems which are
thought to be dual to D1- and D2-brane systems using
recent lattice formulations retaining exact supersymmetry
[26].
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FIG. 3 (color online). Top panel: A plot of the dimensionless
energy �=t versus dimensionless temperature t. Data shown are
generated in two ways. For temperatures larger than t� 1 we
simulate the thermal theory for N ¼ 2, 3, 5, 8, 12 with 5 points.
The low temperature results are computed for N ¼ 2, 3, 5 for 5
points by simulating the periodic theory, and reweighting with
the appropriate combination of the thermal and periodic
Pfaffians, as described in the main text. The low temperature
black hole prediction is shown. Bottom panel: A plot of the
Polyakov loop observable P for the same cases.
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FIG. 4 (color online). For comparison with Fig. 3, �=t versus t
is shown for the quenched theory for N ¼ 5, 30 and periodic
theory with Pfaffian reweighting for N ¼ 3, 5, using 5 point
lattices.

SIMON CATTERALL AND TOBY WISEMAN PHYSICAL REVIEW D 78, 041502(R) (2008)

RAPID COMMUNICATIONS

041502-4



[1] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996).
[2] A. Strominger, J. High Energy Phys. 02 (1998) 009.
[3] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[4] N. Itzhaki, J.M. Maldacena, J. Sonnenschein, and S.

Yankielowicz, Phys. Rev. D 58, 046004 (1998).
[5] J. Kinney, J.M. Maldacena, S. Minwalla, and S. Raju,

Commun. Math. Phys. 275, 209 (2007).
[6] S. Catterall and T. Wiseman, J. High Energy Phys. 12

(2007) 104.
[7] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind,

Phys. Rev. D 55, 5112 (1997).
[8] M. Hanada, J. Nishimura, and S. Takeuchi, Phys. Rev.

Lett. 99, 161602 (2007).
[9] K. N. Anagnostopoulos, M. Hanada, J. Nishimura, and S.

Takeuchi, Phys. Rev. Lett. 100, 021601 (2008).
[10] D. Kabat and G. Lifschytz, Nucl. Phys. B 571, 419 (2000).
[11] D. Kabat, G. Lifschytz, and D.A. Lowe, Phys. Rev. D 64,

124015 (2001).
[12] M. Campostrini and J. Wosiek, Nucl. Phys. B 703, 454

(2004).
[13] J. R. Hiller, S. S. Pinsky, N. Salwen, and U. Trittmann,

Phys. Lett. B 624, 105 (2005).
[14] J. R. Hiller, O. Lunin, S. Pinsky, and U. Trittmann, Phys.

Lett. B 482, 409 (2000).
[15] S. Catterall and T. Wiseman (unpublished).
[16] I. R. Klebanov and A.A. Tseytlin, Nucl. Phys. B 475, 164

(1996).
[17] G. T. Horowitz and J. Polchinski, Phys. Rev. D 55, 6189

(1997).
[18] W. Krauth, H. Nicolai, and M. Staudacher, Phys. Lett. B

431, 31 (1998).
[19] M.A. Clark and A.D. Kennedy, Nucl. Phys. B, Proc.

Suppl. 129, 850 (2004).
[20] M.A. Clark, A.D. Kennedy, and Z. Sroczynski, Nucl.

Phys. B, Proc. Suppl. 140, 835 (2005).
[21] N. Kawahara, J. Nishimura, and S. Takeuchi, J. High

Energy Phys. 12 (2007) 103.
[22] O. Aharony, J. Marsano, S. Minwalla, and T. Wiseman,

Classical Quantum Gravity 21, 5169 (2004).
[23] O. Aharony et al., J. High Energy Phys. 01 (2006) 140.
[24] L. Alvarez-Gaume, P. Basu, M. Marino, and S. R. Wadia,

Eur. Phys. J. C 48, 647 (2006).
[25] T. Azuma, P. Basu, and S. R. Wadia, Phys. Lett. B 659, 676

(2008).
[26] S. Catterall, J. High Energy Phys. 01 (2008) 048.

BLACK HOLE THERMODYNAMICS FROM SIMULATIONS OF . . . PHYSICAL REVIEW D 78, 041502(R) (2008)

RAPID COMMUNICATIONS

041502-5


