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We analyze the WW scattering in scenarios of dynamical electroweak symmetry breaking of walking

technicolor type. We show that in these theories there are large regions of the parameters space allowed by

the electroweak precision data, in which unitarity is delayed at tree level up to around 3–4 TeV without the

inclusion of any sub-TeV resonances. If any of these scenarios is actually realized then the new physical

states are not within reach of the LHC and International Linear Collider.
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The simplest argument often used to predict the exis-
tence of yet undiscovered particles at the TeV scale comes
from unitarity of longitudinal gauge boson scattering am-
plitudes. If the electroweak symmetry breaking sector
(EWSB) is weakly interacting, unitarity implies that new
particle states must show up below 1 TeV, being these spin-
0 isosinglets (the Higgs boson) or spin-1 isotriplets (e.g.
Kaluza-Klein modes). A strongly interacting EWSB sector
can however change this picture, because of the strong
coupling between the pions (eaten by the longitudinal
components of the standard model gauge bosons) and the
other bound states of the strongly interacting sector. An
illuminating example comes from QCD. In Ref. [1] it was
shown that for six colors or more, the 770 GeV � meson is
enough to delay the onset of unitarity violation of the pion-
pion scattering amplitude up to well beyond 1 GeV. Here
the ’t Hooft largeN limit was used, however, an even lower
number of colors is needed to reach a similar delay of
unitarity violation when an alternative large N limit is used
[2]. Scaling up to the electroweak scale, this translates in a
1.5 TeV techni � being able to delay unitarity violation of
longitudinal gauge boson scattering amplitudes up to
4 TeV or more. Such a particle would be just beyond the
reach of LHC and ILC, and a worst case scenario of no
discovery of new physics in the upcoming generation of
colliders could not be excluded based solely on unitarity
arguments. Such a model, however, would not be realistic
for other reasons: a large contribution to the S parameter
[3], and large flavor changing neutral currents (FCNC) if
the ordinary fermions acquire mass via an old fashioned
extended technicolor sector, to mention the most relevant
ones.

Walking technicolor (WT) [4–6] provides a natural
framework to address these problems. In fact, walking
dynamics helps suppressing FCNC without preventing ex-
tended technicolor sector from yielding realistic fermion
masses. Notice that it is always possible to resort to new
scalars to give mass to the ordinary fermions while having

technicolor only in the gauge sector, or even marry techni-
color with supersymmetry [7–14]. Furthermore, certain
WT models are in agreement with the constraints imposed
by electroweak precision data [15–17], since the walking
dynamics itself naturally lowers the contribution to the S
parameter relative to a running theory [18]. Besides, new
leptonic sectors [17] that may be needed to avoid possible
Witten topological anomalies can render the overall S
parameter negative. The contributions from these sectors,
not gauged under the technicolor gauge group, are calcu-
lable to any order in perturbation theory. A relevant ques-
tion to ask is whether a walking regime can be achieved
with a sufficiently small number of fermions. In the context
of SUðNTCÞ gauge theories with fermions in the fundamen-
tal representation, a large number NTF of techniflavors is
required to achieve walking dynamics, even for small
values of NTC. If all technifermions have electroweak
charge, this results in a large contribution to S and other
electroweak parameters. Recently, however, a new class of
SUðNTCÞ gauge theories with fermions in higher-
dimensional representations have been argued to display
near-to-conformal behavior already for small values ofNTF

and NTC [19]. A complete catalogue, based on the
Schwinger-Dyson approximation, of all possible
SUðNTCÞwalking technicolor gauge theories with fermions
in a given but arbitrary representation can be found in [20].
An all order � function for any nonsupersymmetric,
strongly interacting, and asymptotically free gauge theory
has been suggested in [21], thereby allowing new methods
for the investigation of nonsupersymmetric conformal win-
dows. The first hints of walking or possibly conformal
dynamics for gauge theories with fermions in higher di-
mensional representations has appeared in [22], and a first
benchmark for a working model of WT has been con-
structed in [16]. Finally, it should be mention that in this
framework unification of the standard model gauge cou-
plings can be achieved [14].
WW scattering in walking technicolor.—In order to ex-

tract predictions in presence of a strongly interacting sector
and an asymptotically free gauge theory, we make use of
the time-honored Weinberg sum rules (WSR) [23], which
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are statements about the vector-vector minus axial-axial
vacuum polarization functions, known to be sensitive to
chiral symmetry breaking. Assuming a low energy spec-
trum consisting of a narrow vector-vector resonance and a
narrow axial-vector resonance, the first WSR reads

F2
V � F2

A ¼ F2
�; (1)

where FV (FA) is the decay constant of the vectorial (axial)
resonance, and F� is the pion decay constant. In techni-

color models F� ¼ 1=
ffiffiffi
2

p
GF ¼ 246 GeV. The second

WSR, unlike the first one, receives important contributions
from throughout the near conformal region, and reads
[16,18]

F2
VM

2
V � F2

AM
2
A ¼ a

8�2

dðRÞF
4
�; (2)

where dðRÞ is the dimension of the representation of the
underlying fermions, and a is expected to be positive and
Oð1Þ. In the case of running dynamics we obtain a ¼ 0,
and the second WSR recovers its familiar form. The pa-
rameter a is a nonuniversal quantity depending on the
details of the underlying gauge theory. Any other approach
trying to model the walking behavior will have to reduce to
ours. The fact that a is positive and of order one in walking
dynamics can be deduced, indirectly, from the work of
Kurachi and Shrock [24]. At the onset of conformal dy-
namics the axial and the vector will be degenerate, i.e.
MA ¼ MV ¼ M, using the first sum rule one finds via the
second sum rule a ¼ dðRÞM2=ð8�2F2

�Þ leading to a nu-
merical value of about 4–5 from the approximate results in
[24]. We will however use only the constraints coming
from the generalized WSRs expecting them to be less
model dependent.

There is also a ‘‘zeroth’’ sum rule, which is nothing but
the definition of the S parameter

S ¼ 4�

�
F2
V

M2
V

� F2
A

M2
A

�
: (3)

This is the contribution to the S parameter coming solely
from the new strongly coupled dynamics. Using Eqs. (1)
and (2) this becomes

S ¼ 4�F2
�

�
1

M2
V

þ 1

M2
A

� a
8�2F2

�

dðRÞM2
AM

2
V

�
: (4)

The first two terms of this equation are the ordinary QCD-
like contributions. The third term is negative and of the
same order of the first two. Therefore, if the � and a1
mesons of QCD were resonances of a walking theory, the
corresponding S parameter would be considerably lower
than the QCD value S ’ 0:3. As mentioned before, this
shows that the walking dynamics is not only important in
suppressing FCNC, but also in lowering the contribution to
the S parameter relative to a theory with a running coupling
constant. Since QCD’s S is approximately twice its pertur-
bative estimate, performed by computing loops of dynami-
cal quarks, it appears safe to estimate S for any WT theory

to be of the order of the value calculated from techniquark
loops. Recent computations further support the reduction
of S in walking theories [25].
As a phenomelogically interesting example we consider

minimal walking technicolor (MWT) [16,17,19]. This is an
SU(2) gauge theory with two fermions in the adjoint
representation. If these form an electroweak doublet, the
perturbative contribution to the S parameter will be S ¼
dðRÞ=6� ¼ 1=2� ’ 0:16. MWT is arguably theWTmodel
with the lowest S. This value can be further reduced by
adding to the theory new leptons (which in MWT are
required to cure the Witten anomaly), with weak SU(2)
mass splitting. With these ingredients the full estimates for
S and T were shown to be within 1� of the experimental
expectation values for a wide portion of the parameter
space [16,17,19]. This is true also for the more stringent
tests based on the precise LEP parameters of Barbieri
et al.[26] explored for WT and CT in [15]. Taking S 2
ð0:1; 0:3Þ as a realistic estimate in MWT, and using Eqs. (1)
and (3) allows us to take FV and MA (for example) as the
only independent inputs, since F� is known. In an alter-
native to FV we can take the ‘‘gauge coupling’’ g of an
effective model [16] in which the vector mesons are treated
as gauge fields. FV is given by

F2
V ¼ 2M2

V

g2
: (5)

From Eqs. (1), (3), and (5) we find

M2
V ¼

�
1� g2S

8�

�
M2

A þ g2F2
�

2
; (6)

F2
V ¼

�
1� g2S

8�

�
2M2

A

g2
þ F2

�; (7)

F2
A ¼

�
1� g2S

8�

�
2M2

A

g2
: (8)

Equation (8) immediately gives an upper bound for g

g <

ffiffiffiffiffiffiffi
8�

S

s

: (9)

This is represented by the upper straight line of Fig. 3(a),
for S ¼ 0:1 (top), S ¼ 0:2 (center), and S ¼ 0:3 (bottom).
Additional upper and lower bounds are given by the re-
quirement that the vector mesons are narrow states, since
this is a necessary condition for the WSR’s to hold. Above
the upper left solid curve MV is larger than 2MA, and the
dominant V ! Aþ A decay channel opens up, with a
large contribution to �V. Below the lower thin solid curve
�Vð��Þ=MV is larger than 0.5. Here, �Vð��Þ is the partial
width for decays into two �’s, which turns out to be

�Vð��Þ ¼ M5
V

96�g2F4
�

: (10)

A final constraint is the requirement that a is a positive
number and Oð1Þ. On the lower thick curve a ¼ 0, and
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both WSR’s are satisfied in a running regime. Below the
curve a is negative. Above the curve a is positive andOð1Þ,
and all corresponding values of MA and g are possible.

We can use these results to analyze the�� � scattering.
We use nonlinear realizations in which the Higgs boson is
integrated out. For the corresponding tree-level invariant
amplitudes and scattering formalism see Appendix A of
Ref. [27] or directly Eqs. 1, 2 in [2] after having set to zero
the mass of the pions. As for QCD, here we use vector
mesons dominance (VMD). This allows us to treat the
spin-1 fields at the tree level. Although the underlying
dynamics is quite different from QCD we expect VMD
to be still a useful approximation. In fact the underlying
dynamics manifests itself in the different physical values
assumed by the masses and couplings of the spin-1 fields.
We expect our results not to be affected much by the effects
of the axial vector meson in the VMD approximation, since
the axial does not couple at the tree level. However, a more
complete treatment will be presented elsewhere.

In Fig. 2(a), we plot the I ¼ 0, J ¼ 0 partial wave a00 for
MA ¼ 1:5 TeV and three different values of g. The central
curve has an a00 ¼ 0:5 maximum, and displays the largest

value of unitarity violation energy, around 3.7 TeV, for
MA ¼ 1:5 TeV. The lowest curve has a slightly lower
value of g, and violates unitarity just below 3.7 TeV.
However, the upper curve violates unitarity at a much
lower energy, around 1.9 TeV. This shows that there is a
discontinuity in the plot of unitarity violation energy as a
function of g, as shown in Fig. 2(b). The location of this
discontinuity corresponds therefore to a ‘‘critical’’ value of
g, gc. While above gc the amplitude is not sufficiently
unitarized by the vector-vector meson, and a spin-0
isospin-0 state is required with a pole mass near the energy
scale where unitarity is violated [1], below and near gc the
theory may very well be Higgsless. Moreover, sinceMA <
MV for MA ¼ 1:5 TeV and S ¼ 0:1 (see Fig. 1), these
states are not within the LHC or ILC reach. Of course

FIG. 1. MV as a function of MA for S ¼ 0:1, and different
values of g. The curve with the lowest slope corresponds to the
lowest value of g compatible with the requirement �V=MV �
0:5. The curve with the largest slope corresponds to g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

8�=S
p

:
values of g above this bound give F2

A < 0, and must therefore be

rejected. See below for the allowed region in the ðMA; gÞ plane.

FIG. 2. (a) I ¼ 0, J ¼ 0 partial wave amplitude for MA ¼
1:5 TeV, S ¼ 0:1, and three different values of g. The central
curve corresponds to the largest delay of unitarity violation, up
to

ffiffiffi
s

p ’ 3:7 TeV. The lowest curve corresponds to a slightly
lower value of g, and violates unitarity just below 3.7 TeV. The
upper curve corresponds to a slightly larger value of g, but it
violates unitarity at a much lower energy

ffiffiffi
s

p ’ 1:9 TeV. As a
consequence, there is a discontinuity in the plot of unitarity
violation energy as a function of g (b).

FIG. 3. From top to bottom these figures correspond to S ¼
0:1, S ¼ 0:2, and S ¼ 0:3. (a) The dashed line corresponds to gc
as a function of MA. The thin solid lines give bounds on g and
MA coming from self-consistency (no imaginary numbers) and
the requirement that the vector-vector meson is a narrow state, as
explained in the text. The thick solid line corresponds to a ¼ 0:
along this curve both WSR’s are satisfied in a running regime,
while below the curve a < 0, and the corresponding values of g
and MA must be rejected. This curve is hit by gc, with a narrow
width, for S ¼ 0:3, but not for S � 0:2, proving that QCD-like
theories are only unitarized, at the tree level, by vector mesons
for large values of S or, which is the same, a large number of
colors. (b) Unitarity violation scale along g ¼ gc. To the right of
the vertical thin line �V=MV becomes greater than 0.5. To the
right of the thick vertical line a becomes negative.
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this argument does not exclude the presence of light states,
but shows clearly that a worst case scenario of no detection
of new particles cannot be excluded, as it is generally
expected in models with a weak EWSB sector. It should
be noticed that gV�� here is expected to be stronger than
the corresponding coupling in Higgsless models from (de-
constructed) extra dimension [28,29]. In the latter, there is
one mass scale, and the analogue of gV�� is constrained by
unitarity and the standard model boson masses. In our
effective theory there are two mass scales, F� and the
mass of the vector mesons, and gV�� is therefore uncon-
strained. Unitarity requires a larger gV�� for larger vector
meson masses.

Notice that for small values of g the theory seems to lose
unitarity rather soon, even below the standard 1.2 TeV
bound of the chiral Lagrangian. This seemingly unreason-
able result comes from holding MA fixed, in which case
taking small values of g corresponds to taking large values
of gV��. In this limit, and for relatively small values ofMV,
the interaction between the vector-vector meson and the
pions becomes too strong, and the model quickly looses
unitarity. Another way to see this comes from Eq. (5):
taking the g ! 0 limit with MV fixed gives FV ! 1. It
would be more physical to letMV rapidly approach zero at
the same time, in such a way that FV ! 0 as well.
However, here we only focus on the phenomenologically

relevant regions of the parameter space, in which the vector
mesons are expected to be at least in the 102 GeV range.
In Fig. 3(a), the dashed curve gives gc as a function of

MA. Below and in the vicinity of this curve unitarity
violation is delayed to higher energy scales, and a spin-0
isospin-0 state is not needed with mass below 1 TeV.
Notice that for S ¼ 0:1 (top) and S ¼ 0:2 (center) gc is
only attained in the running regime, i.e. a ¼ 0, when
�V=MV > 0:5, while for S ¼ 0:3 one still has �V=MV <
0:5. This is in agreement with the results of Refs. [1,2], and
shows that QCD-like theories are unitarized by the vector
meson only for large values of S. In Fig. 3(b), the unitarity
violation energy for g ¼ gc is plotted as a function of MA.
To the right of the vertical thin line �V=MV becomes
greater than 0.5. To the right of the vertical thick line a
becomes negative. Notice how the thin line is first hit by
the dashed curve for S ¼ 0:1 and S ¼ 0:2, while the thick
line is hit first for S ¼ 0:3.
We have shown that there are regions in the parameters

space of phenomenologically viable models of dynamical
EWSB according to which unitarity is delayed up to
around 34 TeV without the inclusion of any sub-TeV
resonances. If our scenario is realized in nature, LHC and
ILC may not be able to directly observe any new physical
state.
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