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The vacuum persistence probability, PvacðtÞ, for a system of charged fermions in a fixed, external, and

spatially homogeneous electric field, was derived long ago by Schwinger; w � � log½PvacðtÞ�=Vt has
often been identified as the rate at which fermion-antifermion pairs are produced per unit volume due to

the electric field. In this paper, we separately compute exact expressions for both w and for the rate of

fermion-antifermion pair production per unit volume, �, and show that they differ. While w is given by the

standard Schwinger mechanism result of w ¼ ðqEÞ2
4�3

P1
n¼1

1
n2

expð� n�m2

qE Þ, the pair production rate, �, is just
the first term of that series. Our calculation is done for a system with periodic boundary conditions in the

A0 ¼ 0 gauge but the result should hold for any consistent set of boundary conditions. We discuss, the

physical reason why the rates w and � differ.
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I. INTRODUCTION

Fermion-antifermion pair production from a static clas-
sical electric field, known as the Schwinger mechanism,
has given rise to a vast literature, since its formulation in
1951 [1]. Invoked to gain insights on topics as diverse as
the string breaking rate in QCD [2,3] and on black hole
physics [4], this mechanism has become a textbook topic in
quantum field theory [5]. Topics such as backreaction [6]
and finite size effects [7] have been addressed. In a classic
paper, Schwinger exactly calculated the rate at which the
vacuum decays due to pair production in the external field.
If the electric field is treated classically—i.e. the formal
limit of q! 0, E! 1 with qE fixed—the vacuum persis-
tence probability is [1]

PvacðtÞ � jhvacjUðtÞjvacij2 ¼ expð�wVtÞ (1)

with

w ¼ ðqEÞ2
4�3

X1
n¼1

1

n2
exp

�
�n�m2

qE

�
; (2)

where V is the spatial volume of the ~E field and w is the
rate of vacuum decay per unit volume.

While the Schwinger formula of Eq. (2) is very well
known, the Schwinger mechanism has often not been fully
appreciated in an essential way. The quantity w in Eq. (2)
appears to have a very natural interpretation as the rate of
production of pairs per unit volume. Schwinger suggested
this interpretation in his original paper. There is a plau-
sible, if heuristic, argument in its favor [2,5]. Start by
considering a more general situation in which the pair
production rate can vary in space and time. The vacuum
persistence probability can then be written as

Pvac ¼ e�
R

d4xwðxÞ: (3)

Next approximate the integral as a discrete sum over space-
time cells of volume �vi points centered at points xi. The
vacuum persistence probability then becomes the limit of

Pvac ¼ lim
�v!0

Y
i

e�wðxiÞ�vi ¼ Y
i

ð1� wðxiÞ�viÞ: (4)

Itzykson and Zuber [5] note that this is the form expected
from an independent contribution to the vacuum persis-
tence coming from each cell if wðxiÞ is the local rate of pair
production. This is taken to confirm Schwinger’s interpre-
tation of w. This argument is plausible; it is not surprising
that a considerable body of literature has adopted
Schwinger’s interpretation and used w to compute particle
production rates.
However, as it happens, the interpretation is not correct:

in general w does not give the rate of pair creation. As a
logical matter the rate characterizing the vacuum’s decay
(by the production of the first charged pair), is not neces-
sarily the same as the continuous rate of pair production.
While the argument given above is highly plausible, it is
also heuristic. A more compelling approach is via a com-
parison of a direct computation of the pair production rate
with w, the rate in Eq. (2). Nikishov directly computed the
pair production rate per unit volume long ago [8] and found
it to be

� ¼ ðqEÞ2
4�3

exp

�
��m2

qE

�
: (5)

Remarkably it does not agree with w: the entire rate is
given by the first term in the series for w.
Since w is still commonly confused with the pair pro-

duction rate, it is useful to rederive Nikishov’s result in a
physically transparent context which clearly illustrates
why � rather than w is the rate of pair creation per unit
volume. This will first be done in the context of ð1þ 1Þ
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dimensions where the issues are particularly clear; the
generalization to ð3þ 1Þ dimensions is straightforward.

Before embarking on the calculation, it is useful to
discuss briefly why one might expect � (the pair produc-
tion rate per unit volume) to differ from w (the rate
characterizing the rate of vacuum decay per unit vacuum).
We begin with the trivial observation that pairs are created
in distinct modes. If the probability for any given mode to
create a pair is constant in time (and thus uncorrelated with
each other), one expects that total rate of pair creation to
equal w. However, if there are temporal correlations be-
tween likelihood for decay at various times for the various
modes, then this need not be the case.

The precise time that a pair is created is ambiguous;
however, once a pair is created and the fermion and anti-
fermion become well separated, they each accelerate in the
electric field. Thus particles with large (mechanical) mo-
mentum are likely to have been created earlier than parti-
cles with small momentum. To the extent that the natural
way to characterize modes is in momentum space, there are
very large temporal correlations in pair creation. As will be
seen in detail in the explicit calculations, momentum space
is the natural way to characterize modes for this problem
and it is natural that � differs from w. This makes clear
why the argument of Ref. [5] thatw is the pair creation rate
breaks down: there it is assumed that the rate of pair
production at distinct space-time points are independent.
Implicit in this is the notion that the pairs are created at
well-defined points in space-time. However, if the pairs are
created at well-defined (or nearly well-defined) momenta
they are delocalized in position.

II. PAIR CREATION IN ð1þ 1Þ DIMENSIONS

Before embarking on the original problem, it is useful to
consider the analogous problem in ð1þ 1Þ dimensions.
The ð1þ 1Þ-dimensional case is somewhat simpler and
the issues are more straightforward. Moreover, the ð1þ
1Þ dimension result serves as an important input into the
ð3þ 1Þ-dimensional calculation. One can adapt
Schwinger’s calculation [1] for smaller dimensions
[9,10]; in ð1þ 1Þ dimensions PvacðtÞ is

P1þ1
vac ðtÞ ¼ expð�w1þ1LtÞ with

w1þ1 ¼ ðqEÞ
2�

X1
n¼1

1

n
exp

�
�n�m2

qE

�

¼ �ðqEÞ
2�

log

�
1� exp

�
��m2

qE

��
;

(6)

where L is the length of the system.
The imposition of appropriate boundary conditions in

both space and time is crucial in the treatment of this
problem. Accordingly, it is critical to compute both w
and �, with the same boundary conditions so they can be
directly compared with each other. We adopt the following

strategy in choosing boundary conditions in space and
time.
The most natural way to identify the number of pairs

created is to formulate the problem in terms of an electric
field which is switched on for a fixed period and then
switched off. One begins with the system in its vacuum
state and the electric field turned off. The electric field is
turned on at t ¼ 0 and left on until t ¼ T and then switched
off. With the field now off, one can unambiguously use a
free particle basis to count the number of pairs. The act of
turning the system on and off can yield transient effects;
thus one needs to consider the limit of large T (T � m�1,

T � qE�1=2) so that the steady state Schwinger mecha-
nism dominates.
To simplify the computation it is useful to keep the

electric field a constant over the entire system while mak-
ing the system of finite length. In this case the modes
become discrete and are easily counted. The large L limit
can be taken at the end. Continuous acceleration of parti-
cles over extended time plays a key role in the analysis.
Thus it is important to choose spatial boundary conditions
which allow a charged particle to continue accelerating as
it reaches the end of the system. Dirichlet boundary con-
ditions are thus inappropriate as a particle striking the end
of the system will bounce back and, instead of continuing
to accelerate, will then decelerate. Continuous acceleration
over long times can be achieved simply via the implemen-
tation of periodic boundary conditions. However, periodic
boundary conditions are sensible only when the
Hamiltonian is invariant under translations by L. Because
the gauge choice A0 ¼ 0 ensures translational invariance,
wework in this gauge. Of course, our results must be gauge
invariant and we can work in any gauge. However, if we
choose to adopt a different gauge the boundary conditions
needed to ensure continuous acceleration become time
dependent. Ultimately we can check whether this choice
of boundary condition (and its associated gauge choice) is
sensible by comparing the derived vacuum persistence
probability with the Schwinger result of Eq. (6). The
Dirac equation becomes

ð�ð�i@x� qAxðtÞÞ þ�mÞ ðx; tÞ ¼ i@t ðx; tÞ;

AxðtÞ ¼

8>><
>>:
0 for t < 0

�Et for 0� t < T

�ET for T � t;

 ðx; tÞ ¼  ðxþL; tÞ; (7)

where  is a two-dimensional spinor and � and � are the
appropriate two-dimensional Dirac matrices. There exists a
complete set of a solutions of the form

 ðx; tÞ ¼ eipkx�kðtÞ; pk ¼ k
2�

L
ðinteger kÞ;

hkðtÞ ¼�ðpk�qAxðtÞÞþ�m; hkðtÞ�kðtÞ ¼ i@t�kðtÞ;
(8)
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where the restriction to integer k comes from the periodic
boundary conditions. Finally, it is convenient to introduce a
unitary transformation, UkðtÞ, into a basis in which hk is
diagonal

�kðtÞ ¼ Uk�kðtÞ; �kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpk þ qAðtÞÞ2 þm2

q
;

Uy
k ðtÞhkðtÞUkðtÞ ¼

�kðtÞ 0

0 ��kðtÞ

 !
: (9)

For convenience we choose T such that T ¼ j�with � �
2�
qEL and j a positive integer. It is easy to see that �kðTÞ ¼
�kþjð0Þ: the spectrum of the system after E is turned off is

identical to the original spectrum, although the mode labels
have changed. This is hardly surprising, as the system for
t � T is simply that of a free particle in the absence of an
electric field—exactly as it is for t < 0. The restriction to
integer j ensures that the boundary conditions are the same.
At t ¼ 0 the system is in its vacuum state with all of its
negative energy levels filled. Thus the appropriate bound-
ary condition for the fermionic modes is �T

k ð0Þ ¼ ð0; 1Þ.
The equation of motion for �T

k ðtÞ � ð�þ
k ðtÞ; ��

k ðtÞÞ is
obtained from Eqs. (8) and (9) and for 0 � t � T is given
by

�kðtÞ qEm
�2
k
ðtÞ

qEm
�2
k
ðtÞ ��kðtÞ

0
B@

1
CA �þ

k ðtÞ
��
k ðtÞ

 !
¼ i@t

�þ
k ðtÞ

��
k ðtÞ

 !
with

�þ
k ð0Þ

��
k ð0Þ

 !
¼ 0

1

 !
: (10)

By construction, j�þ
k ðTÞj2 is the probability for the posi-

tive energy state of the kth mode to be occupied after the
field has been switched off; it represents the probability of
pair creation for this mode. The expectation value for the
total number of pairs produced, N, and the vacuum persis-
tence probability are thus given by

hNðTÞi ¼ X
k

j�þ
k ðTÞj2; (11)

P1þ1
vac ðTÞ ¼

Y
k

ð1� j�þ
k ðTÞj2Þ

¼ exp

�X
k

logð1� j�þ
k ðTÞj2Þ

�
: (12)

To proceed further we need solutions of Eq. (10). An
exact solution can be obtained in terms of parabolic cylin-
der functions with complex arguments. The form is cum-
bersome and will not be given here. The important point
here is the asymptotic behavior valid when jpkj � m, and
jpk þ qETj � m, in which case the solution reduces to

j�þ
k ðTÞj2 ¼ �ð�pkÞ�ðpk þ qETÞ exp

�
��m2

qE

�

�
�
1þO

�
m

jpkj ;
m

jpk þ qETj
��
: (13)

The form of Eq. (13) is not surprising. The equation of
motion for the two-level system in Eq. (8) is precisely of
the form considered long ago by Landau and Zener [11];

expð� �m2

qE Þ is simply the Landau-Zener transition proba-

bility which is valid when the initial and final levels are
well separated on the scale of m. Provided that qET � m
the correction to Eq. (13) is small except for a small
number of modes. Inserting this form into Eqs. (11) and
(12) and using the identity logð1� �ðyÞ�ðzÞxÞ ¼
�ðyÞ�ðzÞ logð1� xÞ yields

hNðTÞi ¼ X
k

�ð�pkÞ�ðpk þ qETÞe�ð�m2=qEÞ

�
�
1þO

�
m

qET

��
; (14)

logðP1þ1
vac ðTÞÞ¼

X
k

�ð�pkÞ�ðpkþqETÞ logð1�e�ð�m2=qEÞÞ

�
�
1þO

�
m

qET

��
; (15)

where the scale of the correction term reflects the fraction
of modes for which the correction to the leading term in
Eq. (13) is non-negligible. From the definition of pk in

Eq. (8) one sees that
P
k�ð�pkÞ�ðpk þ qETÞ ¼ qETL

2� .

Using this fact, and taking the long time limit to remove
transient effects, we see that P1þ1

vac ðtÞ in Eq. (15) exactly
reproduces the standard result for the vacuum persistence
probability in Eq. (6), indicating that our boundary con-
ditions were chosen consistently.
Further, the rate of pairs produced by the electric field in

the long time limit is

�1þ1 � hNi
LT

¼ qE

2�
exp

�
��m2

qE

�
: (16)

Critically, we see that �1þ1, the rate of pairs produced per
unit length per unit time, is not w1þ1 but rather the first
term in the series as expected from Ref. [8].

A. The massless limit

The m! 0 limit in ð1þ 1Þ dimensions illuminates the
essential issues quite clearly. From Eq. (6) it is clear that
w1þ1 diverges as m! 0. Thus, the vacuum persistence
probability becomes zero. If the interpretation of w as the
pair production rate were correct this would mean that the
rate of pair production per unit length would, perversely, be
infinite for massless particles. However, the particle pro-

duction rate per unit length is given by �1þ1
m!0 ¼ qE

2� and is

finite.
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It is easy to visualize this physically. With the boundary
conditions used here, the energies of the modes for m ¼ 0
are given by�ðpk þ qEtÞ as shown in Fig. 1. Moreover the
occupation numbers are preserved by the equation of mo-
tion; only the mass term induces transitions. There is a
subtlety when pk þ qEt ¼ 0; at which point the positive
and negative energies cross. Since �þ indicates the ampli-
tude for the positive energy solution, the labels�þ and��
switch at pk þ qEt ¼ 0. (Note that when any finite mass is
put in, the level crossings are avoided. However, as m! 0
the Landau-Zener probability which the occupation num-
ber switches from the negative to positive level goes to
unity and one reproduces the zero mass result.)

Initially, the system is in the vacuum state with all
negative energy levels filled. Thus except for the special
case of k ¼ 0, j�þðtÞj2 is given by �ð�pkÞ�ðqEtþ pkÞ,
exactly as one expects from Eq. (13). The k ¼ 0modes are
special in that they have exactly zero energy at t ¼ 0; we
take them to be half occupied. Consider the occupation of
positive energy levels as time increases. As seen in Fig. 1
when t increases by � � 2�

qEL exactly one new level crosses

from negative to positive and this corresponds to the cre-
ation of a pair. At t ¼ j� one has created on average j�
1=2 pairs (the 1=2 coming form the 1=2 filled k ¼ 0mode):
the number of pairs increases linearly with time at a rate of

1=� ¼ qEL
2� , precisely the rate in Eq. (16). However, for j �

2 the vacuum persistence probability is strictly zero; at j ¼
2we knowwith unit probability that a pair has been created
in the k ¼ �1 mode. This cleanly illustrates both the

distinction between � and w and the critical role played
by temporal correlations between modes. It is the fact that
pairs are created in different modes at different times
which accounts for the difference.
A natural way to visualize the massless case in ð1þ 1Þ

dimensions is to think of the ð1þ 1Þ dimensional ‘‘uni-
verse’’ as a circular loop of radius R ¼ L=ð2�Þ. Suppose
further that this loop is imbedded in a ð3þ 1Þ dimensional
world with a time-varying magnetic flux perpendicular to
the loop and threading through its center. This flux is
turned on at t ¼ 0, after which it linearly increases in
time, for a time t ¼ j� after which it is held fixed; � is
defined as the amount of time for one flux quantum to
thread through. Because @B

@t ¼ �r� E, this is identical to

an E field pointing tangent to the loop at all points, for a
total time�t ¼ j�. The ground state of this system at t ¼ 0
is simply a filled Dirac sea of massless, charged particles—
in just the same manner as the ground state of a normal
wire represents a filled Fermi sea of massive, charged
particles (electrons). This system clearly has periodic
boundary conditions and thus gives another physical pic-
ture for understanding pair creation of charged particles in
ð1þ 1Þ dimensions. While the E field is on, magnetic flux-
quanta thread through the ring at a rate of 1=�. Since the
system is circular, the natural variable labeling modes is
the angular momentum, Lk (where Lk is related to the
momentum in the previous formulation via Lk ¼ Rpk).
After j flux quanta have thread through the loop, then
Lk ! Lkþj. This both drives j empty levels into the

Dirac sea and j filled levels out of the Dirac sea, creating
j fermion-antifermion pairs. The rate is 1=� and is pre-
cisely that given in Eq. (16).

B. A card game

The distinction between the rate per length at which
pairs over time, �1þ1, and the rate per length of vacuum
decay, w1þ1, is essentially one of classical probabilities;
for this ð1þ 1Þ-dimensional system this can be simply
illustrated in the context of a card game.
One might imagine that a casino has introduced a new

game called ‘‘vacuum.’’ The rules of the game are simple:
Avery large number of decks of cards are shuffled together.
One class of card is specified—this class could be rather
general (e.g., all black cards or all diamonds), somewhat
more specific (e.g., all sevens), or quite specific (e.g., aces
of spades). The pile of cards is said to be in the vacuum.
Cards are then turned over at a fixed rate of 1=�. The pile
remains in the vacuum until the first card of the specified
class is turned over. Wagers are placed on how long the pile
is in the vacuum and on how many cards of the specified
class are turned over in a specified time.
It is easy to see that if one continues to turn over cards at

the rate of 1=�, the average number of cards in our speci-
fied class which are turned over after t ¼ j� (where j is a
positive integer) is hNclassi ¼ ft=� where f is the fraction
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FIG. 1 (color online). Energy levels for massless ð1þ 1Þ
charged fermions in a constant electric field as a function of
time in units of � � 2�

qEL . The dotted lines correspond to empty-

initially positive energy levels and the solid lines to filled-
initially negative energy levels; the dashed lines are the half-
filled levels of the zero mode. The solid circles correspond to
particles and the open circles to antiparticles; the half-filled
circles correspond to the creation of a particle (antiparticle)
with 50% probability.
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of the cards in the class (i.e., f ¼ 1=2 if the class is black
cards; f ¼ 1=52 if the class consists of aces of spades).
Thus, 	, the average rate of production for cards in the
class, is given by

	 ¼ 1

�
f: (17)

The probability of the pile remaining in the vacuum after

t ¼ j� is obviously given by Pvac ¼ ð1� fÞj ¼
ð1� fÞt=�. This can be rewritten as

Pvac ¼ expð�!tÞ ! ¼ � 1

�
logð1� fÞ ¼ 1

�

X
n

fn

n
:

(18)

It is obvious that the structure of Eqs. (17) and (18) are
analogous to Eqs. (6) and (16) with f playing the role of

e�ð�m2=qEÞ.
In the context of the game it is obvious why 	 and !

differ. Suppose as an extreme case one considers as the
class all cards. The rate at which cards in the class are
produced is obviously 1=�; after the first card has been
turned over the probability that the pile is in the vacuum is
clearly zero. This is the analog of the m! 0 limit.

III. PAIR CREATION IN ð3þ 1Þ DIMENSIONS

Having illustrated the essential distinction between the
vacuum decay rate, w, and the rate of particle production,
�, in the ð1þ 1Þ dimensional system, we turn to the case of

ð3þ 1Þ dimensions. For simplicity we specify ~E ¼ jEjẑ,
and require solutions of the Dirac equation to satisfy
periodic boundary conditions along the transverse direc-
tion (making the spectrum discrete and counting explicit).
In ð3þ 1Þ dimensions there are two spin states for the
fermions. However, in the energy basis analogous to

Eq. (9), the system is diagonal in spin; thus its sole effect
is an overall factor of 2 in w and �. In direct analogy to
Eq. (10), the equation of motion for the mode specified by

the spin state, s, and ~k ¼ ðkx; ky; kzÞ ¼ ðnx 2�
Lx
; ny

2�
Ly
; nz

2�
Lz
Þ

is

� ~kðtÞ qEm
�2
~k
ðtÞ

qEm
�2
~k
ðtÞ �� ~kðtÞ

0
B@

1
CA �þ

~k;s
ðtÞ

��
~k;s
ðtÞ

 !
¼ i@t

�þ
~k;s
ðtÞ

��
~k;s
ðtÞ

 !
(19)

with � ~kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkz þ qAzðtÞÞ2 þ ðp2

x þ p2
y þm2Þ

q
the in-

stantaneous energy of the mode ~k at time t. As in ð1þ 1Þ
dimensions, the initial conditions are ð�þ

~k;s
ð0Þ; ��

~k;s
ð0ÞÞ ¼

ð0; 1Þ. Note that since A
 (in this gauge) does not change

the transverse momentum, it acts exactly like an additional
mass-term in the Landau-Zener tunneling rate. Thus, for

convenience, we will define m2
T � m2 þ ~k2T .

All of the previous arguments leading up to Eq. (13) go
through, after the substitution m2 ! m2

T . Thus, we derive

hNðTÞi
VT

¼ 2
X
kT ;kz

�ð�kzÞ�ðkz þ qETÞ
LxLyLzT

e½�ð�ðm2þk2T Þ=qEÞ�

¼ 2
qE

2�

LzT

LxLyLzT

X
kx;ky

e�ð�ðm2þk2xþk2yÞ=qEÞ

¼ qE

4�3
e�ð�m2=qEÞ LxLy

LxLy

Z
dkxdkye

�ð�ðk2xþk2yÞ=qEÞ:

(20)

Evaluation of this double integral exactly reproduces the
rate of pair production given in Eq. (5). A similar calcu-
lation of log½PvacðTÞ� � �wVT yields,

log½PvacðTÞ� � �wVT;
¼ 2

X
kz;kT

�ð�kzÞ�ðkz þ qETÞ log½1� e�ð�ðm2þk2T Þ=qEÞ�

¼ qELzT

�

Lx
2�

Ly
2�

Z
dkxdky log½1� e�ð�ðm2þk2T Þ=qEÞ�

¼ �VT ðqEÞ2
4�3

X1
n¼1

1

n

Z
dkxdkye

�ðn�ðm2þk2T Þ=qEÞ: (21)

Evaluation of the double integrals, and identification of this
quantity with �wVT, yields the expression for w in
Eq. (2). Exponentiating this rate, we derive the standard
vacuum persistence probability in Eq. (1).

IV. DISCUSSION

In summary, we have explicitly shown that the rate
associated with vacuum decay, w, and the rate of pair

creation, �, differ: � is given by the first term in the series
forw. This result is in a very real sense quite well known: it
was first derived by Nikishov [8] quite long ago. It can be
derived in various other elegant formulations [12,13].
However, it is not as widely appreciated in the community
as it should be; much of the literature in the field is still
based on Schwinger’s initial assumption that w gives the
rate of pair production per unit volume. It is hoped that the
physically transparent way that this paper shows that �
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differs fromwwill help clarify the issue. The massless case
in ð1þ 1Þ dimensions is particularly illuminating. It is
clear from Fig. 1 why the pair production rate remains
finite even while the vacuum persistence probability goes
to zero at finite times indicating an infinite value for w.
While this calculation was with periodic boundary condi-
tions in the A0 ¼ 0 gauge, we expect the result to hold
generically for any consistent set of boundary conditions
(i.e., those that reproduce the Schwinger result for w). This
will be investigated in future work.

In practice, the distinction between w and � is exponen-
tially small for weak fields. However, for strong fields, w

exceeds � by a factor as large as �ð2Þ ¼ �2

6 	 1:64. More

generally, in d space-time dimensions wd will exceed �d

by a factor of �ðd=2Þ in the strong field limit.
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