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I. INTRODUCTION

Color transparency [1,2] and its electromagnetic precur-
sors [3] follows from basic quantum mechanics, relativistic
kinematics, and the vector nature of the theory (see
Frankfurt et al.[4] and comments in [5]). It involves the
fact that cross sections are proportional to the dipole size
(and hence become small for heavy �QQ pairs). Various
aspects of color transparency have been elaborated by
many researchers [6–12]. The purpose of this article is to
discuss color transparency from the perspective of pre- and
post-selection.

Aharonov, Bergmann, and Lebowitz (ABL) [13] refor-
mulated quantum mechanics in terms of pre- and post-
selected ensembles. The traditional paradigm for ensem-
bles is to simply prepare systems in a particular state and
thereafter subject them to a variety of experiments. These
are preselected only ensembles. For pre- and post-selected-
ensembles, we add one more step: a subsequent measure-
ment or post-selection. By collecting only a subset of the
outcomes for this later measurement, we see that the
preselected only ensemble can be divided into subensem-
bles according to the results of this subsequent ‘‘post-
selection measurement’’. Because pre- and post-selected
ensembles are the most refined quantum ensemble, they are
of fundamental importance and subsequently led to the
time-symmetric reformulation of quantum mechanics
(TSQM) [14,15] (for a review, see [16]). While TSQM is
a new conceptual point of view that has predicted novel,
verified effects, it is in fact a reformulation of quantum
mechanics. Therefore, experiments cannot prove TSQM
over quantum mechanics (or vice versa). The motivation to
pursue such reformulations, then, depends on their useful-
ness. Indeed, we believe that to be useful and interesting,
any reformulation of quantum mechanics should meet
several criteria such as those met by TSQM:

(i) TSQM is consistent with all the predictions made by
standard quantum mechanics.

(ii) TSQM brings out features in quantum mechanics
that were missed before: e.g. the ‘‘weak value’’ of

an observable which was probed by a new type of
quantum measurement called the ‘‘weak measure-
ment’’ [14,15].

(iii) TSQM leads to simplifications in calculations (as
occurred with the Feynman reformulation) and
stimulated discoveries in other fields: e.g. ABL in-
fluenced work in field theory [17], superluminal
tunneling [18,19], quantum information such as the
quantum random walk [20], new techniques for am-
plifying signals [14,21], foundational questions [22],
the discovery of new aspects of mathematics, such as
super-Fourier or superoscillations [23], etc.

(iv) TSQM leads to generalizations of quantum mechan-
ics that were missed before [24].

We start by reviewing the subject of color transparency.
We then illustrate this new approach in the context of
filtering small atoms. Finally, we apply this novel approach
to color transparency in the nuclear QCD context and show
that the small size of the hadronic states can be explained
by the peculiar ‘‘force of post-selection’’, in contrast to the
more standard explanation based on external forces.

II. COLOR TRANSPARENCY: THE BASIC ISSUES

Rather than viewing hadrons as lumps of pionic fields or
‘‘hadronic matter’’, QCD (and its quark model predeces-
sor) describes them as �qq (or qqq) bound states.
When probed at large PT , the individual pointlike quarks

clearly manifest, and, due to asymptotic freedom, can be
treated perturbatively. At low energy hadron collisions, the
nonperturbative quark wave function are important. Color
transparency involves an intermediate region of high en-
ergy, and smaller, yet appreciable, momentum transfer
such that ELabm� P2

T >�2
QCD.

For large targets, say a large nucleus, nuclear absorption
is a key aspect. The incident, free particle states, can be
decomposed in a basis of the nuclear propagation eigen-
states. There is selective stronger attenuation of some of
these propagating states. This will lead, after the nucleus
has been traversed and we reexpress the final state in the
original free basis, to ‘‘diffractive regeneration’’ of other
free particle states [25]. In order to maintain coherence and*tollakse@chapman.edu
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not break the nucleus, we need that the longitudinal, mo-
mentum transfer, i.e.

�L � ðm�2 �m2Þ
2EL

; (1)

be small enough:

�LRðAÞ � 1: (2)

In the above, m� and m are the masses of the final and
initial states, EL is the (Lab) energy of the incident nu-
cleon, and

RðAÞ � r0A
1=3 � 1:2A1=3 Fermi (3)

is the nuclear radius.
It is intuitively suggestive that states which are small (in

configuration space) have smaller cross sections and will
be ‘‘filtered’’ in nuclear propagation. This indeed holds for
q �q (or eþe�) bound states in QCD (or QED) and manifests
the vectorial nature of both theories. For color singlet
hadrons, the two gluon exchange, ‘‘van der Waals like’’
force, is the lowest order hadron-hadron interaction. The
strength of the latter grows with the induced dipoles, i.e.
with the size of the hadrons [26].

It was suggested that color transparency be tested in the
reaction pþ ðA; ZÞ ! ppþ ðA� 1; Z� 1Þ [7]; events
with maximal momentum transfer jtmaxj ¼ 2mðEL �mÞ
corresponding to 90� scattering in the pp center mass
frame, and for which there was no appreciable particle
production or nuclear excitation, were picked up. For EL �
10 GeV,

ffiffiffiffiffiffiffiffi
tmax

p ¼ 3 GeV is higher than �QCD or typical

hadronic mass scale. This suggests that the hard pp elastic
collision be treated perturbatively. If we adopt for this
purpose the QCD diagrams consistent with the usual quark
counting rules [27], then the dominant contribution comes
from those rare components of the hadron’s wave function
where the incoming and outgoing hadrons are all small,
pointlike configurations.

Once dominance of pointlike states is assumed, color
transparency naturally follows: since we have small objects
propagating in the nucleus, this quasielastic process should
not appreciably decrease with nuclear number A, and
hence, the total path length traveled by the three protons
(the incident projectile and two outgoing protons) in-
creases. More precisely, it was suggested that effective
cross sections for absorption [i.e. further inelastic scatter-
ing leading to excited many particle final states �ðtÞ]
should monotonically decrease with jtj. (Asymptotically,
we expect on dimensional grounds � � 1

jtj .)
Because of the uncertainty principle, the small pointlike

configurations have large relative momenta: P? � ð�r0Þ�1

with �r0 the small size. The ‘‘small protons’’ emerging
from the collision expand and reform the normal full size
r ¼ r0 protons. Color transparency optimally manifests
when the angle (in the lab frame) between the projectile’s

quarks is small enough, i.e. � � P?
EL
< �r0

RA
. The condition

that this will indeed not happen is

EL 	 PT
r0�

RðAÞ: (4)

In this case, the size of the propagating hadronic system
does not appreciably increase while the latter is still inside
the nucleus.
Collisions with high momentum transfer do not trans-

form the colliding protons into pointlike configurations.
Indeed, imparting a large momentum transfer PT to a quark
in a bound state modifies the relative wave function as
follows:

 ð0Þð ~rÞ !  0
pð~rÞ ¼ ei

~PT 
 ~r ð0Þð ~rÞ: (5)

While  0ð ~rÞ quickly oscillates as a function of ~r, the
probability of finding a specific q �q separation in  0 is the
same as in the original q �q wave function  0 [28].
The converse however is correct. If, for example, due to

some ‘‘external forces’’, the hadrons attained small size
r � �r0, then these ‘‘small hadrons’’ would not readily
break in high momentum collisions. The typical momen-
tum transfer in small hadron collision is not P� � 1

r0
but

P� � 1
�r0

.

Viewing the color transparency phenomenon in the
time-symmetric formulation of quantum mechanics with
pre- and post-selected ensembles can explain this squeez-
ing effect. The hadronic states are kept small not by any
‘‘real’’ external force but rather by the peculiar force of
post-selection. Before discussing this, we will first discuss
this issue in the simpler setting of an idealized atomic
physics experiment.

III. ATOMS SQUEEZED BY POST-SELECTION

Quantum systems which were preselected to be in a state
j ini at time tin and subsequently post-selected to be in a
different, almost orthogonal state j fini at time tfin may
exhibit surprising behavior at intermediate times tin � t �
tfin. Specifically ‘‘weak measurements’’ (i.e. measure-
ments that weakly change the time evolution of the system)
of an operator A, yield average values given by

Aw � h finjÂj ini
h finj ini : (6)

For the case when

jh finj inij � �� 1; (7)

these Aw values may be large and lie far outside the domain
of (real) eigenvalues of the operator A.
By selecting this rare ensemble i.e. the 0ð�2Þ fraction of

systems which satisfy both the pre- and post-selection
criteria, we may ‘‘distill’’ and enhance certain effects
[14,21]. Here, we consider the rare atoms in a beam which
managed to go through a thin foil, without exciting it.
These selected atoms have, during the traversal of the
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foil, unusually small sizes so as to ensure the required weak
interactions with the foil material. The post-selection of
these can thus achieve a remarkable feat of squeezing the

atom into a small dimension for a time t ¼ df
VA

with df the

thickness of the foil and VA the velocity of the atom
traversing it.

To illustrate the basic notion, we focus first on a ‘‘ge-
danken experiment’’. Thus, we have our idealized ‘‘foil’’
consisting of a thin straight cylindrical tube of length df
and radius �r0, smaller than the atomic radius (r0 � A�) in
the ground state. The almost classical motion of the mas-
sive atom is a straight line along the tube’s axis traversed
with a fixed velocity VA.

There are two general ways by which we could force the
electron to be confined to the tube, i.e. to be at a small

transverse separation j~bj � �ro from the nucleus: 1) with a
strong repulsive potential, and 2) via post-selection.

A. Confinement with strong repulsive potential

We postulate a strong repulsive potential acting between
the electron and the wall material, say,

Vð~rÞ ¼ V0 > 0 (8)

for ~r inside the ‘‘walls’’ around the tube. In the original,
unperturbed atom, the velocity of the electron relative to
the nucleus is, according to the uncertainty principle,

ve ¼ p

m
¼ @

rom
: (9)

If the atom is further squeezed to a small transverse size
j~rj ¼ �ro, then the (transverse) velocity of the confined
electron is higher (the squiggle sign over a momentum
variable indicates the transverse part thereof):

~v 0 ¼ ~p

m
¼ @

�rom
: (10)

(The transverse squeezing does not dissociate the atom, but
rather provides a further confining potential for the elec-
tron.) Indeed, due to squeezing, we have effectively a one-
dimensional system and any attraction (and Coulombic
force in particular [29]) will support bound states. If the
velocity of the electron is higher than that of the center
mass motion

v0 	 v > vA (11)

then we can treat the latter motion in an adiabatic (Born-
Oppenheimer) approximation. The kinetic energy due to
the transverse confinement of the electron

�E ¼ 1

2
mv2 ¼ @

2

2m�2r2o
(12)

then becomes an effective potential barrier for the center-
of-mass motion. Assuming that the initial kinetic energy of
the latter is higher than this barrier

1
2MAV

2
A > �E; (13)

then this would minimally modify the center-of-mass
translational motion.

B. Confinement by post-selection

Introducing the repulsive potential in Eq. (8) amounts to
exerting a strong force on the electron. We next consider an
alternative transverse confinement of the electron without a
direct application of force. Let us postulate a short range
interaction between the electron and the wall material, an
interaction that can be neglected when j~rj � �ro i.e. when
the electron stays inside the tube.
This interaction is weak and, by itself, does not confine

the electron to be within the tube. Let us assume however,
that the wall is almost macroscopic with many closely
spaced energy levels. The electron-wall interaction will
readily excite the wall to one of these levels if, during
the traversal of the foil, the electron meanders into the wall.
Such an excitation could then be detected by careful, long
time measurements made on the foil after the atom has
passed through it. The small subset of post-selected atoms
in which no such excitation occurred defines then the small
subset of (transversally) ‘‘squeezed atoms’’. To avoid ex-
citations, the latter had to have a small transverse size j~rj �
�ro (with ~r the transverse part of ro) when it impinged on
the tube’s opening and it also had to remain small through-
out the entire time of transit t. The probability that in the
initial ground state the electron is inside the tube (j~rj �
�ro) is

jP̂tr
�ro j 0ij2 ¼

Z
j~rj��ro

d3 ~rj 0ð ~rj2 (14)

with P̂tr
�ro the projection onto j~rj � �ro. The state P

tr
�ro j 0i

is not stationary, but a superposition of many (or a con-
tinuum of) excited eigenstates of the original Hamiltonian.
The average energy of this state as dictated by the uncer-
tainty principle is

�E ¼ @
2

2m�2r2o
: (15)

The minimal time required for this state to change appre-
ciably is [30]

�t � @

2�E
� mr2o�

2

@
(16)

[31]. The more precise definition of the ‘‘appreciable
change’’ is that the overlap with the original wave function
is 1

e :

hP̂tr
�ro ðtÞjP̂tr

�ro ðtþ �tÞi � 1

e
: (17)

To ensure that the electron is at all times within the tube,
i.e. that j~rj � �ro, we need to keep projecting with Ptr at
time intervals �t. The probability that the system will
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survive all N ¼ t
�t projections is therefore

P ¼ YN
i¼1

Pi ¼ e�2N ¼ e�2t=�t ¼ e�2�Et

where Pi � jhP̂tr
�ro ðtÞjP̂tr

�ro ðtþ �tÞij2:
(18)

Indeed e�2�Et is the probability that the initial electron in
the ground state  0 will spontaneously jump to the
squeezed state of average energy �E and remain in such
a level for a time duration t.

The above is analogous to nuclear color transparency.
The nucleus with a dense spectrum of excitation plays the
role of the foil. The absence of nuclear excitation or break-
up ‘‘post-selects’’ the rare events in which the proton was
small and managed to traverse the nucleus with only one
scattering (at 90� in the pp rest frame) [32].

In principle, if we had ultrarelativistic atom beams with
�A � EA=mA � 1, the relativistic time dilation would
reduce the exponential damping of the post-selection event

rate from e�2�Et [Eq. (18)] to e2�Et=�.
For the nuclear case, the hard scattering collision of the

proton while traversing the nucleon was effectively the
‘‘weak’’ measurement at intermediate times. The surpris-
ing result of this measurement is the anomalously large
cross section for such a collision reflecting the anomalous
small size of the post-selected proton while transversing
the nucleus.

In the case of squeezed atoms, we could witness the
peculiar pattern of cascade of photons as the emergent
quasi-one-dimensional atom relaxes into the ordinary
ground state. However, it is not obvious what measure-
ments are appropriate for verifying the small transverse
dimensions of the squeezed atom while in transit [33].

IV. NUCLEAR COLOR TRANSPARENCY: THE
POST-SELECTION POINT OF VIEW

In this section, we use the time-symmetric reformulation
of quantum mechanics to discuss color transparency in the
nuclear QCD context.

The experimental setup for measuring the reaction pþ
ðA; ZÞo ! ppþ ðA� 1; Z� 1Þo (where the o subscript
indicates an unexcited ground state) is asymmetric in the
colliding protons—the high energy incident projectile and
the target proton almost at rest in the nucleus. It is conve-
nient to consider the case described in Fig. 1, which is
different from the real experimental setup because of the
presence of the Lorentz noninvariant physical background
of nuclear matter.

The two incident nucleons, say, a proton coming from
the left and a neutron coming from below, have momenta

of equal magnitude j ~P1j ¼ j ~P2j ¼ P, and trajectories
‘‘aimed’’ towards the center of the nucleus at the origin.

Since PRðA; ZÞ � @ we can specify the ~P1, ~P2 momenta
and have the wave packets reasonably well localized in the

respective transverse and longitudinal directions. We take
~P1 ¼ Pêx (initial proton moving from the left along the x

axis) and ~P2 ¼ Pêz (initial neutron moving from below
along the z axis). The initial wave function at some nega-
tive time �t is a product
j�ið�tÞi ¼  left

p ð ~P1 ¼ PêxÞ down
n ð ~P2 ¼ PêzÞ oðA; ZÞ

(19)

with  0ðA; ZÞ the nuclear ground state wave function.
If neither projectile scatters from nucleons inside the

nucleus the latter will stay in its ground state. Conversely,
if we post-select these events in which the nucleus stayed
in the ground state, then the incident proton and neutron
suffered no collision with the nucleons inside the nucleus.
We will consider two cases:
(a) There was no mutual scattering of the incident pro-

ton and neutron, and each continued along its initial
path after reemerging from the nucleus at the points
diametrically opposite the (respective) entry points
(see Fig. 1), or

(b) the proton and neutron collided at time t ¼ 0 (when
their trajectories intersected at the origin) and scat-
tered by 90� (see Fig. 2). Kinematics and symmetry

then implies that PfinalðprotonÞ ¼ ~P3 and

PfinalðneutronÞ ¼ ~P4 have again the same common

magnitude as the initial nucleons j ~P3j ¼ j ~P4j ¼ P.
The final state at positive time t for the no scattering

case (a) is written in analogy with the initial state Eq. (19):

FIG. 1. Case (a)

FIG. 2. Case (b)
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j�finalðtÞia ¼  
right
p ð ~P3 ¼ PêxÞ up

n ð ~P4 ¼ PêzÞ oðA; ZÞ:
(20)

Where the up superscript on  up
n indicates that at time t, the

neutron wave packet is located above the nucleus (after
having traveled along a diameter across the nucleus with-

out exciting it). Likewise  right
p ð ~P4 ¼ PêxÞ is the proton

wave packet emerging to the right of the nucleus. Finally,
 0ðA; ZÞ is the unexcited nuclear ground state.

The corresponding final state in case (b) is

j�finalðtÞi ¼  
up
p ð ~P3 ¼ PêzÞ right

n ð ~P4 ¼ PêxÞ oðA; ZÞ:
(21)

We next analyze the overlaps between the (post-selected)
final state and the initial state, evolved from �t to t for
cases (a) and (b):

h�finalðtÞjUðt;�tÞj�initialð�tÞi � Uif: (22)

Case (a): The overlap, Eq. (22), factorizes into two parts
pertaining to the proton and to the neutron separately:

UðaÞ
if ¼ h up

p ð ~P3 ¼ PêzÞjUðt;�tÞj down
p ð ~P1 ¼ PêzÞi oðA;ZÞ

� h right
n ð ~P4 ¼ PêxÞjUðt;�tÞj left

n ð ~P2 ¼ PêxÞi oðA;ZÞ:
(23)

The  0ðA; ZÞ subscript notation indicates that each over-
lap—including the time evolution and traversal of the
whole nucleus along the z (or x) axis by the proton (neu-
tron), respectively—is evaluated subject to the (post-
selection) condition, namely, that the nucleus remains in
the ground state  0ðA; ZÞ.

Since the motions of the proton along the x axis and of
the neutron along the z axis are independent in the no
collision case (a), the amplitude has the above product
form. Any collision of the energetic incoming proton (or
neutron), inside the nucleus leads to extra particle produc-
tion and/or nuclear excitation. Thus the naive (and incor-
rect!) expectation is that the corresponding transmission
probability (e.g. for the protons) is suppressed exponen-
tially as a function of radius R:

Ptrans � jh up
p jUðt;�tÞj down

p i oðA;ZÞj2 � e�2R=�N : (24)

With �N the mean free path of the incident nucleon inside
the nucleus:

�N ¼ ðn�NNðELÞÞ�1 (25)

with nð� 0:16ðFermiÞ�3Þ the nucleon number density in-
side the nucleus which can be taken as a constant for R�
Fermi and �NNðELÞ is the nucleon-nucleon cross section at
the relevant energy EL.

Color transparency asserts that Eqs. (24) and (25) are
wrong. In particular, Ptran falls only algebraically with
nuclear size

Ptrans � ðR=roÞ�a (26)

providing that the initial projectile’s energy ELab � jPj is
high enough:

EL 	 @R2

r2o�N
(27)

with r0 � Fermi a typical hadronic scale. Just as with the
atomic gedanken setup that we discussed earlier, we begin
by estimating the probability that the projectile had, at the
time it enters the nucleus, a small transverse size:

j~rj ¼ �ro: (28)

If only the lowest Fock-space component [namely, the
three quark (3q) component] was present in the initial
proton’s wave function, then, in analogy with Eq. (14)
above, we find (with  0 denoting the 3q component)

Pðj~rj � �ro; for 3q compÞ ¼
ZZ

d3 ~r1d
3 ~r2j 0

pð ~r1; ~r2; ~r3Þj2

�ð�ro� j~r1jÞ
�ð�ro� j~r2jÞ (29)

with ~r1 þ ~r2 þ ~r3 ¼ 0. The triangular inequality implies
also that j~r3j � �ro. The symmetric quark wave function
does not vanish when j~ri � ~rjj ! 0. NormalizingRR
d3 ~r1d

3 ~r2j pð~r1; ~r2; ~r3Þj2 ¼ 1, we find that

Ppðjrj � �ro; for 3q compÞ � �4: (30)

The analog probability for a mesonic q �q projectile is
higher:

P�ðjrj � �ro; for 2q compÞ � �2: (31)

Appealing now to the vector nature of QCD, the cross
section of small (jriij � �r0) hadrons or dipoles scales
with the ðsizeÞ2; and hence

�Pðj~rijj��roÞN ¼ �ðsmallpÞN � �2r2o (32)

or �2 times smaller than ordinary nucleon-nucleon scatter-
ing cross section:

�NN � r2o: (33)

The probability that a ‘‘small nucleon’’ with jri � rjj �
�r0 will traverse the nucleus without scattering is therefore

PtransðsmallN; jri � rjj � �r0Þ � e�ð2R�2=�NÞ: (34)

The above discussion neglected the higher Fock states in
the high (‘‘infinite‘‘) momentum wave function of the
incident proton. We next argue that

Pð3qÞ � prob of 3qFock-space component ¼ E�~b
L

E0

: (35)

Indeed, hadronic multiplicities at high energy collisions
increase at least as
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�n g � ~blnðEL=EoÞ: (36)

This is likely to reflect the average number of gluons �ng (of

q �q pairs) in the proton’s wave function. Assuming a
Poisson distribution, the probability of having no extra
gluons or q �q pairs is expð� �nÞ reproducing Pð3qÞ of
Eq. (35). The above is modified by nonscaling behavior,
e.g. rising rapidity plateaus and/or cross sections. However,
in the energy range of the proposed color transparency
experiments, EL � 20 GeV, such effects are small.
Combining then Eq. (30) and (35), we have

Ppðj~rj � �roÞ � ðEL=EoÞ�~b�4: (37)

Finally, the probability that the initial proton will traverse
the nucleus without scattering by virtue of having compo-
nents of size j~rj ¼ �ro i:

Ptrans ¼ �4ðEL=EoÞ�~be�ð2R�2=�NÞ: (38)

The dominant contribution comes from the saddle point in

�2 space where @Ptrans

@�2
¼ 0 and

�2 ¼ �N=R; (39)

so that

Ptrans ¼
�
�N
R

�
4
�
EL
Eo

��~b
: (40)

This assumes that the small size ‘‘bare’’ system entering
the nucleus maintains this small size during nuclear tra-
versal. The transverse momenta of the quarks implied by
the transverse confinement is

PT � @=j~rj � @=�ro: (41)

Substituting this in Eq. (4) yield:

EL 	 @R

�2r2o
: (42)

Upon substituting the optimal �2 of Eq. (39), we obtain our
stated lower bound on EL [i.e. Eq. (27)]. To maximize
Ptrans of Eq. (40), we choose the minimal energy EL ¼
R2=r2o�N leading to the promised power dependence on R:

PtransðRÞ �
�
�N
R

�
4þ~b

�
ro
R

�~b
(43)

with r0E0 � Oð1Þ factors omitted.
The above discussion leads to dramatic conclusions:
(1) The transverse size of the nucleons, if measured at

intermediate times inside the nucleus, should be
very small j~rj2 ¼ r2oð�N=RÞ.

(2) The probability that a nucleus will be (diametri-
cally) traversed by a high energy nucleon with no
collisions falls off only as an inverse power
ðR=roÞ�a of the nuclear radius (rather than exponen-
tially as e�R=�N ) so long as the projectile’s energy is
high enough: E=m � � > R=ro. This dramatic, yet
not directly measurable feature, has been already
noted by Kopelovich, Lapidus, and Zamolodchikov
[34].

If we could measure the transmission probability and
verify that for RA ¼ 2RB, PtransðRAÞ � P2

transðRBÞ, then the
above dramatic prediction could be tested. However, we
need to make sure that the nucleon indeed traversed the
nucleus rather than simply passing next to it. This could be
done if we had a gedanken ‘‘nuclear’’ foil consisting of
closely packed nuclei. Such foils are not available and the
typical distances between nuclei are a > A�. For the post-
selected small component to reach even the next atomic
layer an angstrom away, requires E 	 ðmA�=roÞ �
105 GeV. Thus, we need some extra, hard nuclear colli-
sions to verify that the unperturbed nucleus was crossed by
the proton or by the neutron.
In the symmetrized version, we look for collisions be-

tween the two nucleons at 90� with momentum transfers
ð�PtÞ2 � P2. These putative collisions occur for the initial
state described above at time t ¼ 0 and at the center of the
nucleus. These scattered nucleons travel the same distance
2R through the nucleus as occurred and have the same
energy. Hence, the ‘‘filtering’’ of small hadrons is the same
in the case when proton-neutron scattering at 90� happened
as in the case when it did not happen [35].
The weak average of the quantity of interest, namely, the

large angle, 90�, scattering amplitude in the time-
symmetric formalism is

h right
p ð ~P4 ¼ PêxÞ up

n ð ~P3 ¼ PêzÞjUðt;�tÞj left
p ð ~P1 ¼ PêxÞ down

n ð ~P2 ¼ PêzÞi oðA;ZÞ
h right

p ð ~P3 ¼ PêxÞjUðt;�tÞj left
p ð ~P1 ¼ PêxÞi oðA;ZÞh up

n ð ~P4 ¼ PêzÞjUðt;�tÞj down
n ð ~P2 ¼ PêzÞi oðA;ZÞ

: (44)

The hard 90� scattering of pn! np at t ¼ 0 seems not
to be a weak measurement. However, the discussion pre-
ceding Eq. (5) indicates that, insofar as the aspect of
interest is concerned, namely, the filtering via nuclear
absorption, the 90� scattering does not change anything
at all! This justifies using in Eq. (44) the same weak value
denominator [see Eq. (6)] as for the case of no scattering.

If the propagation of the proton and neutron through the
nucleus—prior to and after the collision—were indepen-
dent of the hard collision, then the numerator in Eq. (36)
would be a product of two amplitudes for the nuclear
propagation and the hard scattering amplitude in vacuum.
The nuclear propagation amplitude would cancel in
Eq. (44) leaving
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Uif � Að0Þðpn! npÞ ¼ Að0Þ
NNð� ¼ 90�Þ; (45)

and the hard scattering amplitude of the two energetic
colliding particles—while traversing the nucleus—would
then be the same as the corresponding amplitude in free
space.

However, this is not the case. We can evolve the initial
system of incident p, n from time�t to time��t just prior
to the collision and evolve backward in time the final
emergent np from time þt to time �t just after the hard
collision.

The condition of leaving the nucleus unexcited filters
small components of transverse size

~r 2 ¼ �2r20 ¼
�NN
R

r2o (46)

in the propagating neutrons and protons. The hard scatter-
ing, then, involves no ordinary size nucleons of size r0, but

in the limit when �N
R � 1, it involves much smaller objects.

Color neutrality implies that soft gluon exchanges between
these pointlike configurations are strongly suppressed.

However, there is no such suppression of exchange of
hard gluons with momentum transfer in the scattering of
the nucleons:

ð�PÞ2 ¼ @
2

�2r2o
� @

2

r2o

R

�N
: (47)

Such gluons can resolve the quarks within the small
pointlike objects. Further, since �P is comparable with
the intrinsic transverse momentum spread in the wave
function of the squeezed nucleon, there is Oð1Þ amplitude
for 90� elastic scattering ps þ ns ! ns þ ps of the latter
[36].

V. SUMMARYAND CONCLUSIONS

We have seen above that color transparency in the
nuclear QCD context and its relation to pre- and post-
selected small nucleons naturally fits in the framework of
the time-symmetric formalism of quantum mechanics. We
also preceded this with a, hopefully, not completely aca-
demic discussion of a similar atomic filtering.
In closing, we note that while the use of post-selection is

extremely common it is not always closely related to the
pre- and post-selection (time-symmetric) formulation of
quantum mechanics. An outstanding example is provided
by the upcoming CERN LHC accelerator. The large
�109= sec collision rate and complex final states (� 200
particles produced per collision) preclude analyses (and
even storage) of all experimental data. Thus, one heavily
relies on ‘‘triggers’’ which post-select interesting, rela-
tively rare events where particles with large transverse
momenta were produced. Only such events are stored
and analyzed. These events are also preselected: all of
the collisions have initial proton pairs moving towards
each other along the z axis, say, with specific (large)
energies of 7:103 GeV.
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