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We apply the pseudoparticle approach to SU(2) Yang-Mills theory and perform a detailed study of the

potential between two static charges for various representations. Whereas for charges in the fundamental

representation we find a linearly rising confining potential, we clearly observe string breaking, when

considering charges in the adjoint representation. We also demonstrate Casimir scaling and compute

gluelump masses for different spin and parity. Numerical results are in qualitative agreement with lattice

results.
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I. INTRODUCTION

A common approach to gain some understanding of the
vacuum structure of Yang-Mills theory and QCD is to
consider effective theories restricting the path integral to
a small subset of gauge field configurations, which are
supposed to be of physical importance. Well-known ex-
amples are ensembles of singular gauge instantons (cf. [1]
and references therein), which are able to explain many
phenomena on a qualitative level, in particular, chiral
symmetry breaking. Confinement, however, is absent in
these ensembles, although there has been some speculation
that very large instantons have the ability to cure this
problem ([2] quoted in [1]). More recently related models
for Yang-Mills theory have been proposed, which exhibit
clear signs of confinement. There are ensembles of regular
gauge instantons and merons [3–5], there is the pseudo-
particle approach [6–8], there are models of calorons with
nontrivial holonomy, [9,10] and there is an ensemble of
dyons [11]. The successes of these models regarding con-
finement have either been attributed to the long range
nature of their building blocks or to maximally nontrivial
holonomy.

However, a satisfactory model for Yang-Mills theory
should not only exhibit a linearly rising fundamental po-
tential, but also Casimir scaling for higher representations
as well as N-ality dependence. In particular the adjoint
potential should exhibit string breaking, when the corre-
sponding charges are separated beyond a certain distance.
For a review regarding the confinement problem in Yang-
Mills theory we refer the reader to [12].

The goal of this paper is to demonstrate that the pseu-
doparticle approach applied to SU(2) Yang-Mills theory
correctly reproduces the potential between two static
charges for various representations. Particular emphasis
is put on string breaking in the adjoint representation.

A. Outline

When computing the fundamental representation poten-
tial, Wilson loops are appropriate observables. In agree-
ment with common expectation, the resulting potential is
linearly rising both in lattice calculations (cf. e.g. [13]) and
in the pseudoparticle approach (cf. e.g. [7]). In contrast to
that, the adjoint potential is expected to saturate at large
separations, due to screening by gluons. However, various
lattice studies [14–21] have shown that the computation of
this potential fails, when usingWilson loops only. One also
obtains a linearly rising potential, because of the poor
overlap between ‘‘string trial states’’ forming the Wilson
loops and the ground state, which is essentially a ‘‘two-
gluelump state’’ for large separations (an exception to that
is a rather recent study considering 3d Yang-Mills theory,
whereWilson loops of extremely large temporal separation
have been computed [22,23]). A possible way to overcome
this problem is to consider whole sets of trial states includ-
ing both string states (large ground state overlap for small
separations) and two-gluelump states (large ground state
overlap for large separations). The adjoint potential can
then be computed from the corresponding correlation ma-
trices via standard variational techniques.
The paper is organized as follows. In Sec. II, we briefly

summarize the basic principle of the pseudoparticle ap-
proach, which is discussed in more detail in [7]. Then we
compute ‘‘pure Wilson loop static potentials’’ for charges
in various representations (Sec. III). We determine the
fundamental string tension to set the scale, and we dem-
onstrate Casimir scaling for higher representations. In
Sec. IV we discuss gluelump creation operators and their
quantum numbers. We also present numerical results for a
couple of gluelump masses and give estimates regarding
the string breaking distance. In Sec. V we compute the
adjoint potential using both stringlike and two-gluelump-
like trial states. As expected, it is linearly rising at inter-
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mediate separations, but saturates at large separations.
Moreover, we perform a mixing analysis showing clear
evidence for string breaking. Both the string breaking
distance and the shape of the potential and its first two
excitations are in qualitative agreement with lattice results.
Finally we give a summary and a brief outlook in Sec. VI.

II. THE PSEUDOPARTICLE APPROACH IN SU(2)
YANG-MILLS THEORY

A. Introduction to the pseudoparticle approach

In the following we briefly review the pseudoparticle
approach and its application to SU(2) Yang-Mills theory.
For a more detailed presentation we refer to [7].

The basic idea of the pseudoparticle approach is to
restrict the Yang-Mills path integral to those gauge field
configurations, which can be obtained by a linear superpo-
sition of a small number of localized building blocks
(pseudoparticles). A suitable choice, which is able to re-
produce many essential features of SU(2) Yang-Mills the-
ory, particularly a linearly rising fundamental potential, is
given by

ab�;instantonðxÞ ¼ �b
��

x�
x2 þ �2

; (1)

ab�;antiinstantonðxÞ ¼ ��b
��

x�
x2 þ �2

; (2)

ab�;akyronðxÞ ¼ �b1
x�

x2 þ �2
; (3)

where � is the pseudoparticle size, �b
�� ¼ �b�� þ

�b��0� � �b��0� and ��b
�� ¼ �b�� � �b��0� þ �b��0�.

The gauge field configurations entering the path integral
are of the form

Aa
�ðxÞ ¼

X

i

AðiÞCabðiÞab�;instantonðx� zðiÞÞ

þX

j

AðjÞCabðjÞab�;antiinstantonðx� zðjÞÞ

þX

k

AðkÞCabðkÞab�;akyronðx� zðkÞÞ; (4)

where zðiÞ 2 R4 denotes the randomly chosen, but fixed
position of the ith pseudoparticle,AðiÞ 2 R its amplitude
and CabðiÞ 2 SOð3Þ its color orientation. Ensemble aver-
ages of observables O are defined by an integration over
pseudoparticle degrees of freedom, namely, amplitudes
and color orientations:

hOi ¼ 1

Z

Z �Y

i

dAðiÞdCðiÞ
�
O½A�e�S½A�: (5)

Each gauge field configuration is weighted by e�S, where S
is the standard Yang-Mills action

S ¼ 1

4g2

Z
d4xFa

��F
a
��; (6)

Fa
�� ¼ @�A

a
� � @�A

a
� þ �abcAb

�A
c
� (7)

with g being the coupling constant. Such finite dimensional
integrals can be computed by applying standard
Monte Carlo techniques.
In [6–8] it has been shown that around 400 pseudopar-

ticles (1)–(3) are sufficient to reproduce many essential
features of SU(2) Yang-Mills theory. In particular the
potential between static charges in the fundamental repre-
sentation is linear for large separations. Moreover, like in
lattice gauge theory the scale can be set by choosing the
coupling constant appropriately. Although the spacetime
volume has been varied by a factor of � 16 with the total
number of pseudoparticles kept constant, the dimension-

less ratios �1=4=�1=2 and Tcritical=�
1=2 are essentially inde-

pendent of the coupling constant and their numerical
values are in qualitative agreement with lattice results
(�: string tension; �: topological susceptibility; Tcritical:
deconfinement temperature).
Although we use instantonlike building blocks (1) and

(2), we would like to stress that the pseudoparticle ap-
proach is not a semiclassical model. The intention is rather
to approximate physically relevant gauge field configura-
tions with a small number of degrees of freedom. In
general these configurations are not close to solutions of
the classical Yang-Mills equations of motion.
As was discussed extensively in [7], the successful

qualitative modeling of Yang-Mills physics seems mainly
to be related to the long-range nature of the building blocks
(1)–(3) and to the transversality of (1) and (2).

B. Numerical setup

Unlike in previous applications of the pseudoparticle
approach [6–8] we consider a 4d hypercubic spacetime
region (volume: L4 ¼ 5:04) with periodic boundary con-
ditions. This allows one to fully exploit translational in-
variance and to adopt certain smearing techniques from
lattice gauge theory (cf. Appendix A 1 and A 2). Periodic
versions of the pseudoparticles (1)–(3) are obtained by
applying a blending technique introduced in [7] applied
to all four spacetime directions (width of the blending
region: 0:25� L ¼ 1:25).
We use 625 pseudoparticles (1)–(3) with � ¼ 0:5. This

amounts to a pseudoparticle size, which is of the same
order of magnitude as their average nearest neighbor dis-
tance. The ratio of pseudoparticles is chosen according to
Ninstanton:Nantiinstanton:Nakyron ¼ 3:3:2.

We consider values of the coupling constant g between
9.5 and 18.5. This corresponds to spacetime extensions in
the range of 1:55 fm & L & 2:31 fm in physical units,
where the scale has been set by identifying the fundamental
string tension with 4:2=fm2. The majority of computations
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has been performed at g ¼ 12:5, which amounts to L ¼
1:85 fm.

All ensemble averages have been computed from 50
thermalized gauge field configurations (4) with indepen-
dently chosen pseudoparticle positions. For efficiency of
the computation we convert these continuum gauge field
configurations to lattice link configurations before en-
semble averages are computed (cf. Appendix A).

III. PURE WILSON LOOP STATIC POTENTIALS
FOR DIFFERENT REPRESENTATIONS

In this section we compute the potential between two
static charges for different representations from Wilson
loops only. This amounts to considering temporal correla-
tions between string trial states

ð	ðJÞðxÞÞyUðJÞðx; yÞ	ðJÞðyÞj�i; (8)

where ð	ðJÞÞy and 	ðJÞ represent static charges in repre-

sentation J ¼ 1=2; 1; 3=2; . . . at x and y and UðJÞ is a
straight parallel transporter connecting the charges in a

gauge invariant way. We orient UðJÞ along one of the four
space diagonals allowing us to consider rather large spatial
separations R ¼ jx� yj without being affected by period-

icity. To maximize the ground state overlap, UðJÞ is ap-
proximated by a product of APE smeared spatial links
(cf. Appendix A 1). To compute effective masses, we use
the variational method explained in Appendix B. We con-
sider correlation matrices built from three string trial states
(8), which differ in their APE smearing parameters
(NAPE 2 f5; 15; 35g, 
APE ¼ 0:5).

To give the reader an idea of the plateaux quality ob-
tained from our pseudoparticle computations, we show
ground state effective masses for the fundamental repre-
sentation potential in Fig. 1(a). As potential values we take
weighted averages of effective masses in ranges where
plateaus are indicated [the solid horizontal lines in Fig. 1
(a)]. The corresponding potential is plotted in Fig. 1(b). As
expected it is linear for large separations. For separations
smaller than the pseudoparticle size and average nearest
neighbor distance, cutoff effects are dominant yielding a
parabolic rather than a Coulomb-like behavior. To set the
scale, we perform a �2 minimizing fit with VðRÞ ¼ V0 þ
�R to the data points indicated in Fig. 1(b) and identify the
resulting string tension � ¼ 0:57ð3Þ with the ‘‘physical
value’’ 4:2=fm2. We obtain a spacetime extension L ¼
1:85 fm.

It is well known that Wilson loops in higher representa-

tions WðJÞ
ðR;TÞ, J ¼ 1; 3=2; 2; . . . , can be expressed in terms

of fundamental representation Wilson loops WðR;TÞ ¼
Wð1=2Þ

ðR;TÞ according to

Wð1Þ
ðR;TÞ ¼ 4

3ðWðR;TÞÞ2 � 1
3; (9)

Wð3=2Þ
ðR;TÞ ¼ 2ðWðR;TÞÞ3 �WðR;TÞ; (10)

Wð2Þ
ðR;TÞ ¼ 16

5 ðWðR;TÞÞ4 � 12
5 ðWðR;TÞÞ2 þ 1

5; (11)

Wð5=2Þ
ðR;TÞ ¼ 16

3 ðWðR;TÞÞ5 � 16
3 ðWðR;TÞÞ3 þWðR;TÞ: (12)

Results for the corresponding potentials are shown in Fig. 2

(a). In Fig. 2(b) we plot ratios VðJÞ=Vð1=2Þ. For intermediate
distances these ratios are expected to be close to the ratios
of the corresponding Casimir operators, which are given by
8=3 (J ¼ 1), 5 (J ¼ 3=2), 8 (J ¼ 2), and 35=3 (J ¼ 5=2)
[the solid lines in Fig. 2(b)]. While the adjoint potential is
in excellent agreement with the Casimir scaling hypothe-
sis, higher representations exhibit certain deviations at
larger separations. These findings are in agreement with
both [5,24], where similar analyses in related meron and
regular gauge instanton ensembles as well as in 4d SU(2)
lattice gauge theory have been performed.
Note that there is no sign of string breaking in the adjoint

potential [J ¼ 1 curve in Fig. 2(a)], which is expected to
happen at distances R � 1:0 fm . . . 1:25 fm [20,25]. As we
will demonstrate in Sec. V this is due to the poor ground
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FIG. 1 (color online). (a) Effective masses for the static po-
tential in the fundamental representation for different separations
R as functions of T. (b) The corresponding static potential Vð1=2Þ
as a function of the separation R.
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state overlap of string trial states (8) for separations larger
than the string breaking distance.

IV. GLUELUMP MASSES FOR DIFFERENT SPIN
AND PARITY

To estimate the string breaking distance, we compute
masses of states containing a single static adjoint charge
surrounded by gluons, so-called gluelumps.

A. Gluelump-trial states

The symmetry group of states constrained by a single

static charge 	ð1Þ located at position x is SOð3Þ � P (ro-
tation and parity both with respect to x). Suitable ‘‘glue-
lump creation operators’’ with well-defined quantum
numbers are given by

GðJ¼1;P¼þÞ
j ðxÞ ¼ Trð�ðxÞBjðxÞÞ; (13)

GðJ¼1;P¼�Þ
j ðxÞ ¼ Trð�ðxÞ�jklDkBlðxÞÞ; (14)

GðJ¼2;P¼�Þ
j ðxÞ ¼ Trð�ðxÞj�jkljDkBlðxÞÞ; (15)

where j 2 fx; y; zg,� ¼ ð	ð1ÞÞa�a=2, Bj denotes the color

magnetic field, and Dj ¼ @j � i½Aj; . . .� the covariant de-

rivative. In the literature ðJ¼1;P¼þÞ and ðJ¼1;P¼�Þ
gluelumps are also referred to as magnetic and electric
gluelumps, respectively.
Since we perform a latticization of our pseudoparticle

gauge field configurations, it is convenient to replace Bj by

the magnetic clover leaf in a plane perpendicular to the j
direction and DkBl by the corresponding electric clover
leaf in a plane perpendicular to the l direction [14]. After
this replacement our gluelump creation operators are not
rotationally symmetric anymore, but belong to one of the
irreducible representations of the cubic rotation group Oh:
T1 for (13) and (14), i.e. the corresponding states are
superpositions of spin J ¼ 1; 3; 4; . . . , and T2 for (15),
i.e. spin values J ¼ 2; 3; 4; . . . are possible.

B. Numerical results

We determine gluelump masses from temporal correla-
tions

h�jðGðJ;PÞ
j ðx; TÞÞyGðJ;PÞ

j ðx; 0Þj�i ðno sum over jÞ; (16)

where the spatial links appearing in the clover leafs are
APE smeared, to maximize the ground state overlap
(NAPE ¼ 5, 
APE ¼ 0:5; cf. Appendix A 1 and B).
Note that gluelump masses by themselves are not physi-

cally meaningful. They are cutoff dependent quantities,
which diverge in the continuum limit, due to the self-
energy of the static charge (cf. e.g. [26,27]). However,
mass differences of gluelumps or more generally of states
containing the same number of static charges are physical
observables. This offers the possibility to compute mass
differences between gluelumps and to estimate the string

breaking distance RðJ;PÞ
sb by intersecting the pure Wilson

loop adjoint potential Vð1Þ with 2 times the corresponding
gluelump mass [cf. Fig. 3(a)]. Results are collected in
Table I.
Comparing these results to available lattice results we

find rather good agreement for the estimated ‘‘magnetic

string breaking distance’’: Rð1;þÞ
sb;lattice ¼ 1:0 fm . . . 1:25 fm

[20,25]. Moreover, the mass of the magnetic and of the
electric gluelump are of the same order of magnitude.
However, their mass difference, which is hard to measure
precisely, due to large absolute mass values, has the oppo-

site sign: ðmð1;þÞ
gluelump �mð1;�Þ

gluelumpÞlattice ¼ �203ð76Þ MeV

[25]. An explanation might be that ultraviolet fluctuations,
which are probably more important for localized objects
like gluelumps than for the static potential at large separa-
tions, are not adequately described by our pseudoparticle
regularization (the resolution of our gauge field configura-
tions is roughly given by the pseudoparticle size and the
average nearest neighbor distance, which is � 0:4 fm for
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FIG. 2 (color online). (a) Pure Wilson loop static potentials
VðJÞ for different representations J as functions of the separation
R. (b) Ratios of different representation static potentials
VðJÞ=Vð1=2Þ compared to the Casimir scaling expectation as
functions of the separation R.
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g ¼ 12:5). Similar problems have been encountered in a
study of the gluelump spectrum in related meron and
regular gauge instanton ensembles [5].

We have also investigated the stability of the estimated
string breaking distances under a variation of the coupling
constant g [cf. Fig. 3(b)]. While the spacetime volume in
physical units has been increased by a factor of � 5 (g ¼
9:5 . . . 18:5 corresponds to L ¼ 1:55 fm . . . 2:31 fm) with
the total number of pseudoparticles kept constant, the

estimated string breaking distances Rð1;þÞ
sb , Rð1;�Þ

sb , and

Rð2;�Þ
sb vary by only� 6%,� 9%, and� 19%, respectively.

This complements the scaling analysis performed in [8],

where the dimensionless ratios �1=4=�1=2 and Tcritical=�
1=2

have been found to be essentially independent of the
coupling constant.

V. ADJOINT STRING BREAKING

In this section we supplement our basis of string trial
states (8) used in the variational method (cf. Appendix B)
by a second type of trial state, which resembles a two-
gluelump state.

A. Two-gluelump trial states

When computing the adjoint potential, it is essential to
have a basis of trial states with significant ground state
overlap for arbitrary separations of the static charges. For
intermediate separations the ground state is expected to be
a gluonic string connecting the charges, i.e. a state with
large overlap to the string trial states (8). For large separa-
tions the charges are supposed to be screened by gluons
forming two essentially noninteracting gluelumps. As we
will demonstrate at the end of this section, the overlap to
string trial states is rather poor.

In the following we consider the static charges ð	ð1ÞÞy
and 	ð1Þ located at positions x ¼ ð0; 0;�z=2Þ and y ¼
ð0; 0;þz=2Þ. The corresponding symmetry group is
SOð2Þ � Pzð�PxÞ. The SOð2Þ rotation is around the z
axis with angular momentum Jz as the corresponding
quantum number. Pz denotes reflection along the z axis
with respect to its center, and in the case of Jz ¼ 0 there is
another symmetry Px, reflection along the x axis [28].
The quantum numbers of the string trial states (8) are

Jz ¼ 0, Pz ¼ þ, and Px ¼ þ. Since we are not only
interested in whether the adjoint potential saturates at 2
times the gluelump mass, but also in whether the string
actually breaks, when static charges are separated adiabati-
cally, we need two-gluelump trial states, which have the
same quantum numbers. Using products of two single-
gluelump creation operators (13)–(15) an obvious choice is

ðGðJ;PÞ
x ðxÞGðJ;PÞ

x ðyÞ þGðJ;PÞ
y ðxÞGðJ;PÞ

y ðyÞ
þGðJ;PÞ

z ðxÞGðJ;PÞ
z ðyÞÞj�i: (17)

There is another possibility, where GðJ;PÞ
z GðJ;PÞ

z is weighted
by a factor of�2. However, since string breaking is closely
related to nonvanishing off-diagonal elements in correla-
tion matrices, we expect such a state to be less suited for
our purposes, due to the relative minus sign. Therefore, we

TABLE I. Gluelump masses, mass differences, and estimated string breaking distances for
different quantum numbers ðJ; PÞ.
ðJ; PÞ mðJ;PÞ

gluelump mðJ;PÞ
gluelump �mð1;�Þ

gluelump RðJ;PÞ
sb

ð1;þÞ 1037(21) MeV 172(38) MeV 1.01(3) fm

ð1;�Þ 865(17) MeV . . . 0.85(2) fm

ð2;�Þ 1123(23) MeV 257(40) MeV 1.09(3) fm
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FIG. 3 (color online). (a) Estimating string breaking distances
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sb by intersecting the static adjoint potential Vð1Þ with

2mðJ;PÞ
gluelump. (b) Estimated string breaking distances RðJ;PÞ

sb as

functions of the coupling constant g for different gluelump
quantum numbers ðJ; PÞ.
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supplement our basis of string trial states by (17) for the
following computations.

B. Numerical results

Although the electric gluelump turned out to be lighter
than the magnetic gluelump, we compute string breaking
both with electric and with magnetic trial states. This
allows a direct comparison to lattice results, since there
seem to be only investigations of 4d adjoint string breaking
with magnetic trial states in the literature [20,21].

We extract the adjoint potential from 3� 3 correlation
matrices containing two string trial states (NAPE 2
f15; 35g, 
APE ¼ 0:5; cf. Appendix A 1) and one two-
gluelump-trial state (NAPE ¼ 5, 
APE ¼ 0:5) by means of
the variational technique explained in Appendix B.
Results, which are shown in Fig. 4, are qualitatively the
same both for magnetic and electric trial states. In contrast
to the pure Wilson loop computation (cf. Fig. 2(a), J ¼ 1
curve) the potential saturates at 2 times the gluelump mass
and at separations close to the estimated string breaking
distance (cf. Table I). We also plot the first and second
excitation. It is interesting to note that for small separations
the first excitation is a string excitation; for intermediate

distances it becomes a two-gluelump state and for large
separations it is a string state again. This level ordering is in
agreement with various lattice computations in 3d [18,19]
and 4d [20] SU(2) Yang-Mills theory. Moreover, within �
20% there is agreement with [20] regarding the string
breaking distance and the separation of the energy levels.
We have also investigated whether the string actually

breaks when static charges are separated adiabatically, or
whether there is just a plain level crossing of string and
two-gluelump ground states. Since this question is rather
difficult to resolve from potential plots like Fig. 4, we
perform a mixing analysis in close analogy to [20]. To
keep things as simple as possible, we consider two nor-
malized trial states, a string trial state jstringi (NAPE ¼ 35,

APE ¼ 0:5) and a two-gluelump trial state jtwo-gluelumpi
(NAPE ¼ 5, 
APE ¼ 0:5). From the variational method we
obtain approximations of the ground and the first excited
state:

j0i � a0stringjstringi þ a0two-gluelumpjtwo-gluelumpi; (18)

j1i � a1stringjstringi þ a1two-gluelumpjtwo-gluelumpi: (19)
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FIG. 4 (color online). The static adjoint potential Vð1Þ and its
first two excitations as functions of the separation R.
(a) Magnetic two-gluelump trial state. (b) Electric two-gluelump
trial state.
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states as functions of the separation R.
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In Fig. 5 we show the squared amplitudes jajstringj2 and

jajtwo-gluelumpj2 as functions of the separations for the case

of a magnetic two-gluelump trial state. It is clearly visible
that for separations smaller than the estimated string break-

ing distance Rð1;þÞ
sb � 1:0 fm, the ground state is essentially

a string state, while the first excited state is almost exclu-
sively a two-gluelump state. For separations larger than the
string breaking distance, the situation is reversed, explain-
ing why a computation of string breaking from Wilson
loops alone has failed. In a narrow range around the string
breaking distance we observe mixing of string and two-
gluelump trial states. This mixing indicates that there is a

smooth transition from a string state for R & Rð1;þÞ
sb to a

two-gluelump state for R * Rð1;þÞ
sb , when static charges are

separated adiabatically. We conclude that string breaking is
present in the pseudoparticle approach. Comparing the
overlap plots from Fig. 5 to the lattice result in [20] we
find again rather good agreement.

VI. SUMMARY

We have performed a detailed study of adjoint string
breaking in the pseudoparticle approach. In agreement
with lattice gauge theory the static potential saturates at 2
times the gluelump mass, which corresponds for magnetic
trial states to a charge separation of � 1:0 fm. Moreover,
from a mixing analysis we have obtained strong indications
that the connecting gluonic string actually breaks, when the
corresponding charges are separated adiabatically. We
have also computed static potentials for various represen-
tations from Wilson loops only. There is excellent agree-
ment with the Casimir scaling hypothesis for the adjoint
potential and also higher representations exhibit only mi-
nor deviations. In view of these successes we conclude that
the pseudoparticle approach is a model for SU(2) Yang-
Mills theory, which correctly reproduces many essential
features connected to confinement.

Gluelump masses, on the other hand, differ to some
extent from lattice results. In particular the level ordering
of the magnetic and the electric gluelump is reversed. This
might indicate the limitations of pseudoparticle regulariza-
tions, where degrees of freedom are chosen to model long
range correlations rather than ultraviolet fluctuations.

VII. OUTLOOK

After this successful computation of screening of adjoint
charges within the pseudoparticle approach, a natural next
step is an investigation of string breaking in QCD (for a
recent lattice study cf. [29]). First steps regarding the
treatment of fermionic fields in terms of pseudoparticles
have already been taken [30,31]. An interesting feature of
the pseudoparticle approach regarding numerical effi-
ciency is the fact that it uses a rather small number of
degrees of freedom compared to lattice gauge theory. This

makes exact computations of fermionic all-to-all propaga-
tors not only possible, but also extremely cheap. This
might offer the possibility to compute fermionic quantities
on a qualitative level without using high performance
computer resources.
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APPENDIX A: LATTICIZATION OF
PSEUDOPARTICLE GAUGE FIELD

CONFIGURATIONS

Before computing ensemble averages we convert the
continuum gauge field configurations (4) to 244 lattice
link configurations. We do this to increase the efficiency
of our computations and to adopt certain smearing tech-
niques from lattice gauge theory. The corresponding links
are computed by sampling (4) sufficiently often along
these links and by multiplying corresponding SU(2) ma-
trices. We would like to stress that, although ensemble
averages are computed on such lattices, the underlying
gauge field configurations are still continuum gauge field
configurations. Therefore, all results presented in this pa-
per are results from a continuum model, where the lattice
has only been introduced for the sake of convenience and
numerical efficiency.

1. APE smearing of spatial links

The ground state overlaps of string, gluelump, and two-
gluelump trial states [Eqs. (8), (13)–(15), and (17)] can be
increased by giving the corresponding creation operators
certain volume extensions. Such operators can be obtained

by replacing all spatial links Uj ¼ Uð0Þ
j by their APE

smeared versions UðNAPEÞ
j :

UðNþ1Þ
j ðxÞ ¼ PSUð2Þ

�
UðNÞ

j ðxÞ

þ 
APE

Xk��j

k¼�1;�2;�3

UðNÞ
k ðxÞUðNÞ

j ðx

þ ekÞUðNÞ
�k ðxþ ek þ ejÞ

�
; (A1)

where PSUð2Þ denotes an appropriate normalization project-

ing back to SU(2) [32].

2. HYP smearing of temporal links

To reduce the self-energy of static charges, which in turn
significantly improves the signal-to-noise ratio, we use
HYP smearing of temporal links [33]. HYP smearing is
reminiscent to three iterations of APE smearing, where
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links outside a hypercube around the original link are
ignored. There are three parameters, which have been
‘‘optimized’’ in [34] and are commonly referred to as
HYP2: ~
HYP2 ¼ ð1:0; 1:0; 0:5Þ.

Throughout this paper we use three iterations of HYP2
smearing for temporal links. Since the extension of the
resulting links is still below the pseudoparticle cutoff,
which is of the order of the pseudoparticle size and the
nearest neighbor distance, we do not expect to alter corre-
lation functions at separations, where physically meaning-
ful results can be extracted. We checked that this is indeed
the case for various observables. An example, the static
potential in the fundamental representation, is shown in
Fig. 6. It is obvious that the slope of the potential for large
separations is the same for unsmeared and for HYP2

smeared temporal links, while statistical errors are signifi-
cantly reduced for the latter.

APPENDIX B: CORRELATION MATRICES AND
EFFECTIVE MASSES

To determine gluelump masses and static potentials
more reliably, we use a well-known variational technique
(cf. e.g. [28]).
The starting point is a correlation matrix

CJKðTÞ ¼ h�jðOJðTÞÞyOKð0Þj�i; (B1)

where OJ are suitable creation operators yielding a trial
state basis of string, gluelump, or two-gluelump states with
appropriate quantum numbers and possibly different ex-
tensions. The basis should be chosen such that a good
approximation of the ground state is possible.
Once this correlation matrix has been computed, one has

to solve the generalized eigenvalue problem

CJKðT0ÞvðNÞ
K ðT0Þ ¼ CJKðT0 � aÞvðNÞ

K ðT0Þ�ðNÞ (B2)

at a fixed value of T0. Approximations of low lying states
jNi are given by

jNi � vðNÞ
K OKj�i; (B3)

and corresponding energies can be determined from effec-
tive mass plateaus:

mðNÞ
effectiveðTÞ ¼ � 1

a
ln

� ðvðNÞ
J ðT0ÞÞ�CJKðTÞvðNÞ

K ðT0Þ
ðvðNÞ

J ðT0ÞÞ�CJKðT � aÞvðNÞ
K ðT0Þ

�
:

(B4)
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