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We present the first results from BLACKHAT, an automated C++ program for calculating one-loop

amplitudes. The program implements the unitarity method and on-shell recursion to construct amplitudes.

As input to the calculation, it uses compact analytic formulæ for tree amplitudes for four-dimensional

helicity states. The program performs all related computations numerically. We make use of recently

developed on-shell methods for evaluating coefficients of loop integrals, introducing a discrete Fourier

projection as a means of improving efficiency and numerical stability. We illustrate the numerical stability

of our approach by computing and analyzing six-, seven-, and eight-gluon amplitudes in QCD and

comparing against previously obtained analytic results.
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I. INTRODUCTION

The Large Hadron Collider (LHC) will soon begin ex-
ploration of the electroweak symmetry breaking scale. It is
widely anticipated that physics beyond the standard model
will emerge at this scale, leading to a breakthrough in our
understanding of TeV-scale physics. A key ingredient in
this quest is the precise understanding of the expected
standard model backgrounds to new physics from both
electroweak and QCD processes. In the absence of such
an understanding, new physics signals may remain hidden,
or backgrounds may be falsely identified as exciting new
physics signals.

Quantitatively reliable QCD predictions require next-to-
leading order (NLO) calculations [1]. For a few benchmark
processes, such as the rapidity distribution of electroweak
vector bosons [2], the transverse-momentum distribution
of the Z boson at moderate pT, and the total cross sections
for production of top quark pairs and of Higgs bosons [3],
the higher precision of next-to-next-to-leading order re-
sults may be required [1]. For most other processes, NLO
precision should suffice. However, there are many relevant
processes that need to be computed, particularly those with
high final-state multiplicity. Such processes are back-
grounds to the production of new particles that have multi-
body decays. To date, no complete NLO QCD calculation
involving four or more final-state objects (particles or jets)
is available. (In electroweak theory, however, the process
eþe� ! 4 fermions has been evaluated [4] using the in-
tegral reduction scheme of Denner and Dittmaier [5].)
NLO corrections require as ingredients both real-radiative
corrections and virtual corrections to basic amplitudes. The
structure of the real-radiative corrections—isolation of
infrared singularities and their systematic cancellation
against virtual-correction singularities—is well under-

stood, and there are general methods for organizing them
[6–8]. Indeed, the most popular of these methods, the
Catani-Seymour dipole subtraction method [8], has now
been implemented in an automatic fashion [9]. The infra-
red divergences of virtual corrections, needed to cancel the
divergences from integrating real radiation over phase
space, are also understood in general [6,10]. The main
bottleneck to NLO computations of processes with four
or more final-state objects has been the evaluation of the
remaining ingredients, the infrared-finite parts of the one-
loop virtual corrections.
As the number of external particles increases, the com-

putational difficulty of loop-amplitude calculations using
traditional Feynman diagrams grows rapidly. Technologies
that have proven useful at tree level, such as the spinor-
helicity formalism [11], do not suffice to tame these diffi-
culties. In the past few years, several classes of new meth-
ods have been proposed to cope with this rapid growth
[5,12–16], including on-shell methods [17–39], which are
based on the analytic properties of unitarity and factoriza-
tion that any amplitude must satisfy [40,41]. These meth-
ods are efficient, and display very mild growth in required
computer time with an increasing number of external
particles, compared with a traditional Feynman-
diagrammatic approach. The improved efficiency emerges
from effectively reducing loop calculations to tree-like
calculations. Efficient algorithms can then be employed
for the tree-amplitude ingredients.
One of the principal on-shell technologies is the unitar-

ity method, originally developed in calculations of super-
symmetric amplitudes with more than four1 external

1The earlier dispersion relation approach [40] had not been
used to construct amplitudes with more than two kinematic
invariants.
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particles [17,42]. An early version combining unitarity
with factorization properties was used to compute the
one-loop amplitudes for eþe� ! Z ! 4 partons and (by
crossing) for amplitudes entering pp ! W, Zþ 2 jets
[18]. (The latter have been incorporated into the NLO
program MCFM [43].) This calculation introduced the con-
cept of generalized unitarity [41] as an efficient means for
performing loop computations. It improves upon basic
unitarity because it isolates small sets of terms, and hence
makes use of simpler on-shell amplitudes as basic building
blocks. On-shell methods have already led to a host of new
results at one loop, including the computation of nontrivial
amplitudes in QCD with an arbitrary number of external
legs [25–28,44]. This computation goes well beyond the
scope of traditional diagrammatic computations, and pro-
vides a clear demonstration of the power of the methods.
The reader may find recent reviews and further references
in Refs. [1,33].

The next challenge is to move beyond analytic calcula-
tions of specific processes or classes of processes to pro-
duce a complete, numerically stable, efficient computer
code based on these new developments. Here we report
on an automated computer program—BLACKHAT—based
on on-shell methods, with the stability and efficiency re-
quired to compute experimentally relevant cross sections.
Other researchers are constructing numerical programs
[35–39] based on related methods [31,37,39].

On-shell methods rely on the unitarity of the theory [40]
and on its factorization properties, which together require
that the poles and branch cuts of amplitudes correspond to
the physical propagation of particles. In general, any one-
loop amplitude computed in a quantum field theory con-
tains terms with branch cuts, and also purely rational terms,
that is, terms that have no branch cuts and are rational
functions of the external momentum invariants (or more
precisely of spinor products). The cut-containing pieces
can be determined from unitarity cuts, in which the inter-
mediate states may be treated four dimensionally [17,42].
Only products of tree-level, four-dimensional helicity am-
plitudes are needed for this step. The rational terms have
their origin in the difference betweenD ¼ 4� 2� and four
dimensions when using dimensional regularization. They
can be obtained2 within the unitarity method by keeping
the full D-dimensional dependence of the tree amplitudes
[19,20,30–32,37,38]. Alternatively, to obtain the rational
terms, one can use on-shell recursion [23,24] to construct
the rational remainder from the loop amplitudes’ factori-
zation poles [26,28,44]. We will follow the latter route in
this paper.

A generic one-loop amplitude can be expressed in terms
of a set of scalar master integrals multiplied by various

rational coefficients, along with the additional purely ra-
tional terms [46–50]. The relevant master integrals depend
on the masses of the physical states that appear, but other-
wise require no process-specific computation. At one loop,
they consist of box, triangle, bubble, and (for massive
particles) tadpole integrals. The required integrals are
known analytically [51,52].
Our task is therefore to determine the coefficients in

front of these integrals for each process and helicity con-
figuration. We do so using generalized cuts [18,20,21,53].
Britto, Cachazo, and Feng observed [21] that with complex
momenta one can use quadruple cuts to solve for all box
coefficients, because massless three-point amplitudes iso-
lated by cuts do not vanish as they would for real massless
momenta. Moreover, the solution is purely algebraic, be-
cause the loop momentum of the four-dimensional integral
is completely frozen by the four cut conditions, and a given
quadruple cut isolates a unique box coefficient. This pro-
vides an extremely simple method for computing box-
integral coefficients. Continuing along these lines, Britto,
Buchbinder, Cachazo, Feng, and Mastrolia have developed
efficient analytic techniques [29] for evaluating generic
one-loop unitarity cuts to compute triangle and bubble
coefficients. They use spinor variables and compute inte-
gral coefficients via residue extraction.
For the purposes of constructing a numerical code, we

use a somewhat different approach. For triangle integrals,
we can impose at most three cut conditions. This leaves a
one-parameter family of solutions. These conditions no
longer isolate the triangle integral uniquely, as a number
of box integrals will share the same triple cut. Similar
considerations apply to the ordinary two-particle cuts
needed to obtain bubble coefficients. As discussed by
Ossola, Papadopoulos, and Pittau (OPP) [31], one can
construct a general parametric form for the integrand.
This form can be understood as a decomposition of the
loop momentum in terms of components in the hyperplane
of external momenta and components perpendicular to this
hyperplane [35]. Coefficients of the various master inte-
grals can be extracted by comparing the expressions ob-
tained from Feynman graphs with the general parametric
form, using values of the loop momentum in which differ-
ent combinations of propagators go on shell. For the qua-
druple cut, this leads to a computation identical to the
method of Ref. [21] once one further replaces sums of
Feynman diagrams by tree amplitudes. OPP solve the
problems of box contributions to triangle coefficients,
and of box and triangle contributions to bubble coeffi-
cients, iteratively by subtracting off previously determined
contributions and solving a particular system of equations
numerically. In the OPP approach, the rational terms can be
determined by keeping the full D-dimensional dependence
in all terms [31,37,38].
Forde’s alternative approach makes use of a complex-

valued parametrization of the loop momenta [34] (similar

2This fact is closely connected to van Neerven’s important
observation that dispersion relations for Feynman integrals con-
verge in dimensional regularization [45].
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to the one used in Refs. [13,31]) and exploits the different
functional dependence on the complex parameters to sepa-
rate integral contributions to a given triple or ordinary cut.
We develop this method one step further, and introduce a
discrete Fourier projection in these complex parameters, in
conjunction with an OPP subtraction of previously deter-
mined contributions [31]. The projection isolates the de-
sired integral coefficients efficiently, while maintaining
good numerical stability in all regions of phase space. It
minimizes the instabilities that may arise [35,38,39] from
solving a system of linear equations in regions where the
system degenerates.

We compute the rational remainder terms using loop-
level on-shell recursion relations [26,28,44], analogous to
the recursion relations at tree level [23,24] developed by
Britto, Cachazo, Feng, and Witten. At tree level, gauge-
theory amplitudes can be constructed recursively from
lower-point amplitudes, by applying a complex deforma-
tion to the momenta of a pair of external legs, keeping both
legs on shell and preserving momentum conservation. The
proof relies only on the factorization properties of the
theory and on Cauchy’s theorem, so the method can be
applied to a wide variety of theories. At loop level, the
construction of an analogous recursion relation for the
rational terms requires addressing a number of subtleties,
including the presence of spurious singularities. These
issues can and have been addressed for specific infinite
series of one-loop helicity amplitudes, allowing their re-
cursive construction [26–28,44]. In order to more easily
automate the method of Ref. [26], we modify how the
spurious singularities are treated, making use of the avail-
ability of the integral coefficients within the numerical
program, in a manner to be described below.

In any numerical method, the finite precision of a com-
putation means that instabilities can arise, occasionally
leading to substantial errors in evaluating an amplitude at
a given point in phase space. We introduce simple tests for
the stability of the evaluation. Principally, we check that
the sum of bubble integral coefficients agrees with its
known value, and we check for the absence of spurious
singularities in this sum. A comparison with known ana-
lytic answers for a variety of gluon amplitudes shows that
these two tests suffice to detect almost all instabilities. If a
test fails, we consider the point to be unstable. Various
means of dealing with unstable points have been discussed
[1,5,48,54–56]. We simply reevaluate the fairly small frac-
tion of unstable points at higher precision using the QD

package [57]. Doing so, we still have an average evaluation
time of less than 120 ms for the most complicated of the
six-gluon helicity amplitudes, and substantially better
times for the simpler ones. Higher-precision evaluation
has also been used recently in Ref. [36] to handle numeri-
cally unstable points.

Although BLACKHAT is written in C++, for algorithm
development and prototyping, we found it extremely useful

to use symbolic languages such as Maple [58] and
Mathematica [59], and, in particular, the Mathematica
implementation of the spinor-helicity formalism provided
by the package S@M [60]. At present BLACKHAT computes
multigluon loop amplitudes. Once we implement a wider
class of processes in the same framework, we intend to
release the code publicly.
The present paper is organized as follows. In Sec. II, we

discuss how we compute the coefficients of the various
integral functions, and introduce the discrete Fourier pro-
jection. In Sec. III, we outline the calculation of the purely
rational terms, describing, in particular, our treatment of
the spurious singularities. We also introduce our criteria for
ensuring the numerical stability of the computed ampli-
tude. We show results for a number of gluon amplitudes
with up to eight external legs in Sec. IV, and summarize in
Sec. V. We defer a number of technical details to a future
paper [61].

II. INTEGRAL COEFFICIENTS FROM FOUR-
DIMENSIONAL TREE AMPLITUDES

We begin by dividing the dimensionally regularized
amplitude into cut-containing and rational parts. We evalu-
ate the cut parts using the four-dimensional unitarity
method [17,33]. To extract the box-integral coefficients
we use the observation of Britto, Cachazo, and Feng that
the quadruple cuts freeze the loop integration [21]. For
triangle and bubble integrals we use key elements of both
the OPP [31] and Forde [34] approaches. In addition, we
introduce a discrete Fourier projection for extracting the
integral coefficients. (Alternative on-shell methods for ob-
taining the integral coefficients have been given in
Refs. [29,32].)
As the first step, we separate an n-point amplitude An

into a cut part Cn and a rational remainder Rn,

An ¼ Cn þ Rn: (2.1)

The cut part is given by a linear combination of scalar basis
integrals [46–51]

Cn ¼
X
i

diI
i
4 þ

X
i

ciI
i
3 þ

X
i

biI
i
2 þ

X
i

aiI
i
1: (2.2)

The integrals Ii4, I
i
3, I

i
2, I

i
1 are scalar box, triangle, bubble,

and tadpole integrals, illustrated in Fig. 1. For massless
particles circulating in the loop, the tadpole integrals van-
ish in dimensional regularization. The integral coefficients
di, ci, bi, ai are rational functions of spinor products and
momentum invariants of the kinematic variables, and are
independent of the dimensional regularization parameter �.
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The index i runs over all distinct integrals of each type. The
rational terms Rn are defined by setting all scalar integrals
to zero,3

Rn ¼ AnjIim!0 : (2.3)

Alternatively, the rational terms can be absorbed into the
integral coefficients by keeping their full dependence4 on
�.

In this paper, we obtain the integral coefficients at � ¼ 0
by using the unitarity method with four-dimensional loop
momenta. This method allows us to use powerful four-
dimensional spinor techniques [11,63] to greatly simplify
the tree amplitudes that serve as basic building blocks. We
will instead obtain the rational terms Rn from on-shell
recursion [23,24,26,27], as explained in the subsequent
section.

A. Box coefficients

Consider first the coefficients of the box integrals. We
obtain them from the quadruple cut shown in Fig. 2. The
cut propagators correspond to the four propagators of the
desired box coefficient. As observed in Ref. [21], if we take
the loop momentum to be four dimensional, then the four
cut conditions

l2i ¼ m2
i ; i ¼ 1; 2; 3; 4 (2.4)

match the number of components of the loop momentum,
leading to a discrete sum over two solutions for li. The
integration is effectively frozen. The mi are the masses of
the particles in the cut propagators, which in this paper are
taken to vanish. The coefficient of any box integral is then
given in terms of a product of four tree amplitudes

di ¼ 1

2

X
�¼�

d�i ; (2.5)

d�i ¼ Atree
ð1Þ A

tree
ð2Þ A

tree
ð3Þ A

tree
ð4Þ jli¼lð�Þi

; (2.6)

where the sum runs over the two solutions to the on-shell
conditions, labeled by ‘‘þ’’ and ‘‘�.’’ The four tree am-
plitudes in Eq. (2.6) correspond to the tree amplitudes at
the four corners of the quadruple cut depicted in Fig. 2.

The generic solution for lð�Þi was found in Ref. [21].
Simpler forms can be found for particular, but still fairly
general, kinematical cases. In this paper, we focus on the
case of massless particles circulating in the loop. When in
addition at least one external leg, say leg 1, of the box
integral shown in Fig. 2 is also massless, that isK2

1 ¼ 0, the
two solutions to the on-shell conditions (2.4) can be written
in a remarkably simple form

ðlð�Þ
1 Þ� ¼ h1�jK6 2K6 3K6 4�

�j1�i
2h1�jK6 2K6 4j1�i ;

ðlð�Þ
2 Þ� ¼ �h1�j��K6 2K6 3K6 4j1�i

2h1�jK6 2K6 4j1�i ;

ðlð�Þ
3 Þ� ¼ h1�jK6 2�

�K6 3K6 4j1�i
2h1�jK6 2K6 4j1�i ;

ðlð�Þ
4 Þ� ¼ �h1�jK6 2K6 3�

�K6 4j1�i
2h1�jK6 2K6 4j1�i :

(2.7)

As illustrated in Fig. 2, the Ki are the external momenta of

3

FIG. 2 (color online). The quadruple cut used to determine the
coefficients of the box integrals. The loop momenta, flowing
clockwise, are constrained to satisfy on-shell conditions. The
blobs at each corner represent tree amplitudes. The dashed lines
indicate the cuts. The external momenta are all outgoing.

FIG. 1. The basis of scalar integrals: (a) box, (b) triangle, (c) bubble, and (d) tadpole. Each corner can have one or more external
momenta emerging from it. The tadpole integral (d) vanishes when all internal propagators are massless.

3All contributions from the scalar integrals in Eq. (2.2) are part
of Cn, including all 1=�2 and 1=� pole terms, �2 factors, and
pieces arising from the order �0 term in the scalar bubble
integral.

4The � dependence leads only to rational contributions, be-
cause it arises from integrals with (� 2�) components of loop
momenta in the numerator. Each such integral can be rewritten
as the product of � with a higher-dimensional integral, which
possesses at most a single, ultraviolet pole in �, whose residue
must be rational [19,62].
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the corners of the box integral under consideration and h1�j
and j1�i are Weyl spinors corresponding to the massless
momentum K1, in the notation of Ref. [63]. In massless
QCD this solution covers all helicity configurations for
amplitudes with up to seven external quarks or gluons,
and a large fraction of the box coefficients for more exter-
nal partons. (This solution may also be found in Risager’s
Ph.D. thesis [64].)

The solution (2.7) has the advantage of making it mani-
fest that Gram determinants enter only as square roots, one
for each power of loop momenta in the numerator of box
integrals. Indeed, the Gram determinant is given by the
product of the spinor-product strings in the denominators
of Eq. (2.7),

�4 ¼ �2h1�jK6 2K6 4j1þih1þjK6 2K6 4j1�i; (2.8)

where �4 ¼ detð2Ki � KjÞ, i, j ¼ 1, 2, 3, is the box Gram

determinant for K2
1 ¼ 0. This property reduces the severity

of numerical round-off error due to cancellations between
different terms, in the regions of phase space where the
Gram determinant vanishes.

B. Triangle coefficients from discrete Fourier
projection

To evaluate the coefficients of the triangle and bubble
integrals, we make use of elements from the approaches of
both OPP [31] and Forde [34]. First consider the triangle
integrals. To obtain the coefficients ci in Eq. (2.2) we use
the triple cut depicted in Fig. 3(a). In contrast to the
quadruple cut, the triple cut does not freeze the integral,
but leaves one degree of freedom, which we denote by t.
Moreover, the triple cut also contains box integral contri-
butions. This makes the extraction of the triangle coeffi-
cients somewhat more intricate than the box coefficients.

For massless internal particles, the solution of the cut
condition l2i ¼ 0 (i ¼ 1, 2, 3) is [13,31,34]

l�1 ðtÞ ¼ ~K�
1 þ ~K�

3 þ t

2
h ~K�

1 j��j ~K�
3 i þ

1

2t
h ~K�

3 j��j ~K�
1 i;
(2.9)

and, using momentum conservation, l2ðtÞ ¼ l1ðtÞ � K1,
l3ðtÞ ¼ l1ðtÞ þ K3. Here, t is a complex parameter corre-
sponding to the one component of the loop momentum not
fixed by the cut condition. Following Ref. [34] we have

~K
�
1 ¼ ��

�K�
1 þ S1K

�
3

�2 � S1S3
;

~K
�
3 ¼ ���0 �K

�
3 þ S3K

�
1

�2 � S1S3
;

(2.10)

with S1 ¼ K2
1 , S3 ¼ K2

3 , and
~K�
1 and ~K�

3 are both massless.

(In comparison with Ref. [34], we have rescaled and
relabeled these massless momenta, and here we take all
external momenta to be outgoing.) The variables �, �0, and
� are defined as follows:

� ¼ S3ðS1 � �Þ
S1S3 � �2

; �0 ¼ S1ðS3 � �Þ
S1S3 � �2

;

� ¼ �� ¼ �K1 � K3 �
ffiffiffiffi
�

p
;

(2.11)

where

� ¼ � detðKi � KjÞ ¼ ðK1 � K3Þ2 � K2
1K

2
3 ; (2.12)

with i, j running over 1, 3 (or any other pair). To determine
the coefficients of integrals we must sum over the two
solutions corresponding to �þ and ��. It turns out that
for the three-external-mass case, these solutions are related
by taking t ! 1=t. In addition, when a corner of the
triangle is massless, simpler forms of the solutions can
be obtained. These issues will be discussed elsewhere
[61]. A similar solution to Eq. (2.9) has been given in the
massive case [65].
OPP [31] showed that after subtracting the known box

contributions from the triple cut integrand, one is left with
seven independent coefficients. One of these seven corre-
sponds to the coefficient of the scalar triangle we seek,
while the remaining six correspond to terms that integrate
to zero. Evaluating the subtracted triple-cut integrand at
seven selected kinematic points leads to a system of linear
equations for these coefficients. As discussed in Ref. [35],
however, numerical stability issues can arise from inverting
this linear system of equations. The OPP approach of
solving a system of equations is currently being imple-
mented in numerical programs, with initial results reported
in Refs. [1,35–39]. In the alternative approach of Forde
[34], the coefficient is instead extracted from the analytic
behavior of the triple cut in the limit that the complex
variable t becomes large.
We choose to use a hybrid of these approaches, subtract-

ing box contributions from the triple cuts following OPP,
but in a way that makes manifest the analytic properties in
the complex variable t following Forde. The triple cut is

C3ðtÞ � Atree
ð1Þ A

tree
ð2Þ A

tree
ð3Þ jli¼liðtÞ: (2.13)

Each of the box contributions to the triple cut (2.13) con-

FIG. 3 (color online). (a) The triple cut and (b) the ordinary
double cut used to determine the coefficients of the triangle and
bubble integrals. The loop momenta li, flowing clockwise, are
constrained to satisfy on-shell conditions. The external momenta
are all outgoing.
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tains a fourth Feynman propagator 1=l2i ðtÞ for some i � 1,
2, 3. Hence, C3ðtÞ develops a pole in twhenever the inverse
propagator vanishes, say

l2i ðtÞ � ��
i ðt� t�i Þ; as t ! t�i : (2.14)

The pole locations t�i and coefficients ��
i are determined

from the form of l2i ðtÞ, after inserting the triple-cut loop
momentum parametrization (2.9).

The residues at the poles also involve the coefficients d�i
of the i-th box integral, evaluated on the two solutions � to
the quadruple cuts. The d�i can be computed prior to the
triangle calculation, and their contribution subtracted to
form the difference

T3ðtÞ � C3ðtÞ �
X
�¼�

X
i

d�i
��
i ðt� t�i Þ

: (2.15)

Equation (2.15) is slightly schematic, omitting a few
subtleties that depend in part on how many of the triangle
legs are massive. For example, in the three-mass case we
should either sum over �þ and ��, or else make use of the
t ! 1=t relation between the two triple-cut solutions to
eliminate one of them [61]. The main point is that proper
subtraction of the box contributions removes all poles at
finite values of t, so that T3ðtÞ has poles only at t ¼ 0 and
t ¼ 1, as sketched in Fig. 4. Thus, we can write

T3ðtÞ ¼
Xp

j¼�p

cjt
j: (2.16)

From Eq. (2.9) we see that the maximum power of t in
Eq. (2.16), denoted by p, is equal to the maximum tensor
rank encountered at the level of triangle integrals. In a
generic renormalizable theory such as QCD, this value is
p ¼ 3.

As explained in Ref. [34], the desired coefficient of the
triangle integral is given by c0, which can be extracted by
taking the limit t ! 1 and keeping only the t0 contribu-
tion. This ‘‘Inf’’ operation can be applied to either C3ðtÞ or

the box-subtracted triple cut integrand T3ðtÞ, because the
box contributions vanish as t ! 1. In the language of OPP,
the terms with j � 0 in Eq. (2.16) correspond to terms that
integrate to zero.
We can also express the triangle coefficient using a

contour integral around t ¼ 0

c0 ¼ 1

2�i

I dt

t
T3ðtÞ; (2.17)

as depicted in Fig. 4. However, because of the special
analytic form (2.16) of T3ðtÞ, it is much more efficient
numerically to evaluate this contour integral by means of
a discrete Fourier projection

c0 ¼ 1

2pþ 1

Xp
j¼�p

T3ðt0e2�ij=ð2pþ1ÞÞ; (2.18)

where t0 is an arbitrary complex number. This projection
removes the remaining coefficients ck, k � 0. As it turns
out, we do need the other coefficients in order to subtract
out triangle contributions when evaluating bubble coeffi-
cients [61]. We can obtain them from the same 2pþ 1
evaluations of T3ðtÞ, by multiplying or dividing by factors
of t before carrying out the Fourier sum

ck ¼ 1

2pþ 1

Xp
j¼�p

½t0e2�ij=ð2pþ1Þ��kT3ðt0e2�ij=ð2pþ1ÞÞ:

(2.19)

As we shall discuss in Sec. IV, the discrete Fourier projec-
tion provides excellent numerical stability.

C. Bubble coefficients

Next, consider the bubble coefficients. To parametrize
the remaining degrees of freedom left by the two-particle
cuts shown in Fig. 3(b), we make use of a lightlike vector
~K
�
1 constructed from the external momentum K

�
1 and an

arbitrary lightlike vector ��. The associated spinors are
j ~K�

1 i and j��i. The normalization of �� ¼ h��j��j��i=2
is determined by the constraint that K1 � � ¼ K2

1=2, which
ensures that

~K �
1 ¼ K�

1 � �� (2.20)

is lightlike. Note that this definition of ~K1 differs from the
one (2.10) in the triangle discussion, and is used exclu-
sively for the two-particle cuts associated with the bubble
coefficient. The cut conditions l2i ¼ 0 (i ¼ 1, 2) are solved
by the momenta

l
�
i ðy; tÞ ¼

1

2
K

�
i þ

�
y� 1

2

�
ð ~K�

1 � ��Þ þ t

2
h ~K�

1 j��j��i

þ yð1� yÞ
2t

h��j��j ~K�
1 i; (2.21)

with two free parameters y and t [31,34].

FIG. 4 (color online). After subtracting the box contributions
to the triple cut, the t plane is free of all singularities except at
t ¼ 0 and t ¼ 1. We can extract the desired triangle coefficient
by using a discrete Fourier projection, evaluating T3ðtÞ at points
indicated by the squares on the circle.
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In the two-particle cuts it is sometimes useful to restrict
the cut loop momenta to be real. In this case, for S1 ¼
K2

1 > 0, the cut corresponds to a physical rescattering
process. It is convenient to view the rescattering in the
center-of-mass frame, in which K1 ¼ ð ffiffiffiffiffi

S1
p

; 0; 0; 0Þ, the
energies of the intermediate momenta liðy; tÞ are fixed to
be

ffiffiffiffiffi
S1

p
=2, and the phase space can be parametrized alter-

natively by the polar and azimuthal angles 	 and 
 for one
of the two momenta, say l1. The relation between the two
parametrizations is given by

y ¼ sin2
	

2
; t ¼ 1

2
sin	ei
: (2.22)

Then y is real and restricted to y 2 ½0; 1�, while t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1� yÞp

ei
 with 
 2 ½0; 2�Þ.
After subtracting box and triangle contributions from the

two-particle cut under consideration [31,35],

C2ðy; tÞ � Atree
ð1Þ A

tree
ð2Þ jli¼liðy;tÞ; (2.23)

we are left with a tensorial expression B2ðy; tÞ in terms of
the loop momentum li, with maximal rank (p� 1). (In
general, if the maximal rank of the triangle integrals is p,
the maximal rank of bubble integrals is p� 1.) In terms of
the parametrization (2.21), B2ðy; tÞ is a ðp� 1Þ-th order
polynomial expression in terms of the monomials ð1=2�
yÞ, t, and yð1� yÞ=t. The bubble coefficient is then given
by the integral [61]

b0 ¼ 1

2�i

Z 1

0
dy

I
jtj¼

ffiffiffiffiffiffiffiffiffiffiffi
yð1�yÞ

p dt

t
B2ðy; tÞ: (2.24)

The factor of 1=t is a Jacobian for the change of variables
(2.22) from ð	;
Þ to ðy; tÞ.

As in the case of the triangle coefficients, the special
analytic form of the subtracted two-particle cut B2ðy; tÞ
allows the integral (2.24) to be evaluated efficiently using a
discrete Fourier projection. Two observations are impor-
tant here: the t integration projects B2ðy; tÞ onto the terms
independent of t, which are of maximal power (p� 1) in y;
also, the y integration amounts to replacing positive powers
of yn by rational numbers 1=ðnþ 1Þ [34]. Following simi-
lar logic as in the triangle case, we can extract the bubble
coefficient with a double discrete Fourier projection on the
subtracted two-particle cut

b0 ¼ 1

ð2p� 1Þp
X2ðp�1Þ

j¼0

Xp�1

k¼0

Xp�1

n¼0

ðy0e2�ik=pÞ�n

nþ 1

� B2ðy0e2�ik=p; t0e2�ij=ð2p�1ÞÞ; (2.25)

where y0 and t0 are arbitrary complex constants. For the
case p ¼ 3, we use the fact that for fðyÞ ¼ f0 þ f1yþ
f2y

2, the desired combination f0 þ f1=2þ f2=3 can be
written as ½fð0Þ þ 3fð2=3Þ�=4. In this way it is possible to
reduce the number of values of y required, from three in
Eq. (2.25) to two:

b0 ¼ 1

20

X4
j¼0

½B2ð0; t0e2�ij=5Þ þ 3B2ð2=3; t0e2�ij=5Þ�:

(2.26)

One can also reduce the number of values of t sampled,
from five down to three or four, using lower-order roots of
unity (independently of how y is treated). In a similar
fashion to Eq. (2.19), higher-rank tensor bubble coeffi-
cients may be extracted by weighting the sum (2.25) differ-
ently. (Such coefficients would feed into the calculation of
tadpole coefficients. They are not needed for the case of
massless internal lines treated in this paper.)
Because of the physical interpretation of the two-particle

cut as a rescattering, with real intermediate momenta living
on a sphere, an alternative projection formula from
Eqs. (2.25) and (2.26) may be found in terms of spherical
harmonics Yl;mð	;
Þ. To do so we change from the varia-

bles y and t to the spherical coordinates 	 and 
 via
Eq. (2.22). In these variables, the loop momentum (2.21)
is linear in the spherical harmonics Yl;m with l ¼ 1 and

m ¼ 0, �1, because

1

2
� y ¼ 1

2
cos	 ¼

ffiffiffiffi
�

3

r
Y1;0ð	;
Þ;

t ¼ 1

2
sin	ei
 ¼ �

ffiffiffiffiffiffiffi
2�

3

s
Y1;1ð	;
Þ;

yð1� yÞ
t

¼ 1

2
sin	e�i
 ¼

ffiffiffiffiffiffiffi
2�

3

s
Y1;�1ð	;
Þ:

(2.27)

The two-particle cut with box and triangle contributions
subtracted is then a superposition of spherical harmonics

B2ð	;
Þ ¼ X
jmj	l	p�1

bl;mYl;mð	;
Þ: (2.28)

The scalar bubble coefficient is just b0;0, up to a normal-

ization constant. Using Eq. (2.21), the higher spherical-
harmonic coefficients bl;m can be related to the coefficients

of the higher-rank tensor integrals.

III. RATIONAL CONTRIBUTIONS

We now turn to the question of computing the rational
terms Rn in the amplitude (2.1). Here we use the on-shell
recursive approach for one-loop amplitudes [26,27], mod-
ifying it to make it more amenable to numerical evaluation
in an automated program. As is true for the cut parts, an
important feature of on-shell recursion is that it displays
modest growth in computational resource requirements—
compared with the rapid growth with a traditional
Feynman-diagram approach—as the number of external
particles increases.
At one loop, as at tree level, on-shell recursion provides

a systematic means of determining rational functions, us-
ing knowledge of their poles and residues. At loop level,
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however, a number of new issues must be addressed,
including the appearance of branch cuts, spurious singu-
larities, and the behavior of loop amplitudes under large
complex deformations. In some cases, ‘‘unreal poles’’
develop [25], which are poles present with complex but
not real momenta. The appearance of branch cuts does not
present any difficulties because we use on-shell recursion
only for the cut-free rational remainders Rn. As noted in
Ref. [27], we can sidestep the problems of unreal poles by
choosing appropriate shifts within the class given below in
Eq. (3.1). Finally, we may determine the behavior of am-
plitudes under large complex deformations by using aux-
iliary recursion relations.

A. General principles

On-shell recursion relations may be derived by consid-
ering deformations of amplitudes characterized by a single
complex parameter z, such that all external momenta are
left on shell [24]. In the massless case, it is particularly
convenient to shift the momenta of two external legs, say j
and l,

k
�
j ! k

�
j ðzÞ ¼ k

�
j � z

2
hj�j��jl�i;

k
�
l ! k

�
l ðzÞ ¼ k

�
l þ z

2
hj�j��jl�i:

(3.1)

We denote the shift in Eq. (3.1) as a ½j; li shift. This shift
has the required property that the momentum conservation
is left undisturbed, while shifted momenta are left on shell
k2j ðzÞ ¼ k2l ðzÞ ¼ 0.

On-shell recursion relations follow from evaluating the
contour integral

1

2�i

I
C
dz

RnðzÞ
z

; (3.2)

where the contour is taken around the circle at infinity, as
depicted in Fig. 5, and RnðzÞ is Rn evaluated at the shifted
momenta (3.1). If the rational terms under consideration
vanish as z ! 1, the contour integral vanishes and
Cauchy’s theorem gives us a relationship between the
desired rational contributions at z ¼ 0, and a sum over
residues of the poles of RnðzÞ, located at z�,

Rnð0Þ ¼ � X
poles �

Res
z¼z�

RnðzÞ
z

: (3.3)

On the other hand, if the amplitude does not vanish as
z ! 1, there are additional contributions, which we can
obtain from an auxiliary recursion relation [27].

Poles in the z-shifted one-loop rational terms, labeled by
� in Eq. (3.3), may be separated into two classes as shown
in Fig. 5: physical and spurious. The physical poles are
present in the full amplitude An, and correspond to genu-
ine, physical factorization poles (collinear or multipar-
ticle). The spurious poles are not poles of An; they cancel
between the cut parts Cn and rational parts Rn. They arise

from the presence of tensor integrals in the underlying
field-theory representation of the amplitude. Our method
avoids the need to perform the reduction of such tensor
integrals explicitly, because of the use of a basis of master
integrals. The reduction happens implicitly, and leaves its
trace in the presence of Gram-determinant denominators.
These denominators give rise to spurious singularities in
individual terms. Separating the different contributions, we
may write

RnðzÞ ¼ RD
n ðzÞ þ RS

nðzÞ þ R
large z
n ðzÞ; (3.4)

where RD
n contains all contributions from physical poles,

RS
n the contributions from spurious poles, and Rlarge z

n the
possible contributions from large deformation parameter z,
if RnðzÞ does not vanish there. More explicitly, from ele-
mentary complex variable theory, under the shift (3.1) the
rational terms can be expressed as a sum over pole terms
and possibly a polynomial in z,

RD
n ðzÞ ¼

X
�

A�

z� z�
;

RS
nðzÞ ¼

X
�

�
B�

ðz� z�Þ2
þ C�

z� z�

�
;

Rlarge z
n ðzÞ ¼ X�max

�¼0

D�z
�;

(3.5)

where the coefficients A�, B�, C�, D� are functions of the

external momenta. The poles in z in Eq. (3.5) are shown in
Fig. 5. The physical poles labeled by � are generically
single poles. (Some shift choices may lead to double poles
[25]; we can generally avoid such shifts [27].) In general,
in a renormalizable gauge theory, the spurious poles,
labeled by �, may be either single or double poles [61].

FIG. 5 (color online). Using Cauchy’s theorem, rational terms
in loop amplitudes can be reconstructed from residues at poles in
the complex plane. The poles are of two types: physical and
spurious. All pole locations are known a priori. Residues at
physical poles are obtained from on-shell recursion. Residues at
spurious poles are obtained from the cut parts.
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If RnðzÞ vanishes for large z, theD� are all zero. If not, then
D0 gives a contribution to the physical rational terms,
Rnð0Þ.

The contributions of the physical poles may be obtained
efficiently using the on-shell recursive terms represented
by the diagrams in Fig. 6. The tree ‘‘vertices’’ labeled by
‘‘T’’ denote tree-level on-shell amplitudes Atree

m , while the
loop vertices ‘‘L’’are the rational parts of on-shell (lower-
point) one-loop amplitudes Rm, m< n, as defined in
Eq. (2.3). The contribution in Fig. 6(c) involves the rational
part of the additional factorization function F [66]. It only
appears in multiparticle channels, and only if the tree
amplitude contains a pole in that channel. Each diagram
is associated with a physical pole in the z plane, illustrated
in Fig. 5, whose location is given by

z� ¼ zrs � K2
r���s

hj�jK6 r���sjl�i ; (3.6)

where Kr...s ¼ kr þ krþ1 þ � � � þ ks. This pole arises from
the vanishing of shifted propagators K2

r...sðzrsÞ ¼ 0.
Generically, the sum over � is replaced by a double sum
over r, s, labeling the recursive diagrams, where legs

labeled |̂ and l̂ always appear on opposite sides of the
propagator in Fig. 6. The computation of the recursive
diagrams has been described in Refs. [26,33,44], to which
we refer the reader for further details.

What about the contributions of the spurious poles? One
approach is to find a ‘‘cut completion’’ [26,27], which is
designed by adding appropriate rational terms to Cn in
order to cancel entirely the spurious poles in z within the

redefined cut terms Ĉn. Because the complete amplitude is
free of the spurious poles, this procedure ensures that the

redefined rational terms R̂n are free of them. The cut
completion makes it unnecessary to compute residues of
spurious poles (although additional ‘‘overlap’’ diagrams
are introduced). It is very helpful for deriving compact
analytic expressions for the amplitudes. This approach
has led to the computation of the rational terms for a
variety of one-loop maximally helicity violating (MHV)
amplitudes with an arbitrary number of external legs [26–
28], as well as for six-point amplitudes. In general, it
should be possible to construct a set of cut completions
using integral functions of the type given in Ref. [54] to
absorb spurious singularities.

For the purposes of a numerical program, however, it is
simpler to extract the spurious residues from the known cut
parts. These residues are guaranteed to be the negatives of
the spurious-pole residues in the rational part. That is, the
spurious contributions are

RS
nð0Þ ¼ � X

spur: poles �

Res
z¼z�

RnðzÞ
z

¼ X
spur: poles �

Res
z¼z�

CnðzÞ
z

;

(3.7)

where CnðzÞ is the shifted cut part appearing in Eq. (2.1).
The spurious poles� correspond to the vanishing of shifted
Gram determinants, �mðzÞ ¼ 0 for m ¼ 2, 3, 4, associated
with bubble, triangle, and box integrals. (In the case of
massless internal propagators, the bubble Gram determi-
nant does not generate any spurious poles.)
A simple example of a spurious singularity in the cut

part (2.2) is from a bubble term of the form

biI
i
2 ¼

b̂i
ðK2

1 � K2
2Þ2

lnð�K2
1Þ þ � � � ; (3.8)

where b̂i is smooth as K2
1 ! K2

2 , and K1 þ K2 þ k3 ¼ 0
for some massless momentum k3. The denominator factor
(K2

1 � K2
2) is the square root of the Gram determinant for a

triangle integral with two massive legs K1 and K2, and one
massless leg k3. Under the ½j; li shift, there will be a value
of z, z�, for which the shifted denominator vanishes line-

arly,K2
1ðzÞ � K2

2ðzÞ � z� z� (unless j and l both belong to

the same massive momentum cluster K1 or K2, in which
case the Gram determinant is unshifted). From Eq. (3.7) we
see that we only need the rational pieces of the spurious-
pole residues of the cut part, because RS

nð0Þ is rational.
From Eq. (3.8), we see that there can only be a rational
piece if we have to series expand the logarithm to compute
the residue. Hence, the spurious pole in the bubble coeffi-
cient bi must be of at least second order in (K2

1 � K2
2). At

order �0, box and triangle integrals contain dilogarithms
and squared logarithms, which must be expanded to second
order to obtain a rational piece. Thus, the spurious poles of
box and triangle coefficients must be at least of third order
for rational terms to be generated.
To extract a residue from CnðzÞ=z, we evaluate the

integral coefficients di, ci, bi numerically for complex,
shifted momenta in the vicinity of the spurious pole, using
our implementation of the results of Sec. II. We also need

j

l̂

. ... .
T

...T

^ .
T L

.

....
l̂

^ ĵ

l̂

.... L T

)c()b()a(

j

s

r r

s

r

s

FIG. 6. Diagrammatic contributions to on-shell recursion at one-loop for a ½j; li shift. The labels ‘‘T’’ and ‘‘L’’ refer, respectively, to
(lower-point) tree amplitudes Atree and rational parts of one-loop amplitudes R. The central blob in (c) is the rational part of a one-loop
factorization function F [66].
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to evaluate the loop integrals. First, however, we perform
an analytic series expansion of the integrals around the
vanishing Gram determinants. For example, the three-mass
triangle integral I3m3 ðs1; s2; s3Þ close to the surface of its

vanishing Gram determinant

�3 � s21 þ s22 þ s23 � 2s1s2 � 2s1s3 � 2s2s3 ! 0; (3.9)

behaves as

I3m3 ðs1; s2; s3Þ ! � 1

2

X3
i¼1

lnð�siÞ si � siþ1 � si�1

siþ1si�1

�
�
1� 1

6

�3

siþ1si�1

þ 1

30

�
�3

siþ1si�1

�
2
�

þ 1

6

�3

s1s2s3
� s1 þ s2 þ s3

120

�
�3

s1s2s3

�
2

þ � � � ; (3.10)

where the index i on the shifted invariant si � siðzÞ is
defined mod 3. In this expression the logarithms are to be
expanded according to

lnð�sÞ ! s� s�
s�

� 1

2

ðs� s�Þ2
s2�

þ � � � ; (3.11)

where s ¼ sðzÞ, and s� ¼ sðz�Þ is the value of the shifted
invariant at the location z� of the spurious pole. The

leading order of Eq. (3.10) matches the expansion found
in Ref. [54]. In the integral expansions we need keep only
rational terms, including terms that can become rational
after further series expansion around a generic point, such
as Eq. (3.11). Thus, we may avoid computing any loga-
rithms or polylogarithms at complex momentum values.
The expression obtained by replacing CnðzÞ according to

these rules, in the vicinity of z�, will be denoted by E�
n ðzÞ.

In Ref. [61] we present the complete set of integral ex-
pansions needed in the calculations, as well as a convenient
method for generating them from a dimension-shifting
formula [47].

B. Discrete Fourier sum for spurious residues

Similarly to the case of triangle and bubble coefficients,
we extract each required spurious-pole residue from the cut

parts by using a discrete Fourier sum. We evaluate E�
n ðzÞ at

m points equally spaced around a circle of radius �� in the

z plane, centered on the pole location z�, as depicted in

Fig. 7; i.e., z ¼ z� þ ��e
2�ij=m, for j ¼ 1; 2; . . . ; m. In

contrast to the t-plane analysis used earlier to obtain tri-
angle coefficients, however, we do not know the residues at
other poles a priori, so we cannot subtract them easily.

[Indeed, the function E�
n ðzÞ we are analyzing is only ra-

tional in the vicinity of z�, due to our use of the rational

parts of the integral expansions around this point.] Here,
the discrete Fourier sum is an approximation to the contour
integral, whereas in the previous section, it was exact. We

can make the approximation arbitrarily accurate in princi-
ple, by choosing �� to be arbitrarily small. With finite

precision, however, numerical round-off error forces us
to work at finite ��. When extracting the residue of a

spurious pole we must also ensure that there are no other
poles inside or near the circle. To obtain the contributions
of the spurious poles to Rnð0Þ in Eq. (3.7) we evaluate

RS
nð0Þ ’ 1

m

X
�

Xm
j¼1

��e
2�ij=m

E�
n ðz� þ ��e

2�ij=mÞ
z� þ ��e

2�ij=m
: (3.12)

The sum over � runs over the location of all spurious
Gram-determinant poles that contribute to rational terms.
Equivalently, we can extract the coefficients B� and C� in

Eq. (3.5) via

B� ’ � 1

m

Xm
j¼1

½��e
2�ij=m�2E�

n ðz� þ ��e
2�ij=mÞ;

C� ’ � 1

m

Xm
j¼1

��e
2�ij=mE�

n ðz� þ ��e
2�ij=mÞ:

(3.13)

For the results presented in the next section, we choose
m ¼ 10 points in the discrete sum. In general, an increase
in m increases the precision, but at the cost of computation
time.
We choose �� to be much smaller than the distance to

nearby poles, but not so small as to lose numerical preci-
sion. Typically at ‘‘standard’’ double precision we use a
value of �� ¼ 10�2. If the contributions from the nearby

poles are unusually large, then we find a large variation in
the absolute value of each term in the sum. If this happens,
we reduce �� until either the variation is acceptable, or we

cross a minimum value of ��, beyond which the point

FIG. 7 (color online). We obtain the residue at the spurious
pole located at z ¼ z� in the complex z plane by a discrete

Fourier sum, evaluating E�
n ðzÞ on the (blue) squares on the circle

of radius �� centered on z�. In this figure four points are shown,

although in practice we use ten points. The locations of other
poles are represented by (red) dots. We ensure that �� is

sufficiently small so that other poles give a negligible contribu-
tion to the residue.
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becomes unstable because of round-off error. We deal with
such points as described below.

C. Numerical stability

In addition to the value of �� becoming too small, other

cancellations can also sometimes cause a loss of precision,
giving rise to a potentially unstable kinematic point. In
order to identify such phase-space points more generally,
we apply consistency checks independently to the cut and
rational parts of the amplitude. For the cut part we test how
well the known, nonlogarithmic 1=� singularities are re-
produced. Because the only source of such 1=� poles are
the bubble integrals, for the n-gluon amplitudes, for ex-
ample, we have [6,10]

A1-loop
n j1=�;non�log ¼ 1

�

X
k

bk ¼ �
�
1

�

�
11

3
� 2

3

nf
Nc

��
Atree
n ;

(3.14)

where nf is the number of quark flavors and the sum on k

runs over all bubble integrals. As a practical matter it is
sufficient to check that the divergent term divided by the
tree amplitude is real. (For helicity configurations with
vanishing tree amplitudes the cut contributions vanish, so
no check is required.) Because bubble coefficients are
computed from expressions where triangle and box con-
tributions have been subtracted, any instabilities in the
latter are also detected with this 1=� consistency check.

In general, this test is not sufficient for finding all the
unstable points of the full amplitude, because some of the
instability comes from computing the spurious residues for
rational terms. A related test, which suffices to find all
remaining instabilities, comes from the requirement that
each spurious singularity must cancel in the sum over
bubble coefficients. This cancellation can be understood
by applying the ½j; li shift to Eq. (3.14), and making use of
the fact that Atree

n has no spurious poles. For each spurious-
pole residue that contributes to the rational part, we there-
fore check that the sum of discrete Fourier sums over all
bubble coefficients,

X
k

Xm
j¼1

��e
2�ij=mbkðz� þ ��e

2�ij=mÞ; (3.15)

vanishes to within a specified tolerance.
If a phase-space point fails the above stability condi-

tions, we recalculate the point in a manner that improves its
stability. Various strategies have been proposed in the
literature to handle unstable points. One approach is to
modify the standard integral basis (2.2) so as to absorb the
Gram-determinant singularities into well-defined functions
[5,14,18,54,67]. This approach is related to using a cut
completion [26]. Other approaches are to interpolate across
the singular region or to series expand the integrals in the
singular region [5,55]. A third approach is to simply redo
unstable points at higher precision, e.g., as in Ref. [36].

We have found the high-precision approach to be effec-
tive for eliminating the remaining instabilities in our pro-
gram. It is robust and simple to implement; a detailed
analysis of the instabilities is not needed, and we can use
the standard basis of integrals with no interpolations or
expansions of the integrals around unstable points. Our
implementation of on-shell methods already has only a
small fraction of unstable phase-space points; hence, the
overhead of recomputing them at higher precision is rela-
tively small. We use the QD package [57], switching to
‘‘double-double’’ precision, that is approximately 32 deci-
mal digits. If the stability test were to fail at this level of
precision, we switch to ‘‘quadruple-double’’ precision,
corresponding to approximately 64 digits of precision;
for all amplitudes calculated here, this happens rarely, if
ever. To compute the integrals to higher precision, we
implement the polylogarithms, which enter the integrals
using a series expansion to a sufficiently high order. If the
1=� test (3.14) fails then we recompute the entire cut part at
higher precision, but if the spurious-pole test (3.15) fails,
we only recompute those pieces containing unstable Gram-
determinant singularities.
Further details, as well as all integral expansions used to

extract the spurious residues from the cut part, will be
given elsewhere [61].

IV. RESULTS

We now discuss the numerical stability of our imple-
mentation. Our stability tests use sets of 100 000 points for
2 ! ðn� 2Þ gluon scattering, generated with a flat phase-
space distribution using the RAMBO [68] algorithm. We
impose kinematic cuts on the outgoing gluons, following
Ref. [35]:

ET > 0:01
ffiffiffi
s

p
;  < 3; �R > 0:4; (4.1)

where ET is the gluon transverse energy,  is the pseudor-

apidity, and �R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

 þ�2



q
is the separation cut be-

tween pairs of gluons. The center-of-mass energy
ffiffiffi
s

p
is

chosen to be 2 TeVand the scale parameter� (arising from
divergent loop integrals) is set to 1 TeV.
We computed one-loop six-, seven-, and eight-gluon

amplitudes for nf ¼ 0 with BLACKHAT at each phase-space

point, and compared the output against a target expression,
obtained either from known analytic results, or from
BLACKHAT itself using quadruple-double precision (� 64
digits). As an additional test, we also used ordinary double
precision to compare with the numerical results of
Refs. [15,37] at the quoted phase-space points. We find
agreement for the five- and six-gluon amplitudes for all
helicity configurations, to within their quoted accuracy,
after accounting for external phase conventions and the
incoming-particle convention implicitly used in Ref. [37].
We also find agreement with the numerical results of
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Ref. [27] at the quoted phase-space points for the six-,
seven-, and eight-point MHV amplitudes presented here.

The histograms in Figs. 8–10 show the results of our
study of numerical precision. For these plots, the horizontal
axis is the logarithmic relative error

log 10

�jAnum
n � Atarget

n j
jAtarget

n j
�

(4.2)

for each of the 1=�2, 1=� and �0 components of the
numerical amplitude Anum

n obtained from BLACKHAT. The
vertical axis in these plots shows the number of phase-
space points in a bin that agree with the target to a specified
relative precision. We use a logarithmic vertical scale to
visually enhance the tail of the distribution, so as to illus-
trate the numerical stability.

For the MHV amplitudes in Figs. 8 and 9, we used
analytic expressions from Refs. [17,26,42,44] as the target

expressions Atarget
n . For the next-to-MHV (NMHV) ampli-

tudes, analytic expressions are available [16,27,29,42],
although for Fig. 10, we generated the target with
BLACKHAT, using quadruple-double precision. This is

more than sufficient to ensure numerical stability in target
expressions for the purposes of the comparison. We note
that the ability to switch easily to higher precision is quite
helpful in assessing numerical stability in any new
calculation.

First consider the MHV six-point amplitude
A6ð1�; 2�; 3þ; 4þ; 5þ; 6þÞ. Figure 8 illustrates the numeri-
cal stability of BLACKHAT for this amplitude, with and
without the use of higher precision on the points identified
as unstable. The plots show the distribution of relative
errors for the 1=�2, 1=�, and �0 components over 100 000

phase-space points. The 1=�2 distribution has extremely
small errors, peaking at a relative error of nearly 10�15,
while the right-side tail falls rapidly. For the 1=� and finite
�0 components the peaks shift to the right, to a relative
precision of around 10�14 and 10�11, and fall less steeply.
This feature is not surprising, because of the larger number
of computational steps needed for these parts of the am-
plitudes: for 1=�2 terms, only box coefficients contribute
(for this helicity pattern triangle integrals do not appear);
for the 1=� contribution, bubble coefficients contribute too;
for the finite part, rational terms contribute as well. As one
proceeds from box to triangle, bubble, and then to rational
terms, each step relies on previous steps, and so numerical
errors accumulate.
In each plot in Fig. 8, the solid (black) curve corresponds

to the exclusive use of ordinary double precision (16
decimal digits), showing good stability for the raw algo-
rithm for all three components. The dashed (red) curve
shows the effect of turning on higher precision for contri-
butions identified as unstable, using the criteria discussed
in Sec. III. This completely suppresses the already-small
tail above a relative error of about 10�5. The points pop-
ulating the right-hand tail in the ordinary double-precision
calculation, displayed in the solid (black) curve, then move
to the left in the dashed (red) curve, giving rise to a
secondary peak around a relative error of machine preci-
sion, or 10�16. (The comparison with the target is per-
formed in ordinary double precision, even though higher
precision is used in intermediate steps.) This twin-peak
feature is visible in the 1=� and �0 components. It is due to
our recalculation of the entire cut part, at higher precision,
whenever a phase-space point fails the 1=� consistency
check (3.14). When the spurious-pole stability test (3.15)
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10

0

10
1

10
2

10
3

10
4

-16 -14 -12 -10 -8 -6 -4 -2 0 2 -16 -14 -12 -10 -8 -6 -4 -2 0 2
10

0

10
1

10
2

10
3

10
4

--++++ Ο(ε−2) Ο(ε−1) Ο(ε0)

FIG. 8 (color online). The distribution of the logarithm of the relative error for 100 000 phase-space points in the 1=�2, 1=� and finite
(�0) components of the six-point MHV amplitude A6ð1�; 2�; 3þ; 4þ; 5þ; 6þÞ. The solid (black) curve shows the distribution run
entirely with ordinary double precision, and the dashed (red) curve shows it when contributions identified as unstable—following the
discussion of Sec. III—are evaluated using higher precision. The target values use analytic results from Refs. [17,26,42].
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fails, the point generally falls to the right of the secondary
peak, because we only recalculate those pieces that contain
the unstable spurious singularity.

Another important feature that can be observed in Fig. 8
is that the ‘‘effective cutoff’’ is sharp: for the �0 terms
almost no points below 10�5 are identified as unstable. In a
practical calculation, given Monte Carlo integration errors
and other uncertainties, a cutoff in the relative error of 10�5

is overly stringent. It does, however, illustrate the control
over instabilities achieved in BLACKHAT, which becomes

more important for more complicated processes. It is in-
teresting to note that modest additional computation time is
required to achieve a cutoff of 10�5, compared to, say,
10�2.
Next consider the behavior as the number of external

gluons increases. In Fig. 9, we show relative error distri-
butions for the set of MHV amplitudes A6ð1�; 2�; 3þ;
4þ; 5þ; 6þÞ, A7ð1�; 2�; 3þ; 4þ; 5þ; 6þ; 7þÞ, and A8ð1�;
2�; 3þ; 4þ; 5þ; 6þ; 7þ; 8þÞ. For each of these amplitudes
the dashed (black) curve shows the relative error in the

FIG. 10 (color online). The distribution of the logarithm of the relative error for the six-point NMHV amplitudes
A6ð1�; 2�; 3�; 4þ; 5þ; 6þÞ, A6ð1�; 2�; 3þ; 4�; 5þ; 6þÞ, and A6ð1�; 2þ; 3�; 4þ; 5�; 6þÞ. The dashed (black) curve in each histogram
gives the relative error for the 1=�2 part, the solid (red) curve gives the 1=� singularity, and the shaded (blue) curve gives the finite �0

component of the corresponding amplitude. The target expression is a quadruple-double-precision BLACKHAT evaluation.

FIG. 9 (color online). The distribution of the logarithm of the relative error over 100 000 phase-space points for the MHVamplitudes
A6ð1�; 2�; 3þ; 4þ; 5þ; 6þÞ, A7ð1�; 2�; 3þ; 4þ; 5þ; 6þ; 7þÞ, and A8ð1�; 2�; 3þ; 4þ; 5þ; 6þ; 7þ; 8þÞ. The dashed (black) curve in each
histogram gives the relative error for the 1=�2 part, the solid (red) curve gives the 1=� singularity, and the shaded (blue) distribution
gives the finite �0 component of the corresponding helicity amplitude. The target expression is computed from an analytic formula
[17,26,42,44].
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coefficient of the 1=�2 singularity. Similarly, the relative
errors in the 1=� and �0 contributions are given by the solid
(red) curve and shaded (blue) distribution. The relative
precision of the 1=�2 singularities is better than 10�11 for
these six-, seven-, and eight-point amplitudes. The
computational-stability scaling properties in going from
six- to seven- and then eight-point amplitudes in Fig. 9
are also rather striking. There is little change in the shape
of the curves as we increase the number of legs.

Even more striking is the modest increase in computa-
tion time. As mentioned earlier, the tree-like nature of on-
shell methods leads us to expect only mild scaling for a
given helicity pattern, in stark contrast with the rapid
increase in required computational resources for ordinary
Feynman diagrams. These expectations are borne out by
the values for the average computation time shown in
Table I. The table shows the average time on a 2.33 GHz
Xeon processor for computing a color-ordered amplitude
of a given helicity configuration at a single phase-space
point. The first three rows show the timing for the six-,
seven-, and eight-point MHVamplitudes corresponding to
Fig. 9. Even for the eight-point case we obtain an average
evaluation time of less than 50 ms, including running the
phase-space points marked as unstable at higher precision.
It is also interesting to note the relatively modest increase
in computation time due to turning on higher precision for
unstable points, even in this initial implementation. [The
time in the third column includes the evaluation of bubble
coefficients used in the spurious-pole test (3.15).]

Finally, consider the six-gluon NMHV amplitudes.
Figure 10 illustrates the numerical stability properties of

the complete set of independent six-gluon NMHV ampli-
tudes not related by symmetries A6ð1�; 2�; 3�; 4þ; 5þ;
6þÞ, A6ð1�; 2�; 3þ; 4�; 5þ; 6þÞ, and A6ð1�; 2þ; 3�; 4þ;
5�; 6þÞ, compared against a quadruple-precision target
computed with BLACKHAT. For each one of these ampli-
tudes, the contributions to the 1=�2, 1=�, and finite �0 terms
are shown in a similar format as the MHV case. These
NMHV curves are all shifted to the right compared with the
MHV cases in Fig. 9. This property is not surprising; it is
due to the more complicated nature of the NMHV ampli-
tudes. In particular, the amplitudes contain higher powers
of the box Gram determinants in denominators of the box
coefficients, which then feed into triangle, bubble, and
rational contributions. As in the MHV cases, when one
goes from 1=�2 to 1=� to �0, the curves shift to the right
again, reflecting the more complicated calculations.
Nevertheless, they all exhibit excellent numerical stability,
with the distributions of relative errors for the finite pieces
peaking at 10�8 or better. We identify points as unstable,
and automatically recompute such points at higher preci-
sion, using the same criteria as for the MHVamplitudes. In
the NMHV case, the falloff is not as sharp as in the MHV
case. Nevertheless, the accuracy obtained is more than
sufficient for use in an NLO program.
The average evaluation time in the current version, for

all independent six-gluon helicity configurations needed at
NLO, including the NMHVones, is given in Table I. One
can see that alternating-helicity configurations do take
longer to compute. However, in all cases the cut parts are
evaluated in under 8 ms and the full amplitudes in under
120 ms. Although we have not run systematic tests of
NMHV amplitudes beyond six points, initial studies at
seven points indicate that the scaling behavior of the
NMHV amplitudes is not quite as good as for the MHV
case, but still very good.

V. CONCLUSIONS

In this paper we presented the first results from
BLACKHAT, an automated implementation of on-shell meth-

ods, focusing on the key practical issues of numerical
stability and computational time. We illustrated the nu-
merical stability by computing a variety of complete six-,
seven-, and eight-gluon helicity amplitudes and comparing
the results against previously obtained analytic results or
against higher precision calculations. In this initial version
we achieved reasonable speed, an average computation
time of 114 ms per phase-space point for the most com-
plicated of the six-gluon helicity amplitudes, and substan-
tially better for the simpler helicities. We expect this speed
and stability to be sufficient for carrying out phenomeno-
logical studies of backgrounds at the LHC, even as we
expect further improvements with continuing optimization
of the code. After the code is stable and tested for a wide
variety of processes, we plan to make it publicly available.

TABLE I. The average time needed to evaluate one point in
phase space for various helicity configurations. The time is in
milliseconds on a 2.33 GHz Xeon processor. The second column
gives the average evaluation time for the cut part, including the
recomputation at higher precision of points identified as un-
stable. The third column gives the time for the full amplitude,
including rational terms, using only ordinary double precision.
The fourth column gives the average time using ordinary double
precision on stable points and higher precision on contributions
marked as unstable either by the 1=� consistency test (3.14) or
the spurious-pole test (3.15).

Helicity Cut part

Full amplitude

double

prec. only

Full amplitude

with

multiprec.

��þþþþ 2.4 ms 7 ms 11 ms

��þþþþþ 4.2 ms 11 ms 23 ms

��þþþþþþ 6.1 ms 29 ms 43 ms

�þ�þþþ 3.1 ms 18 ms 32 ms

�þþ�þþ 3.3 ms 61 ms 96 ms

���þþþ 4.4 ms 12 ms 22 ms

��þ�þþ 5.9 ms 47 ms 64 ms

�þ�þ�þ 7.0 ms 72 ms 114 ms
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BLACKHAT uses the unitarity method with four-

dimensional loop momenta [17,42]. This method allows
the use of compact tree-level helicity amplitudes as the
basic building blocks. We compute the box coefficients
using quadruple cuts [21]. For box integrals with massless
internal propagators and at least one massless corner, we
presented a simple solution to the cut conditions. The
solution makes manifest the presence of square roots,
rather than full powers, of a spurious (Gram determinant)
singularity for each power of the loop momentum in the
numerator. We evaluated the triangle- and bubble-integral
coefficients using Forde’s approach [34] to expose their
complex-analytic structure. Another important ingredient
in our procedure is the OPP [31] subtraction of boxes from
triple cuts when computing triangle coefficients, and of
boxes and triangles from ordinary (double) cuts when
computing bubble coefficients. Viewed in terms of
Forde’s complex-valued parametrization approach, the
OPP subtraction cleans the complex plane of poles, using
previously computed coefficients. We then introduced a
discrete Fourier projection, as an efficient and numerically
stable method for extracting the desired coefficients. In the
bubble case, this procedure can be recast in terms of
spherical harmonics.

We computed the purely rational terms using loop-level
on-shell recursion, modifying the treatment of spurious
singularities compared with Refs. [26,27]. We used a dis-
crete Fourier sum to compute the spurious-pole residues
from the cut parts. These contributions are then subtracted
from the recursively computed rational terms in order to
cancel spurious singularities implicit in the latter, and
thereby make the full amplitude free of spurious singular-
ities as required.

The computation of most points in phase space proceeds
using ordinary double-precision arithmetic to an accuracy
of 10�5 or less. This is far better than the Monte Carlo
integration errors that will inevitably arise in any use of
amplitudes in an NLO parton-level or parton-shower code
(not to mention parton distribution, scale, shower, and
hadronization uncertainties). Nonetheless, the computation
of the amplitude at a small percentage of phase-space
points does manifest a loss of precision, resulting in an
instability and larger error. In order to identify such un-
stable points as may arise, we impose the requirements that
all spurious singularities cancel amongst bubble coeffi-
cients, and that the coefficients of the 1=� singularity
(corresponding to �-singular terms in bubble integrals) be
correct. Whenever the calculation at a given phase-space
point fails these criteria we simply recalculate the point at
higher precision. There are other possible means for deal-
ing with Gram-determinant singularities [1,5,48,55,56],
but we prefer this approach because of its simplicity
[36]. In practice, it has a relatively modest impact on the
overall speed of the program. In the most complicated of
the six-gluon helicity amplitudes, higher-precision evalu-

ation causes the time to increase modestly, from 72 ms to
114 ms. We expect to see further improvements with addi-
tional refinements.
It is important to validate a numerical method against

known analytic results. For this purpose, we made use of
MHV configurations, which contain two gluons of helicity
opposite to that of the others. In particular, we considered
the case where the two opposite helicities are nearest
neighbors in the color order. In earlier work, these ampli-
tudes were computed for an arbitrary number of external
gluons [26,44], using on-shell methods. We used these
results to confirm that BLACKHAT returns the correct values
through eight gluons. We also verified numerical stability
for non-MHV amplitudes by comparing results for all six-
gluon amplitudes against a reference computation done
entirely using quadruple-precision arithmetic.
We defer discussion of amplitudes with external fermi-

ons, or with massive quarks and vector bosons, to the
future. (Some work directly relevant to the question of
adding massive particles may be found in
Refs. [32,65,69].) We will also present further details,
including the integral expansions we use around spurious
singularities, in a future publication [61].
The excellent numerical stability and timing perform-

ance of BLACKHAT is due to a variety of ideas described in
this paper. Because the unitarity method uses gauge-
invariant tree amplitudes as the basic input into the calcu-
lation, we avoid the large gauge cancellations inherent in
Feynman-diagram calculations. In addition, we made use
of very compact four-dimensional tree-level helicity am-
plitudes as the basic input to the calculations. All steps in
our computation of the rational terms, as well as the
integral coefficients, are carried out in four dimensions.
Our simple quadruple-cut solution (2.7) also helps main-
tain numerical stability in the box contributions. Our pa-
rametrization choices for triple and double cuts, and the
OPP subtraction of previously computed coefficients are
additional important ingredients. Finally, our use of dis-
crete Fourier projections helps considerably.
The resulting C++ code BLACKHAT is efficient and nu-

merically stable, as we have illustrated with the computa-
tion of various one-loop gluon amplitudes and their
comparison to known analytic expressions. Based on the
results presented here, we expect BLACKHAT to make pos-
sible the computation of a wide variety of new one-loop
amplitudes for collider physics that have been inaccessible
with traditional methods. We hope that BLACKHAT, in con-
junction with automated programs [9] for combining the
real and virtual contributions at NLO, will soon enable the
computation of phenomenologically important cross sec-
tions at the LHC.
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