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In the framework of the left-right symmetric model, we investigate an interesting scenario, in which the

so-called vacuum expectation value (VEV)-seesaw problem can be naturally solved with Z2 symmetry. In

such a scenario, we find a pair of stable weakly interacting massive particles (WIMPs), which may be the

cold dark matter candidates. However, the WIMP-nucleon cross section is 3–5 orders of magnitude above

the present upper bounds from the direct dark matter detection experiments for m� 102–104 GeV. As a

result, the relic number density of two stable particles has to be strongly suppressed to a very small level.

Nevertheless, our analysis shows that this scenario cannot provide very large annihilation cross sections so

as to give the desired relic abundance except for the resonance case. Only for the case if the rotation curves

of disk galaxies are explained by the modified Newtonian dynamics (MOND), the stable WIMPs could be

as the candidates of cold dark matter.
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I. INTRODUCTION

The left-right (LR) symmetric model [1], based on the
gauge group SUð2ÞL � SUð2ÞR �Uð1ÞB�L, is an attractive
extension of the standard model (SM). The symmetry
requires the introduction of right-handed partners for the
observed gauge bosons and neutrinos, and a Higgs sector
containing one bidoublet� (2, 2, 0), one left-handed triplet
�L (3, 1, 2), and one right-handed triplet �R (1,3,2). In
such a minimal LR symmetric model, parity is an exact
symmetry of the theory at the high energy scale and is
broken spontaneously at the low energy scale due to the
asymmetric vacuum. Also CP asymmetry can be realized
as a consequence of spontaneous symmetry breaking,
namely, the spontaneous CP violation (SCPV) [2].
However, such a scenario suffers from nontrivial con-
straints from the vacuum minimization conditions. It is
explicitly demonstrated that the SCPV is not so easily
realized if all the parameters in the Higgs potential are
real and endowed with natural values [3–5]. The difficulty
results from the facts that one of the neutral Higgs bosons
carries a dangerous tree level flavor-changing neutral cur-
rents (FCNC) effect, and that quark flavor mixing angles
and the CP violating phase are all calculable quantities due
to the LR symmetry. Therefore, many generalized CP
violation scenarios beyond the SCPV case have been
analyzed extensively [6–11]. In this literature, the masses
of the right-handed gauge boson W2 and the FCNC Higgs
boson are strongly constrained from low energy phenome-
nology. Although the Cabibbo-Kobayashi-Maskawa
(CKM) matrix are more general not to be fully fixed than
the SCPV case, it is proved that there is only one physical

complex phase in the Yukawa couplings [12]. Hence the
FCNC Higgs boson’s couplings cannot be absolutely free.
The FCNC Higgs boson’s mass still accepts a strict bound.
In terms of these observations, a generalized two Higgs
bidoublet model is proposed [13]. In this model, quark
mass matrices become far more flexible and the FCNC
Higgs boson’s Yukawa couplings are now free parameters.
Thereby the low energy bound on the right-handed scale is
largely alleviated. As other generalized models, the two
Higgs bidoublet version of the LR model also has the
advantage to realize the SCPV without the fine-tuning
problem.
The LR symmetric model is also motivated to explain

the very tiny neutrino masses. When the vacuum expecta-
tion value (VEV) vR of the neutral component of �R is
very huge, typically of order 1012 GeV, the well-known
seesaw mechanism provides a very natural explanation of
the smallness of neutrino masses [14]. However, the right-
handed gauge bosons Z2 and W2 are too heavy to be
detected at the Large Hadron Collider (LHC) and the future
colliders. To allow for the possibility of an observable
right-handed scale, many authors focus on the vR �
10 TeV case. Although the seesaw mechanism can work
well, we have to face the so-called VEV-seesaw puzzle.
Namely, �=� is of order 10�10 rather than the anticipant
Oð1Þ, where � and � are located in the Higgs potential.
One may introduce a discrete Z2 symmetry �L ! ��L

and �R ! �R to resolve this VEV-seesaw problem [4]. It
is worthwhile to stress that neutrinos are the Dirac particles
in this scenario. If we preserve the Majorana Yukawa
couplings, the corresponding model must lie beyond the
LR symmetric model.
The Z2 symmetry leads to the absence of both �-type

terms and the Majorana Yukawa couplings, hence vL ¼ 0
due to the minimization conditions. Furthermore, we find
that the neutral Higgs bosons �0

L and �
0�
L are a pair of stable
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weakly interacting massive particles (WIMPs). This is an
important feature of our scenario which has not been
indicated before. It is a natural idea that �0

L and �0�
L may

be the cold dark matter candidates [15]. We first calculate
the WIMP-nucleon elastic scattering cross section which
has been strongly constrained by the direct dark matter
detection experiments, such as the CDMS [16] and
XENON [17]. However, our result is 3–5 orders of magni-
tude above the present bounds for m� 102–104 GeV
[16,17]. To avoid this puzzle, �0

L and �0�
L cannot dominate

all the dark matter. We find that our scenario is consistent
with the direct dark matter detection experiments only
when n�0L � 4:8� 10�14, where n�0L is the total relic num-

ber density of �0
L and �

0�
L . This bound requires that the dark

matter annihilation cross sections must be very large. In
this work, we examine whether our scenario can provide
very large annihilation cross sections so as to derive the
desired relic abundance.

In this paper we try to give a comprehensive analysis on
these LR models with general parameter setting. First, we
perform a detailed investigation on the simplest LR model
with one Higgs bidoublet, in which there are not any CP
violation phases. Then we generalize the simplest LR
model to some other more complicated situations. It turns
out that there is no significant differences among these one
Higgs bidoublet versions of the LR model because the
gauge and Higgs sectors are basically the same. Whereas
in the two Higgs bidoublet case, there would be more
Higgs bosons and the Yukawa couplings might be quite
different. Hence more delicate analysis is needed. The
remaining part of this paper is organized as follows. In
Sec. II, we briefly describe the main features of the LR
symmetric model and discuss the VEV-seesaw problem. In

Secs. III and IV the direct dark matter detection experi-
ments put very strong constraints on the relic number
density and the annihilation cross sections. In Sec. V, we
analyze whether the simplest LR model can be consistent
with the above constraints or not. Then we generalize the
simplest LR model to the two Higgs bidoublets case in
Sec. VI. The summary and comments are given in Sec. VII.

II. THE LR SYMMETRIC MODELWITH Z2

SYMMETRY

The minimal LR symmetric model consists of one Higgs
bidoublet � (2, 2, 0), one left-handed Higgs triplet �L (3,
1, 2), and one right-handed Higgs triplet�R (1, 3, 2), which
can be written as

� ¼ �0
1 �þ

1

��
2 �0

2

 !
; �L;R ¼ �þ

L;R=
ffiffiffi
2

p
�þþ
L;R

�0
L;R ��þ

L;R=
ffiffiffi
2

p
0
@

1
A:
(1)

After the spontaneous symmetry breaking, the Higgs mul-
tiplets can have the following vacuum expectation values:

h�i ¼ �1=
ffiffiffi
2

p
0

0 �2=
ffiffiffi
2

p
 !

; h�L;Ri ¼
0 0

vL;R=
ffiffiffi
2

p
0

 !
;

(2)

where �1, �2, vL, and vR are in general complex. Without
loss of generality, one can choose �1 and vR to be real,
while assigning complex phases �2 and �L for �2 and vL,
respectively. Following the requirements of the LR sym-
metry, we can write down the most general form of the
Higgs potential [4]
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1ðTr½�y��Þ ��2
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R�Þ; (3)

where ~� ¼ 
2�
�
2 and all parameters �i, �i, �i, 	i, and

�i are real. Only 	2 can be complex. The phases of �2 and
vL may lead to the SCPV [2]. It has been shown that the
combing constraints from the K and B system actually
exclude the minimal LR symmetric model with the
SCPV in the decoupling limit [9]. For our present purpose,
we investigate here the simplest LR model, in which 	2,
�2, vL, and the Yukawa couplings are real. It is worthwhile
to stress that our remaining analysis can be generalized to
the other CP violation scenarios [6–11].

In the minimal LR symmetric model, the Lagrangian
relevant for the neutrino masses reads [4]:

�L ¼ Y� � L� R þ ~Y� � L ~� R þ YMð � cLi
2�L L

þ � cRi
2�R RÞ þ H:c:; (4)

where  L;R ¼ ð�L;R; lL;RÞT . After the spontaneous symme-

try breaking, one may obtain the effective (light and left-
handed) neutrino mass matrix m� via the type II seesaw
mechanism:
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m� ¼
ffiffiffi
2

p �
YMvL � Y2

D�
2

2YMvR

�
; (5)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�1j2 þ j�2j2
p � 246 GeV represents the

electroweak symmetry breaking (EWSB) scale and YD ¼
ðY��1 þ ~Y��2Þ=ð

ffiffiffi
2

p
�Þ. The charged lepton mass matrix is

given by ml ¼ ðY��2 þ ~Y��1Þ=
ffiffiffi
2

p
. The electroweak pre-

cision test requires vL � �. Barring extreme fine-tuning,
the neutrino masses m� � 0:1 eV [18] force vL to be of
order a few eV or less, thereby requiring vR � 1012 GeV
for YD � YM �ml=�. In this case, the right-handed gauge
bosons Z2 andW2 are too heavy to be detected at the LHC
and the future colliders. To allow for the possibility of an
observable right-handed scale, many authors focus on the
vR � 10 TeV case. Although the seesaw mechanism can
work well, we need to resolve the so-called VEV-seesaw
puzzle [4], which is indicated by a simple vacuum mini-
mization equation:

ð2�1 � �3ÞvLvR ¼ �1�1�2 þ �2�
2
1 þ �3�

2
2: (6)

Without loss of generality, one can write Eq. (6) in a
compact form:

� 	 �

�
¼ vLvR

�2
: (7)

In view of the naturalness, one expects ��Oð1Þ.
However, we find that �� 10�10 as long as vR �
10 TeV. This is the infamous VEV-seesaw problem in
the literature [4]. The neutrino mass matrix m� in Eq. (5)
can also be written as

m� ¼
ffiffiffi
2

p �
YM�� Y2

D

2YM

�
�2

vR
: (8)

It is shown that the VEV-seesaw relationship implies the
unnaturalness for the auxiliary parameter � if one wants to
search for new physics at the TeV scale. To avoid the VEV-
seesaw puzzle, a smart way is to introduce some new
symmetries to eliminate all �-type terms of the Higgs
potential. However this is not an easy task in the current
model. One may guess there exists some additional global

symmetries like Uð1Þ acting on the Higgs fields which can
eliminate all �-type terms [4]. However, such an alterna-
tive always affects the fermion sector and fails to give
correct fermion masses and mixing. If there is an approxi-
mate Uð1Þ horizontal symmetry to suppress �i without
eliminating them completely, then one may solve the
VEV-seesaw problem [10,19]. Unfortunately, this model
yields a small mixing angle within the first two lepton
generations. In Ref. [4], the authors suggest aZ2 symmetry

�L ! ��L; �R ! �R; (9)

which can eliminate all �-type terms of the Higgs poten-
tial. However, this discrete symmetry also eliminates the
Majorana Yukawa couplings, which implies that neutrinos
are Dirac particles. At this moment, Eq. (6) becomes

ð2�1 � �3ÞvL ¼ 0: (10)

One may immediately dismiss the possibility 2�1 � �3 ¼
0, which implies two massless left-handed Higgs triplet
bosons. Thus the only left choice is vL ¼ 0. The Z2

symmetry leads to vL ¼ 0 and the absence of both
�-type terms and Majorana Yukawa couplings.
Furthermore, we find that the lightest particles among the
members of the left-handed Higgs triplet �L, namely �0

L

and �0�
L , are two degenerate and stable particles. A natural

idea is that �0
L and �0�

L may be the cold dark matter
candidates. In the following sections we shall discuss the
possibility of �0

L and �0�
L being the cold dark matter can-

didates by evaluating all relevant annihilation processes.
The main features of the LR symmetric model with Z2

symmetry have been shown in Ref. [20]. Here, we show the
mass spectrum for the Higgs bosons and gauged bosons at
leading order in Table I, with approximations �2=v2R ’ 0
and �2=�1 ’ 0 mentioned in the appendix. Gauge bosons
Z1 and Z2 are defined by Z1 ¼ cWW3L � sWtWW3R �ffiffiffiffiffiffiffiffi
c2W

p
tWB and Z2 ¼ ffiffiffiffiffiffiffiffi

c2W
p

secWW3R � tWB, where the sub-
script W denotes the Weinberg angle �W . In addition, all
the trilinear and quartic scalar interactions and scalar-
gauge interactions are listed in the appendix for
convenience.

TABLE I. The mass spectrum for the Higgs bosons and the gauged bosons in the LR symmetric model with Z2 symmetry. Here, we
have neglected the terms in order of �2=�1 and �2=v2R.

Particles Mass2 Particles Mass2

h0 ¼ �0r
1 m2

h0
¼ 2�1�

2 H

1 ¼ �


1 m2
H


1
¼ 1

2	3ðv2R þ 1
2�

2Þ
H0

1 ¼ �0r
2 m2

H0
1

¼ 1
2	3v

2
R þ 2�2ð2�2 þ �3Þ �



R m2
�


R

¼ 2�2v
2
R þ 1

2	3�
2

A0
1 ¼ ��0i

2 m2
A0
1

¼ 1
2	3v

2
R � 2�2ð2�2 � �3Þ �


L m2
�
L

¼ 1
2 ð�3 � 2�1Þv2R þ 1

4	3�
2

H0
2 ¼ �0r

R m2
H0

2

¼ 2�1v
2
R �



L m2
�


L

¼ 1
2 ð�3 � 2�1Þv2R þ 	3�

2

�0
L, �

0�
L m2 ¼ 1

2 ð�3 � 2�1Þv2R
Z1 m2

Z1
¼ g2�2

4cos2�W
W


1 ¼ W

L m2

W1
¼ g2�2

4

Z2 m2
Z2

¼ g2v2Rcos
2�W

cos2�W
W


2 ¼ W

R m2

W2
¼ g2v2R

2
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III. THE DIRECT DARK MATTER DETECTION

The current direct dark matter detection experiments,
such as the CDMS [16] and XENON [17], have provided
very strong constraints on the WIMP-nucleus elastic cross
section. The rate for direct detection of dark matter candi-
dates is given by [15]

R � X
i

Ni
�local

m
h
iN i; (11)

where Ni is the number of nuclei with species i in the
detector, �local is the local energy density of dark matter,
and m is the mass of cold dark matter. 
iN is the WIMP-
nucleus elastic cross section, and the angular brackets
denote an average over the relative WIMP velocity with
respect to the detector. Using the standard assumptions of
�local and distribution of the relative WIMP velocity [21],
one can derive the constrains on the WIMP-nucleon cross
section 


exp
n � 4:6� 10�44 cm2 for m ¼ 60 GeV from

the CDMS [16]; 
exp
n � 8:8� 10�44 cm2 for m ¼

100 GeV from the XENON [17]. Since the WIMP flux
decreases / 1=m, 
exp

n / m is a very good assumption for
m> 100 GeV.

In our scenario, the dark matter candidates �0
L and �0�

L

interact with nucleus N through their couplings with
quarks by exchanging the neutral gauge bosons Z1, Z2,
and Higgs bosons. We find that the main contribution
comes from the Z1 exchanging process, which produces
a spin-independent elastic cross section on a nucleus N
[22]


N ¼ 2G2
FM

2ðN Þ
�

½ðA� ZÞ � ð1� 4sin2�WÞZ�2; (12)

where Z and A� Z are the numbers of protons and neu-
trons in the nucleus, respectively. GF is the Fermi coupling
constant and MðN Þ ¼ mMN =ðmþMN Þ is the reduced
WIMP mass. Traditionally, the results of WIMP-nucleus
elastic experiments are presented in the form of a normal-
ized WIMP-nucleon cross section 
n in the spin-
independent case, which is straightforward


n ¼ 1

A2

M2ðnÞ
M2ðN Þ
N ; (13)

where MðnÞ ¼ mMn=ðmþMnÞ and Mn denotes the nu-
cleon mass. Whenm� Mn, one may arrive at
n ¼ 8:2�
10�39 cm2 for the CDMS experiment, which is 3–5 orders
of magnitude above the present bounds for m�
102–104 GeV [17]. Therefore, such dark matter candidates
are excluded by the current direct detection experiments.

If �0
L and �

0�
L have a nonzero splitting, one can avoid the

above bounds since the Z1 exchanging process is forbidden
kinematically [23]. However, such degeneracy cannot be
satisfied in our model. If the energy density of �0

L and �0�
L

in the solar system is far less than �local, we can avoid the
above experimental limits as shown in Eq. (11). This
means that �0

L and �0�
L are only a very small part of the

total dark matter. We find that our model is consistent with
the direct detection experiments only when

n�0L � 4:8� 10�14; (14)

where n�0L is the total relic number density of �0
L and �0�

L .

Here we have taken the approximation 
exp
n / m (when

m � 100 GeV) and used 

exp
n ¼ 3:4� 10�43 cm2 (m ¼

1 TeV) as the input parameter [16]. It is worthwhile to
stress that the bound in Eq. (14) is not valid for m<
100 GeV.
The present experimental bounds are based on the stan-

dard assumptions for the galactic halo [21]. It needs to be
mentioned that the rotation curves of disk galaxies may
also be explained by the modified Newtonian dynamics
(MOND) [24]. On one hand, we use the MOND to account
for the rotation curve of the Milky Way; on the other hand,
we still believe that the cold dark matter exists in the
Universe. In this case, the local energy density of cold
dark matter may be far less than the standard assumption.
Therefore, we may give up the above constraints from the
direct dark matter detection experiments. Subsequently,
the stable particles �0

L and �
0�
L may be the cold dark matter.

IV. CONSTRAINTS ON THE ANNIHILATION
CROSS SECTION

The thermal average of the annihilation cross section
times the ‘‘relative velocity’’ h
vi is a key quantity in the
determination of the cosmic relic abundances of �0

L and
�0�
L . The constraint in Eq. (14) implies h
vi must be very

large in our scenario. In this section, we analyze whether
the present model can satisfy Eq. (14).
In our scenario, �iL (i ¼ 1; . . . ; 6 for �0

L, �
0�
L , �


L , and
�


L ) are a set of similar particles whose masses may be

nearly degenerate. The total relic density of the lightest
particles �0

L and �0�
L is determined not only by their anni-

hilation cross sections, but also by the annihilation of the
heavier particles, which will later decay into �0

L or �0�
L .

Therefore, we need to consider the coannihilation pro-
cesses [25]. Since �


L and �


L which survive annihilation

eventually decay into �0
L or �

0�
L , the relevant quantity is the

total number density of �iL, n ¼ P
6
i¼1 ni. The evolution of

n is given by the following Boltzmann equation [25]:

dn

dt
¼ �3Hn� h
effviðn2 � n2eqÞ; (15)

where H is the Hubble parameter, neq is the total equilib-

rium number density, and v is the relative velocity of two
annihilation particles. The effective annihilation cross sec-
tion 
eff is


eff ¼
X6
ij


ij
gigj

g2eff
ð1þ �iÞ3=2ð1þ�jÞ3=2e�xð�iþ�jÞ;

(16)
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where �i ¼ ðmi �mÞ=m, x 	 m=T is the scaled inverse
temperature. gi ¼ 1 is the internal degrees of freedom of

�iL and geff ¼
P

6
i¼1 gið1þ�iÞ3=2e�x�i . For the total equi-

librium number density, we may use the nonrelativistic

approximation neq � geffðmT=2�Þ3=2 expð�m=TÞ.
For particles which potentially play the role of cold dark

matter, the relevant freeze-out temperature is xf ¼ m=T �
25. In our scenario, one can derive xf * 35 which can be

seen in Eq. (19). When �i > 0:1 for �

L and �



L , we can
arrive at 
eff ¼ 
12=2 in our model. In addition, we find
that it is also a rational approximation
eff � 
12=2 even if
all masses of �iL are nearly degenerate. For simplicity, we
take h
effvi ¼ h
12vi=2 in the remaining analysis of our
paper.

For nonrelativistic gases, the thermally averaged anni-
hilation cross section h
12vimay be expanded in powers of
x�1, h
12vi ¼ 
0x

�k, k ¼ 0 for the s-wave annihilation
and k ¼ 1 for the p-wave annihilation [26]. The general
formula for h
12vi is given by [27]

h
12vi ¼ 
0x
�k

¼ 1

m2

�
!� 3

2
ð2!�!0Þx�1 þ . . .

�
s=4m2¼1

; (17)

where ! 	 E1E2
12v, prime denotes derivative with re-
spect to s=4m2, and s is the center-of-mass squared energy.
! and its derivative are all to be evaluated at s=4m2 ¼ 1.
The final number density n�0L is given by [26]

n�0L ¼ 2970
3:79ðkþ 1Þxkþ1

f

g1=2� MPlm
0=2
cm�3 (18)

with

xf ¼ ln½0:038ðkþ 1Þðgeff=g1=2� ÞMPlm
0=2� � ðkþ 1=2Þ
� lnfln½0:038ðkþ 1Þðgeff=g1=2� ÞMPlm
0=2�g; (19)

where MPl ¼ 1:22� 1019 GeV and g� is the total number
of effectively relativistic degrees of freedom at the time of
freeze-out. Here we take g� � 100 for illustration. With
the help of Eqs. (14), (18), and (19), we can derive

m
0 � 0:13 GeV�1 ðs-waveÞ;
m
0 � 9:8 GeV�1 ðp-waveÞ: (20)

V. ONE HIGGS BIDOUBLET MODEL

In this section, we shall investigate whether the above
bounds can be satisfied in one Higgs bidoublet model or
not. Since there are many unknown parameters, some
rational assumptions have to be made for our model so
that one can calculate all relevant annihilation processes. In
our scenario, the thermally averaged annihilation cross
section h
12vi is usually inverse proportional to m2 as
shown in Eq. (17). Therefore, one can obtain m
0 /
1=vR. Namely, the smaller vR is, the easier Eq. (20) can

be satisfied. Considering the constraints on the masses of
W2 and the FCNC Higgs boson from low energy phenome-
nology [11], we choose vR ¼ 10 TeV and 	3 ¼ 2 as an
instructive example to illustrate the main features of our
scenario. One can immediately get mZ2

¼ 7:5 TeV and

mW2
¼ 4:5 TeV. Now let us introduce an auxiliary pa-

rameter " 	 ð�3 � 2�1Þ=ð2�1Þ to reexpress the mass of
�0
L and �0�

L

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ð�3 � 2�1Þ

q
vR ¼ ffiffiffiffiffiffiffiffi

"�1
p

vR: (21)

From the Z1 invisible width one may obtain m>mZ1
=2,

which requires "�1 > 2:0� 10�5. On the other hand, we
may require �3 � 4 in view of the perturbativity, and then
derive �1 þ "�1 � 2. In addition, we wish all �i have the
same order which means " � 4. Because of the suppres-
sion of phase space, one may ignore some annihilation
processes in terms of the values of " and �1. When m<

mW1
, �0

L and �0�
L mainly annihilate into the fermion pairs

(except for top quark). The corresponding m
0 is far less
than the lower bound of Eq. (20). For the convenience of
the remaining analysis, we requirem � 500 GeV (namely,
"�1 � 2:0� 10�3) which does not affect our conclusions.
Finally, we assume that all 	i of the Higgs potential have
the same order.
It is worthwhile to stress that Eq. (17) is not valid when

the annihilation takes place near a pole in the cross section
[25]. This happens, for example, in Z-exchange annihila-
tion when the mass of relic particle is near mZ=2. For the
cases 2m=mZ � 0:8 and 2m=mZ � 1:2, we use the above
analytic way to calculate m
0. On the contrary, we should
numerically solve the Boltzmann equation in Eq. (15), in
which the resonant cross sections of the Breit-Wigner form
must be considered. Then one can derive the relic number
density n�0L which has to be less than the upper bound in

Eq. (14).
In general, all relevant annihilation processes may be

divided into four categories in terms of the different final
states: �0

L�
0�
L ! f �f, �0

L�
0�
L ! VV, �0

L�
0�
L ! HH, and

�0
L�

0�
L ! VH, where V and H denote the gauge boson

and the Higgs boson, respectively. Next, we shall analyze
in detail the four classes of annihilation processes and the
resonance case.

A. �0
L�

0�
L ! f �f

Let us start with the first case: �0
L and �

0�
L annihilate into

fermion pairs. There are two kinds of Feynman diagrams at
the tree level contributing to this case: S channel gauge
bosons exchanging and Higgs bosons exchanging dia-
grams. Because of the absence of Majorana-type Yukawa
couplings, there are no T channel diagrams contribution.
The first amplitude is proportional to e2, while the second
is proportional to 	mf=

ffiffiffi
s

p
. It is plausible that both dia-

grams have the same contribution for m� 500 GeV.
However, the squared amplitude of the first diagram always
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includes a suppression factor of 1� 4m2=s, which leads to
the p-wave annihilation.

For the gauge bosons exchanging diagram, we can ob-
tain

!f �f � E1E2
f �fv

� e4

4�

�
1� 4m2

s

� 9s2 � 19m2
Z2
sþ 11m4

Z2

ðs�m2
Z2
Þ2 : (22)

It is obvious that this is a p-wave annihilation process.
With the help of Eq. (17), we have ðm
0Þf �f �
2:2� 10�5 GeV�1 for m � 500 GeV. It is 6 orders less
than the lower bound m
0 � 9:8 GeV�1. Although one
may increase m
0 through lowering m, ðm
0Þf �f is still far
less than the lower bound in Eq. (20) even if m ¼
100 GeV. Therefore, this process cannot suppress the relic
number density of �0

L and �0�
L .

For the Higgs bosons exchanging diagram, the ex-
changed particles should be h0 and H0

1 . As shown in

Table I, the mass of H0
1 is far more than the light SM

Higgs mass mh0 . Because of the suppression of the propa-
gator, we neglect the contribution fromH0

1 . For the h
0 case,

the amplitude of the Higgs bosons exchanging process is
proportional to mf. Furthermore, we only consider the top

quark pair final states. The relevant cross section is

!top � 3

16�

ð	1mtÞ2s
ðs�m2

h0
Þ2 ; (23)

which leads to a s-wave annihilation process. One may
immediately derive ðm
0Þtop � 1:5� 10�5 GeV�1 for

m � 500 GeV and 	1 ¼ 2, which is far less than the lower
bound m
0 � 0:13 GeV�1.

B. �0
L�

0�
L ! VV

In Fig. 1, we show all possible Feynman diagrams for
the process �0

L�
0�
L ! VV. There are three kinds of

Feynman diagrams: Fig. 1(a)–1(c) for the final states
Z1Z1. Obviously, the amplitude of Fig. 1(b) is suppressed
by a factor of �=

ffiffiffi
s

p
compared with the first one. Thus we

only consider the contribution from Fig. 1(a) and 1(c). The
total annihilation cross section is found to be

!Z1Z1
� 2e4csc42�W

�

�
1þ 4m2

s
� 8m2ðs� 2m2Þ

s2
yðx1Þ

�
;

(24)

where the function yðx1Þ is defined by yðx1Þ 	
arctanhðx1Þ=x1 and x1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

p
. Then, we can derive

ðm
0ÞZ1Z1
� 2:1� 10�5 GeV�1 for m � 500 GeV. It is

obvious that this result is not so large as to satisfy the
requirement of Eq. (20).
According to the Z1Z1 experience, we also calculate the

other processes. The corresponding cross sections are
given by

!W1W1
� e4

32�sin4�W

�
3þ 28m2

s
� 32

m2

s
yðx1Þ

�
; (25)

!W2W2
� e4

128�sin4�W

�
1� 4m2

W2

s

�
1=2
�
4

3

sin4�W
cos22�W

� ðs� 4m2Þðs� 4m2
W2
Þ

ðs�m2
Z2
Þ2

�
1þ 20m2

W2

s

þ 12
m4
W2

s2

�
þ
�
�3v

2
R

m2
W2

�
2 s2 � 4m2

W2
sþ 12m4

W2

ðs�m2
H0

2

Þ2
�
;

(26)

!Z1Z2
� e4sec4�W

4� cos2�W

�
1�m2

Z2

s

� s2 � 3m2
Z2
sþm4

Z2
þ 4m2s� 2ðs� 2m2Þð4m2 �m2

Z2
Þyðx1Þ

ðs�m2
Z2
Þ2 ; (27)

(a)

H 0H 0

(b) (c)

∆ L (T U)
Z1 /Z 2

(d)

FIG. 1. All possible Feynman diagrams for the annihilation processes �0L�
0�
L ! VV, where �L may be �0=0�

L or �
L , and H0 denotes
h0, H0

1 , and H
0
2 .
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!Z2Z2
� e4tan4�W

32�cos22�W

�
1� 4m2

Z2

s

�
1=2
�
4þ ð4m2 �m2

Z2
Þ2

m2s� 4m2m2
Z2

þm4
Z2

� 4x�

�
2þ 8m2 � s� 2m2

Z2

s� 2m2
Z2

yðx2Þ
�

� 16ð2m2 �m2
Z2
Þs� 4m2ð16m2 � 7m2

Z2
Þ

ðs� 2m2
Z2
Þ2 yðx2Þ þ

�
6� 2s

m2
Z2

þ s2

2m4
Z2

�
x2�

�
; (28)

where x� ¼ ðcot4�w�3v
2
RÞ=ðs�m2

H0
2

Þ and x2 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 4m2Þðs� 4m2

Z2
Þ

q
=ðs� 2m2

Z2
Þ. These cross sections

have the same order as the Z1Z1 case. However, the ther-
mally averaged annihilation cross sections of these pro-
cesses (except for W1W1) are far less than the Z1Z1 case
with m ¼ 500 GeV. Therefore, we do not analyze these
processes in detail.

C. �0
L�

0�
L ! HH=VH

Let us now focus on the processes �0
L�

0�
L ! HH=VH.

The relevant Feynman diagrams forHH andHV are shown
in Figs. 2 and 3, respectively. Since the dimensional scalar
trilinear couplings enter extensively into the above two
annihilation processes, the electroweak scale coupling
	1� in �0

L�
0�
L h

0 and the right-handed scale coupling
�3vR in �0

L�
0�
L H

0
2 would make a big difference in the

�0
L�

0�
L ! HV processes according to our current parameter

setting. Considering the complexity of this model, we only
calculate the annihilation cross sections up to leading order
(LO) by omitting the next to leading order (NLO) contri-
butions in terms of the following three suppressing factors:
(1) small VEV ratio �=vR and �=

ffiffiffi
s

p
due to the big hier-

archy in the symmetry breaking scale of the LR model.
Since we have made the approximation �2=v2R ’ 0 thus

here it is, of course, a reasonable power counting rule to
pick out the LO processes against the NLO ones; (2) gauge
coupling suppression e2; (3) p-wave factor 1� 4m2=s due
to large suppression in the integration of initial energy of
the dark matter pair.
In this subsection, we apply the above three suppressing

factors to make an explicit demonstration of the LO pro-
cesses, then give the convincing dark matter annihilation
cross sections. The LO amplitude for each possible anni-
hilation process is listed in Table II. The notations are as
follows: p1;2 denotes the momentum of the dark matter

pair, while p3;4 is the momentum of the final states, � is the
polar vector of gauge boson:

PZ1;2
¼ ðp1 � p2Þ 
 ðp4 � p3Þ

s�m2
Z1;2

; Ph;H43 ¼ p4 
 �ðp3Þ
s�m2

h0;H0
1

;

PTU ¼ p2 
 �ðp3Þ
t�m2

� p1 
 �ðp3Þ
u�m2

: (29)

Here we only consider the cross sections with amplitude
order 1. In terms of Table II, nine LO annihilation cross

sections are listed in Table III, where A ¼ 1� 2ð�1þ2�2Þ
s�2�1v

2
R

and B ¼ 32�2
4

�3

v2R
s�2m2

�


R

yðx3Þ þ 64�4
4

�2
3

v4R
sm2�4m2m2

�


R

þm4

�


R

with

H 0H 0

(a) (b)

∆ L

(c)

∆ L Z 1/Z 2

(d)

FIG. 3. All possible Feynman diagrams are shown for the annihilation processes �0
L�

0�
L ! VH. The first diagram only appears in the

process �0L�
0�
L ! VA0

1.

(a)

H 0H 0

(b) (c)

∆ L (T U) Z1 /Z2

(d)

FIG. 2. All possible Feynman diagrams for the annihilation processes �0
L�

0�
L ! HH.
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x3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 4m2Þðs� 4m2

�


R
Þ

q
=ðs� 2m2

�


R
Þ; a ¼

2�
3m2

H0
2

s�m2

H0
2

, b ¼ 4m2 þm2
H0

2

, c ¼ s� 2m2
H0

2

, d ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm2 � 4m2m2

H0
2

þm4
H0

2

q
, and x4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs� 4m2Þðs� 4m2

H0
2

Þq
=ðs� 2m2

H0
2

Þ. We find that these

processes fail to provide enough large cross sections. For
�0
L�

0�
L ! A0

1Z1 and H


1 W

�
1 , one can easily obtain m
0 &

	2
2=ð16�mÞ, which is far less than the required lower

bound 0:13 GeV�1. Since the other processes have the
similar forms, we take the process �0

L�
0�
L ! h0H0

1 as an

example to illustrate the main features of this kind of
processes. One can immediately derive

ðm
0Þh0H0
1
¼ 	2

2

8�vR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

"�1

� 1

4ð"�1Þ2
s �

"� 2

2"� 1

�
2
; (30)

where we have used 	3 ¼ 2. It is obvious that the maxi-
mum value can be obtained when "�1 ¼ 0:5. Varying ",
we may derive ðm
0Þh0H0

1
� 3:5� 10�4 GeV�1 for 	2 ¼

2. Therefore, we do not discuss this class of processes in
detail.

D. The resonance case

As pointed out in the previous discussion, the method of
calculating the effective thermally averaged annihilation
cross section h
effvi is not valid for the resonance case
[25]. Here we numerically solve the Boltzmann equa-
tion (15), which can be reexpressed as [28]

dY

dx
¼ � x

Hx¼1sðxÞ�eff

�
Y2

Y2
eq

� 1

�
; (31)

where Hx¼1 is the Hubble parameter evaluated at T ¼ m
and sðxÞ is the entropy density given by

Hx¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4�3g�
45

s
m2

MPl

; sðxÞ ¼ 2�2g�
45

m3

x3
: (32)

Y 	 n=s is the ratio of the total particle number density n
to the entropy density s. The equilibrium number density
Yeq reads

YeqðxÞ ¼ 45

4�4

geff
g�

x2K2ðxÞ: (33)

In fact, �eff is the reaction density defined by

TABLE III. The annihilation cross sections for the leading order processes.

Process 4E1E2
v Process 4E1E2
v

h0h0
	2
1

16� ð1� �3v
2
R

s�2�1v
2
R

Þ2 Hþ
1 H

�
1

	2
1

8� ½1� ð1þ 	3

	1
Þ �3v

2
R

s�2�1v
2
R

�2

h0H0
1

	2
2

2� ð1�
m2

H0
1

s Þ1=2ð1� �3v
2
R

s�2�1v
2
R

Þ2 �þþ
R ���

R
�2
3

8� ð1�
4m2

�


R

s Þ1=2ðA2 þ BÞ
H0

1H
0
1

ð	1þ	3Þ2
16� ð1�

4m2

H0
1

s Þ1=2ð1� �3v
2
R

s�2�1v
2
R

Þ2 A0
1Z1

	2
2

4� ð1�
m2

A0
1

s Þ5=2

A0
1A

0
1

ð	1þ	3Þ2
16� ð1�

4m2

H0
1

s Þ1=2ð1� �3v
2
R

s�2�1v
2
R

Þ2 Hþ
1 W

�
1

	2
2

4� ð1�
m2

H

1

s Þ5=2
H0

2H
0
2

�2
3

16� ½a2 þ b2

2d2
þ 2b

c ð2aþ b
cÞyðx4Þ�

TABLE II. The amplitude for HH=HV final states, where cW ¼ cos�W , tW ¼ tan�W , etc. We also estimate the order of
corresponding annihilation cross sections.

Process Amplitude Order Process Amplitude Order

h0h0 i	1ð1� �3v
2
R

s�2�1v
2
R

Þ 1 h0Z1 4ie	1 csc2�W�PTU
e2

xf
�2

s

h0H0
1 2i	2ð1� �3v

2
R

s�2�1v
2
R

Þ 1 h0Z0
2 2ie	1

tWffiffiffiffiffiffi
c2W

p �PTU
e2

xf
�2

s

H0
1H

0
1 ið	1 þ 	3Þð1� �3v

2
R

s�2�1v
2
R

Þ 1 H0
1Z1 8ie	2csc2W�PTU

e2

xf
�2

s

A0
1A

0
1 ið	1 þ 	3Þð1� �3v

2
R

s�2�1v
2
R

Þ 1 H0
1Z2 4ie	2

tWffiffiffiffiffiffi
c2W

p �PTU
e2

xf
�2

s

A0
1H

0
1 etW½c2WPZ1

� tWPZ2
=2� e2

xf
A0
1Z1 4ie	2csc2W�P

H
43 1

H0
2H

0
2 i�3ð2� 6�1v

2
R

s�2�1v
2
R

� �3v
2
R

t�m2 � �3v
2
R

u�m2Þ 1 A0
1Z2 �4ie	2csc2W

ffiffiffiffiffiffiffiffi
c2W

p
�PH43 ð �vRÞ2

h0H0
2 �i�3	1�vRð 1

s�2�1v
2
R

þ 1
t�m2 þ 1

u�m2Þ ð �vRÞ2 H0
2Z1 4ie�3csc2WvRPTU

e2

xf

H0
1H

0
2 �2i�3	2�vRð 1

s�2�1v
2
R

þ 1
t�m2 þ 1

u�m2Þ ð �vRÞ2 H0
2Z2 2ie�3

tWffiffiffiffiffiffi
c2W

p vRPTU
e2

xf

Hþ
1 H

�
1 i	1½1� ð1þ 	3

	1
Þ �3v

2
R

s�2�1v
2
R

� 1 Hþ
1 W

�
1 �2ie	2csc2W�P

H
43 1

�þþ
R ���

R i�3½1� 2ð�1þ2�2Þv2R
s�2�1v

2
R

� �4

�3

8�4v
2
R

t�m2 � 1 Hþ
1 W

�
2 �2ie	2csc2W�P

h
43 ð �vRÞ2

WAN-LEI GUO, LI-MING WANG, YUE-LIANG WU, AND CI ZHUANG PHYSICAL REVIEW D 78, 035015 (2008)

035015-8



�eff 	 n2eqh
effvi ¼ m4

64�4x

Z 1

4

̂effðzÞ

ffiffiffi
z

p
K1ðx

ffiffiffi
z

p Þdz;
(34)

with


̂ eff ¼ g2eff4E1E2
effv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4=z

p
; (35)

where z ¼ s=m2, K1ðxÞ, and K2ðxÞ are the modified Bessel
functions.

In our scenario, the exchanged particles may be Z1, Z2,
h0, H0

1 , and H
0
2 . It is obvious that the case of exchanging

gauge bosons Z1 or Z2 is a p-wave annihilation process. If
the exchanged particle is H0

1 , the corresponding cross

section will be suppressed by �2=v2R. For the h
0 case, the

resonant condition 2m � mh0 implies that the final states
must be the Fermi pairs. In addition, the previous analysis
indicates that the maximal cross section might be from the
H0

2 exchanging process. Therefore, we study the h
0 andH0

2

cases in this subsection.
First we consider the H0

2 case. Because of the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4=z

p
in Eq. (35), we takem2

H0
2

=m2 ¼ 4:1 (namely " ¼
0:4878). At this point, �eff becomes larger than the
m2
H0

2

=m2 ¼ 4 case. Then we take �1 ¼ 1 (�3 ¼ 2:98). At

this moment, �0
L and �0�

L may annihilate into h0h0, h0H0
1 ,

and W2W2. Since h
0h0 and h0H0

1 have a similar form, the
key quantity is 	2

2 þ 	2
1=8 for our calculation. Without loss

of generality, one may take different values for 	1 and
require 	1 ¼ 	2. The final results for different 	1 have
been shown in Table IV. In addition, we also calculate the
�1 ¼ 0:1 case, and list the corresponding results in
Table IV. If �1 ¼ 0:1, the final states have to be two SM
Higgs bosons. In view of Table IV, we may find that theH0

2

case fails to suppress the relic number density of �0
L and

�0�
L .
Now we assume the SM Higgs mass mh0 ¼ 120 GeV in

the h0 case. Furthermore, one may obtain m ¼ 59:3 GeV
("�1 ¼ 3:5� 10�5) fromm2

H0
2

=m2 ¼ 4:1. Because ofm<

100 GeV, the bound in Eq. (14) is not valid. For m ¼
59:3 GeV, we take 


exp
n � 4:6� 10�44 cm2 [16] and de-

rive the corresponding bound

n�0L � 1:1� 10�13: (36)

In this case, �0
L and �0�

L mainly annihilate into the bottom
quark pair. The annihilation cross section is given by

ð4E1E2
vÞh0 ’
3

4�

	2
1m

2
bs

ðs�m2
h0
Þ2 þm2

h0
�2
h0
; (37)

where mb is the bottom quark mass and �h0 ’
3mh0m

2
b=ð8��2Þ is the decay width of h0. One may obtain

n�0L ¼ 1:2� 10�15 for 	1 ¼ 2. This wonderful result in-

dicates that our scenario may be consistent with the direct
dark matter search bound. To illustrate, we plot the relic
number density n�0L versus the dark matter mass m in

Fig. 4, where all annihilation channels have been consid-
ered. Using the results from CERN LEP-II, Datta and
Raychaudhuri have derived m � 55:4 GeV [29]. To show
the h0 resonance region, we choose 48 GeV � m �
72 GeV (0:8 � 2m=mh0 � 1:2) in Fig. 4. The peak around
2m=mh0 ¼ 0:83 in Fig. 4 is due to the competition between
h0 and Z1 resonances. For mh0 ¼ 120 GeV, we find that
56 GeV & m & 60 GeV can satisfy the requirement
n�0L � 1:1� 10�13. At this moment, one may obtain

��0L
h2 & 6:3� 10�7, which is far less than the total dark

matter density �DMh
2 ¼ 0:111
 0:006 [18].

VI. TWO HIGGS BIDOUBLET MODEL

Motivated by the general two Higgs doublet model as a
model for spontaneous CP violation, one may simply

TABLE IV. The relic number density n�0L in terms of different 	1 and �1 for the H0
2 case.

�1 ¼ 1:0 n�0L �1 ¼ 0:1 n�0L

	1 ¼ 0:01 n�0L ¼ 6:4� 10�13 	1 ¼ 0:01 n�0L ¼ 1:6� 10�12

	1 ¼ 0:1 n�0L ¼ 6:5� 10�13 	1 ¼ 0:1 n�0L ¼ 1:4� 10�12

	1 ¼ 1:0 n�0L ¼ 1:1� 10�12 	1 ¼ 1:0 n�0L ¼ 3:6� 10�12

	1 ¼ 2:0 n�0L ¼ 2:5� 10�12 	1 ¼ 2:0 n�0L ¼ 1:2� 10�11

FIG. 4. Numerical illustration of the relic number density n�0L
as a function of 2m=mh0 near a resonance, where mh0 ¼
120 GeV has typically been taken. The dashed line denotes
the present experimental upper bound on n�0L .
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extend the one Higgs bidoublet LR model to a two Higgs
bidoublet LR model with spontaneous P and CP violation
[13]. Besides one left-handed Higgs triplet �L (3, 1, 2) and
one right-handed Higgs triplet �R (1,3,2), this model con-
sists of two Higgs bidoublets � (2, 2, 0) and � (2, 2, 0),
which can be written as

� ¼ �0
1 �þ

1

��
2 �0

2

� �
; � ¼ �0

1 �þ
1

��
2 �0

2

� �
: (38)

The most general Yukawa interaction for quarks is given by

�LY ¼ �QLðYq�þ ~Yq ~�þ Fq�þ ~Fq ~�ÞQR; (39)

where QL;R ¼ ðuL;R; dL;RÞT . Parity P symmetry requires

Yq, ~Yq, Fq, and ~Fq are Hermitian matrices. When both P

and CP are required to be broken down spontaneously, all
the Yukawa coupling matrices are real symmetric. After
the spontaneous symmetry breaking, two Higgs bidoublets
can have the following vacuum expectation values:

h�i ¼ �1=
ffiffiffi
2

p
0

0 �2=
ffiffiffi
2

p
 !

;

h�i ¼ w1=
ffiffiffi
2

p
0

0 w2=
ffiffiffi
2

p
 !

;

(40)

where �1, �2, w1, and w2 are in general complex. Then we
may obtain the following quark mass matrices:

Mu ¼ 1ffiffi
2

p ðYq�1 þ ~Yq�2 þ Fqw1 þ ~Fqw2Þ;
Md ¼ 1ffiffi

2
p ðYq�2 þ ~Yq�1 þ Fqw2 þ ~Fqw1Þ:

(41)

In the two Higgs bidoublet model, the stringent con-
straints from the low energy phenomenology can be sig-
nificantly relaxed. In Ref. [13], the authors calculate the
constraints from the neural K meson mass difference �mK

and demonstrate that a right-handed gauge boson W2 con-
tribution in box diagrams with mass around 600 GeV is
allowed due to a cancellation caused by a light charged
Higgs boson with a mass range 150–300 GeV. Therefore,
we take vR � 2 TeV instead of the previous vR ¼ 10 TeV
for this section. It is worthwhile to stress that our previous
estimation is still right for this case except for the process
�0
L�

0�
L ! h0H0

1 . ðm
0Þh0H0
1
in Eq. (30) will be about 5

times larger than that in the vR ¼ 10 TeV case, which
does not affect our conclusion.

Since there are two Higgs bidoublets, we can give more
dark matter annihilation processes for �0

L�
0�
L ! HH and

�0
L�

0�
L ! VH. In this model, one may obtain three light

neutral Higgs bosons and a pair of light charged Higgs
bosons [30]. The other Higgs bosons’ masses are related to
vR. Although the annihilation cross section might be
doubled or even increased by several times, it is still at
least 10 times less than the direct dark matter search bound.

A significant advantage of the two Higgs bidoublet
model is that the Yukawa couplings may become very

large. In view of Eq. (41), one can explicitly understand
this feature. For example, we require the couplings Yq and
~Yq are very large when w1 � �1 � �2 � w2. Then one

may obtain larger annihilation cross section for the
�0
L�

0�
L ! f �f process than Eq. (23). For illustration, we

take the maximal annihilation cross section for each quark
pair final states

4E1E2
v� 3

8�

ð	iYqw1Þ2s
ðs�m2

hÞ2
; (42)

where mh denotes the mass of a light Higgs boson which
comes from �0

1. For 	i ¼ 1, w1 � 246 GeV, and m ¼
100 GeV, Yq * 4:3 can be obtained from Eq. (20) when

we take 2m=mh ¼ 0:8 and consider all quark final states
but the top quark. At this moment, we must consider the
light Higgs h contribution to the direct dark matter detec-
tion experiments. The WIMP-nucleon cross section by
exchanging h is given by


n ¼ M2ðnÞ
2�

�
	i
mm2

h

�
2
f2M2

n; (43)

where f� 0:02Yqw1=mu [15]. Using the above parameter

setting, we may derive 
n * 6:1� 10�35 cm2, which is
far more than the Z1 exchanging case of Eq. (13). The
larger Yq is, the larger 
n is. Therefore, we cannot give the

desired relic number density through increasing the
Yukawa couplings.
Now we focus on the resonance case. For the H0

2 ex-
changing case, the results in Table IV can be increased by
about 5 times because of vR � 2 TeV. On the other hand,
more final states would generally increase the partial width
�H0

2
!HH. Namely the case of more final states is equivalent

to enhancing 	1, which does no good for the larger anni-
hilation cross section as shown in Table IV. For the h0 case,
we may obtain the same conclusion as the one Higgs
bidoublet case.

VII. SUMMARYAND COMMENTS

In the left-right symmetric model with one Higgs bi-
doublet, we have demonstrated that the cold dark matter
constraints should be considered in a specific scenario in
which the so-called VEV-seesaw problem can be naturally
solved. In such a scenario, we find that �0L and �0�

L are two
degenerate and stable particles. To avoid the conflict with
the direct dark matter detection experiments, we obtain the
relic number density n�0L � 4:8� 10�14, which implies

that the two particles cannot dominate all the dark matter.
Subsequently, the lower bounds m
0 � 0:13 GeV�1 and
m
0 � 9:8 GeV�1 have been derived for the s-wave an-
nihilation and the p-wave annihilation, respectively. In this
paper, we examine whether our scenario can provide very
large annihilation cross sections so as to give the desired
relic abundance. We analyze in detail four classes of
annihilation processes: �0L�

0�
L ! f �f, �0

L�
0�
L ! VV,
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�0
L�

0�
L ! HH, and �0

L�
0�
L ! VH. However, our analysis

shows that this scenario fails to suppress the relic number
density of �0

L and �0�
L except for the resonance case [31].

For the h0 resonance case, we obtain��0L
h2 & 6:3� 10�7,

which is far less than the total dark matter density
�DMh

2 ¼ 0:111
 0:006. Finally, we discuss the two
Higgs bidoublet model from the following three aspects:
(1) vR � 2 TeV; (2) more final states; (3) large Yukawa
couplings. It turns out that our previous conclusions can be
generalized to the two Higgs bidoublet model.

In recent years, several authors have shown that it is far
from natural for the minimal LR model to generate sponta-
neous CP violation with natural-sized Higgs potential
parameters [3–5]. It is of importance for us to comment
on some more general LR models with one Higgs bidoub-
let [6–11]. The differences mainly come from the complex-
ity of the Higgs potential parameter 	2 and Yukawa
couplings. We stress that our conclusion in Sec. V could
be generalized to these more general cases without any
dramatic alternation because the gauge and Higgs sectors
are basically the same.
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APPENDIX: SCALAR AND SCALAR-GAUGE
TRILINEAR AND QUARTIC COUPLINGS

We intend to calculate the cross section to the leading
order for each process of dark matter annihilation. We first
work in the framework of the simple left-right symmetric
model with one Higgs bidoublet and one pair of LR
triplets. To simplify our calculation, we take the decou-
pling limit in which �2=v2R ’ 0 where �2 ¼ j�1j2 þ j�2j2
denotes the EWSB scale. The VEVs of the Higgs bidoublet
are required to satisfy the low energy phenomenology
constraint �2=�1 � mb=mt, which may produce correct
quark masses, small quark mixing angles, and the suppres-
sion of flavor-changing neutral currents [32–35]. For sim-
plicity, we take �2 ’ 0 which is a reasonable
approximation at the leading order since �2=�1 is now
around 10�2. Actually the limit �2 ! 0 brings an addi-
tional advantage that the vacuum CP phase �2 could be
taken zero safely without hampering the estimation. These
approximations could largely simplify our calculation.
The relevant scalar trilinear couplings and quartic cou-

plings under the unitary gauge are shown in Table V. Here
we write out the scalar-gauge interactions:

L �0L�
0�
L VV

¼ �0
L�

0�
L ðgW3L � g0BÞ2 þ g2�0

L�
0�
L W

þ
L W

�
L ;

(A1)

L�0L�LV
¼ �igð�0

L@�
�
L � ��

L @�
0
LÞWþ

L

þ i�0@�
0�
L ðgW3L � g0BÞ þ H:c:; (A2)

LHVV ¼ g2vR

�
H0

2½ðgW3R � g0BÞðgW3R � g0BÞ þWþ
R W

�
R � þ

�
� 1ffiffiffi

2
p ���

R Wþ
R W

þ
R þ H:c:

��

þ g2k

�
1

2
H�

1 ðW3RW
þ
L �W3LW

þ
R Þ �

1

2
ðH0

1 þ iA0
1ÞW�

L W
þ
R þ H:c:þ 1

4
h0½ðW3L �W3RÞðW3L �W3RÞ

þ 2ðWþ
L W

�
L þWþ

R W
�
R Þ�

�
; (A3)

TABLE V. The relevant trilinear and quartic scalar couplings, where the dimensional trilinear couplings with different scales vR and
� are separated and shown separately in two columns: ~� ¼ �1 þ 4�2 þ 2�3 and ~�0 ¼ �1 � 4�2 þ 2�3.

Interaction Coupling=vR Interaction Coupling=� Interaction Coupling

�0
L�

0�
L H

0
2 �3 �0L�

0�
L h

0 	1 �0L�
0�
L h

0h0 	1

�0
L�

��
L �þþ

R 2
ffiffiffi
2

p
�4 �0

L�
0�
L H

0
1 2	2 �0

L�
0�
L h

0H0
1 2	2

H0
2h

0h0 	1 h0h0h0 6�1 �0
L�

0�
L H

0
1H

0
1 	1 þ 	3

H0
2H

0
1h

0 2	2 H0
1h

0h0 6�4 �0L�
0�
L A

0
1A

0
1 	1 þ 	3

H0
2H

0
1H

0
1 	1 þ 	3 H0

1H
0
1h

0 2 ~� �0
L�

0�
L H

þ
1 H

�
1 	1

H0
2A

0
1A

0
1 	1 þ 	3 H0

1H
0
1H

0
1 6�4 �0

L�
0�
L H

0
2H

0
2 2�3

H0
2H

þ
1 H

�
1 	1 þ 	3 H0

1A
0
1H

0
1 2�4 �0L�

0�
L �

þþ
R ���

R �3

H0
2H

0
2H

0
2 6�1 h0A0

1A
0
1 2 ~�0

H0
2�

þþ
R ���

R 2ð�1 þ 2�2Þ H0
2H

0
2h

0 	1

H0
2H

0
2H

0
1 2	2
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LHHV ¼ ig

2
H�

1 @H
þ
1 ðW3L þW3RÞ � i�þþ

R @���
R ðgW3R þ g0BÞ � igð���

R @�þ
R � �þ

R @�
��
R ÞWþ

R

þ ig

2
½ðH�

1 @H
0
1 �H0

1@H
�
1 ÞWþ

L þ ðh0@H�
1 �H�

1 @h
0ÞWþ

R � þ
g

2
½ðA0

1@H
�
1 �H�

1 @A
0
1ÞWþ

R þ h:c:

þ ðH0
1@A

0
1 � A0

1@H
0
1ÞðW3L �W3RÞ�; (A4)

where the connection between weak eigenstates ðW3L;W3R; BÞ and physical states ðZ1; Z2; AÞ are demonstrated by the
following orthogonal transformation at the leading order:

W3L

W3R

B

0
@

1
A ¼

cW 0 sW
�sWtW ffiffiffiffiffiffiffiffi

c2W
p

secW sW
� ffiffiffiffiffiffiffiffi

c2W
p

tW �tW ffiffiffiffiffiffiffiffi
c2W

p

0
B@

1
CA Z1

Z2

A

0
@

1
A: (A5)

The SUð2ÞL;R gauge coupling g and Uð1ÞB�L coupling g0 are related to the Uð1ÞEM gauge coupling e:

g ¼ e

sin�W
; g0 ¼ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2�W
p : (A6)

Here our conventions are the same as those in Ref. [20].
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