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I. INTRODUCTION

The origin of electroweak symmetry breaking is one of
the most important outstanding questions in particle phys-
ics. One possibility is that this breaking is caused by the
formation of a bilinear condensate of new fermions inter-
acting via an asymptotically free, vectorial gauge interac-
tion, called technicolor (TC), that becomes strong at the
TeV scale [1]. To communicate the electroweak symmetry
breaking to the quarks and leptons and generate masses for
these fermions, one embeds this theory in a larger one,
extended technicolor (ETC), containing gauge bosons that
transform quarks and leptons into the new fermions, and
vice versa [2,3]. These theories are subject to stringent
constraints from precision electroweak measurements and
measurements of, or limits on, flavor-changing neutral
currents. Modern theories of this type incorporate a gauge
coupling that runs slowly over an extended interval of
energies to enhance quark and lepton fermion masses.
Calculations indicate that this behavior can also reduce
technicolor corrections to the Z and W boson propagators
somewhat [4,5]; however, because of the strongly interact-
ing nature of the relevant physics, there remain significant
theoretical uncertainties in the estimates of these
corrections.

A natural question that arises in considering these theo-
ries with dynamical electroweak symmetry breaking is
how the technicolor gauge interaction might be unified
with the gauge group of the standard model (SM), GSM ¼
SUð3Þc � SUð2Þw � Uð1ÞY . In Ref. [6], a partially unified
model of this type was constructed with the property that
the electric charge operator is a linear combination of
generators of non-Abelian gauge groups, and hence elec-
tric charge is quantized. Ideally, one would like to go
further and embed the TC gauge group GTC, together
with GSM, in a simple group, thereby relating the associ-
ated gauge couplings [7]. In Ref. [8], a study was carried
out of several approaches to this type of unification.

Here, we shall extend the analysis of Ref. [8]. We
consider models that are designed to unify GSM with GTC

or a larger gauge symmetry described by a group GSC �
GTC (where SC denotes ‘‘strongly coupled’’), in a simple
Lie group G

G � GSC �GGU: (1.1)

A notable feature of this approach is that it incorporates a
dynamical origin for the number of generations of quarks
and leptons, Ngen. A simple group GGU that contains GSM

has a lower bound on its rank of rkðGGUÞ � rkðGSMÞ ¼ 4,
and the minimal non-Abelian group that one could use for
GSC has rank 2. It follows that the rank of G satisfies

rkðGÞ � rkðGSCÞ þ rkðGGUÞ � 6: (1.2)

It is natural to focus on SUðNÞ groups, using SUðNSCÞ �
SUðNTCÞ and

SU ðNÞ � SUðNSCÞ � SUð5ÞGU; (1.3)

where SUð5ÞGU is the usual grand unification group [9],
with

N ¼ NSC þ 5: (1.4)

Since the group SUðNSCÞ involves interactions that should
get strong at or above the TeV scale, it must be asymptoti-
cally free and hence non-Abelian. Since the minimal value
of NSC is thus 2, it follows that the minimal value of N is 7.
However, the N ¼ 7 case yields only two standard-model
fermion generations [7]. In Ref. [8], cases up to N ¼ 10
were studied, including several that satisfy the requirement
of yielding Ng ¼ 3 standard-model fermion generations,

and some challenges for this unification program were
found. Here, we shall extend this study, considering the
next two higher cases, N ¼ 11 and N ¼ 12. Based on our
findings, we discuss aspects of this approach to unification
of theories with dynamical electroweak symmetry
breaking.

II. GENERAL STRUCTURE OF UNIFICATION
MODELS

We consider a general approach in which some SM
fermion generations may arise directly from the represen-
tations of the unified group G, while the remaining ones
arise indirectly, from sequential symmetry breaking of a
subgroup of G at ETC-type scales. Let us denote Ngh and

Ng‘ as the numbers of standard-model fermion generations

arising from these two sources, respectively, where the
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subscripts gh and g‘ refer to generations from the repre-

sentation content of the high-scale symmetry group and
from the lower-scale breaking. The sum of these satisfies

Ngen ¼ 3 ¼ Ngh þ Ng‘: (2.1)

At this stage, the number Ng‘ is only formal; that is, we

construct a model so that, a priori, it can have the possi-
bility that a subgroup ofG such asGSC might break in such
a manner as to peel off Ng‘ SM fermion generations.

However, we must examine for each model whether this
breaking actually occurs; this will be discussed further
below.

We next explain our procedure for analyzing the models;
for further details, the reader is referred to Ref. [8]. The
fermion representations are determined by the structure of
the fundamental representation, which we take to be

 R ¼
ðNcÞ�
da

�ec
�ce

0
BBB@

1
CCCA
R

; (2.2)

where d, e, and � are generic symbols for the fermions with

these quantum numbers. Thus, the indices on  R are or-
dered so that the indices in the SC set, which we shall
denote �, take on the values � ¼ 1; . . .NSC and then the
remaining five indices are those of the 5R of SUð5ÞGU,
including the color index a on da. The components of
Nc
R transform according to the fundamental representation

of SUðNSCÞ, are singlets under SUð3Þc and SUð2Þw, and
have zero weak hypercharge and hence also zero electric
charge. This structure is concordant with the direct product
in Eq. (1.1) and the corresponding commutativity property
½GSC; GGU� ¼ 0, and hence ½GTC; GGU� ¼ 0. (Recent dis-
cussions of models with higher-dimensional representa-
tions of GTC include [10]; some other approaches to
unification of GTC with SM gauge symmetries and gauge
coupling unification in the SM itself include [11].)
We next specify the fermion representations of G ¼

SUðNÞ. In the following, we shall usually write the fermion
fields as left handed. In order to avoid fermion representa-
tions of SUð3Þc and SUð2Þw other than those experimen-
tally observed, namely, singlets and fundamental or
conjugate fundamental representations, we restrict the fer-
mions to transform as k fold totally antisymmetrized prod-
ucts of the fundamental or conjugate fundamental

TABLE I. Some properties of the models discussed in the text with GSC and GSM unified in a
simple group G. Here, GSC ¼ SUðNSCÞ, GTC ¼ SUðNTCÞ, and GSC � GTC. The column marked
‘‘SCC’’ lists some properties of the SUðNSCCÞ theory combining the SUðNSCÞ and SUð3Þc
groups. See text for further definitions and discussion. The fermion content is indicated by the
vector n (with subscript omitted for brevity). The notation ‘‘no sol.’’ means that (in the
dynamical framework used) there is no solution to the requirements of absence of any SUðNÞ
gauge anomaly, well-defined SM fermion generations, and Ngen ¼ 3. The notation VGT and

CGT indicate that the gauge interaction is vectorial and chiral, respectively; AF and NAF mean
asymptotically free and nonasymptotically free, respectively. The Nð1;1Þ is the number of

electroweak-singlet neutrinos. The results up to N ¼ 10 are included for comparative purposes.

N NSCC NSC NTC Ng‘ Ngh n SCC Nð1;1Þ
7 5 2 2 0 3 no sol. — —

8 6 3 3 0 3 (0,2,0,0,1,0,3) VGT, AF 1

8 6 3 2 1 2 no sol. — —

9 7 4 4 0 3 no sol. — —

9 7 4 3 1 2 (0,1,0,1,0,1,0,1) VGT, AF 1

9 7 4 2 2 1 no sol. — —

10 8 5 5 0 3 (0,0,0,3,0,0,3,0,0) CGT, NAF 0

10 8 5 4 1 2 (0,0,0,2,0,0,2,0,0) CGT, NAF 0

10 8 5 3 2 1 (0,0,0,1,0,0,1,0,0) CGT, AF 0

10 8 5 3 2 1 (0,0,0,1,1,0,1,0,0) CGT, NAF 2

10 8 5 2 3 0 (0,0,0,0,1,0,0,0,0) VGT, AF 2

11 9 6 6 0 3 no sol. — —

11 9 6 5 1 2 (0,0,0,0,0,0,3,0,0,2,0,2) iia, CGT, NAF 3

11 9 6 5 1 2 (0,1,0,1,0,1,0,1,0,1) iib, VGT, NAF 1

11 9 6 5 1 2 (0,2,0,2,0,5,0,0,0,0) iic, CGT, NAF 5

11 9 6 4 2 1 no sol. — —

11 9 6 3 3 0 (0,0,0,0,1,1,0,0,0,0) i, VGT, NAF 2

12 10 7 4 3 0 (0,0,0,0,0,1,0,0,0,0,0) ia, VGT, NAF 0

12 10 7 4 3 0 (0,0,0,0,1,0,1,0,0,0,0) ib, VGT, NAF 2

12 10 7 7 0 3 (0,1,0,1,0,0,0,0,2,0,2) ii, CGT, NAF 0
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representation of SUðNÞ; these are denoted as ½k�N and

½ �k�N ¼ ½k�N . A set of (left-handed) fermions ffg trans-
forming under G is thus given by

ffg ¼ XN�1

k¼1

nk½k�N (2.3)

where nk denotes the multiplicity (number of copies) of
each representation ½k�N . We use a compact vector notation
n � ðn1; . . . ; nN�1ÞN . If k ¼ N � ‘ is greater than the in-

tegral part of N=2, we shall work with ½ �‘�N rather than
½k�N; these are equivalent with respect to SUðNÞ.

An acceptable model should satisfy the following re-
quirements: (i) the contributions from various fermions to
the total SUðNÞ gauge anomaly must cancel each other,
yielding zero gauge anomaly; (ii) the resultant TC-singlet,
SM-nonsinglet left-handed fermions must comprise a well-
defined set of generations, i.e., must consist of Ngen ¼ 3

copies of ½ð1; �5ÞL þ ð1; 10ÞL�, where the first number in
parentheses signifies that these are singlets under GTC

and the second number denotes the dimension of the
SUð5ÞGU representation; and (iii) in order to account for
neutrino masses, one needs to have TC-singlet,
electroweak-singlet neutrinos to produce Majorana neu-
trino mass terms that can drive an appropriate seesaw
[12,13]. Here, these are also singlets under SUð5ÞGU.

As another requirement, (iv), the ETC gauge bosons
should have appropriate masses, in the range from a few
TeV to 103 TeV, so as to produce acceptable SM fermion
masses. This requirement cannot be satisfied if G breaks
directly to the direct product group GTC �GSM at the
unification scale MGU as in early approaches to TC uni-
fication [14]. The requirement could be satisfied if the
breaking of G at MGU would leave an invariant subgroup
SUð2Þw �GSCC, where

SU ðNSCCÞ � SUðNSCÞ � SUð3Þc; (2.4)

with

NSCC ¼ NSC þ Nc ¼ NSC þ 3: (2.5)

Here, SCC stands for the the SC group together with the
color group. As the energy scale decreases, this intermedi-
ate symmetry GSCC should break at ETC scales, eventually
yielding the residual exact symmetry group SUð2ÞTC �
SUð3Þc. This can occur naturally if the SCC gauge inter-
action is chiral and asymptotically free; as the energy scale
decreases and the SCC gauge coupling increases, it can
thus trigger the formation of a fermion condensate which
self-breaks GSCC. This type of process in which a strongly
coupled chiral gauge interaction self-breaks via formation
of a fermion condensate has been termed ‘‘tumbling’’ [15].
Further requirements are that (v) if NSC >NTC, there
should be a mechanism to break SUðNSCÞ to SUðNTCÞ;
(vi) the TC interaction should be vectorial and asymptoti-
cally free, so that the TC gauge coupling gets large as the

energy scale decreases to the TeV scale, triggering the
formation of a technifermion condensate for EWSB; and
(vii) the residual SUð3Þc color group should be asymptoti-
cally free.
Let us define a ðN � 1Þ-dimensional vector whose com-

ponents are the values of the anomaly Að½k�NÞ with respect
to SUðNÞ, a ¼ ðAð½1�NÞ; . . . ; Að½N � 1�NÞÞ. Then the con-
straint that there be no G gauge anomaly is the condition

n � a ¼ 0: (2.6)

This is a diophantine equation for the components of the
vector of multiplicities n, subject to the constraint that the
components nk are non-negative integers (as well as addi-
tional constraints discussed below).
It is convenient to display the transformation property of

a fermion representation ofGwith respect to the subgroups
GSC and SUð5ÞGU by the notation ðRSC;RGUÞ. The num-
ber of (left-handed) fermions that transform as singlets
under GSC and �5’s of SUð5ÞGU is

Nð1;�5Þ ¼ nNSCþ4 þ n4; (2.7)

and the number of (left-handed) fermions that transform as
singlets under GSC and 10’s of SUð5ÞGU is

Nð1;10Þ ¼ n2 þ nNSCþ2: (2.8)

Hence, the requirement that the left-handed SC-singlet,
SM-nonsinglet fermions comprise equal numbers of
ð1; �5Þ and (1; 10)’s implies the condition

nNSCþ4 þ n4 ¼ n2 þ nNSCþ2: (2.9)

The number of SM fermion generations Ngh produced by

the representations of G is given by either side of this
equation

Ngh ¼ n2 þ nNSCþ2: (2.10)

The remaining Ng‘ generations of SM fermions arise via

the breaking of GSC. Electroweak-singlet neutrinos, arise,
in general, from two sources: (i) ½NSC�N , when all of the
NSC indices take values in SUðNSCÞ; and (ii) ½5�N , when all
of the indices take values in SUð5ÞGU. In the special case
NSC ¼ 5, these each contribute. Hence,

Nð1;1Þ ¼ nNSC
þ n5: (2.11)

Electroweak-singlet neutrinos arise from fermions that are
singlets under both GSC and SUð5ÞGU; there are Nð1;1Þ ¼
nNSC

þ n5 of these.

With the envisioned sequential breaking of GSCC and
GSC that would produce the Ng‘ SM fermion generations,

one has Ng‘ ¼ NSCC � ðNTC þ NcÞ, and
Ng‘ ¼ NSC � NTC: (2.12)

The requirement that there be no (left-handed) fermions
transforming as singlets under SUðNSCÞ and in an exotic

manner, as 5’s or 10’s of SUð5ÞGU is satisfied if
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n1 ¼ 0; nNSCþ1 ¼ 0 (2.13)

and

n3 ¼ 0; nNSCþ3 ¼ 0; (2.14)

respectively.

III. NSC ¼ 6, G ¼ SUð11Þ
We next proceed to analyze the new models, and first

consider the case where NSC ¼ 6, so that N ¼ NSC þ 5 ¼
11 and n ¼ ðn1; . . . ; n10Þ11. With Ngh þ Ng‘ ¼ Ngen ¼ 3

and NSC � NTC ¼ Ng‘, one has, a priori, four possibilities

for the manner in which the SM fermion generations arise,
as specified by ðNgh; Ng‘; NTCÞ, namely, (3; 0; 6), (2; 1; 5),

(1; 2; 4), and (0; 3; 3). However, as we shall show, only the
cases with Ngh ¼ 0 and Ngh ¼ 2 are actually allowed by

the various constraints. This SUð11Þmodel was not studied
in Ref. [8], because it does not allow one to use the
preferred, minimal value NTC ¼ 2. This latter value is
preferred in order to minimize technicolor corrections to
precisely measured electroweak quantities, and because it
makes possible a mechanism to produce light neutrino
masses [6,12,13]. However, if one takes into account the
fact that quasiconformal behavior in the technicolor theory
can reduce the technicolor corrections to the Z and W
boson propagators, the effect of the larger value of NTC

might not be too serious. The conditions that the theory

should not contain any 5L or 10L yield

n1 ¼ n3 ¼ n7 ¼ n9 ¼ 0; (3.1)

and Eq. (2.9) is

Ngh ¼ n2 þ n8 ¼ n4 þ n10: (3.2)

The condition of zero gauge anomaly, Eq. (2.6), is

7ðn2 þ 4n4 þ 2n5 � 2n6Þ � 20n8 � n10 ¼ 0: (3.3)

For a given value of Ngh ¼ 3� Ng‘, these are three non-

degenerate linear equations for the six quantities n2, n4, n5,
n6, n8, and n10. The solution entails the relation

n5 ¼ n6 þ 1

14
ð27n8 þ 29n10Þ � 5

2
Ngh: (3.4)

A necessary condition for an acceptable solution is thus
that

27n8 þ 29n10 � 35Ngh ¼ 0 mod 14: (3.5)

Let r be a non-negative integer. We find two classes of such
solutions: (i) Ngh ¼ 0, n8 ¼ n10 ¼ r, and hence, from

Eq. (3.4), n5 ¼ n6 þ 4r; (ii) Ngh ¼ 2, n8 ¼ n10 ¼ r, and

hence n5 ¼ n6 þ 4r� 5.
We first consider solutions of class (i). These have

Ng‘ ¼ 3 and NTC ¼ 3. Now Ngh ¼ n2 þ n8 ¼
n4 þ n10 ¼ 0, which implies that r ¼ 0, n2 ¼ n8 ¼ n4 ¼
n10 ¼ 0, and n5 ¼ n6 ¼ s, where s is some positive inte-

ger. The resultant vector n is

class ðiÞ: n ¼ ð0; 0; 0; 0; s; s; 0; 0; 0; 0Þ: (3.6)

The minimal choice would be s ¼ 1, but for generality, we
shall keep s arbitrary. Since ½6�11 	 ½�5�11, this SUð11Þ
theory has left-handed chiral fermion content

sf½5�11 þ ½�5�11g (3.7)

and thus is vectorial. Consequently, the fermion content
with respect to the subgroups SUð9ÞSCC and SUð6ÞSC is also
vectorial. With respect to the subgroup

SU ð2Þw � SUð9ÞSCC; (3.8)

the ½5�11 representation transforms as

½5�11 ¼ ð1; ½�4�9Þ þ ð2; ½4�9Þ þ ð1; ½3�9Þ; (3.9)

where we use the ½k�9 notation for the representations of
SUð9ÞSCC and the well-known dimensions to label the
representations of SUð2Þw. The total fermion content with
respect to the subgroup (3.8) is comprised of s copies of
Eq. (3.9) and its conjugate. We recall the requirement that
the SCC and SC interactions should be asymptotically free.
For a given gauge group Gj with gauge coupling gj and

�j ¼ g2j=ð4�Þ, the evolution of the gauge couplings as a

function of the momentum scale � is given by the beta

function �j ¼ d�j=dt ¼ �bGj0 �
2
j=ð2�Þ þOð�3

j Þ, where

t ¼ ln�. We find that the SUð9ÞSCC gauge interaction is
nonasymptotically free. Here and below, for comparative
purposes, it will be useful to give the actual coefficients.
We calculate

b
SUð9ÞSCC
0 ¼ 3ð11� 28sÞ ðclass iÞ; (3.10)

which is negative for any value s � 1. With respect to the
subgroup

SU ð6ÞSC � SUð5ÞGU; (3.11)

the ½5�11 representation transforms as

½5�11 ¼ ð1; 1Þ þ ð½1�6; �5Þ þ ð½2�6; 10Þ þ ð½3�6; 10Þ
þ ð½�2�6; 5Þ þ ð½�1�6; 1Þ; (3.12)

where, aside from the overall singlet (1; 1), we use the ½k�6
notation for the representations of SUð6ÞSC and the well-
known dimensions to label the representations of SUð5ÞGU.
The fermion content of this model with respect to the
subgroup is the sum of s copies of Eq. (3.12) and its
conjugate. The SUð6ÞSC gauge interaction is not asymptoti-
cally free; the leading coefficient of its beta function is

bSUð6ÞSC0 ¼ 2ð11� 42sÞ ðclass iÞ; (3.13)

which is negative for any s � 1. This disfavors the model.
We next consider models of class (ii). These have Ng‘ ¼

1 and NTC ¼ 5. The relations Ngh ¼ n2 þ n8 ¼
n4 þ n10 ¼ 2, together with the assignment n8 ¼ n10 ¼ r
imply that
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n2 ¼ n4 ¼ 2� r: (3.14)

We thus have three subclasses of solutions, namely, (iia)
r ¼ 2, whence n2 ¼ n4 ¼ 0 and n5 ¼ n6 þ 3; (ii.b) r ¼ 1,
whence n2 ¼ n4 ¼ 1 and n5 ¼ n6 � 1; and (ii.c) r ¼ 0,
whence n2 ¼ n4 ¼ 2 and n5 ¼ n6 � 5. Minimal choices in
each of these three subclasses have the following n vectors
(see Table I):

ðiiaÞ: n ¼ ð0; 0; 0; 0; 3; 0; 0; 2; 0; 2Þ; (3.15)

ðiibÞ: n ¼ ð0; 1; 0; 1; 0; 1; 0; 1; 0; 1Þ; (3.16)

ðiicÞ: n ¼ ð0; 2; 0; 2; 0; 5; 0; 0; 0; 0Þ: (3.17)

The fermions of set (iia) transform, with respect to the
subgroup (3.8), according to

3½5�11 ¼ 3fð1; ½�4�9Þ þ ð2; ½4�9Þ þ ð1; ½3�9Þg; (3.18)

2½�3�11 ¼ 2fð1; ½�3�9Þ þ ð2; ½�2�9Þ þ ð1; ½�1�9Þg; (3.19)

2½�1�11 ¼ 2fð1; ½�1�9Þ þ ð2; 1Þg: (3.20)

With the SUð2Þw couplings small, the nonsinglet SUð9ÞSCC
fermion content is thus

ffg ¼ 4½�1�9 þ 4½�2�9 þ 3½3�9 þ 2½�3�9 þ 6½4�9 þ 3½�4�9:
(3.21)

Hence, the SUð9ÞSCC sector is a chiral gauge theory. If the
SUð9ÞSCC gauge interaction were asymptotically free and
hence increased as the energy scale decreased belowMGU,
one could proceed to the next step and analyze self-
breaking condensate formation in the theory. However,
we find that the SUð9ÞSCC interaction is nonasymptotically
free, having a leading coefficient of its beta function equal
to

bSUð9ÞSCC0 ¼ � 353

3
ðclass iiaÞ: (3.22)

With respect to the subgroup (3.11), the (left-handed chi-
ral) fermions of the set (iia) decompose according to

3½5�11 ¼ 3fð1; 1Þ þ ð½1�6; �5Þ þ ð½2�6; 10Þ þ ð½3�6; 10Þ
þ ð½�2�6; 5Þ þ ð½�1�6; 1Þg; (3.23)

2½8�11 	 2½�3�11
¼ 2fð1; 10Þ þ ð½�1�6; 10Þ þ ð½�2�6; �5Þ þ ð½�3�6; 1Þg;

(3.24)

and

2½10�11 	 2½�1�11 ¼ 2fð½�1�6; 1ÞÞ þ ð1; �5Þg: (3.25)

With the SUð5ÞGU couplings small, the nonsinglet left-
handed fermions transform according to the following
SUð6ÞSC representations:

ffg ¼ 15½1�6 þ 25½�1�6 þ 30½2�6 þ 25½�2�6 þ 32½3�6�;
(3.26)

where we have used the fact that ½3�6 is equivalent to ½�3�6.
Hence, the SUð6ÞSC gauge interaction is chiral. However,
this class of models is disfavored because the SUð6ÞSC
gauge interaction is not asymptotically free; the leading
coefficient of the beta function is

b
SUð6ÞSC
0 ¼ � 386

3
ðclass iiaÞ: (3.27)

Hence, the SUð6ÞSC gauge coupling gets smaller rather
than larger as the energy scale decreases from high values,
precluding the possibility of condensate formation and
self-breaking of SUð6ÞSC to extract the SUð5ÞSC group
and a Ng‘ ¼ 1 generation of SM fermions.

We next consider the subclass (iib). The fact that an
SUðNÞ gauge theory with odd N � 5 and left-handed
fermion content given by ni ¼ 0 for i ¼ 1; 3; . . . ; N � 2
and ni ¼ 1, i ¼ 2; 4; . . . ; N � 1 is anomaly free was shown
in [16]. With respect to the subgroup (3.8), the fermions for
this class decompose according to

½2�11 ¼ ð1; ½2�9Þ þ ð2; ½1�9Þ þ ð1; 1Þ; (3.28)

½4�11 ¼ ð1; ½4�9Þ þ ð2; ½3�9Þ þ ð1; ½2�9Þ; (3.29)

½6�11 	 ½�5�11 ¼ ð1; ½4�9Þ þ ð2; ½�4�9Þ þ ð1; ½�3�9Þ; (3.30)

½8�11 	 ½�3�11 ¼ ð1; ½�3�9Þ þ ð2; ½�2�9Þ þ ð1; ½�1�9Þ; (3.31)

½10�11 	 ½�1�11 ¼ ð1; ½�1�9Þ þ ð2; 1Þ: (3.32)

With the SUð2Þw couplings small, the nonsinglet SUð9ÞSCC
fermion sector is then

ffg ¼ 2f½1�9 þ ½�1�9 þ ½2�9 þ ½�2�9 þ ½3�9 þ ½�3�9
þ ½4�9 þ ½�4�9g: (3.33)

Hence, although the SUð11Þ gauge interaction is chiral, the
SUð9ÞSCC gauge interaction is vectorial. Even if the
SUð9ÞSCC interaction were asymptotically free, this vecto-
rial property would disfavor this class of models, because it
would not self-break. The SUð9ÞSCC interaction is actually
not asymptotically free; we calculate that

bSUð9ÞSCC0 ¼ � 157

3
ðclass ii:bÞ: (3.34)

With respect to the subgroup (3.11), the fermion decom-
pose according to

½2�11 ¼ ð1; 10Þ þ ð½1�6; 5Þ þ ð½2�6; 1Þ; (3.35)

½4�11 ¼ ð1; �5Þ þ ð½1�6; 10Þ þ ð½2�6; 10Þ þ ð½3�6; 5Þ
þ ð½�2�5; 1Þ; (3.36)

and
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½6�11 	 ½�5�11
¼ ð1; 1Þ þ ð½�1�6; 5Þ þ ð½�2�6; 10Þ þ ð½�3�6; 10Þ

þ ð½2�6; �5Þ þ ð½1�6; 1Þ; (3.37)

with the decompositions of ½8�11 	 ½�3�11 and ½10�11 	
½�1�11 given above. With the SUð5ÞGU couplings small, the
nonsinglet fermion content under SUð6ÞSC is

16f½1�6 þ ½�1�6 þ ½2�6 þ ½�2�6 þ ½3�6g: (3.38)

We find that the SUð6ÞSC gauge interaction for this set is
not asymptotically free, with a leading coefficient of its
beta function equal to

bSUð6ÞSC0 ¼ � 190

3
ðclass iibÞ: (3.39)

This disfavors this class of models.
We have analyzed the class (iic) in a similar manner.

Decomposing the fermion representations with respect to
the subgroup and cataloguing the resultant SUð9ÞSCC con-
tent, we obtain the following nonsinglet SUð9ÞSCC fermi-
ons:

ffg ¼ 4½1�9 þ 4½2�9 þ 4½3�9 þ 5½�3�9 þ 7½4�9 þ 10½�4�9:
(3.40)

Hence, the SUð9ÞSCC gauge theory is chiral. However, we
find that the SUð9ÞSCC gauge interaction is nonasymptoti-
cally free, with

b
SUð9ÞSCC
0 ¼ �239 ðclass iicÞ: (3.41)

Decomposing the fermion representations with respect to
the subgroup (3.11), and cataloguing the resultant SUð6ÞSC
content, we find the SUð6ÞSC theory is chiral, but not
asymptotically free, with

b
SUð6ÞSC
0 ¼ �250 ðclass iicÞ: (3.42)

For the same reasons as were given above, this model is
thus disfavored as a promising candidate for unification.

IV. NSC ¼ 7, G ¼ SUð12Þ
We next study the case where NSC ¼ 7, so that N ¼

NSC þ 5 ¼ 12 and n ¼ ðn1; . . . ; n11Þ12. WithNgh þ Ng‘ ¼
Ngen ¼ 3 and NSC � NTC ¼ Ng‘, one has, a priori, four

possibilities for the manner in which the SM fermion
generations arise, as specified by ðNgh; Ng‘; NTCÞ, namely,

(3; 0; 7), (2; 1; 6), (1; 2; 5), and ð0; 3; 4). The conditions and
that the theory should not contain any 5L or 10L yield

n1 ¼ n3 ¼ n8 ¼ n10 ¼ 0; (4.1)

and Eq. (2.9) is

Ngh ¼ n2 þ n9 ¼ n4 þ n11: (4.2)

The condition of zero gauge anomaly, Eq. (2.6), is

8n2 þ 48n4 þ 42ðn5 � n7Þ � 27n9 � n11 ¼ 0: (4.3)

For a given value of Ngh ¼ 3� Ng‘, these are three linear

equations for the seven quantities n2, n4, n5, n6, n7, n9, and
n11. The solution implies the relations

n4 ¼ 1

7
½6ð�n5 þ n7Þ þ 5n9 � Ngh�; (4.4)

and

n11 ¼ 1

7
½6ðn5 � n7Þ � 5n9 þ 8Ngh�: (4.5)

If Ngh ¼ 0, then n4 ¼ �n11, so the only allowed values

are n4 ¼ n11 ¼ 0. It follows that n2 ¼ n9 ¼ 0 also, and,
substituting these values into Eqs. (4.4) and (4.5), one
obtains n5 ¼ n7. Thus, this class of solutions, which we
denote as (i), has an n vector equal to

n ¼ ð0; 0; 0; 0; s; t; s; 0; 0; 0; 0Þ; (4.6)

where s and t are non-negative integers. Since ½6�12 	
½�6�12 and ½5�12 	 ½�7�12, this SUð12Þ theory is vectorial,
and hence so are resultant SUð10ÞSCC and SUð5ÞSC theories.
Hence, even if the SCC and SC interactions were asymp-
totically free (which they are not), these sectors would not
self-break via condensate formation as would be necessary
in order to extract the TC theory and the SM fermion
generations. In order to minimize the number of fermions
in an effort to maintain asymptotic freedom, we consider
the two minimal classes (cases), (ia) s ¼ 0, t ¼ 1; and
(ib) s ¼ 1, t ¼ 0. We find that

b
SUð10ÞSCC
0 ¼ � 142

3
ðclass ðiaÞÞ (4.7)

and

bSUð10ÞSCC0 ¼ � 310

3
ðclass ðibÞÞ; (4.8)

which disfavors these cases from further consideration.
Among other solutions, we focus on one that minimize

the fermion content in an effort to preserve asymptotic
freedom. We find cases with minimal n vectors for Ngh ¼
3. Among these, the minimal one has

ðiiÞ: n ¼ ð0; 1; 0; 1; 0; 0; 0; 0; 2; 0; 2Þ: (4.9)

We find that this yields a chiral SUð10ÞSCC gauge interac-
tion, as desired, but the SUð10ÞSCC sector is not asymptoti-
cally free:

bSUð10ÞSCC0 ¼ � 112

3
ðclass ðiiÞÞ: (4.10)

We have found similar nonasymptotically free SCC sectors
for other solutions for this Ng ¼ 3 case, and also for cases

with Ng ¼ 1, 2. Our results suggest that nonasymptotically

free SCC and SC sectors appear to be a generic problem
with models having unification groups SUðNÞ with N �
11.
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V. DISCUSSION AND CONCLUSIONS

On the basis of our results, we can infer some general-
izations concerning this type of approach to unification of
gauge symmetries in theories with dynamical symmetry
breaking. We first recall some findings from Ref. [8] for
SUðNÞ models with N up to 10. In that study, several cases
were found that satisfied the various necessary conditions
listed above, including anomaly cancellation, potential for
Ng ¼ 3 standard-model fermion generations, absence of

SC-singlet fermions with exotic SM quantum numbers,
etc., and for which the GSCC gauge interaction was asymp-
totically free. However, in many of these cases, this SCC
gauge symmetry is vectorial, so that as the energy scale
decreases from MGU, the SCC interaction eventually be-
comes strong, confines, and produces a bilinear fermion
condensate, but this condensate is invariant under GSCC, so
this group does not self-break, as is necessary to peel off
the SC and color groups, and eventually the TC group. One
model with G ¼ SUð10Þ and fermion content specified by
n ¼ ð0; 0; 0; 1; 0; 0; 1; 0; 0Þ10 yielded an asymptotically free
chiral gauge sector for GSCC, but the condensate formation
via the most attractive channel did not produce an accept-
able low-energy theory.

In the present work, we have searched for more prom-
ising models by examining higher values of N, including
N ¼ 11 and N ¼ 12. Here, we have encountered a prob-
lem that was already present for a number of the models
considered in Ref. [8] with N 
 10, namely, the property

that the models contain sufficiently many fermions that
GSCC is not asymptotically free. This feature tends to
preclude the desired scenario in which the SUðNSCCÞ group
would become strongly coupled as the energy scale de-
creases below MGU and would self-break via formation of
fermion condensates to separate out the SUð3Þc and
SUðNSCÞ groups, and thus the SUðNTCÞ group. This appears
to be a generic problem. Thus, the necessary conditions
stipulated above, in their entirety, constitute a significant
challenge for a viable unification model.
Although our results are somewhat negative, the knowl-

edge that we have gained concerning models embodying
the present type of approach is useful for continuing efforts
to construct theories that could unify the standard-model
gauge symmetries with gauge interactions that would be-
come strong on the TeV scale and cause dynamical elec-
troweak symmetry breaking. One may anticipate that data
from the CERN Large Hadron Collider, soon to go into
operation, will elucidate the question of the origin of
electroweak symmetry breaking. If there is evidence that
this symmetry breaking is dynamical, it will be interesting
to pursue further the goal of higher unifcation addressed
here.
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