
Evidence for the multiverse in the standard model and beyond

Lawrence J. Hall and Yasunori Nomura

Department of Physics, University of California, Berkeley, California 94720, USA
and Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 28 December 2007; published 4 August 2008)

In any theory it is unnatural if the observed values of parameters lie very close to special values that

determine the existence of complex structures necessary for observers. A naturalness probability P is

introduced to numerically evaluate the degree of unnaturalness. If P is very small in all known theories,

corresponding to a high degree of fine-tuning, then there is an observer naturalness problem. In addition to

the well-known case of the cosmological constant, we argue that nuclear stability and electroweak

symmetry breaking represent significant observer naturalness problems. The naturalness probability

associated with nuclear stability depends on the theory of flavor, but for all known theories is

conservatively estimated as Pnuc & ð10�3–10�2Þ, and for simple theories of electroweak symmetry

breaking PEWSB & ð10�2–10�1Þ. This pattern of unnaturalness in three different arenas, cosmology,

nuclear physics, and electroweak symmetry breaking, provides evidence for the multiverse, since each

problem may be easily solved by environmental selection. In the nuclear case the problem is largely

solved even if the multiverse distribution for the relevant parameters is relatively flat. With somewhat

strongly varying distributions, it is possible to understand both the close proximity to neutron stability and

the values of me and md �mu in terms of the electromagnetic mass difference between the proton and

neutron, �EM ’ 1� 0:5 MeV. It is reasonable that multiverse distributions are strong functions of

Lagrangian parameters, since they depend not only on the landscape of vacua, but also on the population

mechanism, ‘‘integrating out’’ other parameters, and on a density of observers factor. In any theory with

mass scale M that is the origin of electroweak symmetry breaking, strongly varying multiverse

distributions typically lead either to a little hierarchy v=M � ð10�2–10�1Þ, or to a large hierarchy v �
M. In certain multiverses, where electroweak symmetry breaking occurs only if M is below some critical

value, we find that a little hierarchy develops with the value of v2=M2 suppressed by an extra loop factor,

as well as by the strength of the distribution. Since the correct theory of electroweak symmetry breaking is

unknown, our estimate for PEWSB is theoretical. The LHC will lead to a much more robust determination

of PEWSB, and, depending on which theory is indicated by the data, the observer naturalness problem of

electroweak symmetry breaking may be removed or strengthened. For each of the three arenas, the

discovery of a natural theory would eliminate the evidence for the multiverse; but in the absence of such a

theory, the multiverse provides a provisional understanding of the data.

DOI: 10.1103/PhysRevD.78.035001 PACS numbers: 12.60.�i

I. INTRODUCTION

The standard model, with three gauge forces and three
generations of quarks and leptons, has been laboriously
constructed from decades of data involving collisions of
particles at ever higher energies. It represents a triumph for
symmetries, but leaves many questions about nature un-
answered. These questions fall into three groups. The first
revolves around observations of the Universe that are not
described by the standard model, such as dark matter, dark
energy, baryogenesis, and inflation. Secondly, there is the
question of electroweak symmetry breaking: while the
standard model provides a mathematical description, it
does not contain the physical description. The quadratic
divergence in the Higgs mass-squared parameter implies
that electroweak symmetry breaking is determined by new
physics at a scale M at which the standard model is

embedded into a more fundamental theory. This extraor-
dinary behavior is termed ‘‘unnatural’’—the Higgs mass-
squared parameter,m2

h, is very sensitive to changes in some

parameter x of the fundamental theory, especially as M
grows

� � @ lnm2
h

@ lnx
�M2

m2
h

� 1: (1)

The final group of questions boils down to ‘‘why the
standard model?’’ These include why the forces are the
ones we observe, why the quarks and leptons have the
masses they do, and why there are not other forces and
particles.
Since symmetries were the key to the standard model, it

is natural to suppose that all three sets of questions will be
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answered by introducing further symmetries, and this has
largely defined beyond standard model physics for the last
three decades. Yet there are three clouds on the horizon for
this symmetry approach, one for each set of questions

(i) There is no known symmetry to explain why the
cosmological constant is either zero or of order the
observed dark energy. It appears to take a very
unnatural value.

(ii) For the standard model to be natural, M must be
low; we should already have observed either signs
of supersymmetry or signals of new interactions in
precision electroweak observables.

(iii) Some of the standard model parameters take values
in a special region that happen to yield certain
nuclear properties.

It is possible that these clouds are the first indications of
a breakdown in the power of symmetry to determine
fundamental physics. If our universe is just one among
very many in an enormous multiverse, then observed uni-
verses will be those that contain certain complex structures
necessary for observers [1]. Such arguments from environ-
mental selection can potentially solve the cosmological
constant problem, and yield a statistical prediction for the
dark energy in observed universes [2]. In this paper, we
consider the extent to which nuclear stability and electro-
weak symmetry breaking provide evidence for environ-
mental selection.

Many physicists, however, are reluctant to countenance
any form of anthropic argument. Why give up on the
traditional, extraordinarily successful, methods of physics?
How can we hope to understand the conditions for intelli-
gent observers when we struggle even to define what life
is? Why make the extraordinary leap of postulating an
extra-horizon multiverse, which has the smell of a secular
form of God? In short, many believe that appeals to the
environment are an escape from true science and that, in
the absence of data confirming the conventional symmetry
approach, it would be better to change fields than to
succumb to the philosophy of anthropics.

The case of the cosmological constant demolishes these
arguments. Traditional methods have not given any satis-
factory understanding for why the cosmological constant is
small. In contrast, the environmental argument not only
explains why it must be small, but makes a statistical
prediction for a nonzero value. Furthermore, this predic-
tion requires essentially no understanding of what it takes
to make an observer. Of course, the prediction does require
a multiverse; but with a landscape of vacua provided by
string theory [3] and generic inflation eternally creating
universes [4], a multiverse no longer appears theoretically
unreasonable, and its consequences can be explored under
the assumption that we are typical observers [5]. Indeed,
since few doubt that environmental conditions explain why
we find ourselves on the Earth as opposed to elsewhere in
the solar system, the resistance to environmental reasoning
is hard to understand. As for any physical theory, the real

issue is whether sufficient evidence for it can be found to
make it convincing.
Even if there is a multiverse, and environmental selec-

tion accounts for the value of the cosmological constant, it
is far from clear what the implications are for the rest of
physics. One extreme possibility is that all the other ques-
tions left open by the standard model will be solved within
some symmetry framework, for example, supersymmetric
SOð10Þ with flavor symmetries. In this case, the environ-
mental solution of the cosmological constant problem
simply allows us to ignore this special problem while
solving everything else with symmetries—it justifies the
model-building approach of the last 30 years. The other
extreme is that the standard model is as far as we can get
with symmetries, all of its parameters are either strongly
selected by environmental effects or just reflect random
typical values in the multiverse, and similarly for issues
outside the standard model. Of course there are many
intermediate cases between these two extremes. For ex-
ample, there could be gauge coupling unification within
an SOð10Þ theory, but the flavor sector may involve suffi-
cient scanning parameters that the electron, up and
down quark masses are determined by environmental se-
lection. The aim of this paper is to seek evidence for
environmental selection both in the measured values of
standard model parameters, and in electroweak symmetry
breaking.
The cosmological constant illustrates an additional cru-

cial point: environmental selection predicts parameters that
are, from the conventional viewpoint of symmetries, un-
natural. This is a key point, because so much effort of the
last 30 years has been expended in trying to understand
how new symmetries could naturally lead to an unnatural
effective low energy theory, namely, the standard model.
Perhaps the unnaturalness is a hint that symmetries are not
the answer. It was realized some time ago that if only
the mass parameter of the standard model scans, then
environmental selection could solve the gauge hierarchy
problem [6]. This analysis was extended to the two
Higgs doublet case in [7]. In the context of supersymmetry,
differing assumptions about scanning parameters and
their distributions could lead to a large hierarchy [8] or a
small hierarchy [9]. These papers both illustrate that
environmental selection leads to unnaturalness, and
that measurements at the LHC could experimentally
confirm the presence of unnaturalness in electroweak
symmetry breaking. It is an open question whether the
landscape favors a low or high supersymmetry breaking
scale [10].
The first part of this paper, Secs. II to V, are devoted to a

consideration of the concept of naturalness, and its appli-
cation to issues of nuclear stability. We are motivated by
the belief that environmental selection may lead to precise
predictions, and that it is important to evaluate the numeri-
cal significance of such predictions. We often hear it said
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that, in nuclear physics and elsewhere, nature exhibits
‘‘amazing coincidences’’ that give rise to life. How can
these be precisely evaluated? In Sec. II, we formulate the
concept of naturalness in a very general way, so that in
Sec. III we are able to identify naturalness problems asso-
ciated with the existence of complex structures in the
universe. In Sec. IV, we study the stability of neutrons,
deuterons, and complex nuclei in the parameter space of
the standard model, identifying how close our universe is
to these stability boundaries. In particular, we find a close-
ness to the neutron stability boundary that has not previ-
ously been elucidated. The naturalness problems
associated with the closeness to these stability boundaries
are evaluated numerically in a variety of theories of flavor
in Sec. V. We stress that the evidence for unnaturalness
depends on the ensemble of theories being considered, but
we find that there is an irreducible amount of unnaturalness
no matter what the theory of flavor.

In the second half of the paper, we investigate the
consequences that follow if this unnaturalness arises from
environmental selection in a multiverse. It is here that the
real utility of our new formulation of naturalness becomes
apparent. In Sec. VI, we argue that problems of unnatural-
ness are indeed solved by environmental selection, and
show how the amount of unnaturalness is connected to
the probability distribution of the multiverse. We argue
that evidence for environmental selection will increase if
symmetry arguments fail to solve an accumulation of
naturalness problems. In the case of nuclear stabilities,
we show in Sec. VII how this leads to multiverse predic-
tions for the masses of the electron, up and down quarks. In
Sec. VIII, we embed the standard model Higgs sector in a
generic theory of electroweak symmetry breaking at mass
scaleM. Allowing parameters of this sector to scan, as well
as parameters of the standard model, we consider environ-
mental selection from nuclear stability boundaries. We find
that sharply varying multiverse distribution functions ge-
nerically lead to both large and little hierarchies between
M and the scale v of electroweak symmetry breaking.
From the viewpoint of the multiverse, a discovery at the
LHC that electroweak symmetry breaking requires some
amount of fine-tuning would not be surprising. A similar
analysis on electroweak symmetry breaking is performed
in Sec. IX, assuming that the relevant boundaries are the
phase boundary of electroweak symmetry breaking rather
than the nuclear stability boundaries. We again find that
unnaturalness in electroweak symmetry breaking is ex-
pected for sharply varying multiverse distribution func-
tions. In Sec. X, we study connections between
environmental selection for the cosmological constant
and for electroweak symmetry breaking. For example, we
argue that the driving force on the multiverse for unnatural-
ness in electroweak symmetry breaking could arise from
the distribution for the cosmological constant, the connec-
tion being through weakly interacting massive particle

(WIMP) dark matter. Finally, our conclusions are given
in Sec. XI.

II. NEW DEFINITION OF NATURALNESS
PROBLEMS

The concept of naturalness has often been the driving
force for finding fundamental mechanisms in nature.
Arguments for naturalness are often phrased in terms of
the sensitivity of low energy standard model parameters ci
to variations of the parameters in the more fundamental
theory aj. A simple measure of naturalness is then given by

� � j@ lnci=@ lnajj, with a large value of � signaling a

lack of naturalness [11]. This definition, however, could
miss some of the important aspects of the naturalness
problem. Here we introduce a new, quantitative definition
of naturalness that can be applied in much more general
situations. In particular, this allows us to identify certain
classes of naturalness problems that have not been quanti-
tatively defined. Our definition is also free from some of
the problems existing in the simplest definition of natural-
ness based on the sensitivity of parameters.
First of all, it is very important to notice that in talking

about naturalness, we are dealing, either explicitly or im-
plicitly, with an ensemble in which parameters of the
theory are varied according to some definite distribution.
Consider, for example, that the Higgs mass-squared pa-
rameterm2

h is given by the difference of two mass scales of

order the fundamental scale m2
h ¼ M2

1 �M2
2. We say that

the theory is unnatural if jm2
hj � M2

1, M
2
2. This statement,

however, already assumes that it is unlikely forM1 andM2

to be very close or for both to be very small; more specifi-
cally, the distribution of possible values for M1 and M2 is
assumed to be almost structureless in the M1–M2 (or
M2

1–M
2
2) plane. This illustrates that the concept of natural-

ness is closely related to the distribution of parameters in
an ensemble.
A particular member of an ensemble is unnatural if it has

parameters very close to special values that are not ex-
plained by the symmetries of the theory. The parameters are
special if some physical property arises that is not a generic
feature of the members in the ensemble, or if they separate
regions of parameter space that have differing generic
features. Depending on the property considered, we en-
counter various classes of naturalness problems, whose
solutions could point to various different mechanisms in
nature. With this definition, the degree of unnaturalness is
given by how close the parameters are to the special values,
which generically form a special hypersurface in multi-
dimensional parameter space. As wewill see below, we can
quantify this degree in terms of the distribution of parame-
ters within the ensemble. In this section, after presenting a
new definition of naturalness, we apply it to well-known
situations. In the next section, we use it to introduce new
types of naturalness problems.
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A. Definition

Let us start describing our precise definition of natural-
ness by introducing the distribution function fðxÞ for an
ensemble. The function is defined such that the number of
members with parameters xi (i ¼ 1; � � � ; N) taking a value
between xi and xi þ dxi is given by

dN ¼ fðx1; x2; � � � ; xNÞdx1dx2 � � �dxN: (2)

Here, xi represent continuous parameters of the theory,
e.g., masses and coupling constants.1 The overall normal-
ization of f becomes relevant if we are interested in the
total number of members, which will be the case when we
discuss relative likelihoods of different theories. For the
present purpose of discussing naturalness of a given theory,
however, the overall normalization of f is not important.

The distribution function depends on the choice of xi.
What variables should we choose as xi? In general we can
choose any variables as xi, depending on the context. To
discuss naturalness of the low energy theory, however, it is
often most convenient to take ‘‘fundamental’’ parameters,
such as masses and coupling constants of the ultraviolet
theory, as xi. Now, suppose we have only one such variable
x. If the observed value of x, xo, is very close to a special
value �x, the level of unnaturalness is given by the following
‘‘naturalness probability’’:

P ¼
��������

Rxo
�x fðxÞdxR

xmax
xmin

fðxÞdx
��������; (3)

where xmin 	 x 	 xmax gives the range of x values in the
theory under consideration.2 Here, we have included only
members on one side of the special point, but depending on
the situation, a factor of 2 should be added to the numerator
to include members on both sides of the special point. With
this definition,P � 1 signals the existence of a naturalness
problem.

The form of the distribution function is modified if we
redefine the variable x. For example, if fðxÞ ¼ 1=x for a
variable x, the change of the variable x0 ¼ lnx can make the
distribution function flat for x0: fðx0Þ ¼ 1. It is often con-
venient to go to the basis in which the distribution function
is constant. In that basis, the naturalness probability of
Eq. (3) becomes

P ¼
�������� xo � �x

xmax � xmin

��������; (4)

which is simply given by the distance between xo and �x
divided by the available parameter space.3 As should be the
case, this quantity becomes smaller as xo approaches �x.
The naturalness probability of Eqs. (3) and (4) can be

extended to the case of multiple parameters xi. The precise
definition depends on the dimensionality of xi and the
special surface consisting of �xi. If the codimension of the
special surface is 1, we can choose x to be a linear combi-
nation of xi perpendicular to the surface, and then use the
definition of Eq. (4) (in the basis where the distribution
function is constant). In the case that the codimension is
higher, we must use an appropriate generalization of
Eqs. (3) and (4) defined using multidimensional volumes,
rather than simple distances. A useful definition, in the
basis where fðxiÞ is constant, is

P ¼
��������cnf�

n
a¼1ðxa;o � �xaÞ2gn=2

�n
a¼1ðxa;max � xa;minÞ

��������¼ vn

Vn

; (5)

where a ¼ 1; � � � ; n runs over variables whose observed

values xa;o are close to the special values, �xa, and cn ¼
�n=2=�ðn=2þ 1Þ is the volume of the unit ball in n dimen-
sions. Here, the expression in the numerator vn is a mea-
sure of the accidentally small volume of parameter space
required for xa;o to be close to �xa, while that in the

denominator Vn is the total volume of parameter space
available. The restriction of the variables xa to those with
jðxa;o � �xaÞ=ðxa;max � xa;minÞj � 1, e.g., 	 1=5, is impor-

tant to avoid obtaining P � 1 simply as a result of high
dimensionality of the parameter space. In the case that the
special surface in question arises as an intersection of
codimension 1 surfaces, we may restrict the volume of
the numerator to be one side of the codimension 1 surfaces,
depending on the situation. This definition reduces to that
of Eq. (4) in the special case of n ¼ 1.
The definition of Eq. (5) is illustrated for a 2-

dimensional parameter space ðx1; x2Þ in Fig. 1(a). The
curve C represents special values of these parameters
corresponding to some physical phenomenon, and the
curve C0 similarly represents special values for some other
phenomenon. If the observed values ðx1;o; x2;oÞ, denoted by
the dot, are close to the intersection point ð �x1; �x2Þ, the
naturalness probability is given by Eq. (5), with a ¼ 1, 2.
The numerator represents the area of the shaded region,
and the denominator represents a much larger area corre-
sponding to the range of the parameters. Here, we have
restricted the area of the numerator to one side (the lower
side) of the curves C and C0, anticipating an application in
later sections.

1In principle, we can define a distribution function that also
has discrete labels representing, e.g., particle content and sym-
metries of the theories. Here, we consider a distribution function
for each theory that has a definite symmetry, matter content,
number of spacetime dimensions, and so on, and restrict its
arguments xi to be continuous parameters associated with that
particular theory.

2With fðxÞ ¼ 0 for x < xmin and x > xmax, the range of the
integration in the denominator can be taken from �1 to þ1.
Practically, if fðxÞ has a sharp dropoff, it is useful to restrict the
range of the variable by a sharp cutoff, as xmin and xmax in
Eq. (3).

3This interpretation is also possible for a general distribution
function fðxÞ if we consider fðxÞ to be a sort of metric, or
volume factor, in parameter space.
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In Fig. 1(b), it is apparent that the observed point is
much closer to C than C0; but the definition of Eq. (5) does
not capture the additional unnaturalness associated with
this. (The area of the numerator in this expression is
represented by the dotted line.) In this situation, we must
first consider the naturalness probability PC associated
with C, using the definition of Eq. (4), where the axis x
is taken normal to C and passing through the observed
point at x ¼ xo. We then take the coordinate x0 along the
curve C and consider the naturalness probability PC0 asso-
ciated with C0 in this coordinate. The resulting naturalness
probability is then P ¼ PCPC0 , which is given by the area
of the shaded region in the figure divided by that corre-
sponding to the range of the parameters. This tends to zero
as the observed point approaches the curve C, as expected.
In general, if we find several unnatural features that have a
hierarchy in their degrees of unnaturalness, we can obtain
the correct estimate for the naturalness probability P by
considering it as a product of several naturalness proba-
bilities, each associated with an unnaturalness of some
fixed degree. The decomposition of P can be made along
the lines presented here.

B. Illustrations

Let us now illustrate the use of our definition in the case
of the conventional gauge hierarchy problem. Consider
that the standard model is embedded into the fundamental
theory at a high scale of M1 � M2 � M
 and that the
Higgs mass-squared parameter is given in terms of M1

and M2 by m2
h ¼ M2

1 �M2
2. In general, we expect that

the distribution function is roughly flat in terms ofMi (i ¼
1, 2) and that the range of parameters is 0 	 Mi 	 OðM
Þ.4
In Fig. 2, we plot the contour of m2

h in theM1–M2 plane in

units ofM
. We clearly see that there is a special line in this
plane, M1 ¼ M2, where m2

h ¼ 0. The physical phenome-

non making this line special is that members very close to

this line have a low energy effective field theory that
contains a scalar excitation whose mass is hierarchically
smaller than M
. For M
 � 1018 GeV, the observed value
of m2

h ’ �Oð100 GeVÞ2 is denoted by the little dot for an

arbitrary value of M1 ¼ 1:2M
. We find that it is located
very close to the special line compared with the expected
range ofMi. In fact, this is always the case regardless of the
value ofM1 we choose, and is a manifestation of the lack of
naturalness in the standard model. The problem is that the
special line with m2

h ¼ 0 is not special in terms of the

symmetry structure of the theory. The points with m2
h ¼

0 are no more symmetric than those with m2
h � 0. By

choosing a variable x to be a linear combination of M1

andM2 perpendicular to the special line, and then using the
definition of Eq. (4), we obtain P � 10�32. A similar
analysis can also be made for the cosmological constant
problem. In general, the cosmological constant � is given
by the sum of terms of orderM4
 taking the form ofM2

i M
2
j .

The observed value of � is then very close to the special
hypersurface with� ¼ 0, and the points with� ¼ 0 are no
more symmetric than those with � � 0. The physical
property making this hypersurface special is that members
very close to this hypersurface allow an arbitrary large
observable universe. From Eq. (4), the degree of unnatural-
ness we obtain in this case is P � 10�120.
Here, we note that our definition does not suffer from the

problem existing in the simplest definition of naturalness
based on the logarithmic derivative � � j@ lnci=@ lnajj.
Suppose that a dimensionful parameter � is given by two

dimensionless constants g2 and b as � ¼ M
e�8�2=g2b,
whereM
 is the fundamental scale, and that a natural range
for g2 and b in the fundamental theory is g2b ¼ Oð0:1Þ.
We then naturally obtain �=M
 ¼ e�Oð1000Þ; there is noth-
ing unnatural with this. The simplest definition, however,
gives � ¼ j@ ln�=@ lng2j ¼ Oð1000Þ, signaling (incor-

FIG. 2. The contour of m2
h=M

2
 ¼ �1;�0:1;�0:01; � � � in the
M1–M2 plane. The special line of m

2
h ¼ 0 is visible atM1 ¼ M2.

The observed value of M2 ¼ M1 þOð10�32Þ is denoted by the
little dot for an arbitrary value of M1 ¼ 1:2M
.

FIG. 1. Illustrations of the definition of the naturalness proba-
bility P in multidimensional parameter space.

4Here, we have assumed that Mi are mass parameters asso-
ciated with ‘‘fermions’’ (including mass parameters in super-
symmetric theories). The argument, however, is not affected if
they are associated with scalars, in which case the distribution is
expected to be roughly flat in M2

i with the range �OðM2
Þ 	
M2

i 	 OðM2
Þ.
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rectly) the existence of unnaturalness. Our definition does
not lead to such a fake signal, since any point with g2b ¼
Oð0:1Þ is generic—there is no special value of g2b that can
be singled out as �x in Eqs. (3) and (4).

We now see how theories beyond the standard model
solve the gauge hierarchy problem in our language. As we
have seen, the standard model embedded into more funda-
mental theory at M
 � 1018 GeV leads to the probability
of having a small weak scale v � 100 GeV to be P �
ðv=M
Þ2 � 10�32. This is because the Higgs mass-squared
parameter m2

h is given by the sum of various contributions

M2
i of order M

2
, with the distribution function expected to
be roughly flat in Mi (or M

2
i ). The distribution function,

however, varies from one theory to another. For example, if
the weak scale arises from dimensional transmutation as-
sociated with some gauge coupling g becoming strong, as
in technicolor [12] and certain supersymmetric theories
[13], then v � M
 expð�8�2=jbjg2
Þ. Here, b is the one-
loop beta function coefficient for the new gauge force and
g
 ¼ gðM
Þ. The distribution function is expected to be
roughly flat in the variable g2
,

5 giving an approximately
flat distribution for 1= lnðv=M
Þ. To illustrate this situation,
we plot in Fig. 3 the contour ofm2

h ¼ M2
1 �M2

2 withM1 ¼
M
 expð�8�2=jbjg2
Þ and M2=M1 � r in the jbjg2
–r
plane. This can be regarded as a simplified model for the
situation in, e.g., dynamical supersymmetry breaking.
Typically, there is considerable uncertainty in the range
of jbjg2
. Here, we take 0 	 jbjg2
 	 Oð10Þ. As is seen
from the figure, the observed value of v can correspond
to a completely generic (not special) point in the plane,
which is indicated by the little dot for an arbitrary value of
r ¼ 1:4. This, therefore, provides a solution to the gauge
hierarchy problem; see Fig. 2 for comparison. The impor-
tant point here is that different theories can lead to very
different distribution functions fðxÞ for physical parame-
ters xi. A distribution flat in v2 is the origin of the gauge
hierarchy problem, while one flat in lnv (or 1= lnv) pro-
vides the solution. The situation with the cosmological
constant is similar, although the problem is much more
severe because all known theories give distributions that
are essentially flat in �, while none are known that are flat
in ln� (or 1= ln�).

C. Generality of the framework

So far, we have illustrated our definition of naturalness
by looking at naturalness problems that have a conven-
tional description: the observed values of parameters are
(very) close to special values where the sensitivity of a low
energy parameter to high energy ones diverges, for ex-
ample, @ lnm2

h=@ lnMi, @ ln�=@ lnMi ! 1. This is one

class of naturalness problems, which we may call ‘‘fine-

tuning naturalness problems.’’ The real power of our for-
malism, however, lies in the fact that we can discuss many
different types of naturalness problems in a unified man-
ner, simply by extending what we mean by ‘‘special val-
ues’’ for parameters. Any physical property that is not a
generic feature of the members in the ensemble is a can-
didate for identifying special values. There can be many
classes of naturalness problems, depending on the property
considered. The closeness of the observed values to the
special values, signaled by P � 1, can then be used as
evidence for a new mechanism to understand such
accidents.
One application of this general idea is to use naturalness

arguments as evidence for the presence of some symmetry
beyond the standard model. For this purpose it is often
convenient to take parameters of the low energy theory to
be xi. Imagine that the observed values xi;o of N dimen-

sionless standard model parameters xi (i ¼ 1; � � � ; N) take
values close to the special surface that defines a symmetry
relation

SðxiÞ ¼ 0: (6)

If the symmetry were in fact absent, nature would be
described by some member of an ensemble giving the xi
parameters distributed according to fðxiÞ, which is not
generically concentrated on the surface of Eq. (6). After
redefining the parameters to make the distribution function
flat, we can introduce an axis x normal to the symmetry
surface that passes through the observed point at xi ¼ xi;o.
The degree of unnaturalness is then given by Eq. (4). The
closer the observed point is to the special value �x on the
symmetry surface, the less probable it becomes that nature
is described by this ensemble, i.e., by the theory without
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FIG. 3. The contour of m2
h=M

2
 ¼ 10�4n with n ¼ 3; 4; 5; � � �
in the jbjg2
–r plane. The observed value of v �

ffiffiffiffiffiffiffiffiffiffiffi
�m2

h

q
�

100 GeV can correspond to a completely generic point in the
plane, which is indicated by the little dot for an arbitrary value of
r ¼ 1:4.

5The conclusion below does not change if the distribution is
flat in 1=g2
, g
, and so on. The distribution, however, could
affect arguments on certain naturalness problems; see Sec. IV.
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the symmetry. A small value for P can thus be taken as
evidence that the symmetry is indeed present in nature, at
least in an approximate form.6 It could be that xo � �x is
dominated by the experimental uncertainty. In this case,
improved experiments may provide further evidence for
the symmetry. A well-known example is provided by a
grand unified symmetry, such as SUð5Þ, that gives a sym-
metry relation between the standard model gauge coupling
constants Sðg21; g22; g23Þ ¼ 0 [14]. If in fact there is no

unified symmetry, the observed values of �, �s, and
sin2�W give a naturalness probability of P � 0:1 in an
ensemble without supersymmetry, and P � 0:01 in an
ensemble with supersymmetry [15]. Here, �, �s, and �W
are the fine structure constant, the effective QCD coupling,
and the Weinberg angle, respectively. This lack of natural-
ness can then be regarded as evidence for some form of a
unified symmetry in theories with supersymmetry.

In the next section, we introduce classes of naturalness
problems that arise from the existence of complex struc-
tures. We will see that the formalism developed here
elucidates the identification of these naturalness problems.
As in other naturalness problems, successful solutions to
these problems could lead us to find new mechanisms or
dynamics in nature, which we consider in later sections.

III. COMPLEXITYAND OBSERVER
NATURALNESS PROBLEMS

The definition of naturalness introduced in the previous
section allows us to identify new classes of naturalness
problems. A member in the ensemble is unnatural if it has
parameters unusually close to ‘‘special’’ values; but clearly
there are many reasons that parameters could be ‘‘special.’’
We frequently stress special values that lead to a large
hierarchy of mass scales, but in this section we consider
special values that lead to the existence of relatively long-
lived complex structures, such as nuclei, stars, and
galaxies.

A. Complexity naturalness problem

As the parameters xi vary, moving from one member of
an ensemble to another, suppose that a physical threshold is
crossed that is crucial for the existence of some complex
structure. This defines a special surface in the parameter
space

CðxiÞ ¼ 1; (7)

which divides the volume of parameter space into two
regions, one that supports the complex structure CðxiÞ<
1 and one that does notCðxiÞ> 1. In general, this surface is
not one with enhanced symmetry. Therefore, a member in

the ensemble having parameters unusually close to this
surface has a ‘‘complexity naturalness problem.’’ The de-
gree of unnaturalness is given numerically by Eq. (3),
where the single variable x is normal to the ‘‘complexity
surface’’ of Eq. (7), where it takes the value �x, and the
particular unnatural member in question has a nearby value
for this parameter, xo.
One caveat is that we have assumed that the physical

threshold relevant for the existence of the complex struc-
ture is sharp in the parameter space. This can be verified in
any particular case, and is certainly true in the examples
discussed in the next section. For example, the stability of
any particular nucleus gives a sharp boundary correspond-
ing to values of the coupling strengths and quark masses
that lead to a surface of zero binding energy. In general, a
lack of sharpness is due to the time evolution of complex
structures in universes corresponding to the different mem-
bers of an ensemble. As parameters vary from one member
to another, complex structures could gradually become less
stable. For example, the stability of large scale structure is
not completely sharp—as the cosmological constant is
gradually increased only the regions with larger statistical
fluctuations in the density perturbations are able to col-
lapse. Still, the relevant parameter space for the cosmo-
logical constant spans over 100 orders of magnitude, and
over this space the transition for the existence of large scale
structure is very sharp.
Another caveat is the hidden assumption that these

complexity surfaces are not distributed so densely through-
out the entire parameter space that a typical member in the
ensemble is expected to be close to one or more surfaces.
There may indeed be many complexity surfaces; for ex-
ample, in the standard model there are several hundred
relatively stable nuclei, each with its own complexity
surface in an ensemble that contains the standard model.
However, if the relevant parameters—the Yukawa cou-
plings y, the weak scale v, and the QCD scale �QCD—

vary by many orders of magnitudes in the ensemble, then
these complexity surfaces will all be tightly clustered in
a ‘‘complexity zone’’ yv� ��QCD �Oð0:01Þ�QCD. A

complexity naturalness problem now arises, because this
zone is itself small compared with the entire volume of
parameter space. Most members in the ensemble lie in
voids far from the complexity zone, and the closeness of
the observed parameters to one or more of the complexity
surfaces implies that the member describing our universe
lies in a special region. There may be several complexity
zones for nuclear physics; for example, ones with four,
five, or six quark flavors lighter than the QCD scale, but in
certain parameter directions each zone will be small. In the
case of a single variable, the degree of unnaturalness can be
taken to be P ¼ �xz=ðxmax � xminÞ where �xz is the width
of the complexity zone. If the density of complexity sur-
faces is very high it might be that a member in the com-
plexity zone is very close to some surface; but this could be

6Here, we assume that conversions from low energy parame-
ters to high energy ones, e.g., through renormalization group
evolution, do not significantly affect the size of P. This is
generically a good assumption.
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a reflection of the density of the surfaces rather than any
additional unnaturalness beyond that of being in the com-
plexity zone.

In summary, a theory possesses a complexity naturalness
problem if, in the parameter space of an ensemble, the
member describing our universe lies very close to a surface
corresponding to a physical threshold that allows the ex-
istence of some relatively long-lived complex structure.
For the problem to exist, there should not be many surfaces
of a similar character distributed densely and almost uni-
formly over the parameter space; otherwise, the closeness
to one of these surfaces would simply be a generic phe-
nomenon for the members in the ensemble.

B. Observer naturalness problem

Now, we introduce another, closely related, naturalness
problem. Complex structures are required for the existence
of ‘‘observers.’’ This implies that some complexity
boundaries may also act as boundaries that divide the
parameter space of the ensemble into those members that
may support certain observers and those that cannot. These
boundaries are harder to define than general complexity
boundaries, since we are unable to give a precise definition
of an observer. Moreover, the parameter region may not
simply be divided into the two regions ‘‘with’’ and ‘‘with-
out’’ observers—the expectation value for the number of
observers may in general be a complicated function over
the parameter space, with the value significantly varying
across a complexity boundary. Nevertheless, since the
changes of the expectation value across some of these
boundaries are expected to be drastic, caused by drastic
changes of complex structures, for certain purposes we
may approximate this function to be steplike. This leads
to the concept of the ‘‘observer boundary’’

OðxiÞ ¼ 1; (8)

which divides the parameter space into one ‘‘with’’ ob-
servers OðxiÞ< 1 and one ‘‘without’’ OðxiÞ> 1. In gen-
eral, there are many complexity boundaries CaðxÞ ¼ 1 that
are relevant for the existence of observers. The region of
parameter space that allows observers O is then given by
the common set of CaðxÞ< 1 for all a, and the observer
boundary OðxiÞ ¼ 1 is the border of this region. As more
boundaries are added as relevant ones for observers, the
region O shrinks, but the number of observer boundaries
does not generically increase. This is the crucial difference
between complexity and observer boundaries. For illustra-
tion of these boundaries in an example of 2-dimensional
space, see Fig. 4.

While the identification of observer boundaries suffers
from some ambiguities, there are certain advantages to
focusing on these boundaries rather than on general com-
plexity boundaries. In general, there can be several dis-
connected regionsOI that can support observers. However,
since the existence of observers undoubtedly requires cer-

tain complex structures, we can be convinced relatively
easily that these regions are not distributed densely
throughout the entire parameter space. For example, if
we take the existence of stable complex nuclei to be one
of the required conditions for observers, then we find that
almost the entire region with v=�QCD * 104, with the

other parameters of the standard model fixed, is outside
OI [6], regardless of the existence of any other physical
thresholds. Increasing the size of the up or down Yukawa
coupling more than a factor of a few, with the other
parameters fixed, also leads to a sterile universe in which
both proton and neutron cannot be stable inside nuclei. The
situation is similar for other conditions. For example, the
requirement for the existence of complex structures in the
universe, such as galaxies, makes the entire region with
�=Q3T4

eq * 1 outside OI [2], where Q is the primordial

scale of density perturbations and Teq the temperature of

matter-radiation equality. These imply that the observer
regionsOI fill only a small fraction of the parameter space.
They are small islands in the entire parameter space of the
ensemble, and so the observer boundaries are not distrib-
uted densely and uniformly over the parameter space.
The sparseness ofOI allows us to focus on the regionO

( � fOIg) that contains our observed point. The unusual
closeness of the observed parameters to the relevant ob-
server boundary (the boundary of O) then signals unnat-
uralness, raising an ‘‘observer naturalness problem.’’ The
degree of unnaturalness can be quantified using the defini-
tion given in the previous section. The estimate for the
degree will be conservative if we use only crucial require-
ments for the existence of observers, such as the existence
of nuclei, stars, and galaxies, since this will give a large
allowed region for observers, O. Imposing more and more
subtle conditions, such as the existence of carbon, oxygen,
and so on, will only decrease O and therefore increase the
degree of unnaturalness. A relevant question is whether we
find an observer naturalness problem in the standard model

FIG. 4. Characteristic situations for complexity and observer
boundaries in 2-dimensional parameter space. Complexity
boundaries that are and are not relevant for the existence of
observers are depicted by solid and dashed lines, respectively.
The shaded region indicates an observer region O, which (a)
may or (b) may not be a small region around the observed point,
which is denoted by the dot. The observer boundary OðxiÞ ¼ 1 is
given by the border of O and is represented by the thick solid
line.
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and beyond, keeping only relatively robust conditions. This
question will be addressed in the next section.

IV. EVIDENCE FOR OBSERVER NATURALNESS
PROBLEMS

In this section we study if there exist observer natural-
ness problems in the standard model and beyond. In gen-
eral, it is easier to study the existence of an observer
naturalness problem than that of a complexity naturalness
problem, since it is easier there to see that the relevant
boundaries are not uniformly and densely distributed over
the parameter space. In order to identify and quantify the
observer naturalness problem reliably, we take the follow-
ing approach. We first list complexity boundaries that are
candidates for composing the observer boundary, in the
relevant parameter space of the standard models of particle
physics and cosmology. These boundaries have effects of
various degrees on the environment, and we take only the
ones giving fairly drastic effects. This leads to a large
observer volume O and hence to a conservative estimate
for the degree of an observer naturalness problem. The
actual degree of unnaturalness could only be more severe if
other complexity boundaries are important for the develop-
ment of observers, since this would reduce O.

A. The relevant parameters

Let us consider some ensemble that leads at low energies
to the standard model of particle physics (taken to include
neutrino masses) and to the standard cosmological model.
Different members of this ensemble give different values
for the parameters of the standard model xSM and cosmol-
ogy xcos. Some members may give values for this set x ¼
fxSM; xcosg that are so distant from the observed values xo
that the corresponding physics and astrophysics is com-
pletely different from that observed—for example, if five
quark flavors were lighter than the QCD scale, or if the
baryon asymmetry were of order unity. Here, we restrict
our discussion to a subset of the ensemble in which varia-
tions in the parameters about xo are limited. In fact, we are
interested in determining whether small deviations in x
from xo could dramatically change certain relatively stable
complex structures (atoms, stars . . .) that we observe.

The physics and astrophysics of these complex struc-
tures depend on only a subset of x; for example, variations
in the bottom quark mass, or its mixing to the charm quark,
by a factor of 2 have no effect on the complex structures of
interest. Hence, we now restrict x to include only

xSM: �;�s; yu; yd; yt; ye; �h; m
2
h; (9)

and

xcos: MPl; Teq; Q; �B;�: (10)

Here, yu;d;t;e are the Yukawa couplings for the up, down and
top quarks and the electron, �h the Higgs-quartic coupling,

m2
h the Higgs mass-squared parameter, MPl the reduced

Planck mass, and �B the baryon asymmetry. In this 13-
dimensional parameter space there are special surfaces that
represent complexity boundaries

CAðxÞ ¼ 1; (11)

such that the complex structure A differs drastically from
one side of the boundary to the other.
Several comments are in order for our choice of the

parameter set x.
(i) �h andm

2
h can be traded for the electroweak vacuum

expectation value, v and the Higgs boson mass. We
include �h and yt, because they typically play an
important role in electroweak symmetry breaking.
For example, in the standard model there is a bound-
ary corresponding to the existence of a electroweak
symmetry breaking vacuum with v � MPl [16]

Cvð�h; ytÞ ¼ 1: (12)

(ii) The SUð2Þ gauge coupling of the standard model is
omitted from Eq. (9), since charged current weak
interactions at low energies are described by v.
Neutral current, and therefore the weak mixing
angle, play little role on relevant complex
structures.

(iii) We have omitted the strange quark Yukawa cou-
pling ys for simplicity. It does play a role in nuclear
physics.

(iv) The only parameter from the lepton sector is ye.
Other lepton sector parameters could affect �B via
leptogenesis [17]. Since the source of �B is un-
known, we prefer to list it as an independent cos-
mological parameter.

(v) The 13-dimensional parameter set could be further
reduced, since only certain combinations appear in
CA of Eq. (11). For example, only dimensionless
combinations appear, so that MPl could be removed
by using it as the unit of mass. For the complexity
boundaries arising from atomic and nuclear struc-
tures, v appears only in the combinations mf � yfv

(f ¼ u, d, e) as fermion masses, so that for these
boundaries xSM can be reduced to

x0SM: �;
mu

�QCD

;
md

�QCD

;
me

�QCD

; (13)

where �QCD is the QCD scale, which takes a value

of � 100 MeV in our universe. For naturalness
arguments, however, we often prefer to use the
more basic set of Eq. (9).

(vi) In a theory with two Higgs doublets, such as the
minimal supersymmetric standard model, the basic
set of Eq. (9) should be expanded. For most pur-
poses, we simply have to replace the electroweak
vacuum expectation value v by two vacuum expec-
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tation values; for type-II two Higgs doublet theo-
ries, we have vu for the up-type Higgs doublet and
vd for the down-type Higgs doublet.

B. The relevant complex structures

A crucial question for the complexity boundaries is what
are the relevant complex structures. Our interest in a par-
ticular boundary depends on how important the corre-
sponding complex structure is for explaining the
structure of the physical world. Consider two extremes.
The size of the cosmological constant, relative to the
matter density of the universe when density perturbations
become nonlinear, leads to a boundary that determines
whether large scale structure forms

�

Q3T4
eq

� 1: (14)

A member on one side of the boundary will lead to for-
mation of galaxies, while one on the other side leads to an
inflating universe of isolated elementary particles. This
clearly has important effects on the basic structure of the
universe. As a second extreme example, consider the com-
plex mesons with a b quark constituent. As the b quark
mass mb is increased above the W boson mass mW the b
quark decays so rapidly that B mesons cease to exist. This
boundary of mb=mW � 1, however, has a negligible effect
on our environment, which is why we did not include the
b-quark Yukawa coupling yb in xSM.

Somewhat arbitrarily, we divide the relevant complexity
boundaries into three classes according to how dramatic
the environmental change is across the boundary:

(i) Catastrophic boundaries change our universe into
one that is essentially unrecognizable. In addition
to Eqs. (12) and (14), we would include the case that
electroweak symmetry is broken dominantly by the
Higgs potential

v

�QCD
� 1: (15)

This is required so that the baryon asymmetry of the
universe is not washed out by the sphaleron effects
[18]. We also consider that the absence of any com-
plex nuclei is catastrophic. In the simplified case that
the only parameter that is varied from its standard
model value is v, this boundary is [6]

v

104�QCD
� 1: (16)

For v larger than this boundary, the only stable
nucleus is either p ¼ uud or �þþ ¼ uuu.

(ii) Violent boundaries separate members where a cru-
cial complex structure of our universe is absent. For
example, across the boundary

mn

mp þme
¼ 1; (17)

where mp and mn are the masses for the proton and

neutron, the neutron becomes stable and hydrogen
unstable. Such a neutron-stable world would not
have dense astrophysical objects fueled by nuclear
energy release, such as main-sequence stars in our
universe [19]. Another example of violent bounda-
ries is that of vanishing deuteron binding energy

BDðmu;md;�QCD; �Þ ¼ 0: (18)

Across this boundary, no nuclei form during big
bang nucleosynthesis, so that the universe proto-
nizes (or neutronizes). Stars could only burn via
exotic triple proton reactions, with extremely high
central densities.

(iii) Substantial boundaries separate members where a
crucial complex structure of our universe is drasti-
cally changed. For example, across certain bounda-
ries stars may exist but are very different from those
we see. For example, if the pp reaction pp !
Deþ� is not available to ignite stars, then protostars
would collapse to a higher temperature before
igniting via the pep reaction, ppe� ! D�. A
more substantial change to stars occurs if the deu-
teron is beta unstableD ! ppe� ��; stars could still
burn, but only by using the helium produced during
big bang nucleosynthesis. The existence of a stable
diproton, the 2He nucleus, would also change stel-
lar nuclear reactions, shortening lifetimes of hydro-
gen burning stars. Changes of some nuclear energy
levels, controlled by quark masses and �, could
also lead to substantial changes in the abundance of
various nuclear species, such as carbon and oxygen.

Each boundary gives a surface of special values for the
parameters �x, which does not correspond to a surface of an
enhanced symmetry. Among the ones listed, we find that
most boundaries are clustered around a zone yu;d;ev�
��QCD �Oð0:01Þ�QCD, where our universe also resides.

This strongly suggests the existence of a complexity natu-
ralness problem. Here, however, we focus more on the
observer naturalness problem, which arises if the member
describing our universe lies unusually close to the observer
boundary. There are certain ambiguities in identifying
which of the complexity boundaries compose the observer
boundary. An important point, however, is that by using
only the boundaries that certainly have disastrous effects
on the environment, we can be on the conservative side in
evaluating the existence of an observer naturalness prob-
lem. For this reason, we take only boundaries that are
catastrophic or violent, rather than just substantial, to
compose our observer boundary. We also select only the
boundaries that allow us to derive reasonably accurate
values for �x, allowing a reliable estimate of the naturalness
probability P.
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C. Stability boundaries for neutrons, deuterons, and
complex nuclei

Following work by others, we focus on the boundaries
across which we lose complex nuclei, Eq. (16), neutron
instability, Eq. (17), and the deuteron, Eq. (18). We take yu,
yd, ye, v=�QCD, and � to be our parameters xi. The choice
is motivated by the expectation that the relation of these
parameters to those in the ultraviolet theory is relatively
direct.

We now represent the boundaries of Eqs. (16)–(18) in
terms of the deviations of xi from the observed values xi;o.
Let us first discuss the neutron stability boundary of
Eq. (17). The instability of a neutron, or equivalently the
stability of hydrogen, requires

mn �mp �me > 0; (19)

where we have neglected the neutrino mass. The neutron-
proton mass difference mn �mp arises from both the

strong isospin violating effect, �d�u, and the electromag-
netic contribution to the proton mass, �EM: mn �mp ¼
�d�u � �EM. In our universe, �d�u ’ 2:26� 0:51 MeV
[20] and �EM ¼ �d�u � ðmn �mpÞ ’ ð2:26� 0:51Þ �
1:29 MeV. To a first approximation, these quantities scale
as �d�u / md �mu and �EM / �, so that

mn �mp ’ md �mu

md;o �mu;o

ð2:26 MeVÞ � �

�o

ð0:97 MeVÞ:
(20)

Here, we have taken the central value for �d�u, and the
variables with and without the subscript o represent, re-
spectively, the values in our observed universe and those in
an arbitrary member of the ensemble. In terms of the
parameters xi, Eq. (19) can be written as

1

0:77

�
yd � yu

yd;o � yu;o
� 0:23

ye
ye;o

�
v=�QCD

ðv=�QCDÞo > 0:56
�

�o

:

(21)

Here, we have neglected a small dependence of�QCD on v
as well as logarithmic evolution of the Yukawa couplings.
For two Higgs doublet theories,7 the Yukawa couplings in
Eq. (21) should be replaced as

yu ! yu sin	; yd ! yd cos	; ye ! ye cos	;

(22)

yu;o ! yu;o sin	o; yd;o ! yd;o cos	o;

ye;o ! ye;o cos	o;
(23)

where v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
and tan	 � vu=vd.

We next discuss the boundary of Eq. (18). This boundary
corresponds to the stability of a deuteron under strong
interactions, which requires

BD ¼ mp þmn �mD > 0; (24)

where mD is the deuteron mass. The binding energy BD

depends on the quark masses as

BD � BD;o ¼ �a

�
mu þmd

mu;o þmd;o

� 1

�
; (25)

where BD;o ’ 2:2 MeV is the observed deuteron binding

energy. The parameter a is uncertain, but it is estimated in
Ref. [6] to be a ’ ð1:3–5:5Þ MeV using models of nucleon
binding. This allows us to write Eq. (24) in terms of xi as

yu þ yd
yu;o þ yd;o

v=�QCD

ðv=�QCDÞo < 1þ 2:2 MeV

a
: (26)

For two Higgs doublet theories, the Yukawa couplings
must be replaced as in Eqs. (22) and (23).
We finally consider the condition for the existence of

complex nuclei. The stability of complex nuclei requires
the energy release for the 	 decay n ! pe� �� to be smaller
than the binding energy of nuclei per nucleon Ebin:

mn �mp �me & Ebin; (27)

where we have neglected the neutrino mass. Precisely
speaking, Ebin varies with a nucleus, receiving contribu-
tions both from nuclear forces and the Coulomb repulsion
between protons. To a first approximation, however, Ebin

can be regarded as the same for all nuclei and being
controlled purely by �QCD, taking the value of Ebin ’
8 MeV in our universe.8 Substituting this into Eq. (27),
and using Eq. (20), we obtain

1

0:77

�
yd � yu

yd;o � yu;o
� 0:23

ye
ye;o

�
v=�QCD

ðv=�QCDÞo
& 4:6þ 0:56

�

�o

: (28)

The expression should be modified according to Eqs. (22)
and (23) for two Higgs doublet theories.

D. Observer naturalness problem in the standard
model and beyond

The region inside our observer boundary, O, is defined
by Eqs. (21), (26), and (28), with modification by Eqs. (22)
and (23) for two Higgs doublet theories. To visualize the
overall shape of this region, in Fig. 5 we depict the three
boundaries of Eqs. (21), (26), and (28) in mu–md–me

space. The plots in the left column adopt a logarithmic

7Here and below, we assume type-II two Higgs doublet models
when we discuss two Higgs doublet theories.

8We neglect the dependence of Ebin on mu and md, as this will
not affect our conclusions.

EVIDENCE FOR THE MULTIVERSE IN THE STANDARD . . . PHYSICAL REVIEW D 78, 035001 (2008)

035001-11



scale inmu andmd, while those in the right a linear scale in
mu and md. The fine structure constant is fixed to be � ¼
�o, and we have used the leading-order chiral perturbation
value of mu;o=md;o ¼ 0:56 to draw these plots. (The quali-

tative features of the plots are not affected if we vary �d�u

and mu;o=md;o in the range of �d�u ’ 2:26� 0:51 MeV
[20] and mu;o=md;o ¼ 0:3–0:6 [21].) From the figure, we

find that the observed parameters are close to the three
boundaries, especially when viewed on a logarithmic scale.

In particular, they are very close to the neutron stability
bound of Eq. (19). This implies that we have an observer
naturalness problem.
The degree of unnaturalness P depends on a theory,

since the relation between fmu;md;me; �g and the funda-
mental parameters, as well as the form of the distribution
function, depend on the ensemble we consider. However,
we can still make a conservative estimate on P, based on
the observation that the naturalness probability ~P obtained

FIG. 5. The location of the observer boundary inmu–md–me space. The neutron and complex nuclei boundaries of Eqs. (21) and (28)
are depicted by solid lines (below and above, respectively). Dashed lines represent the deuteron boundary of Eq. (26) (for a ¼ 5:5, 2.2,
and 1.3 MeV from below). The observed point is represented by little dots.
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by fixing all the fundamental parameters except for one
generally satisfies ~P * P. In the present context, we can fix
yu, yd, ye, �, and �QCD, as well as tan	 for two Higgs

doublet theories. The conditions of Eqs. (21), (26), and
(28) then lead to

0:5 &
v

vo

& 2; (29)

where we have used a ¼ 2:2 MeV for illustrative purpose.
The probability of v falling in this range ~Pv then gives a
conservative estimate of the naturalness probability P.
Alternatively, we can fix v instead of �QCD. In this case,

we have

0:5 &
�QCD

�QCD;o

& 2: (30)

The probability of �QCD falling in this range ~P�QCD
can

also give a conservative estimate of P, since P &

minf ~Pv; ~P�QCD
g. Which of ~Pv and ~P�QCD

we use is deter-

mined by which is easier to estimate and, in case both are
easy to estimate, which gives a stronger bound on P.

Let us first consider an ensemble in which the distribu-
tion of v is flat in v2, as in the standard model embedded
into more fundamental theory at a high scale. In this case,
we obtain an extremely small value of ~Pv � v2

o=M
2
, where

M
 � vo is the cutoff scale. For M
 � 1018 GeV, we
obtain ~Pv � 10�32. The origin of this small value, how-
ever, is precisely the existence of the gauge hierarchy
problem. We thus see the existence of a severe observer
naturalness problem in these theories, but it is hard to
disentangle from the fine-tuning naturalness problem.

We therefore focus on theories in which the conven-
tional gauge hierarchy problem is solved. In these theories,
the distribution of v is expected to be flat in lnv or 1= lnv
within an ensemble. To estimate ~Pv, however, we need to
know the range of v, which depends on how v is related to
the fundamental parameters of the theory. To avoid model
dependence coming from this, we here consider ~P�QCD

,

instead of ~Pv. The value of the QCD scale, �QCD, is

determined from the strong gauge coupling constant at
the cutoff scale, g3ðM
Þ, through renormalization group
evolution. The probability ~P�QCD

can then be estimated if

(i) the theory between �QCD and M
, together with the

value of M
, is specified, and (ii) the distribution function
for g3ðM
Þ, including the range of g3ðM
Þ, is given.9

Specifying the theory between �QCD and M
 is important

because the existence of colored states whose masses are
associated with v may increase the correlation between v
and�QCD, enhancing ~P�QCD

. The distribution and the range

of g3ðM
Þ are also important. For example, if the distribu-
tion of g3ðM
Þ were flat in 1=g23ðM
Þ within the range

1=g23ðM
Þ * b3=16�
2, the QCD scale is distributed almost

flat in ln�QCD for all �QCD & M
. Here, b3 is the one-loop
beta function coefficient for g3 evaluated at M
. In this
case, we would obtain ~P�QCD

estimated using Eq. (30) to be

infinitely small. To avoid this unphysical conclusion, we
can introduce an arbitrary cutoff c on the distribution
1=g23ðM
Þ & c. Alternatively, we can consider that the

distribution of g3ðM
Þ is flat in g23ðM
Þ. In this case, re-

stricting the range to be g23ðM
Þ & c0 gives a finite answer
to ~P�QCD

. The value of ~P�QCD
depends on c0, but we can

make a reasonable conjecture on the value of c0, e.g., c0 �
1 or � 16�2=b3.
In Fig. 6, we plot the value of g23ðM
Þ as a function of

�QCD=�QCD;o obtained using one-loop renormalization

group equations for nonsupersymmetric theories (top)
and supersymmetric theories (bottom). In nonsupersym-
metric theories, M
 is taken to be 1014 GeV, which is the
scale where the SUð3Þ and Uð1Þ gauge couplings almost
meet. (This is the scale where the three gauge couplings

FIG. 6. The value of g23ðM
Þ as a function of �QCD=�QCD;o for
nonsupersymmetric theories (top) and supersymmetric theories
(bottom). The range of Eq. (30) is depicted by the vertical lines,
while the corresponding range of g23ðM
Þ by the horizontal lines.

9Here we neglect higher order effects, which are expected to
be small.
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would almost meet if five Higgs doublet fields or a vector-
like fermion with the Higgs quantum numbers were intro-
duced at the weak scale.) In supersymmetric theories, we
take M
 to be the unification scale 2� 1016 GeV, and the
scale of superparticle masses to be mSUSY ’ 1 TeV.
Dependence of the results on these parameters, however,
is weak. From the figure, we find the probability of �QCD

falling in the range of Eq. (30) to be

~P �QCD
’ 0:016

1

c0
’ 61�1 1

c0
; (31)

for nonsupersymmetric theories and

~P �QCD
’ 0:038

1

c0
’ 26�1 1

c0
(32)

for supersymmetric theories. Here, we have taken the
distribution function to be flat in g23ðM
Þ. The value of c0
is uncertain, but we expect c0 * 1. The numbers in
Eqs. (31) and (32) depend on a in Eq. (25), through the
dependence of the lower value of Eq. (30) on a. For a ¼
1:3 MeV (5.5 MeV), 0.016 and 0.038 in these equations
become 0.020 and 0.046 (0.012 and 0.029), respectively.
Note that the analysis here provides the most conservative
estimate for the level of an observer naturalness problem
existing in theories beyond the standard model (in which
the conventional gauge hierarchy problem is solved, so that
~Pv can be larger than ~P�QCD

)

P & ~P�QCD
: (33)

In theories where the gauge hierarchy problem is not
solved, the degree of the observer naturalness problem is
much more severe, P & ~Pv � 1. We thus find that the
bounds on P derived here provide evidence for an observer
naturalness problem in the standard model and beyond.

To obtain a conservative estimate on P, we have used
here only P & minf ~Pv; ~P�QCD

g. Physically, the case with

P � minf ~Pv; ~P�QCD
g corresponds to the situation where we

have the ‘‘best’’ model of flavor, i.e., the observed quark
and lepton masses in units of the weak scale are reproduced
essentially without any free parameter. This is, however,
not the case for many theories of flavor, which will have
P<minf ~Pv; ~P�QCD

g, as discussed in the next section.

V. NATURALNESS PROBABILITIES AND
THEORIES OF FLAVOR

The observed values of the first generation masses,
mu;d;e, are special: Fig. 5 shows that they are close to the

boundaries of neutron, deuteron, and complex nuclei
stability. To judge whether this is likely to be accidental
we need to evaluate the naturalness probability, but this
depends on the theory of flavor. We begin by considering
ensembles of theories in which � and v=�QCD are fixed,

but the flavor observables xF have some probability distri-
bution fðxFÞ.

In the standard model the relevant flavor observables are
the Yukawa couplings: xF ¼ yu;d;e. While they are all very

small, of order 10�6–10�5 at unified scales, they are all
close to the maximal values allowed by the neutron, deu-
teron, and complex nuclei boundaries. Of particular im-
portance, the observed values are especially close to the
neutron (hydrogen) stability boundary. While ye is about a
factor of 3 from this boundary, in the yu–yd plane the
distance from the observed point to this boundary corre-
sponds to a variation in the coupling only offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� zÞ2ð1� AÞ2
1þ z2

s
¼ 13þ17

�3 %; (34)

where z � mu=md and A � ð�d�u �mn þmp þ
meÞ=�d�u evaluated in our universe. Here, the central value
is obtained with z ¼ 0:56 and �d�u ¼ 2:26 MeV. The
electromagnetic interaction raises the proton mass above
the neutron mass by about an MeV. Given that quarks can
have masses up to 100 GeV or more, it is remarkable that
the md �mu mass difference just overcompensates the
electromagnetic shift to make the hydrogen mass only
’ 0:78 MeV smaller than the neutron mass. The deuteron
and complex nuclei stability boundaries are also close by,
corresponding to changes in the Yukawa couplings by
factors of � ð1:5–3Þ and � 2, respectively.
It is important to numerically evaluate these accidents;

for illustration, we consider two simple distribution func-
tions. If fðyu;d;eÞ are flat and nonzero in the range of yu;d;e
from 0 to 1, then the corresponding naturalness probability
for this ensemble, using Eq. (5), is PF � 10�16; while if
fðlog10yu;d;eÞ are flat and nonzero in the range of log10yu;d;e
from �6 to 0, then PF � 10�4. As expected from Fig. 5,
the volume of parameter space closer to the special points
on the observer boundary than the measured point is very
small compared with the expected total volume of parame-
ter space in the ensemble. From the viewpoint of neutron
instability and deuteron and complex nuclei stability, the
standard model description of flavor is highly unnatural.
Theories of flavor that go beyond the simple Yukawa

coupling parameterization of the standard model typically
involve further symmetries, such as flavor or unified gauge
symmetries. While the set of flavor observables xF in these
theories can be smaller than that in the standard model, all
knownmodels do involve free parameters. If a theory could
be found in which yu;d;e are precisely predicted, i.e., if

variations in yu;d;e are less than the distances to the special

points on the observer boundary when xF vary, then such a
theory would have PF � 1. However, if yu;d;e vary signifi-

cantly (and independently) as xF vary in the ensemble, as
in most theories of flavor, then the theory is likely to have
PF (much) smaller than of order unity. The best hope for a
significant improvement in naturalness is then to obtain a
successful prediction for the ratios of the first generation
Yukawa couplings—symmetries that successfully predict
the yu, yd, and ye ratios could show that our universe lying
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so close to the observer boundary is just accidental. This is,
however, not so easy, especially because of the extreme
closeness of the observed point to the neutron stability
boundary. Moreover, since the observer boundary involves
the combinations yu;d;ev=�QCD, the normalization of yu;d;e
is coupled to the value of v=�QCD. Below, we do not take

v=�QCD as fixed, but consider it to vary in the ensemble as

discussed in the previous section.
In certain theories of flavor, for example, with Abelian

flavor symmetries, the smallness of yf (f ¼ u, d, e) fol-

lows from a single small parameter of the theory

yf ¼ cf

pf ; (35)

where 
 � 1 while cf are of order unity. The powers pf

are not free parameters of the theory, but result from a
certain judicious choice of Abelian charges for all the
quark and lepton fields [22]. The ratios of the Yukawa
couplings can then be just numbers of order unity for a
fixed value of 
 (and tan	 for two Higgs doublet theories).
Let us consider, for example, that the coefficients cf vary in

the range 0 	 cf 	 2cf;o with a flat distribution on a linear

scale, or in the range log10cf;o � 1=2 	 log10cf 	
log10cf;o þ 1=2 with a flat distribution on a logarithmic

scale. In this case, the extreme closeness of the neutron
stability boundary gives PF � 1=18 and 1=36, respec-
tively, for a fixed value of 
 (and tan	). In addition to
this, there is the issue of the normalization of the masses
mu;d;e, arising from a variation of v=�QCD. Assuming that

the distribution function is flat in g23ðM
Þ, this leads to a

further reduction of the probability at least by a factor of
~P & 1=35 and 1=15 for nonsupersymmetric and supersym-
metric theories, respectively. [These numbers are obtained
by requiring that v=�QCD should be within a factor of

� ð2–3Þ from the observed value so that its variation can
be absorbed into changes of cf, without a large extra cost in

PF. The range of g23ðM
Þ here has been chosen to be 0 	
g23ðM
Þ 	 1.] Possible variations of 
 (and tan	) may or

may not lead to further reductions of the probability. We
thus conclude that theories with Abelian flavor symmetries
considered here have

P & PF
~P & ð10�3–10�2Þ; (36)

from physics of flavor alone.
To increase P from flavor physics, it is necessary to

predict ratios of yu;d;e to better than the factor of � 2 we

used in the above estimates. A more elaborate charge
assignment for the quark and lepton fields under an
Abelian flavor symmetry is not sufficient, since it will
leave the relative coefficients of order unity undetermined.
A non-Abelian flavor symmetry, or unified gauge symme-
try, could improve P by successfully predicting yu:yd:ye as
Clebsch factors. For example, yu:yd:ye ¼ 1:2:1 at the uni-
fied scale agrees with inferred values of mu;d;e, providing

the eigenvalues are not affected much by mixing to heavier

generations. A simple theory of flavor incorporating such a
relation could lessen the significance of the observer nat-
uralness problem of Eq. (36). However, uncertainties from
QCD are too large for us to know if the relation really puts
us sufficiently close to the neutron stability boundary, so
that the problem is simply an accidental consequence of
symmetry. Moreover, in conventional theories of flavor we
expect simple Clebsch factors to apply to the heaviest
generation not the lightest. This is because the lightest
generation typically gets contributions from nontrivial ma-
trix diagonalizations, so that the relation would have to
involve more than one generation. For example, the in-
ferred values ofmu;d;e are consistent with unified boundary

conditions yu ¼ ye and yd ¼ 0, provided the down quark
mass arises from diagonalizing a symmetric 2� 2 matrix
that fully accounts for the Cabibbo angle. This requires,
however, experimental inputs of the strange quark mass
and the Cabibbo angle, so that it does not provide a real
symmetry solution to the problem. We find it rather diffi-
cult to have a symmetry understanding for yu:yd:ye, and
even if we had, unnaturalness still arises from the coinci-
dence between v and �QCD, given by Eqs. (31) and (32).

We conclude that, in the absence of a convincing and
significant progress in flavor physics, we have unnatural-
ness associated with flavor at the level given by Eq. (36).

VI. ENVIRONMENTAL SELECTION

We have seen that theories of particle physics and cos-
mology are likely to have observer naturalness problems,
signaled by P � 1. The problems arise in an ensemble if
the observed point is close to the observer boundary. The
situations in which this happens can be classified into the
following three cases: the observed point is (a) a typical
point within a small observer region O, (b) close to the
boundary of a small observer regionO, and (c) close to the
boundary of a large observer region O, which may or may
not be a closed region in the parameter space. These cases
are depicted schematically in Fig. 7.
The heart of the observer naturalness problem is the

coincidence: why is the observed point so close to the
observer boundary, which is a very special region in the
parameter space? To solve this problem, we must make the
observer boundary really special—the existence and loca-
tion of the observer boundary should somehow affect the
process of selecting a member in the ensemble as the one
describing our universe. This leads us to consider environ-
mental selection, effects sensitive to the existence of an
observer. In this section, we study how environmental
selection on a multiverse can solve observer naturalness
problems in general, and under what circumstances (and in
what sense) we can identify evidence for it. We also discuss
possible implications of this solution in identifying the
correct theory describing our universe.
The nature of the observer naturalness problem is dra-

matically altered if the members in an ensemble are physi-
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cally realized in a multiverse. Until now, the ensemble has
been a useful fictitious mathematical device to study prob-
lems of naturalness; now we assume that each member of
the ensemble is physically realized as a universe in space-
time. The fundamental theory of nature is assumed to have
a huge number of vacua, the landscape of vacua, so that
physics at low energy may be described by many possible
effective theories. In fact, we are interested in a subset of
these theories T that leads to physics described by the
parameters xi discussed in Sec. IV, with the parameters
xi taking different values in different universes. We assume
that it is possible to define a distribution function of the

multiverse ~fTðxiÞ such that, averaging over the entire mul-

tiverse, we obtain hxii ¼ �T

R
~fTðxiÞxidxi. We stress that

this is the average value on the entire multiverse, indepen-
dent of whether universes contain observers. If the popu-
lation mechanism, including any relevant volume factors,

were independent of xi, then ~fTðxiÞ would represent the
distribution of vacua in the theory underlying the land-
scape. However, in general it includes both relevant popu-
lation and volume factors.10 We first focus on a single
theory, so that we can drop the index T until later
subsections.

Environmental selection on the multiverse involves two
key points that give a central role to measurements made
by observers

(i) Universes that have parameters outside the region O
do not contain observers, hence values of xi outside
O cannot be measured. When discussing naturalness
of the observed universe, we should not be asking
questions about the entire multiverse but only about
the observer region O.

(ii) The number of observers in universes inOwith xi in

the region xi to xi þ dxi is given by ~fðxiÞnðxiÞdxi �
fðxiÞdxi. Each universe is to be weighted by an
observer distribution nðxiÞ, the factor associated
with the number of observers that develop in a

universe with parameters xi. We make no attempt
to define an ‘‘observer.’’

These two points are really two aspects of a single selec-
tion process, with nðxiÞ defined over the entire space of xi.
We, however, find it useful to consider that nðxiÞ rapidly
drops to zero at certain observer boundaries, so that the
region outside these boundaries does not affect the natural-
ness of a multiverse.
In the approximation that the observer boundary is

sharp, the naturalness probability of Eq. (3) is then re-
placed by

PO ¼
��������
Rxo

�x fðxÞdxR
O fðxÞdx

��������; (37)

where the integral in the denominator implies that x is
integrated only in the region O. The expression for higher
dimensional x space is also obtained similarly. We stress
that here and throughout the rest of the paper

fðxiÞ ¼ ~fðxiÞnðxiÞ: (38)

The entire region of parameter space of the multiverse is
now irrelevant; the only question is whether we are typical

observers in universes inO. To calculate ~f it is necessary to
know both the landscape of vacua and the population
mechanism. On the other hand, n is independent of the
landscape and, with sufficient understanding of the physi-
cal environment for observers, could be calculated in prin-
ciple from the low energy theory. We take the practical

viewpoint that both ~f and n are unknown, and hence give
ourselves the freedom to assume any reasonable smooth
distribution for f. It is then clear that distributions can be
found that make PO � 1, solving the observer naturalness
problems whether of the form of (a), (b), or (c) of Fig. 7. A
more detailed description of each of these three types of
solution is given in Sec. VIA. In Sec. VI C, we consider the
relative probability of different theories T solving an ob-
server naturalness problem.
It is quite clear that there are many origins for a signifi-

cant xi dependence of fðxiÞ ¼ ~fðxiÞnðxiÞ in the observer

region O. For ~f these are the distribution of vacua in the

FIG. 7. The situations that lead to an observer naturalness problem. The observed point is denoted by the little dot, while the region
outside O is shaded.

10For subtleties in defining the distribution function in the
multiverse, see, e.g., [23] and references therein.
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underlying theory as well as relevant volume and popula-
tion factors, while for n a variation in xi could change the
density of galaxies, stars, nuclei, and so on that are relevant
for observers. In Sec. VI B, we investigate a further effect:
it could be that f or the shape of O depends on more
variables, xb, than the ones we focus on, xa, and that when
these extra variables are integrated out the resulting effec-
tive distribution acquires further xa dependence. Finally, a
crucial issue is how to evaluate evidence for environmental
selection. In Sec. VID, we argue that, for any observer
naturalness problem, a low value for the naturalness proba-
bility P provides evidence for environmental selection.
More precisely, for the known set of (simple) symmetry
theories, T, the evidence is determined by the largest value
of PT

Pmax ¼ max
T

fPTg: (39)

If Pmax � 1, there is no evidence, but as Pmax decreases so
the evidence becomes more substantial.

A. Three manifestations of environmental selection

Using a set of Lagrangian parameters xi of some low
energy theory, an observer naturalness problem might
appear in the three ways illustrated in Fig. 7. In each
case, environmental selection may be at work, but the
description of the solution to the problem is different.

Suppose we find an observer naturalness problem of the
form of (a) in Fig. 7. This suggests that the distribution
function f is (approximately) constant in the Lagrangian
basis xi, since the replacement of P ! PO then completely
eliminates the observer naturalness problem. Assuming a
constant f, the naturalness probability PO of Eq. (37)
becomes

PO ¼
��������xo � �x

�x

��������; (40)

where �x is the range of x in the observer region O.
Similarly, for multiple parameters the naturalness proba-
bility of Eq. (5) is replaced by

PO ¼
��������cnf�

n
a¼1ðxa;o � �xaÞ2gn=2

VnðOÞ
��������¼ vn

VnðOÞ ; (41)

where VnðOÞ is the volume of parameter space in the
observer regionO. The elimination of observer naturalness
problems by the replacement P ! PO is illustrated in
Fig. 8. The enormous increase in the probability here arises
simply because all of the universes that lie outside the
region O are cut out of the denominator.

The situation in Fig. 8 is the case of the overall picture
for the cosmological constant �. For conventional natural-
ness, consider an ensemble with a distribution function f
that is constant in �, which is the case in most theories.
The probability that a member of this ensemble has a small
value of �o near the special value zero is Pð�Þ ¼ �o=M

4
,

where M
 is the fundamental scale. On the other hand,

environmental selection, arising from a multiverse with ~f
and n assumed flat in �, replaces �max � M4
 by �� �
Q3T4

eq, giving

POð�Þ � �o

Q3T4
eq

: (42)

The vast majority of universes have a huge cosmological
constant; but that is irrelevant because they contain only a
dilute gas of elementary particles undergoing inflation. We
should cut all these universes out of the measure, and
consider only those where large scale structure forms,
allowing the possibility of complex observers. This elim-
inates (or greatly ameliorates) the problem associated with
the cosmological constant Pð�Þ � 1 ! POð�Þ � 1. A
more refined analysis includes the effects of nontrivial
nð�Þ near the observer boundary [24].
Let us now consider observer naturalness problems in

the forms of (b) or (c) of Fig. 7. In these cases, even after
selection we are apparently left with some residual natural-
ness problem PO � 1 in some particular theory T. What
does this imply? Does this mean that the observer natural-
ness problem in these forms cannot be solved by environ-
mental selection?
The answer is clearly no. To understand what can be

going on, it is important to realize that our knowledge can
often be very incomplete. Imagine that we have assumed
some distribution function f for an ensemble and found an
observer naturalness problem in the form of (b) or (c) of
Fig. 7 in the basis where f is constant. This seems to imply
that the observer naturalness problem cannot be solved by
a simple cutout procedure illustrated in Fig. 8. However, do
we really know that we have identified all the relevant
complexity boundaries, and thus identified the correct ob-
server boundary? It could be that we have missed some
relevant boundary and, after taking it into account, PO may
become order unity. This is illustrated in Fig. 9 for the case
of (b) of Fig. 7.
Another possibility is that our initial assumption on the

distribution function may not be correct. In practice, when
we consider a theory, we start by assuming a ‘‘natural’’
distribution function fðxiÞ, which is often taken to be

FIG. 8. Replacement of the probability P ! PO, illustrated for
the case of (a) of Fig. 7.
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constant in ‘‘Lagrangian parameters’’ xi. However, there
are many reasons why the distribution function in this
parameter basis may not be constant even approximately.
First, the Lagrangian parameters xi of the low energy
theory may be functions of the Lagrangian parameters yj
in the fundamental theory, xi ¼ xiðyjÞ, and the distribution
function may be constant in yj rather than xi. Second, in the

multiverse picture, a mismatch between the naive and true
distribution functions may also result from the population
mechanism depending on xi, or may be induced by envi-
ronmental selection via a nontrivial nðxiÞ. Finally, environ-
mental selection may depend not only on xi but also on
other variables, inducing an extra dependence of f on xi, as
we will discuss in the next subsection. Hence, the distri-
bution function fðxiÞmay have a strong dependence on the
Lagrangian parameters xi of the low energy theory, and in
this case, the situations of (b) or (c) in Fig. 7 actually
correspond to typical observers with PO � 1, expected
from environmental selection.

The situation in which naive and true distribution func-
tions differ significantly is illustrated in Fig. 10 for the case
of (c) of Fig. 7. (For the discussion here we assume that all
relevant parts of the observer boundary have been correctly
identified.) There are two (equivalent) ways to describe this
situation. One is to go to the basis in which the true
distribution function is constant. In this basis, which we
may call the ‘‘mathematical basis,’’ the observed point is a
typical point in O, and the parameters chosen, yi, can in
general be nontrivial functions of the ‘‘Lagrangian parame-
ters’’ xi. In practice, the transformation from xi to yi should
be inferred from the observed data and a calculated ob-
server boundary. Another way to describe the situation is to
keep using Lagrangian parameters, or parameters that have
the most direct or intuitive physical meaning at low ener-
gies, xi. In this basis, which we may call the ‘‘physical
basis,’’ we have a nontrivial distribution function fðxiÞ.
The distribution function is peaked toward the region out-
sideO, so that a typical observer inOmeasures xi close to
the observer boundary.

In the physical basis, xi, it is very convenient to intro-
duce a ‘‘probability force,’’ which is simply the gradient of
the probability distribution

F ¼ rf; (43)

where r � ð@=@x1; @=@x2; � � �Þ. Within the region O, this
vector field gives an indication of what values of physical
parameters are most likely to be measured in the multi-
verse. If the vector field indicates a flow toward an observer
boundary, observers should be living close to the corre-
sponding boundary. An example of the probability force
field is depicted in the physical basis plot of Fig. 10.

B. Effective distributions from ‘‘integrating out’’
parameters

What are the possible origins of the probability force?
One is a nontrivial prior distribution function fprior, which

arises from a mismatch between the physical and mathe-
matical bases, as discussed previously. In practice, how-
ever, this is not the only source of the probability force. The
key is that when we discuss physical predictions in the
multiverse picture, we typically choose a subset xa of the
entire parameter set xi and study probabilistic predictions
in the space of these chosen parameters xa. An important
point here is that when we focus on xa, we cannot simply
ignore the other variables xb (i ¼ fa; bg); they must be
integrated out. This provides an effect on the distribution
function defined in the subspace xa, and thus modifies the
probability force in xa space.
To illustrate this idea, let us consider the simplest ex-

ample of a constant fprior, i.e., the case in which the

physical and mathematical bases coincide. In this case,

FIG. 9. Illustration of the situation in which a missed boundary
(shown dashed) leads to a fictitious problem of PO � 1 after
environmental selection.

FIG. 10. Illustration of the situation in which naive and true
distribution functions differ significantly. In the basis where the
true distribution function is constant (the mathematical basis),
the observed point is a typical point in O, and the parameters
chosen, yi, are in general nontrivial functions of ‘‘Lagrangian
parameters’’ xi. In the basis spanned by xi (the physical basis),
the distribution function is nontrivial, giving a ‘‘probability
force’’ field, defined in Eq. (43).
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the distribution of observers is given by

dN ¼ cdx1 � � �dxN; (44)

where c ¼ fprior is a constant, and the probability force in

xi space is zero, F ¼ 0. This, however, does not mean that
the probability force is zero if we consider only a subset of
the variables, e.g., x1; � � � ; xN�1. When we focus on the
variables x1; � � � ; xN�1 (as we focused only on yu, yd, ye,
v=�QCD, and � out of the 13 parameters of Eqs. (9) and

(10) in Secs. IV and V), we must integrate out the other
variable xN. Now, in the multiverse picture with environ-
mental selection, the only relevant universes are those
within the observer region O, implying that integrals
should be performed only over O. The domain of
xN integration is then determined by the observer bound-
ary, which is generically written as xmin

N ðx1; � � � ;
xN�1Þ 	 xN 	 xmax

N ðx1; � � � ; xN�1Þ,11 giving
dN ¼ feffðx1; � � � ; xN�1Þdx1 � � � dxN�1; (45)

where feffðx1; � � � ; xN�1Þ � cfxmax
N ðx1; � � � ; xN�1Þ �

xmin
N ðx1; � � � ; xN�1Þg. The probability force defined in
x1 � � � xN�1 space is then obtained by Eq. (43) with f
replaced by feff: Feff ¼ rfeff , where r ¼
ð@=@x1; � � � ; @=@xN�1Þ. This generically gives a nontrivial
force Feff � 0.

In general, when we consider physics of the landscape in
the subspace of xa (a ¼ 1; � � � ; n), we must integrate out
the other variables xb (b ¼ nþ 1; � � � ; N) to obtain the
effective distribution function, and thus the probability
force, defined in xa space. The domain of integration is
given by the observer region O, leading to

feffðx1; � � � ; xnÞ ¼
Z

� � �
Z
O
fpriorðx1; � � � ; xNÞdxnþ1 � � �dxN;

(46)

where fprior ¼ ~fpriorn is the prior distribution function

defined in the entire parameter space xi, whose xb depen-

dence could arise from both ~fprior and n. The important

point here is that the effective distribution function feff in
xa space is not obtained simply by ‘‘neglecting’’ the other
variables xb in fprior, i.e., by setting xb to the observed

values in fprior

feffðx1; � � � ; xnÞ � fpriorðx1; � � � ; xn; xnþ1;o; � � � ; xN;oÞ:
(47)

Since the observer region O can in general have a compli-
cated shape in xi space, the effective distribution function
can have a quite different form than the expression in the
right-hand-side of Eq. (47). The effective probability force
defined in xa space is then given by

F eff ¼ rfeff ; (48)

where r ¼ ð@=@x1; � � � ; @=@xnÞ.
The argument here suggests that it is a rather common

phenomenon to have a nontrivial probability force when
we focus only on a subset of the entire parameter set xi,
which is almost always the case. Then, if the resulting
probability force is strong, we are likely to encounter an
observer naturalness problem in the form of (b) or (c) in
Fig. 7.

C. Cut factor and comparisons between different
theories

In general, there are many theories T that lead to the low
energy Lagrangian with parameters x and that are de-
scribed by a multiverse distribution fTðxÞ. As an example,
xmay be the Yukawa couplings of the up and down quarks
and electron, yu;d;e, and T may label the various theories of

flavor. The number of observers in the multiverse who are
governed by theory T is

nT ¼
Z
O

~fTðxÞnðxÞdx: (49)

A typical observer will be governed by the theory T that
has the maximum value of nT (assuming that several T do
not have comparable nT). The absolute normalization of
nðxÞ is unimportant, since we are only interested in relative
numbers of observers governed by different theories

nT
nT0

¼
R
O
~fTðxÞnðxÞdxR

O
~fT0 ðxÞnðxÞdx ¼ N T

N T0

~C�1
T

~C�1
T0

; (50)

where N T ¼ R
~fTðxÞdx is the total ‘‘number’’ of uni-

verses (including volume factor weights) described by
theory T and

~C T ¼
R
~fTðxÞdxR

O
~fTðxÞnðxÞdx

: (51)

Suppose now that nðxÞ is relatively flat over O so that it
is a good approximation to take it constant. Multiplying

this constant by ~CT then gives

CT ¼
R
~fTðxÞdxR

O
~fTðxÞdx

: (52)

In this case, there are a factor CT more universes described
by T in the multiverse than in O. Environmental selection
solves observer naturalness problems at a cost of removing
a factor CT of these universes—we call CT the cut factor
for theory T.
Consider, for example, the following two theories—the

standard model where only the Higgs mass-squared pa-
rameter scans with a distribution function constant in jm2

hj
and a theory beyond the standard model where only the
weak scale scans with a distribution function constant in
1= lnv. Considering selection by Eq. (29), the cut factors in

11Depending on the shape of O, we may have to integrate xN
over multiple domains for some values of x1; � � � ; xN�1.
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these theories are Oð1032Þ and Oð100Þ, respectively. If we
take this naively, it seems to suggest that the latter theory is
preferred over the former, and we might say that the
standard model is less likely since it involves the cost of
a much larger cut factor.12 (This result is similar to that of
the conventional naturalness argument, although here ob-
servable universes always have v � MPl due to selection
effects.) Of course this is not rigorous—our ignorance of
N T , as well as other possible selection effects, makes the
argument based only on the cut factor unreliable; without
knowledge ofN T there is no real reason to prefer a theory
beyond the standard model over the standard model (other
than considerations based on other physics such as gauge
coupling unification and dark matter). Nevertheless, the
relative cut factors for two theories do contribute to the
relative number of observers described by each theory, as
in Eq. (50), hence we may describe a large cut factor for
some theory as a cost in its solution to an observer natural-
ness problem.

D. Evidence for environmental selection

We have seen that observer naturalness problems, which
appear in the form of (a), (b), or (c) of Fig. 7, can be solved
in general by environmental selection. Turning this argu-
ment around, we find that effects of environmental selec-
tion can show up in one or both of the following forms:

(i) Amazing coincidences: we are living in a region of
parameter space that admits complex observers,
which, however, is only a (very) small portion of
the entire parameter space.

(ii) Living on the edge: we are living (very) near an
‘‘edge’’ of the parameter regionO that admits com-
plex observers, i.e., physical parameters take values
that correspond to a point very close to the observer
boundary, compared with the extent of the regionO.

In fact, how environmental selection manifests itself de-
pends on the basis—we have seen that a phenomenon that
appears as (ii) in one basis can appear as (i) in another
basis, or vice versa. However, since we are often presented
with a natural basis in which the physical meaning of
parameters is most direct and/or intuitive, it is meaningful
to consider the manifestation of environmental selection in
that particular basis (physical basis). As we have seen, the
manifestation then takes the form of (i) if the effective

distribution function feffðxÞ is (nearly) constant over the
observer region O, while it takes the form of (ii) or a
combination of (i) and (ii) if feffðxÞ is peaked toward a
boundary of O. There are many possible origins for a
nontrivial form of feffðxÞ: an x dependence of the land-
scape vacua, the dynamics of the population mechanism,
the observer factor nðxÞ, and environmental selection act-
ing on variables other than x.
Can the observation of one or both of the above two

phenomena, (i) and (ii), be viewed as evidence for envi-
ronmental selection? In a given theory T, the answer is yes,
since otherwise it is very difficult to explain these features.
Even though there is an observer naturalness problem
associated with a very small value for PT , after environ-
mental selection a typical point within O results, i.e.,

PT ! PO;T � 1: (53)

The smaller the original PT , the more amazing the coinci-
dence, or the closer to the edge we are living. The signifi-
cance for the evidence for environmental selection is then
quantified by the size of the naturalness probability PT ,
with a smaller value of PT corresponding to stronger
evidence.
In practice, however, we do not know beforehand the

correct theory describing our universe. Suppose we en-
counter a situation described by (i) or (ii) above. Do we
conclude that we have found evidence for environmental
selection, or that the theory we are considering is simply
wrong? Whether an observation of the phenomenon de-
scribed in (i) or (ii)—an observer naturalness problem—
can be viewed as evidence for environmental selection
depends on whether one can find an alternative theory in
which the problem does not arise. A simple alternative
theory without the naturalness problem may provide a
better description of our universe. On the other hand, it is
possible that we cannot find such a theory, or can find only
theories that are significantly more complicated. Then we
may conclude that environmental selection provides the
best explanation of the phenomenon, so that we provision-
ally accept the multiverse theory.
In principle, with competing theories to describe nature,

the evidence for environmental selection at a particular
observer boundary is given by the largest value of PT

associated with that boundary. However, it may be that a
theory with large PT is very complicated or ad hoc, so that
it does not appear to be an adequate solution to the observer
naturalness problem. In this case, it may be judged that the
evidence for environmental selection is better represented
by a smaller value of PT associated with some simpler
theory.
The discussion given above illustrates why the cosmo-

logical constant is a powerful argument for environmental
selection: in all known quantum field theories the natural-
ness probability is extremely small (PT � 10�120–10�60

depending on the presence of weak scale supersymmetry

12Here we do not consider the cut factor arising from selection
of the cosmological constant � & Q3T4

eq. In fact, the size of the
cut factor associated with the cosmological constant does not
depend, e.g., on the scale of supersymmetry breaking if the
constant term in the superpotential W0 scans up to the funda-
mental scale M
 with the distribution flat in jW0j2, as suggest by
string theory [25]. This part of the cut factor is then of order
M4
=� � 10120 regardless of the theory. (An exception for this is
given by supersymmetric theories in which both supersymmetry
and R symmetry are broken at low energies.)
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and the nature of its breaking), implying that the largest
value of PT is of order 10�60 or smaller. The absence of a
simple theory with PT ¼ Oð1Þ is crucial in this argument.
A similar argument may also be made for the quark and
lepton masses discussed in Secs. IVand V. We have argued
that all known theories of flavor are quite inadequate to
explain the relevant observer naturalness problems, leading
to PT & ð10�3–10�2Þ. Although this is numerically less
impressive than the case of the cosmological constant, it is
nevertheless very important. A single piece of evidence for
environmental selection, no matter how significant, could
be completely erased by the discovery of a single new
theory. The more independent pieces of evidence for envi-
ronmental selection, the more convincing the overall pic-
ture becomes.

One might think it always difficult to ‘‘confirm’’ the
absence of alternative theories that do not have the prob-
lem. Indeed, the absence of such theories can in general be
inferred only from negative results of theoretical search.
However, in the case that the observer naturalness problem
is related to a fine-tuning naturalness problem, it is possible
that we can be convinced rather firmly that the problem
does in fact exist. This will be the case, for example, if we
do not see any deviation of gravity from Newton’s law
down to a scale (much) smaller than Oð100 �mÞ, since it
will tell us the absence of a physical threshold that can
control the observed value of the cosmological constant. In
Secs. VIII and IX, we will also argue that the observation
(or nonobservation) of new physics at the TeV scale may
also be viewed, depending on what we will see, as evidence
for the existence of an observer naturalness problem, and
hence environmental selection.

We stress that environmental selection can provide nu-
merical predictions that are difficult to obtain in other
ways. Specifically, this occurs if the effective distribution
function feff has a nontrivial form in the physical basis. In
this case, the physical parameters take values correspond-
ing to a point close to the observer boundary, giving non-
trivial predictions.

An example of predictions made possible by environ-
mental selection is given by the stability boundary of the
desired electroweak phase of the standard model [16].
Suppose that the standard model is valid up to some high
scale M
 near the Planck scale and that the weak scale v
results from environmental selection. Suppose further that
the Higgs-quartic coupling at M
, �h;
, and the top quark

Yukawa coupling at M
, yt;
, vary from one universe to

another. There is then an observer boundaryOð�h;
; yt;
Þ ¼
1 corresponding to sufficient stability of the desired
electroweak phase. Now, if the distribution function
feffð�h;
; yt;
Þ is strongly peaked toward the phase bound-

ary then our universe is expected to be close to this edge. In
particular, if the peaking is stronger in �h;
 than in yt;
 then
the most probable point on the phase boundary has
MHiggs ’ 107 GeV and mt ’ 175 GeV. Discovery of the

Higgs boson near this mass, together with the absence of
any new electroweak physics, would then provide evidence
that our universe is near the edge of this observer phase
boundary, and hence of environmental selection. In gen-
eral, if we find ourselves living close to an observer bound-
ary and if we do not have a simple (alternative) theory
explaining that fact, then we may regard it as evidence for
environmental selection.

VII. PREDICTIONS FOR mu, md AND me FROM
ENVIRONMENTAL SELECTION

The observer naturalness problem associated with the
stability of neutrons, deuterons, and complex nuclei was
introduced in Sec. IV, and is illustrated in Fig. 5. We
showed that no matter what the theory of flavor, there is
always a factor in the naturalness probability ~P from the
dependence on v=�QCD. In Sec. V, we argued that there is a

factor PF in the naturalness probability that is highly
dependent on the theory of flavor. In all known theories
P ¼ PF

~P & ð10�3–10�2Þ. In this section, we argue that
this naturalness problem can be solved by environmental
selection; furthermore, there are several possible solutions
with different consequences.
We begin by restating the naturalness problem in terms

of standard model parameters. For the neutron and com-
plex nuclei stability boundaries a crucial quantity is

mn �mp �me ¼ CIðyd � yuÞv� yev� C���QCD;

(54)

where CI � ð0:5–2Þ and C� � ð0:5–2Þ are strong interac-
tion coefficients, and we choose a definition of the QCD
scale such that �QCD ¼ 100 MeV. Throughout we use

approximate ranges for mu;o and md;o from Ref. [21]. For

complex nuclei the binding energy per nucleon is Ebin ¼
CB�QCD, with CB � 0:08 another strong interaction coef-

ficient. The neutron and complex nuclei boundaries are
then described by the inequalities

0<CIðyd � yuÞ v

�QCD

� ye
v

�QCD

� C��< CB: (55)

In the approximation that the deuteron binding energy BD

is linear in mu þmd in the region of interest, the stability
boundary for the deuteron can be written as

BD

�QCD
¼ C1 � C2ðyd þ yuÞ v

�QCD

> 0; (56)

where C1;2 are two further strong interaction coefficients.

These three boundaries involve just four independent com-
binations of standard model parameters, yu;d;ev=�QCD

and �.
Much of the observer naturalness problem arises be-

cause the three terms that contribute to mn �mp �me in

Eq. (54) are comparable, as shown in Fig. 11, even though
Yukawa couplings and the ratio of mass scales v=�QCD are
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expected to range over many orders of magnitude. The
electron mass, yev ’ 0:5 MeV and the electromagnetic
mass splitting �EM � C���QCD ’ 1:0 0:5 MeV differ

by only about a factor of 2. They both stabilize the neutron,
and hence an unstable neutron requires yd > yu. Not only
is this the case, but the isospin breaking term �d�u �
CIðmd �muÞ ¼ 2:3� 0:5 MeV only just overcompen-
sates the negative terms to give a net available energy for
neutron beta decay of just 0.8 MeV, an amount that is also
very close to the electron mass and electromagnetic terms.
In any theory of flavor where yu;d;e are determined by

symmetries, these numerical coincidences, allowing neu-
tron instability and the existence of complex nuclei, must
simply be accidents. Furthermore, these accidents also
involve v=�QCD and �. The other standard model combi-

nation, ðyd þ yuÞv=�QCD, which could also range over

many orders of magnitude, is numerically within about a
factor of 2 of the deuteron stability boundary. Finally, as is
apparent from Fig. 5, the observed parameters are actually
much closer to the neutron stability boundary than a factor
of 2. The perpendicular distance in coupling parameter
space is (10–30)%, depending on the values of CI and
yu;o=yd;o. As discussed in previous sections, some aspects

of these accidents could arise from a theory of flavor that
determines yu;d;e to be small and in the approximate ratio

1:2:1 at a unified scale; but the accidents associated with
the value of v=�QCD and the closeness to the neutron

stability boundary remain.
Environmental selection cuts out a large region of pa-

rameter space where neutrons are stable, or deuterons or
complex nuclei are unstable, greatly reducing the observer
naturalness problem. The only remaining question is
whether our observed universe is a typical universe within
the observer regionO shown in Fig. 5. This depends on the
probability distribution for yu;d;ev=�QCD and �, and on

whether O has been correctly identified, allowing several
solutions of the problem with different implications. We

begin by taking � fixed to its observed value while allow-
ing yu;d;e, v, and �QCD to scan. Since there are only two

scales v and �QCD appearing in the nuclear stability ob-

server boundaries, we can take �QCD ¼ 100 MeV without

loss of generality, setting the unit of mass. Furthermore,
since v always multiplies a Yukawa coupling, environmen-
tal selection for the light fermion masses can be discussed
in terms of a distribution function fðmu;d;eÞ without loss of
generality.13 For a given f we can compute hmui, hmdi, and
hmei and compare them with the values observed in our
universe, mu;o, md;o, and me;o. We can also compute how

close a typical universe in O is to the neutron stability
boundary.
Predictions for hmu;d;ei involve the mass scales that arise

in the observer boundaries, namely, the maximum value of
mþ ¼ md þmu allowed by deuteron stability

mþmax ¼ C1

C2

�QCD ’ ð1:4–2:7Þmþ;o

’ ð1:4–2:7Þ � ð5–12Þ MeV; (57)

for a ¼ ð1:3–5:5Þ MeV, the binding energy per nucleon in
stable complex nuclei

Ebin ¼ CB�QCD � 8 MeV; (58)

and the electromagnetic contribution to the proton mass

�EM ¼ C���QCD ’ ð0:5–1:5Þ MeV: (59)

While all three mass scales are proportional to �QCD, �EM

is significantly smaller than mþmax and Ebin. Hence, it is
important to see which of these mass scales enter the
predictions for hmu;d;ei.
We consider three situations that solve the observer

naturalness problem:
(I) An important part of the observer boundary is

missing.
(II) The probability distribution is flat in mass space,

dN ¼ Admudmddme. In this case, the closeness to
the neutron stability boundary discussed above is
accidental.

(III) The probability distribution dN ¼
fðmu;md;meÞdmudmddme yields a nontrivial
probability force toward the neutron stability
boundary.

FIG. 11. Q value for the reaction n ! pe� ��.

13The distribution function fðmu;d;eÞ here and below really
means fðmu;d;e=�QCDÞ, but we omit �QCD for notational sim-
plicity. In the language of Sec. VI B, this is the effective dis-
tribution for mu;d;e=�QCD after integrating out the other param-
eters. Specifically, fðmu;d;e=�QCDÞ ¼

R
O �ðmu=�QCD � yuv=

�QCDÞ�ðmd=�QCD � ydv=�QCDÞ�ðme=�QCD � yev=�QCDÞ �
fðyu; yd; ye; v; �QCDÞdyudyddyedvd�QCD. Using fðmu;d;eÞ, we
are able to discuss environmental selection at nuclear boundaries
without answering how the degeneracy inside mu;d;e (scaling
v=�QCD and yu;d;e oppositely keeping mu;d;e fixed) is
determined.
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For case I, consider a multiverse with mu, md, and me

uniformly distributed on logarithmic scales so that the
relevant diagrams are shown in the left panels of Fig. 5.
Although the original naturalness problem P � 1 has been
ameliorated by a large cut factor, the naturalness problem
is not entirely removed by environmental selection for
neutron instability and deuteron and complex nuclei stabil-
ity, since PO � 1. For example, there are large regions of
O at smallmu;e that are distant from the observer boundary.

A complete solution follows if there are additional relevant
boundaries that we have failed to identify, that reduceO to
the point where our universe becomes typical within O.
This would certainly require new physical constraints to
remove the large regions with low values of mu=mu;o and

me=me;o. A complete solution may need further cuts to

remove large values of me=me;o not already excluded, for

example, using the threshold for the pp reaction.
Furthermore, to understand our closeness to the neutron
stability boundary, it would be necessary for other cuts to
approach our universe with a similar closeness on a loga-
rithmic scale. While we can certainly identify physical
processes that would introduce extra boundaries, we are
unable to argue that they induce catastrophic changes
rather than just the substantial changes discussed in
Sec. IV.

For the second case, II, suppose that the distributions of
mu, md, and me are flat on linear scales, so that the effects
of environmental selection can be understood from the cuts
of the observer boundaries drawn in the right panels of
Fig. 5. The observed masses are relatively typical withinO,
so that PO is not much smaller than unity, and the natural-
ness problem is largely solved. In fact, the observed masses
are still close to the neutron stability boundary, even in the
right panels of Fig. 5, which in this example is accidental.
Having assumed a simple form for the multiverse distribu-
tion, i.e., that fðmu;md;meÞ is constant, we are able to use
the precise form of the observer boundary to compute the
average observed values of the electron, up quark and
down quark masses by integrating over O

hmei ¼ 1

4
CImþmax � CI

�
mþ;o

5 MeV

�
ð2–3Þ MeV; (60)

hmþi ¼ 3
4mþmax � ð1–2Þmþ;o; (61)

hm�i ¼ 1
2mþmax � ð0:7–1:4Þmþ;o; (62)

where m� ¼ md �mu. In these equations the analytic
expressions are obtained without including the effect of
the complex nuclei boundary, and the numerical range
corresponds to a ¼ ð1:3–5:5Þ MeV. (Including the effect
of the complex nuclei boundary changes the numerical
values only up to about 30%.) These results demonstrate
that environmental selection yields predictions for mu;d;e

once a simple form for the probability distribution has been
assumed. The predictions for mu and md are good. The

prediction forme is quite uncertain. For many values of the
strong interaction parameters it is somewhat large; for
example, for central values of CI, a, and mþ;o, hmei �
6me;o, so that low values of CI and mþ;o as well as a high

value of a are preferred. Nevertheless, we stress that a
major part of the observer naturalness problem is solved if
fðmu;md;meÞ is relatively flat within O. On linear scales
for mu;d;e, our universe is quite typical of O. Of course,

case II does imply that the closeness to the neutron bound-
ary is accidental, and the rest of this section is devoted to
understanding this closeness. A peaked distribution func-
tion can also give hmei / �EM, rather than / mþmax, lead-
ing immediately to an understanding of the lightness of the
electron.
For case III, insideO the distribution f is peaked toward

the neutron stability boundary, allowing us to explore the
consequences of an environmental explanation for why
mu;d;e are so close to this boundary. We call this stability

boundary the n surface—it is a 2-dimensional plane in the
3-dimensional space of massesmu;d;e. WithinO, the proba-

bility force F ¼ rf can be resolved into components
parallel Fk and perpendicular F? to the n surface. We

assume that F? points toward the n surface. The Fk field
will determine the most probable location on the n surface.
The n surface has a triangular shape, as shown in Fig. 12.

Two of the edges of the triangle correspond to edges of
physical space mu;e ¼ 0, while the other edge corresponds
to the intersection of the n surface with the D surface, the
boundary for deuteron stability. We call these three edges
the u, e, and D edges, and label the three vertices of the
triangle as ue, uD and eD, as shown in Fig. 12. The Fk field
will determine where on the n surface triangle the distri-
bution f is maximized; there are three possibilities:
(1) In the interior, not close to an edge.
(2) On an edge, not close to a vertex.

FIG. 12. 2-dimensional n surface in the 3-dimensional space of
masses mu;d;e.
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(3) On a vertex.

On a linear scale, the n surface is small compared with the
expected available parameter space, so that it is unlikely

that ~f would have a sharp peak in the interior of the
triangle. However, the observer factor n may vary signifi-
cantly across the triangle inducing a maximum in the
interior. For case III-2, as we move along an edge, f rises
to reach a maximum and then falls. As an example consider
the distribution in O to be

fðmu;md;meÞ ¼ Aðmd �muÞ�p; (63)

where A is a normalization constant, and p is positive. This
situation would arise if the populated landscape has a low
probability to yield a universe with large breaking of iso-
spin, or if there are more observers in a universe as isospin
is restored. In a slice through parameter space at constant
me, the resulting probability force F� � rf is toward and
perpendicular to the n surface. However, in the full 3-
dimensional space F� is not perpendicular to the n surface.
This is apparent in Fig. 13, which shows the n surface in
the 3-dimensional space of mþ, m�, and me. Clearly the
force will lead to a preference for low values of me, so that
if p is large enough the most probable universes will have
me close to zero, i.e., close to the e edge of the n surface
triangle of Fig. 12. From Fig. 13, all points on the e edge
are equally probable, so that there is no expectation of
being close to either the ue or eD vertices. We can compute
the expectation values of mu;d;e by integrating over the 3-

dimensional region O. For p > 3 the regions in Fig. 13 at
low m� and low me dominate the integrals, and one sees
that �EM sets the scale for both me and m�, giving

hmei ¼ 1

p� 3
�EM; (64)

and

CIhm�i ¼ p� 1

p� 3
�EM: (65)

This explains why the three contributions to mn �mp �
me shown in Eq. (54) are comparable. On the other hand,
Fig. 13 shows that mþ is uniformly distributed along the n
surface from small values to mþmax, and hence

hmþi ¼ 1
2mþmax: (66)

Notice that of the three mass scales that enter the observer
boundaries, Eqs. (57)–(59), Ebin does not appear. This is
because the probability distribution is peaked away from
the complex nuclei boundary, which therefore becomes
irrelevant in determining the averages.14

For case III-3 there are three possible vertices of the n
surface triangle to consider. Our universe is certainly not
close to the uD vertex, since this givesme too large, hence,
we study the remaining two vertices. There are many f that
lead to these vertices; we begin by identifying and studying
the simplest cases. The ue vertex can be reached by a
preference for low values of mu;d;e. However, low values

of mu or me are not sufficient as they lead to the u or e
edges, hence, as a simple example we study the distribution

fðmu;md;meÞ ¼ Am�q
d ; (67)

with q positive. At the ue vertex the value of md is
determined by �EM. For sufficiently large q this is the
only relevant scale so that the average values of mu;d;e

over O will all be determined by �EM

hmei ¼ 1

q� 4
�EM; (68)

CIhmþi ¼ q

q� 4
�EM; (69)

CIhm�i ¼ q� 2

q� 4
�EM: (70)

While choices of q and CI can lead to a hierarchy between
these averages (for example hmei ’ �EM, hmþi ’ 10�EM

and hm�i ’ 6�EM for q ¼ 5 and CI ¼ 0:5), the hierarchy
is more readily generated when hmei / �EM and hmþi /
mþmax, as in Eqs. (64) and (66).
The eD vertex is favored by large mu and small me;

however, large or small md both lead away from the eD
vertex. A simple distribution peaking toward the eD vertex
is

fðmu;md;meÞ ¼ Amr
u; (71)

FIG. 13. The n surface in the 3-dimensional space of mþ, m�,
and me (shaded by solid lines). The me axis is stretched relative
to the m� axes to make the figure more visible. The observer
region O is the region surrounded by the n surface, the mu ¼ 0
surface (shaded by dashed lines), the me ¼ 0 surface, and the
deuteron stability surface at mþ ¼ mþmax. The complex nuclear
stability boundary is not shown.

14The appearance of the mass scales in Eqs. (64)–(66) depends
only on a probability force toward low m�, and not on the
particular choice of the power law f in Eq. (63).
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with r * mþmax=�EM. Any distribution peaking near this
vertex will lead to hm�i / �EM and hmþi ’ mþmax, which
agree with observations. The prediction for the electron
mass depends on the strength and direction of the force. In
the example of Eq. (71), hmei � mþmax=r.

In two Higgs doublet theories a probability distribution
for the ratio of vacuum expectation values tan	 contributes
to the distributions formu;d;e. Suppose that this distribution

favors large tan	 and that tan	o � 1. In this case, low md

andme are preferred, so that within the observer region the
probability distribution is peaked toward the ue vertex of
the n surface, leading to hmei, hmþi, hm�i / �EM. The
probability distribution in the electroweak symmetry
breaking sector may be the origin of the force determining
hmu;d;ei.

Finally, we consider the possibility that � also scans. In
this case, the size of the electromagnetic mass difference
�EM scans relative to the purely QCD scales of Ebin and
mþmax. This means that there is a shift in the position of the
allowed window for (CIm� �me) from neutron and com-
plex nuclei stability. If � increases too much this window
shifts to a nonphysical region where m� >mþ, leading to
an upper limit on �

�<
CIC1

C�C2

; (72)

which is numerically about 0.2, with large uncertainties.
Thus, � is about an order of magnitude away from the
maximum value that it may take anywhere in O.

If � is very small then the range for (CIm� �me)
increases. The amount of increase is negligible on a linear
scale, but is sizable on a logarithmic scale. For example,
with � ¼ 10�4, (CIm� �me) can range from 10�2 MeV
to 8 MeV. However, if gauge couplings unify then � and
�QCD become related. As � is decreased, so �QCD be-

comes exponentially smaller. It could be that selection
effects on the size of �QCD compared with the unified

scale and/or the electroweak scale dominate over selection
effects of � in nuclear physics.

In many circumstances, precise predictions for environ-
mental selection follow from assuming sharply varying
distribution functions f. However, in the present example
of nuclear physics in the parameter spacemu;d;e and �, it is

possible that ~f is sufficiently slowly varying over O that
physical arguments based on the observer factor n could
lead to predictions without any assumptions of sharply
varying f. For example, consider variations in the parame-
ters within O that lead from the neutron surface to the
observer boundary with no complex stable nuclei. Moving
toward the boundary of no complex stable nuclei, the
observer factor may be reduced by successive nuclei be-
coming unstable. On the other hand, moving closer to the
neutron surface than our universe will lead to a longer
neutron lifetime and therefore to more primordial helium
production; the reduction in primordial hydrogen will re-

sult in fewer hydrogen burning stars. The competition of
these (and other) effects may determine the location of our
universe within O. Of course, even in this case, some

assumption about ~f is still needed.

VIII. ELECTROWEAK SYMMETRY BREAKING
SELECTED BY NUCLEAR STABILITY

The origin of electroweak symmetry breaking is one of
the largest mysteries remaining in the standard model. The
quadratic divergence of the Higgs mass-squared parameter
in the standard model implies that if the scale of new
physics M is (much) larger than the weak scale v, the
theory requires fine-tuning. This hierarchy problem was a
key motivation for much of the model building in the last
30 years. What do we know about the scale M? In many
(nonsupersymmetric) theories beyond the standard model,
precision electroweak data indicates a ‘‘little hierarchy
problem’’: v=M is uncomfortably small, typically of order
(ð10�2–10�1Þ) or smaller (see, e.g., [26]). There is also a
similar fine-tuning problem in supersymmetric theories,
although its origin is different. A sufficiently heavy
Higgs boson typically requires superparticles to be some-
what heavier than the weak scale, leading to some amount
of fine-tuning (see, e.g., [27]). In either case, we find that
some amount of unnaturalness is present, at least for the
simplest theories, suggesting that environmental selection
may be playing a role. In this section, we investigate
whether a hierarchy between v and M is to be expected
from environmental selection, the size of any such hier-
archy, and how the hierarchy depends on which parameters
are assumed to scan.
To address the question of the environmental selection

of v=M, several issues must be addressed: what is the
theory under discussion, which parameters of that theory
scan, and what observer boundaries implement the selec-
tion? Below, we formulate a fairly general class of theories
that describes electroweak symmetry breaking, and the
nuclear stability boundaries of Sec. IV are used to imple-
ment selection. In Sec. IX, we consider an alternative
possibility that selection occurs at the electroweak phase
boundary.
The mass scale of the new physics that generates elec-

troweak symmetry breaking is defined to be M, and we
assume that the effective theory below M is the standard
model with the Higgs potential

V ¼ m2
hh

yhþ �h

2
ðhyhÞ2: (73)

Integrating out the physics of the electroweak symmetry
breaking sector at scale M in general leads to several
contributions to m2

h, some positive and some negative,

which we write as

m2
h ¼ ðg1ðxiÞ � g2ðxiÞÞM2; (74)

where the functions g1;2 are both positive. The dimension-
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less parameters xi are the set of parameters of the theory
above M that substantially affect electroweak symmetry
breaking. These parameters are evaluated at the scaleM, so
that g1;2 are also functions of M through the logarithmic

sensitivity of xi on M: g1;2ðxiðMÞÞ. Note that m2
h here

includes the quadratically divergent radiative corrections
in the standard model that are regulated by the theory
above M. The parameters xi thus include the standard
model gauge and Yukawa couplings.

The precise nature of the couplings xi and the functional
form of g1;2 are unimportant for our discussion, so that we

write g1ðxiÞ ¼ Ax and g2ðxiÞ ¼ Ay, giving

m2
h ¼ ðx� yÞAM2; (75)

where x, y, A > 0. The numerical constant A is chosen such
that typical values for y in the observer region are of order
unity. The parameters x and y depend logarithmically onM
through renormalization group evolution. (A is a one-loop
factor in many theories beyond the standard model. Since
m2

h contains quadratically divergent contributions in the

standard model, and thus x and y contain pieces propor-
tional to the SUð2Þ gauge and top Yukawa couplings
squared, respectively, the value of A should not be much
smaller than the one-loop factor.) In the context of con-
ventional naturalness criteria, electroweak symmetry
breaking is unnatural if x is typically larger than y in an
ensemble (only a small fraction of members in the en-
semble leads to electroweak symmetry breaking), whereas
if x is typically of order y or less then the natural value of

the weak scale is
ffiffiffiffi
A

p
M for a quartic coupling of order

unity.
A key observation is that as experimental limits on

physics beyond the standard model get stronger so the
mass scale M is constrained to be larger. In some (non-
supersymmetric) theories of electroweak symmetry break-
ing, this typically arises from contributions of particles of
mass M to the precision electroweak observables. In many
supersymmetric models, the increased lower limits on the
Higgs boson and superparticle masses have pushed up the
mass scale of some superparticles to about a TeVor larger.
These little hierarchies between v and M imply that the
parameters xi are constrained toward the phase boundary
of electroweak symmetry breaking. As experiments push

up M, so g1 and g2 of Eq. (74) cancel to give v=
ffiffiffiffi
A

p
M

(much) smaller than unity. This is illustrated in Fig. 14 for a
2-dimensional slice through the parameter space. The un-
usual closeness of the parameters to this boundary can be
viewed as an observer naturalness problem.

In this section, we investigate the various possible ways
in which environmental selection on a multiverse can play
a role in electroweak symmetry breaking. We use the class
of theories described above, which contains most nonsu-
persymmetric and supersymmetric theories beyond the
standard model. The relevant observer boundaries are

those of nuclear stability, shown in Fig. 15, so that in
general one must consider scanning parameters that affect
nuclear physics as well as the parameters of the electro-
weak symmetry breaking sector. We start by considering
only a few parameters scanning, and then progress to more
general situations.
First of all, it is natural to expect that some parameters of

the theory at M scan in the multiverse, so that there are
universes with different values of the weak scale v.
Universes with x > y have v ¼ 0, while those with y > x
have

FIG. 14. The (supersymmetric) little hierarchy problem as an
observer naturalness problem. Contours of M=v are drawn in a
2-dimensional slice of parameter space of a generic electroweak
symmetry breaking sector. As the experimental limit on M
increases, so the allowed region of parameter space shrinks to
values of larger M=v close to the phase boundary.
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FIG. 15. The observer region in mu–md space (inside the
shading). The dashed line drawn from the lower left to the upper
right represents the trajectory followed when only the electro-
weak vacuum expectation value v is varied (neglecting the
effects of a variation of me).
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v2 ¼ ðy� xÞ AM
2

�hðvÞ : (76)

Scanning of parameters in the electroweak symmetry
breaking sector atM may also lead to a nontrivial effective
distribution for �hðvÞ. Since a light Higgs boson has not
been discovered, however, this distribution should lead to
�hðvÞ typically having an order unity value in the observer
region. This implies

v2

AM2
� y� x (77)

in our universe, where y is of order unity due to definition
of A. The crucial question is if some cancellation between
y and x is expected, which cannot be understood in the

conventional symmetry approach. If not, then v � ffiffiffiffi
A

p
M as

in the conventional case. If so, however, we obtain an extra
hierarchy between v and M that cannot be explained by a
symmetry, and the question becomes the following: is y�
x typically of order 10�2–10�1, with the multiverse gen-
erating a little hierarchy, or is it extremely small, for
example 10�30, giving a large hierarchy?

In addition to v, the nuclear stability observer bounda-
ries depend on parameters yu;d;e, �, and �QCD. In

Secs. VIII A and VIII B we assume that these additional
parameters do not scan, so that the only scanning in the
standard model at low energies relevant for electroweak
symmetry breaking is that of v. In this case, environmental
selection for neutron instability and deuteron stability de-
fines a fixed observer window for v

v� < v< vþ; (78)

where, from Eq. (29), v� ’ 0:5vo and vþ ’ 2vo. (The
value of vþ depends on the parameter a describing the
strength of the deuteron binding; here we take a ¼
2:2 MeV.) This is illustrated in the mu–md plane in
Fig. 15. As v is varied about vo so mu and md vary, but
with a fixed ratio, as shown by the dashed line. (The
corresponding variation of me gives only small effects.)
Since vo lies centrally in the observer window, it is con-
sistent with a distribution fvðvÞ that is slowly varying. Can
environmental selection for v generate a little or large
hierarchy, and if so is the effective distribution for vmildly
varying?

Another possibility, studied in Sec. VIII C, is that the
entire set yu;d;e, �, �QCD, and v scans, so that there is a

nonzero probability distribution throughout the nuclear
observer region. A 2-dimensional slice through the ob-
server region is shown in Fig. 15; the scanning is no longer
restricted to the dashed line. An interesting question then is
whether the closeness to the neutron stability boundary is a
statistical accident, or whether it results with high proba-
bility due to a strongly varying distribution function. As
stressed in Sec. IV, the nuclear observer region depends on
only four combinations of these quantities, mu;d;e=�QCD

and �. For example, a common scanning of v and �QCD

does not affect nuclear physics. This implies that a numeri-
cal value for v is no longer determined by the nuclear
observer region alone. Can environmental selection from
the nuclear observer boundaries, shown in Fig. 15, lead to a
little or large hierarchy?

A. Scanning the mass scale M

The fundamental field theory at the cutoff scale
M
 ( � M) will have a certain set of parameters. We
assume that the scanning atM
 is limited to those parame-
ters that affect the scale M (which may be only M itself),
leading to a distribution function fðMÞ. In particular, the
dimensionless parameters xiðM
Þ do not scan. Assuming
that effects on xi from the parameters controlling M are
small, this implies that the scanning of the parameters x
and y in Eq. (75) comes only through a calculable loga-
rithmic dependence on M, which arises from nontrivial
scaling of these parameters under renormalization group
evolution.
Suppose now that y� x is positive and of order unity

throughout the multiverse (which will be the case if y� x
is positive atM
 and becomes larger as the renormalization
scale is lowered). Environmental selection requires that v
lies in the fixed range v� < v< vþ. This selects M to be
in the range

v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

ðy� xÞA

s
<M< vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

ðy� xÞA

s
: (79)

The ratio between v andM is then the same as if there were

no selection, v=M � ffiffiffiffi
A

p
.

There is, however, another possibility. It could be that as
M varies so y� x passes through zero. In this case, there is
a critical value M ¼ Mc corresponding to the electroweak
phase boundary, y� x ¼ 0. By assumption, neither the
critical value Mc, nor the nuclear window parameters v�
are scanning. It would be an accident forMc to be close to
v�, so we assume that they are distant. A physically
interesting new possibility arises if y� x is small in our
universe, which is possible if Mc � v�. This new possi-
bility corresponds to the environmental selection of a large
hierarchy.
Such a large hierarchy can occur in twoways, depending

on the sign of the beta function	 for y� x, as illustrated in
the two panels in Fig. 16. (The definition of 	 here is given
by dðy� xÞ=d ln� ¼ 	.) For 	> 0 (the top panel), elec-
troweak symmetry breaking is only possible for universes
withM>Mc and, sinceMc � v�, the observer condition
Eq. (78) selectsM to be just aboveMc in the rangeMcð1þ
��Þ<M<Mcð1þ �þÞ, where �� ¼ �hv

2�=j	jAM2
c .

The value of y� x is of order v2=AM2
c � 1, i.e., the

cancellation of order v2=AM2
c is forced by environmental

selection, and the hierarchy between the weak scale and the
scale of new physics is very large Mc=v � 1. (Note that x
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and y themselves are of order unity.) On the other hand, in
the case that	< 0 (the bottom panel) the broken phase has
M<Mc, and environmental selection gives Mcð1�
�þÞ<M<Mcð1� ��Þ; the value of y� x in this case
is, again, of order v2=AM2

c � 1. For 	> 0 only a large
hierarchy is possible. For 	< 0, however, universes with

v� < v< vþ are also possible with y� x � 1 and M �
v=

ffiffiffiffi
A

p
, the case corresponding to conventional natural

theories. The case of a large hierarchy is more probable
if the distribution function for M, fðMÞ is sufficiently
weighted toward large M.

One possibility is that M is the overall scale of super-
particle masses, so that the theory above M is supersym-
metric. If the hierarchy is large, the situation described
above then corresponds to the split supersymmetry sce-
nario discussed in Refs. [8,28]. However, the theory above
M does not have to be supersymmetric. It may, for ex-
ample, be a strongly interacting theory leading to a com-
posite Higgs boson belowM, possibly as a pseudo Nambu-

Goldstone boson [29–31]. In this case, we obtain a pre-
diction on the Higgs boson mass as a function of M, by
setting the Higgs-quartic coupling to be either very large or
small at the scale M (compared with the logarithmically
enhanced contribution between M and v). This could
be interesting because for M � MPl predicted values
of the Higgs boson mass are outside the range of
� ð130–180Þ GeV, expected if the theory above v is the
standard model up to a high scale of order the Planck scale
with a (absolutely) stable electroweak symmetry breaking
vacuum [32,33].
We stress that the situation described here is very spe-

cial; for example, if �QCD scans in the multiverse, it is

possible that the resulting hierarchy is ‘‘little,’’ e.g.,
v=M � ð10�2–10�1Þ, since the value of M may be set
close to the observed weak scale by environmental selec-
tion, as we show below.

B. Full scan of the electroweak symmetry breaking
sector

Next we consider a general scanning of the electroweak
symmetry breaking sector, so that all of x, y, �h, and M
vary independently, but we keep yu;d;e, �, and �QCD fixed.

In this case, it is useful to consider a 2-dimensional ob-
server region in theM–z plane, as shown in Fig. 17, where
z � y� x. As before, we assume that �hðvÞ has a typical
value of order unity, e.g., with its distribution function
being strongly peaked at �1, and hereafter we neglect
the effect of its scanning.15 Electroweak symmetry break-
ing occurs in universes with z > 0, and the observer
boundaries v ¼ v� are shown in Fig. 17. Other parts of
the observer boundary correspond to M ¼ M
, the maxi-
mum value of M (the cutoff scale), and z ¼ zmax, the
maximum value of z determined by the ranges for x and
y in the landscape, which we take to be of order unity.
The effective probability distribution in this 2-

dimensional observer region O is obtained from the distri-
bution function for x, y, M as

feffðz;MÞ ¼
Z
O
dxdyfðx; y;MÞ�ðz� ðy� xÞÞ: (80)

With x and y scanning over the multiverse, the logarithmic
dependence of these parameters on M frequently does not
give a major effect, and hence we neglect it here. When
these effects are important they lead to very interesting
results, and we defer a discussion of this until Sec. VIII E.
If feffðz;MÞ were constant over O, it is clear that our

universe would be expected to have z � 1 and v �ffiffiffiffi
A

p
M, since this corresponds to most of the area of O.

FIG. 16. Illustration of the ranges for M selected by the
observer condition v� < v< vþ. The solid curve gives vðMÞ
in regions of M where electroweak symmetry is broken.

15Our conclusions are not affected by the scanning of �hðvÞ.
(The distribution of �hðvÞ should, of course, be consistent with
the bound on the Higgs boson mass.) In some cases, for example,
in the minimal supersymmetric standard model, �hðMÞ is deter-
mined by the theory at M and has very little ability to scan.
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However, it is also clear that as feffðz;MÞ becomes pro-
gressively more peaked toward low z and/or highM, so the
typical hierarchy will first grow to a little hierarchy z �
Oð10�2–10�1Þ and finally to a large hierarchy z �
Oð10�2Þ. A power distribution is easily able to overcome
the narrowing of the observer region at large M. The
probability distribution for the hierarchy, z, is given by

fzðzÞ ¼
Z
O
dMfeffðz;MÞ; (81)

and a general scanning of the electroweak symmetry break-
ing sector of the theory could lead to a large probability for
either a little hierarchy or a large hierarchy. Indeed, since a
strong dependence of feffðz;MÞ on z and M could result
from many sources—the landscape of vacua, the popula-
tion mechanism, integrating out other parameters, and the
observer distribution n—it would certainly not be surpris-
ing if either a little or large hierarchy resulted.
Environmental selection of the weak scale can provide a
simple generic explanation for our present difficulties in
constructing natural theories of electroweak symmetry
breaking.

Note that this mechanism works both in the context of
nonsupersymmetric and supersymmetric theories,16 and
that the small value of z implies a cancellation between
the positive and negative contributions in Eq. (74) (x and y)
that cannot be explained in the conventional symmetry
viewpoint. In Sec. VIII D, we study in detail the simplified
case that y does not scan, and x and M have power-law or
logarithmic distributions. We compute fzðzÞ, find condi-
tions for large and little hierarchies, and obtain an analytic
result for the size of the hierarchy when it is little. We also

compute the distribution for v2, fvðv2Þ in the observer
window.
Before closing this subsection, let us consider the case

that only the dimensionless variables in the electroweak
symmetry breaking sector xi scan, with the value of M
fixed. In this case, experiments constrain the value of M to
be larger than about a TeV. What value should we expect
for M? Without any special reason, we expect M to take
some ‘‘random’’ value between TeV and fundamental
scales; it is unlikely that M is close to the observed weak
scale, since it requires an accident of orderOð0:01–0:1Þ, as
discussed in Sec. IVD. Hence, we typically expect a large
hierarchy with M � v. The values of xi are environmen-
tally selected by Eq. (78) to a very small range

�hv
2�

AM2
< y� x <

�hv
2þ

AM2
; (82)

in which there is a large cancellation between x and y.

C. Scanning over the entire nuclear stability observer
region

We continue to study theories of electroweak symmetry
breaking that lead to the standard model as an effective
theory belowM, withm2

h ¼ ðx� yÞAM2. However, as well

as having v scan, via the scanning of x, y, and M, we now
allow the other parameters of the nuclear stability observer
boundaries to also scan. This means that instead of explor-
ing a distribution through the observer region correspond-
ing to only varying v, as shown by the dashed line of
Fig. 15, we are now exploring a distribution over the entire
observer region discussed in Sec. IV. With yu;d;e, �, and
�QCD all scanning, the problem is apparently very com-

plex. However, here we are only interested in two aspects
of the problem: the probability distribution for z ¼ y� x
that determines the size of the hierarchy between v andM,
and the probability force perpendicular to the neutron
surface that determines how close typical observers are
to the neutron stability boundary. These questions can be
addressed by studying an effective distribution over a
reduced 2-dimensional projection of the parameter space.
The neutron and complex nuclei stability boundaries of

Eq. (55) can be written in the form

�� < �< �þ; (83)

where

�2 ¼ z
A ~M2

�h

; (84)

with

~M ¼ CIðyd � yuÞ � ye
��QCD

M; (85)

and �� ¼ C� and �þ ¼ C� þ CB=�. Note the similarity
in the form of the equations for �, Eqs. (83) and (84), to

v-v-v-v-

O

M

z=y-x

v-

v+

v = 0

zmax

0
√ λh

A
v 
 -√zmax M*

FIG. 17. Sketch of the 2-dimensional observer region in the
M–z plane.

16In supersymmetric theories, there are at least two Higgs
doublets, but our analysis can be applied to these cases by
identifying h as the linear combination causing electroweak
symmetry breaking.
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those for v, Eqs. (76) and (78). This means that the shape of
the observer region in the 2-dimensional projection of the
parameter space on the ~M–z plane, shown in Fig. 18, is the
same as in the last subsection on the M–z plane. The
curved observer boundaries at � ¼ �� and � ¼ �þ, how-
ever, now correspond to neutron and complex nuclei stabil-
ity, respectively. Our universe thus lies very close to
� ¼ ��. How probable this is will be determined by the
effective distribution for �2, f�ð�2Þ. Similarly, the expected

size for the hierarchy will be determined by the distribution
for z, fzðzÞ.

In general, the probability distribution in our whole
parameter space is given by the multidimensional distribu-
tion function fðx; y;M; �h; yu; yd; ye; �;�QCDÞ, which is

not easy to deal with. A crucial point, however, is that as
far as questions of the size of the hierarchy z and the
closeness to the neutron stability boundary are concerned,
we only need to study the effective distribution function
feffðz; ~MÞ obtained after integrating out all the other var-
iables. In particular, we can parameterize our ignorance of
the (potentially) complicated distribution function f and
the shape of the observer region in this multidimensional
space by the effective distribution function feff in the 2-
dimensional ~M–z space. Note that as long as the form of
feff is kept arbitrary, there is no loss of generality.

The effective distribution function feffðz; ~MÞ is formally
given by

feffðz; ~MÞ ¼
Z
O
dxdydMd�hdyudyddyed�d�QCD

� fðx; y;M; �h; yu; yd; ye; �;�QCDÞ
� �ðz� ðy� xÞÞ

� �

�
~M� CIðyd � yuÞ � ye

��QCD

M

�
: (86)

The problem of studying selection in the ~M–z plane then

becomes identical to that in theM–z plane discussed in the
previous subsection with the replacement M ! ~M and
v ! �, except that the upper boundary �þ now depends
on a scanning parameter �. The effect of the � scanning on
the analysis, however, is small as long as the scanning is
mild, e.g., the range of the � scanning does not span many
orders of magnitudes. We assume this to be the case, and
hereafter we neglect the effect from this scanning. The
effective distributions for z and �2 are given in terms of
feffðz; ~MÞ by

fzðzÞ ¼
Z
O
d ~Mfeffðz; ~MÞ; (87)

and

f�ð�2Þ ¼
Z
O
dzd ~Mfeffðz; ~MÞ�

�
�2 � zA ~M2

�h

�
; (88)

respectively.
We can identify three very different situations. The first

is that feffðz; ~MÞ is very mildly varying. In this case, from
Fig. 18 we see that a typical universe will lie in the middle
of the observer region and hence environmental selection
will lead to neither a hierarchy nor a closeness to the
neutron boundary. A second situation has a strongly vary-
ing feffðz; ~MÞ, but with the ~M component of the probability
force field unable to overcome the narrowing of the ob-
server region at large ~M, shown in Fig. 18. In this case, if
there is a strong force to low values of z, the multiverse
yields a little hierarchy by making low values of z �
Oð10�2–10�1Þ typical. If in addition there is a significant
probability force to low ~M, the combined effects of the z
and ~M distributions lead to a closeness to the neutron
stability boundary as well as to a little hierarchy, as shown
by the dots in Fig. 18. Finally, the probability force toward
large ~M may be strong enough to give a large hierarchy
with extremely small z. In this case, the observer bounda-
ries at �� and �þ are very close to each other. At such low
values of z, is it reasonable to have feff sufficiently differ-
ent on these boundaries to favor the boundary at ��? Here
we must recall that f is a product of a populated landscape

distribution ~f and an observer distribution n. It is certainly

unreasonable for ~f to have such a large variation over such
a small region of parameter space. However, as we move
from the �� boundary to the �þ boundary, nuclear physics
changes very significantly, which is in a way independent
of how small z is. Hence, a closeness to the neutron
boundary may be typical with a large hierarchy, but only
if it is induced by n, through such arguments as appeared in
the last paragraph of Sec. VII.
The closeness to the neutron boundary may be a hint that

feffðz; ~MÞ is not flat. As argued previously, there are many

M
~

z=y-x

ξ-

ξ+

O

v = 0

zmax

0
√ λh

A
ξ 
 -√zmax M

~
*

FIG. 18. Sketch of the 2-dimensional observer region in the
~M–z plane.
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origins for strong probability forces, so that a little or large
hierarchy is quite natural in the multiverse. In the next
subsection, we explore in some detail a subclass of the
theories specified by Eq. (74), allowing explicit formulae
for the effective distributions and the size of the hierarchy.

D. An explicit example with power-law distributions

In the previous two subsections, we assumed that the
positive and negative terms in m2

h=M
2 scan independently.

To provide a simple explicit illustration of our results, in
this subsection we choose to scan only the positive term,
i.e., we fix y ¼ 1 so that

m2
h ¼ ðx� 1ÞAM2; (89)

and z ¼ 1� x. The analysis with x fixed and y scanning is
very similar. For ease of calculation we assume a poly-
nomial distribution function

fðx;MÞdxdM / xndxMqd lnM; (90)

and the range of x is given by 0 	 x 	 xmax, with xmax

some number larger than 1, while M has some very large
maximum value M
.

We begin by assuming that the only parameter appearing
in the nuclear stability boundary that scans is v, so that the
condition of Eq. (78) gives the observer region

v2� < v2 ¼ ð1� xÞAM
2

�h

< v2þ: (91)

The observer region O is sketched in the M–z plane in
Fig. 19, which is obtained simply by setting y ¼ 1 in
Fig. 17. The region is separated by the nuclear physics
observer boundaries from regions with v < v� and v >
vþ, and approaches very close to x ¼ 1, i.e., z ¼ 0, as M
approaches M
 � vo. The narrowing of the observer re-
gion at large M is as we have seen in Fig. 17.

What is the typical value of the scale M? For a logarith-
mic distribution q ¼ 0, one might guess that all decades of
M are equally probable; but this is not the case, because at
large M the observer region narrows. It is useful to com-
pute an effective probability distribution for the hierarchy
z ¼ 1� x ¼ jm2

hj=AM2 over the observer region

fzðzÞ ¼
Z
O
dxdMfðx;MÞ�ðz� ð1� xÞÞ � ð1� zÞn 1

zq=2

(92)

for sufficiently large M
. From the viewpoint of the hier-
archy, this shows that the critical value of q is 2 not zero:
when q ¼ 2 the distribution for the hierarchy z is flat on
logarithmic scales, at least for large M where z is small.
Thus, q � 2 gives a large hierarchy, shown by the narrow
wedge at largeM in Fig. 19, and q < 2 gives a little (or no)

hierarchy, corresponding to the bulk of the observer region
in Fig. 19. For example, if the a priori distribution forM is
logarithmic, as might happen if the scale is triggered by
dimensional transmutation associated with some gauge
dynamics, the most probable observed value of M is small
because of the weighting from the narrowing of the ob-
server region O.17 On the other hand, if dN � dM2, as
expected in a typical nonsupersymmetric perturbative the-
ory with mass scaleM, we find q ¼ 2, so that all scales are
equally probable, implying a large hierarchy, but not one
with M near M
.
If q < 2, how large is the little hierarchy? For n > 0, the

first factor in Eq. (92) suppresses the probability of having
z� 1, i.e., the probability of having the lowest values ofM
gets suppressed, so that some amount of hierarchy between
v and M arises from the scanning in the multiverse. For
q < 2 the distribution of Eq. (92) leads to the average value
of z

hzi ¼
��������� m2

h

AM2

��������
�
¼ 2� q

2nþ 4� q
; (93)

so that for 2n � 2� q we obtain an extra hierarchy of a
factor of ’ ð2� qÞ=2n from the multiverse, which cannot
be explained in the conventional symmetry approach.
Since jqj is expected to be small, this is an appreciable
effect for large n. In Fig. 20, we plot fzðzÞ of Eq. (92) for
ðn; qÞ ¼ ð3; 0Þ, (10, 0), (3, 1). We clearly see that the

M

z=1-x

v-

v+

O

v = 0

1

0
√ λh

A v- M*

FIG. 19. Sketch of the 2-dimensional observer region in the
M–z plane, where z ¼ 1� x.

17In the case that M arises as a dimensional transmutation, the
expected distribution of M below M
 is not exactly / d lnM,
since it would lead to an unphysical conclusion that the proba-
bilities of having M between 10nM
 and 10nþ1M
 (n 	 �1) are
equal for all n down to n ! �1. (The distribution should, for
example, be cut off at some value Mmin or in fact be /
dð1= lnMÞ; see discussions at the end of Sec. II B and in
Sec. IVD.) The assumption/approximation of the exact logarith-
mic distribution, however, is sufficient for our purposes here.
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distribution is peaked toward z � 1. The probability of us
observing fine-tuning of��1 or more that cannot be under-
stood by the symmetry approach is given by

P � ¼
R
��1

0 fzðzÞdzR
1
0 fzðzÞdz

; (94)

which for � � n � 1 reduces to

P � � n

�
; (95)

for q ¼ 0 (the case with dimensional transmutation) and

P � �
ffiffiffiffiffiffiffiffi
4n

��

s
(96)

for q ¼ 1. For example, for n ¼ 10 and q ¼ 0 (n ¼ 10 and
q ¼ 1) we have a ’ 20% ( ’ 50%) probability of observ-
ing fine-tuning ��1 < 2%, which cannot be explained in
the conventional symmetry picture.

The observer boundaries of Fig. 19 are the contours for
v ¼ v� so that, by construction, v can only be observed
between v� and vþ. What are the most probable values of
v to be observed? The effective distribution for v2 is
defined by

fvðv2Þ ¼
Z
O
dxdMfðx;MÞ�

�
v2 � ð1� xÞAM

2

�h

�
: (97)

For a large hierarchy with q � 2, we find a flat distribution
in v2

fvðv2Þ � const: (98)

When yu;d;e, �, and �QCD do not scan, the observed value

of the weak scale vo is roughly midway between v� and
vþ, as shown in Eq. (29), which is consistent with
Eq. (98).18 For a little (or no) hierarchy, with q < 2, we
find a distribution

fvðv2Þ � vq�2: (99)

This is again consistent with vo centrally located in its
observer window, provided that q is not too negative.
Next, we allow the other parameters that appear in the

nuclear stability observer boundaries to also scan. As
described in Sec. VIII C, the issues of the size of the
hierarchy and the closeness to the neutron surface can be
addressed by studying a 2-dimensional projection of pa-
rameter space. Since y does not scan, z ¼ 1� x and so
here we discuss the ~M–x plane. We assume the effective
probability distribution in this plane has a power-law be-
havior

feffðx; ~MÞdxd ~M / xndx ~M~qd ln ~M: (100)

The neutron and complex nuclei boundaries are again
given by Eqs. (83)–(85), but with z ¼ 1� x, and are
represented in Fig. 18 in the ~M–x plane (with y now set
to unity). The observer region as x ! 1 again becomes a
narrow wedge where the hierarchy is large, M � v.
The equations describing this setup are very similar to

those in the case with only v scanning, except that the
observer boundaries are now at �� rather than v�, and ~M is
not the scale of the new physics, see Eqs. (83)–(85). The
size of the hierarchy is governed by the effective distribu-
tion for z and is given by the analogue of Eq. (92)

fzðzÞ � ð1� zÞn 1

z~q=2
: (101)

Thus, ~q � 2 gives a large hierarchy, and ~q < 2 gives a little
(or no) hierarchy. The size of the little hierarchy depends
on n, and using the distribution Eq. (100) we find��������� m2

h

AM2

��������
�
¼ 2� ~q

2nþ 4� ~q
: (102)

The little hierarchy increases with n, as shown by the
sequence of dots in Fig. 18 near the neutron stability
boundary.
What makes the proximity to the neutron boundary

typical? The effective distribution for �, which determines
the probability force perpendicular to the neutron surface,
follows immediately from a calculation analogous to that
which led to Eqs. (98) and (99) giving

f�ð�2Þ � const: for ~q � 2; (103)

z

f (z)z

0 1

FIG. 20. The distribution function fzðzÞ for ðn; qÞ ¼ ð3; 0Þ
(solid), (10, 0) (dashed), and (3, 1) (dotted). Each function is
normalized such that

R
1
0 fzðzÞdz ¼ 1.

18Caution, however, is needed in interpreting Eq. (98). This
result arises because at large M the contours of v� and vþ are
extremely close in M–x space, so that the assumed form for f,
Eq. (90), implies little variation between the contours. While this
is expected for the multiverse distribution ~f, it may not be true
for the observer distribution n. In this case, Eq. (90) needs to be
modified to incorporate the effect represented by n.
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and

f�ð�2Þ � �~q�2 for ~q < 2: (104)

As with Eq. (98), caution is necessary in interpreting
Eq. (103). At large ~M our assumed distribution,
Eq. (100), may not adequately account for variations in
the observer factor nð�Þ between �� and �þ. In particular,
we cannot conclude from Eq. (103) that a large hierarchy is
incompatible with a multiverse explanation for the close-
ness to the neutron stability boundary. With a little hier-
archy, sufficient closeness to the neutron stability boundary
results with the distribution of Eq. (100) for �10 & ~q &
�2.

E. Landscapes with a critical value for M

In the previous subsections we have ignored the loga-
rithmic evolution of x and y. For many landscapes this is
permissible, but for some this evolution plays a critical
role. Consider a landscape such that x
 � y
 scans only in a
restricted region with x
 � y
 > 0, where x
 � xðM
Þ and
y
 � yðM
Þ, which are the fundamental scanning parame-
ters. In this case, electroweak symmetry breaking is only
possible because of the evolution of x� y to lower ener-
gies according to the beta function 	 ¼ dðx� yÞ=d ln�>
0. For each value of ðx
; y
Þ, the quantity xðMÞ � yðMÞ
passes through zero at some Mcðx
; y
Þ, so that in these
universes electroweak symmetry breaking is only possible
if M<Mcðx
; y
Þ. As ðx
; y
Þ vary over the entire land-
scape, suppose that the largest value of Mcðx
; y
Þ is
Mc;max, which is much less thanM
. This maximum critical

mass is clearly a property of the particular landscape under
consideration; it defines a maximum possible value for the
electroweak scale anywhere in the multiverse, and has an
important effect on the observer region of the electroweak
symmetry breaking sector. For the critical universes with
Mcðx
; y
Þ ¼ Mc;max the evolution equation for z ¼ y� x
can be solved as

zmaxðMÞ ¼ 	 ln
Mc;max

M
; (105)

where we have approximated that 	 is constant. The
trajectory of Eq. (105) is sketched in Fig. 21 for the case
that Mc;max � v�, which provides a new boundary to the

observer region, since zmax represents the maximal value of
z in the multiverse for a given M. In this subsection, we
assume that the distribution for M and z leads to most
universes in the observer region having large M, close to
Mc;max, so that this new part of the observer boundary plays

an important role.19

If yu;d;e, �, and �QCD do not scan then v� are fixed

numbers that arise from nuclear selection. Since there is no
reason for the critical mass Mc;max of the landscape to be

close to v�, a large hierarchy is expected. Here, we are
more interested in the case that v� varies in the landscape,
and for simplicity we accomplish this via a scanning of
�QCD, which we take to have a mild distribution, for

example flat on a logarithmic scale. In this case, v� /
�QCD, so that the observer boundaries in Fig. 21 labeled

by v� have z� / �2
QCD, and hence move up and down as

�QCD scans. For a large hierarchy,M is so much larger than

v that the interval of z that can contribute to universes in
the observer region is very small �z � v2=M2. Since the
distribution for �QCD is mild, a gain in probability is

accomplished by having the v� boundary curves of
Fig. 21 move upwards, allowing a larger interval of z to
contribute. As the v� curves move up so the values of M
that are on the zmax observer boundary decrease. At some
point this will imply a significant loss of probability via the
distribution for M. For example, for fðMÞdM / Mqd lnM
with large q, this loss of probability begins to set in once
M� ð1� 1=qÞMc;max at which point zmax � 	=q. The

mild distribution for �QCD allows the v� curves of

Fig. 21 to rise so that, at this value of M, z� will be close
to zmax. A further drop in M causes a significant drop in
probability from fðMÞ, which is not offset by a sufficient
growth in �z, since zcðMÞ grows logarithmically. Hence,
we predict that a little hierarchy develops. Specifically, for
a distribution function

fðz;M;�QCDÞdzdMd�QCD / fðzÞMqdzd lnMd ln�QCD;

(106)

integrating over the observer region we obtain a typical
size of the hierarchy

v-(ΛQCD)

M

z=y-x

v+(ΛQCD)

v-(ΛQCD)

v = 0

zmax(M)

0
M*

FIG. 21. Sketch of the 2-dimensional observer region in the
M–z plane. The maximum value of z, zmaxðMÞ is depicted by the
dashed line.

19For many landscapes the evolution of x� y from M
 to M
can be ignored. It induces a shift in the origin of z ¼ y� x by an
amount 	 lnðM
=MÞ, which is less than unity since 	 lnðM
=MÞ
is expected to be of Oð1Þ or smaller. In many cases the local
property of feffðz;MÞ is not significantly changed by this shift.
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hzi ¼
R
zfðzÞe�ðqz=	ÞdzR
fðzÞe�ðqz=	Þdz

� 	

q
; (107)

where the range of the z integration is from 0 to the
maximum value that z takes in the energy interval
between � v and M
, and we have taken fðzÞ to be
constant in the last expression for illustration, although
the result is not very sensitive to the form of fðzÞ. Note
that this result applies to an arbitrary positive value of q *
Oð	Þ.

Integrating over �QCD effectively ‘‘removes’’ the v�
boundaries in the 2-dimensional parameter space of
fM; zg, and the resulting effective distribution in the M–z
plane is unaltered for a prior distribution flat in ln�QCD.

Allowing any mild prior distribution for�QCD, or allowing

other standard model parameters such as the Yukawa cou-
plings yu;d;e to scan with mild distributions, would lead to

an effective distribution feffðz;MÞ that would lead to the
basic result of Eq. (107) being unaffected. The physics
behind this result is both simple and general: the 1=q factor
results from a probability force in the M direction making
the most probable universes in the observer region those
close toMc;max, while the factor of 	 arises from the shape

of the observer boundary near Mc;max, as given in

Eq. (105).
We conclude that landscapes having a critical value of

M, above which electroweak symmetry breaking is impos-
sible, very easily lead to a little hierarchy with z suppressed
by both a loop factor 	 and a probability force factor, for
example 1=q. Unlike the case of Secs. VIII B and VIII C
large q does not lead to a large hierarchy. Instead, it acts to
make M close to Mc;max and, since zmaxðMc;maxÞ ¼ 0, this
leads to a little hierarchy. Note that the loop factor can
provide an extra hierarchy corresponding to 1–2 orders of
magnitude of fine-tuning, on top of the 1=q factor. Hence,
this mechanism typically yields M in the TeV region or
larger.

If the physics atM is supersymmetric, this mechanism is
the one considered in Ref. [9]. If the only scanning pa-
rameters are a uniform scaling of the overall scale of
supersymmetry breaking and of the supersymmetric
Higgs mass parameter �, the scale of Mc corresponds to
the scale where the determinant of the Higgs boson mass
matrix detðM2

HÞ passes through zero. To avoid a large
hierarchy, some other parameter, such as �QCD should

scan. One again needs to assume that, for the landscape
as a whole, there is some maximum value of the scale
where detðM2

HÞ passes through zero, and this is taken to be
Mc;max. In this subsection, we have stressed the generality

of the idea, and that the loop suppression factor appearing
in Eq. (107) does not depend on whether the physics atM is
supersymmetric or not. In the supersymmetric case, 	 is
determined by the specific form of the renormalization
group equations for the Higgs boson mass parameters,
and one finds that 	 � Oð0:1Þ. Nevertheless, this is an

important accomplishment, since without the landscape
the ratio between v and M involves a large logarithm
lnðM
=vÞ (in the case of high scale supersymmetry break-

ing) so that A � 	 lnðM
=vÞ � Oð1Þ, giving M �ffiffiffiffiffiffi
�h

p
v � MZ=

ffiffiffi
2

p
, where MZ is the Z boson mass. The

factor of 	, together with 1=q, can easily make M at the
TeV scale or larger.

F. Summary and discussion

The conventional naturalness argument implies that the
mass scale M of new physics beyond the standard model
that generates electroweak symmetry breaking should not
be much larger than the Higgs vacuum expectation value v.
In contrast, we have shown that environmental selection
for nuclear stability can lead toM substantially larger than
v. We have considered a very general framework that is
independent of the model of the new physics, assuming
only that it generates both positive and negative contribu-
tions to the Higgs mass-squared parameter m2

h ¼ðx� yÞAM2. If the landscape does not possess a maximum
critical massMc;max significantly less thanM
, the relevant
observer boundaries are shown in Fig. 17 when only x, y,
and M scan, and in Fig. 18 when yu;d;e, �, and �QCD also

scan. In both cases we find
(i) A large hierarchy is generated by a distribution forM

( ~M) that grows sufficient with M ( ~M) to overcome
the narrowing observer region of Fig. 17 (Fig. 18).
While this does not require a very strong peaking, the
distribution must continue growing over many orders
of magnitude in M ( ~M).

(ii) A little hierarchy is generated when the distribution
for M ( ~M) does not grow sufficiently to generate a
large hierarchy, and the distribution for z is strongly
peaked to low values of z. This strong peaking need
only persist for 1 or 2 orders of magnitude in z.

In both cases, there is necessarily a large cut factor, either
from amild growth in the distribution forM ( ~M) over many
decades for a large hierarchy, or from a strong distribution
for z over a much more limited range for a little hierarchy.
In general, a significant variation of a distribution function
can arise from many sources—the distribution of vacua in
the landscape, the population of these vacua, integrating
out parameters, and the number density of observers—so
that in the multiverse the existence of a hierarchy, either
little or large, is not surprising.
For landscapes with a maximum critical mass Mc;max

(i) A little hierarchy is generated by a distribution that
favors large M near Mc;max. The size of the little

hierarchy depends on both the strength of this dis-
tribution, and also on a loop factor that arises from
the beta function for x� y. The combination of these
factors makes it probable thatM is as large as several
TeV.
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In Sec. X, we argue that, in the presence of WIMP dark
matter, a strong distribution for M can arise from the
probability distribution for the cosmological constant.

Until now, we have not specified the physics behind x
and y; here, we consider a few simple schemes, stressing
how a cancellation between x and y could lead to a strong
distribution for z and hence a little hierarchy. The quadratic
divergences of the standard model contribute to both x
(e.g., the SUð2Þ gauge contribution) and y (e.g., the top
quark contribution). At mass scale M suppose that these
quadratic divergences are cut off by particles of mass MW0

andMt0 , respectively. If the theory atM is supersymmetric,
these are the w-ino and top squark masses, while if the
theory at M is nonsupersymmetric (for example, with
composite Higgs dynamics) they are some states of the
model. In all of these schemes, integrating out the physics
at M gives a low energy theory with

m2
h �

g2

16�2
M2

W0 � 3y2t
16�2

M2
t0 ; (108)

where g is the standard model SUð2Þ gauge coupling. The
numerical coefficients are model dependent and extra con-
tributions to m2

h are expected, for example, those that

regulate the hypercharge and Higgs-quartic divergences;
but neither of these affects the arguments below.

Whether the theory at M is supersymmetric or not, it
may well be that M arises as a dimensional transmutation,
in which case it is reasonable that the distribution for lnM
is sufficiently flat that a large hierarchy does not develop.
In this case, what distribution for the parameters in
Eq. (108) would lead to a little hierarchy?

We need a distribution fzðzÞ peaked at low values, i.e., in
Fig. 17 or Fig. 18 the probability force must have a large
component downwards. Since z ¼ 0 is not a special point
from the fundamental theory point of view (see the dis-
cussion in Sec. II B), this implies that most universes will
be in the phase with z < 0, i.e., m2

h > 0. In the multiverse,

the positive term in Eq. (108) typically dominates over the
negative term. Such a distribution could arise in several
ways. For example, suppose that MW0=Mt0 does not scan,
but g and yt do. If g has a distribution peaked at a (much)
larger value than yt, then most universes will have negative
z, and near the observer boundary the probability force will
be toward smaller values of z. The shapes of the distribu-
tions for g and yt need not be power law, as assumed for
simplicity in Sec. VIII D. For example, they could be
Gaussians with peaks at �g and �yt, with �g sufficiently larger
than �yt, so that most universes have m2

h > 0. The few

universes that have m2
h negative will typically have low z

and therefore a little hierarchy. For narrow Gaussians for
g2 and y2t with the standard deviations �g and �y, respec-

tively, we find

hzi ¼
��������� m2

h

AyM
2

��������
�
�

R1
0 ze�ððzþzcÞ2=2�2ÞdzR1
0 e�ððzþzcÞ2=2�2Þdz

� �2

zc
; (109)

where zc � ðAg=AyÞ �g2 � �y2t > 0 and �2 � ðAg=AyÞ2�2
g þ

�2
y, with Ag;y positive coefficients defined by m2

h ¼
ðAgg

2 � Ayy
2
t ÞM2. Alternatively, it could be that the scan-

ning of the massesMW0 andMt0 is more important than that
of the couplings, and that the little hierarchy results be-
cause the distributions typically give MW0 (much) larger
than Mt0 .
In particular models, it is possible to see other situations

that lead to a little hierarchy. For example, in the minimal
supersymmetric standard model it could be that the distri-
butions for the supersymmetric Higgs mass parameter �
and the scale of the soft supersymmetry breaking mass
parameters ~m differ. If� is typically (much) larger than ~m,
then most universes do not have electroweak symmetry
broken by hhi � 0. This generically leads to a strong
distribution preferring low z, and universes in the observer
region will have a little hierarchy. More generally, in the
minimal supersymmetric standard model the electroweak
phase boundary takes the form

ðj�j2 þm2
H1
Þðj�j2 þm2

H2
Þ ¼ j�Bj2; (110)

with the soft Higgs mass-squared parameters m2
H1

and m2
H2

depending on other parameters of the theory via renormal-
ization group scaling. Any multiverse distribution for the
parameters of the model that typically makes the left-hand-
side of Eq. (110) larger than the right-hand-side will ge-
nerically lead to a little hierarchy. The scale of the super-
particle masses are then raised significantly above v, and
the measured values of the parameters should be close to
satisfying the critical condition, Eq. (110).

IX. ELECTROWEAK SYMMETRY BREAKING AS
OBSERVER BOUNDARY

In the last section, we assumed that the relevant observer
boundaries for selecting the electroweak vacuum expecta-
tion value hhi ¼ v were those of neutron, deuteron, and
complex nuclei stability. Of these three boundaries, the
requirement that some complex nuclei are stable seems
clearly to be the most robust requirement for observers. For
example, if the neutron is stable, nuclear energy is pro-
duced in diffuse protogalaxies rather than in stars. While
this is a drastic change from our universe, some form of
observers might still be possible. On the other hand, it is
harder to imagine that some complex observers develop in
the world in which the only stable nucleus is p or �þþ. In
this section, we retain only the complex stable nuclei
boundary, dropping the neutron and deuteron (in)stability
requirements from the observer boundary. This allows
much smaller values for v. How small can v become while
remaining in the observer region? If electroweak symmetry
is broken dominantly by the QCD condensate, there is a
strong washout of the baryon asymmetry of the universe
due to sphaleron effects. This implies that complex struc-
tures involving baryons do not arise if v & �QCD, so that
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there is a complexity boundary for v near �QCD, which is

therefore a candidate for being part of the observer bound-
ary. Since �QCD is much smaller than the scale of the

electroweak symmetry breaking sector M, we can speak
of this boundary as the phase boundary between hhi ¼ 0
and hhi � 0 phases. In this section, we use only two
boundaries: complex nuclear stability and the Higgs break-
ing of electroweak symmetry, which were both classified as
catastrophic boundaries in Sec. IV.

We consider the generic electroweak symmetry breaking
sector discussed in the previous section, with relevant
scanning parameters x, y, and M and a hierarchy

z � y� x ¼ jm2
hj

AM2
: (111)

With yu;d;e, �, and�QCD fixed, the relevant observer region

is now as shown in Fig. 22. Compared with Fig. 17, the
observer boundary at vþ remains while that at v� has been
replace by one at v � �QCD. This greatly enlarges the

observer region, with v varying over about 4 orders of
magnitude compared with a factor 4 in Sec. VIII. Despite
this, we find that there is very little change in the physical
picture of environmental selection.

For example, in the case that y is fixed and x andM have
polynomial distributions as in Eq. (90), the effective dis-
tributions for z and v are not changed and given as before
[see Eqs. (92), (98), and (99)] by

dN ¼ fzðzÞdz� ð1� zÞn 1

zq=2
dz; (112)

and

dN ¼ fvðv2Þdv2 �
�
vdv for q � 2;
vq�1dv for q < 2:

(113)

Once again, q � 2 gives a large hierarchy and q < 2 a little
(or no) hierarchy. Furthermore, the size of the little hier-
archy is largely governed by n, as discussed in Sec. VIII D.
One difference is that the range of v in the observer region
is nowmuch larger; how reasonable is it that our universe is
about a factor of 5 from vþ and 3 orders of magnitude from
�QCD? For 0 & q & 1 the observed value of v is quite

typical, but for larger q, v becomes progressively more
peaked near vþ. However, this cannot be viewed as evi-
dence against a large hierarchy. For large q it is unlikely
that Eq. (113) is the correct distribution near vþ: as v
approaches this observer boundary so successively more
nuclei become unstable, so that the observer factor n is
likely to become smaller.
Given the observer region of Fig. 22, we can understand

the origin of large or little hierarchies from the qualitative
features of the distribution fðz;MÞ, without recourse to any
particular functional form. The observer boundary at vþ
causes a narrowing of the observer region at large M, so
that a large hierarchy results only if the distribution gives a
sufficient preference to large M to overcome this narrow-
ing. If the probability force in the M direction is insuffi-
cient, then the size of the little hierarchy depends on the
strength of the probability force in the negative z direction.
At first sight a force in the negative z direction apparently
pushes the electroweak vacuum expectation value close to
the value �QCD at the baryon washout boundary. This is

incorrect: such a force makes the most probable region that
with low z, but the value of v that this corresponds to
changes with M. This is why Eq. (113) involves q and
not n.
We again conclude that the little hierarchy problem

(supersymmetric or not) is very easily solved by environ-
mental selection. Strongly varying distribution functions of
the electroweak symmetry breaking sector are able to
generate either a large or little hierarchy; furthermore,
this is not sensitive to which observer boundary is used
to limit the lower value of v.

X. CONNECTIONS TO THE COSMOLOGICAL
CONSTANT

In this paper, we argue that evidence for the multiverse
can be found in unnaturalness in the cosmological con-
stant, nuclear physics, and electroweak symmetry break-
ing. This implies that scanning of parameters is occurring
in all three different arenas. Is it correct to consider each
scanning problem separately, or should there be a com-
bined treatment? In Sec. VIII C, we provided an analysis of
the combined scanning in the standard model and electro-
weak symmetry breaking sectors. In this section, we study
connections with the scanning of the cosmological
constant.
In Sec. VI B, we argued that ‘‘integrating out’’ a set of

parameters xb modifies the distribution function for a set xa

M

z=y-x

ΛQCD

v+O

v = 0

zmax

0
M*

FIG. 22. Sketch of the 2-dimensional observer region in the
M–z plane. The two boundaries of the observer region depicted
are v ¼ vþ and v � �QCD.
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feffðxaÞ ¼
Z
OðxaÞ

fpriorðxa; xbÞdxb; (114)

if the observer region O for xb depends on xa. In the
present case, we consider xb ¼ � and xa to be the set of
scanning parameters of the standard model and the elec-
troweak symmetry breaking sector. Assuming the multi-
verse probability distribution for � to be flat on a linear
scale

feffðxaÞ / fpriorðxaÞ
Z �NLðxaÞ

d� ¼ fpriorðxaÞ�NLðxaÞ;
(115)

where �NL is the energy density of the universe when it
goes nonlinear. Hence, the distribution function for the
parameters of the standard model and the electroweak
symmetry breaking sector is modified by the scanning of
the cosmological constant if �NL depends on the parame-
ters xa. In our previous analyses, the assumed form of the
distribution should apply to feff , rather than to fprior. This

implies that the scanning of the cosmological constant can
affect the form of the distribution functions that appeared
in the analyses in previous sections.

In this section, we explore some consequences of a
nontrivial dependence of �NL on xa. Perhaps the simplest
origin for such a dependence is the case of WIMP dark
matter. The temperature of matter-radiation equality Teq

depends on the WIMP mass via its annihilation cross
section, Teq / 1=A �m2

WIMP. Hence, �NL �Q3T4
eq �

Q3m8
WIMP, where Q is the primordial density perturbation.

Working with the generic electroweak symmetry breaking
sector introduced in Sec. VIII, with mass scale M and
dimensionless parameters xi, the WIMP mass is propor-
tional to M so that

Teq ¼ gðxiÞM2; (116)

where gðxiÞ> 0 is a model dependent function, depending
on the mass and interactions of the WIMP. The effective
distribution function for the electroweak symmetry break-
ing sector now becomes

feffðxi;MÞ / fpriorðxi;MÞ
Z �NLðxi;MÞ

d�

� fpriorðxi;MÞgðxiÞ4M8Q3: (117)

Note that here we have assumed that the parameter Q does
not scan. If Q also scans, the result of integrating out
cosmological parameters is altered from Eq. (117), as we
will see below.

If Q does not scan, Eq. (117) shows that the effective
distribution for the parameters of the electroweak symme-
try breaking sector fxi;Mg can acquire an important com-
ponent from integrating out the cosmological constant. In
particular, the cosmological constant may provide a strong
probability force to larger values of M through the M8

factor. At first sight it appears that this factor drives a large

hierarchy M � v, but this is not the case. A crucial issue
is: what stops the runaway to large M? It is important to
separate two cases.
In the first case, the factor T4

eq � fgðxiÞM2g4 in feff
pushes the amount of dark matter up to the maximum
allowed by some astrophysical observer boundary, for
example, that of stellar collisions in galaxies [34], so that
Teq is essentially fixed to the boundary value Teq ¼ Teq;
.
The distribution function for the parameters relevant for
electroweak symmetry breaking, fx; y; �h;Mg where x, y,
�h � xi, is obtained by integrating out parameters that
appear in gðxiÞ but not in m2

h or �h, within the observer

region Teq < Teq;
. This in general leads to a complicated

dependence of feff on fx; y; �h;Mg, not in the simple form
of Eq. (117). Note that as M grows beyond the TeV scale,
since Teq stays to be Teq;
, cancellations must occur in gðxiÞ
so that mWIMP � M. This implies that a large hierarchy
can develop only if fprior has a strong preference toward

larger values of M.
In the second case, the most probable region of scanning

parameter space does not lead to the dark matter density
being on the edge of its maximal value determined by
astrophysics. The values of the parameters fxi;Mg are
determined by other physics, including electroweak sym-
metry breaking. The distribution of the parameters relevant
for electroweak symmetry breaking may take a form feff �
fT4

eq, so that the factor of gðxiÞ4M8 can play an important

role in electroweak symmetry breaking. Some examples of
this are given in the following subsection.
A completely different situation arises if the space of

scanning parameters is increased to include Q. As illus-
trated in Fig. 23, the probability force from the cosmologi-
cal constant no longer acts in the direction of increasing
mWIMP, but in the direction of increasing �NL, so that now

FIG. 23. The probability force from the cosmological constant
in the Q–Teq plane. The contours of �NL are drawn by dashed

lines, while the observer boundary from astrophysics, �NL ¼
�NL;
 is depicted in the solid line.
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the issue becomes: what stops the runaway in the �NL

direction? It is again an astrophysical limit on the amount
of dark matter, but this is now a limit on �NL rather than on
Teq: �NL < �NL;
. The probability distribution along this

astrophysical boundary now depends on the distribution
fQðQÞ. Integrating first � and then Q over the observer

region, we obtain

feffðxi;MÞ / fpriorðxi;MÞT4
eq

Z ð�NL;
=T4
eqÞ1=3

Q3fQðQÞdQ;

(118)

where Teq is given by Eq. (116). The induced contribution

to the effective distribution now depends on the form of the
original distribution for the density perturbation Q, since
the observer boundary for Q depends on Teq ¼ Teqðxi;MÞ.
However, in the simple case that fQ / 1=Q, so that the Q
distribution is flat on a logarithmic scale, feffðxi;MÞ �
fpriorðxi;MÞ, and the T4

eq contribution is removed. Hence,

a nontrivial contribution to feff is generated by a nontrivial
distribution for lnQ, not by the probability force from the
cosmological constant.

Examples of the cosmological constant affecting
electroweak symmetry breaking

We have seen that integrating out cosmological parame-
ters with WIMP dark matter can generate a nontrivial
component in the distribution of parameters relevant for
electroweak symmetry breaking. In general, the induced
distribution takes a complicated form depending on what
parameters scan and how they are determined. In the case
that Q does not scan and the dark matter density is not
determined by an astrophysical bound, the effective distri-
bution function receives a factor of gðxiÞ4M8, as shown in
Eq. (117). Assuming that parameters appearing in gðxiÞ but
not in m2

h or �h are determined independently of M, the

distribution for the parameters x, y, and M, appearing in
m2

h ¼ ðx� yÞAM, takes the form

feffðx; y;MÞ � fpriorðx; y;MÞ~gðx; yÞ4M8; (119)

where ~gðx; yÞ is related to gðxiÞ in Eq. (116). In this sub-
section, we illustrate how the scanning of cosmological
parameters can affect electroweak symmetry breaking,
using the example of Eq. (119).

Suppose that fprior is a rather mild function of x, y, and

M. The effective distribution feff is then determined es-
sentially by the factor ~gðx; yÞ4M8. The fact that the dark
matter density does not saturate the astrophysical bound
implies that the runaway to larger M due to the M8 factor
should be stopped not by the condition Teq < Teq;
 but by
some other physics. The simplest possibility is thatM does
not scan in the multiverse. At the end of Sec. VIII B, we
argued that if M is fixed then a large hierarchy is to be
expected, as in Eq. (82). However, this conclusion is re-
versed if�QCD scans. Since the nuclear physics boundaries

depend on M only through the ratio M=�QCD, it makes no

difference to the argument on the size of the hierarchy
whether M scans or �QCD scans. Allowing x, y, and �QCD

to scan, the observer region is that of Fig. 17, with M
replaced by 1=�QCD. Taking a mild distribution for �QCD

avoids a large hierarchy.20 The amount of the little hier-
archy is then determined by the factor ~gðx; yÞ4. For ex-
ample, for ~g� xm and a logarithmic distribution for�QCD,

hzi � 1=ð4mþ 2Þ, so that a little hierarchy of order
10�2–10�1 can be easily obtained for m a factor of a
few. In general, with ~g4 strongly preferring x > y, we
obtain a little hierarchy. The crucial physics here is that
the large scale structure observer boundary, � � �NL,
depends sensitively on the electroweak symmetry breaking
parameters x and y through WIMP dark matter. The proba-
bility distribution for the cosmological constant then gen-
erates an effective distribution for x and y, which can be
sharply varying.
Another possibility of preventing the runaway to large

M arises if the range for the scanning of x and y are such
that there is a maximum energyMc;max above which them

2
h

parameter is always positive. As shown in detail in
Sec. VIII E, a strong probability force to large M leads to
a little hierarchy, providing the nuclear observer bounda-
ries of v� are able to scan, for example, via a scanning of
�QCD. Here, we simply point out that the strong force in the

M direction can arise from integrating out the cosmologi-
cal constant, i.e., from the M8 factor in Eq. (119). This
leads to a little hierarchy without the need for any cut factor
beyond that for the cosmological constant. In the case of
supersymmetry, with dN �M8dM (q � Oð10Þ), the mul-
tiverse allows an improvement in the naturalness by a
factor of � q=	 � Oð100Þ.

XI. CONCLUSIONS

Environmental selection on a multiverse is a radical
departure from conventional methods of fundamental
physics for explaining physical phenomena. Neverthe-
less, in light of the cosmological constant problem and
the discovery of dark energy, it warrants further explora-
tion. Will sufficient evidence emerge to convince us that
the multiverse exists?
Since we cannot directly explore other universes, it may

be questioned whether evidence for the multiverse can be
found at all. However, theories in physics and cosmology
that cannot be directly tested in the laboratory are far from
new—one only has to think of unified theories and infla-
tion. The inability to make direct laboratory tests of the
new particles and interactions does not put these theories
beyond the realm of science; rather, it leads to careful

20In fact, consistency of the setup requires that the hierarchy is
not very large, since a value of M much larger than the weak
scale makes the natural size of Teq � 8�M2=MPl much larger
than Teq;
, implying that the astrophysical bound is saturated.
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investigations of whether they make successful indirect
numerical predictions for data that cannot be satisfactorily
explained by other means. Thus, for any new theory or
framework that cannot be directly probed, two questions
are important

(a) In the absence of the new theory, is there numerical
data that cannot be adequately explained using other
known theories? Indeed, does the data represent a
problem for existing theories?

(b) Does the new theory provide a numerical under-
standing of the data, thus solving the previous
problem?

For inflation, the data of (a) includes the flatness and
isotropy of the Universe, and the spectrum of density
perturbations. So far, these highly significant cosmological
problems have only been solved by inflation. Similarly,
unified theories provide an understanding of gauge cou-
pling constant unification. If the numerical understanding
of the data is sufficiently precise, and thought to be better
than competing theories, then the new theory may become
the provisional standard view. As long as the numerical
significance of its predictions is not overwhelming, one
must stress the provisional nature of the understanding and
the importance of seeking both further arenas in which it
can be tested and new competing theories. For example,
proton decay would provide further evidence for unified
theories, but despite intensive searches, such evidence is
still lacking.

Seeking evidence for the multiverse is no different in
principle than seeking evidence for other theories that
cannot be directly probed in the laboratory. In this paper,
we have argued that evidence for the multiverse can be
found in three different arenas: the cosmological constant,
nuclear physics, and electroweak symmetry breaking. In
all three cases, the conventional approach based on sym-
metries has not provided a numerical understanding of the
data, rather in each case it leads to naturalness problems.
The observed values of parameters are very close to special
values that are critical for the formation of some complex
structure, yet this closeness is not adequately explained by
any symmetry. An observer region in the parameter space
of some theory is defined by requiring the existence of
certain complex structures necessary for observers.
Unnaturalness results if the observer region is very small
compared with the entire parameter space, or if we observe
values of the parameters very close to the boundary of the
observer region. We have introduced a naturalness proba-
bility P that allows a numerical evaluation of these prob-
lems. The value of P can be highly dependent on the theory
T under consideration. The evidence for unnaturalness, (a),
is governed by the maximal value of PT that can be
obtained in simple theories: the lower the maximal PT ,
the more severe the naturalness problem.

In each arena the multiverse easily and generically
solves the naturalness problem. Each arena is somewhat
different, and we summarize our results for each below; but

there are also some common features. In all three cases,
environmental selection elegantly explains why our uni-
verse is not to be found in the largest region of parameter
space. Furthermore, the multiverse distribution is likely to
have a strong dependence on the parameters of the low
energy effective theory, through the landscape of vacua of
the fundamental theory, the population mechanism, inte-
grating out parameters, and from the physics that deter-
mines the density of observers. With a strongly varying
distribution, it is most probable to observe a universe close
to the observer boundary, solving naturalness problems and
leading to predictions. Given the current theoretical status,
the multiverse appears to us to provide the most elegant
and plausible prediction for several parameters, including
� and mu;d;e.

The cosmological constant problem is the most severe
naturalness problem, with a naturalness probability in the
range

P� � ð10�120–10�60Þ: (120)

The robustness of the observer boundary is particularly
convincing—how could observers form in a dilute gas of
inflating elementary particles? The interesting open ques-
tions are whether our universe is sufficiently close to the
observer boundary, and how runaway behavior can be
prevented if Teq and Q scan. These questions, however,

are secondary: a notoriously intractable problem has an
elegant solution that predicts dark energy.
Astrophysicists have often remarked on the special val-

ues of parameters required for a variety of phenomena in
nuclear physics. We have obtained the observer region in
the 4-dimensional parameter space mu;d;e=�QCD, � result-

ing from the stability boundaries for neutrons, deuterons,
and complex nuclei, as shown in Fig. 5. We find this
observer region to be small, with our universe within
(10–30)% of the neutron stability boundary, so that in the
standard model the naturalness probability is Pnuc;SM �
ð10�16–10�4Þ. Even if we could construct a theory of flavor
with successful, precise predictions for the Yukawa cou-
plings yu;d;e and at the same time find a theory that cor-

rectly predicted the weak scale v, there would still be a
naturalness probability associated with the value of �QCD

that we estimate to be � ð0:01–0:04Þ. Despite decades of
experiments on flavor physics, with recent increasing lev-
els of accuracy in B meson and neutrino physics, progress
on a theory of flavor has been limited. The most promising
theories appear to be based on flavor symmetries, with a
sequential pattern of transferring symmetry breaking to
successive generations of quarks and charged leptons.
There are a great number of candidate theories, but none
is sufficiently promising to be widely recognized as the
standard. We have estimated that such a lack of progress in
flavor physics, especially in the first generation masses,
decreases the naturalness probability of the nuclear ob-
server region by about an order of magnitude, leading to
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Pnuc & ð10�3–10�2Þ: (121)

We think that this estimate is conservative. For example, in
theories with Abelian flavor symmetries this estimate does
not take into account that there are many simple ways of
assigning charges to the three generations. Given the state
of theories of flavor, we suspect that the naturalness proba-
bility of the nuclear observer boundary is less than this
conservative estimate. Suppose that mu;d;e had each been

significantly different, for example, by an order of magni-
tude. It would still be possible to accommodate this in
theories with Abelian flavor symmetries, with about the
same level of success as for the actual observed values, by
changing the charges of the first generation.

The nuclear naturalness problem certainly requires more
than 1% fine-tuning, and has not received sufficient recog-
nition. If symmetries rule flavor physics, it must be viewed
as purely accidental; while in the multiverse it can be
viewed as a prediction. After decades of studying theories
of flavor, the current status is that we are far from a
convincing explanation for the masses of the electron, the
up quark, and the down quark. The multiverse allows
simple arguments that relate these masses to the QCD
scale. For example, if the multiverse distribution strongly
favors isospin restoration, then me and md �mu are ex-
pected to be close to �EM ’ 1:0� 0:5 MeV, the electro-
magnetic mass difference of the proton and neutron. It is
true that such multiverse predictions require an assumption
on the form of the distribution function; but such assump-
tions may be much simpler than the choice of flavor group,
representations, and sequential symmetry breaking of the
standard approach.

The multiverse predictions for mu;d;e=�QCD can be re-

tained even if unified and/or flavor symmetries describe the
overall pattern of quark and lepton masses and mixings.
This allows us to preserve particular successful relations,

such as �C � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
or mb ¼ m� at the unified scale.

The only requirement is that the theory contain three
independent scanning parameters that allow mu;d;e=�QCD

to be environmentally selected.
A simple, natural theory of electroweak symmetry

breaking is lacking. The natural regions of simple techni-
color, supersymmetric, and composite Higgs models have
been excluded. Precision measurements of electroweak
observables, together with direct searches for the Higgs
boson, have led to successive increases in unnaturalness,
leading to

PEWSB & ð10�2–10�1Þ; (122)

in simple models. This problem in the data is of type (a)
and is widely appreciated, so that much recent research has
focused on building models that alleviate the problem. We
have shown that, no matter what the ultimate physics at
mass scale M behind electroweak symmetry breaking,
environmental selection on a multiverse leads very easily

to M � v, with either a little or large hierarchy. This is a
very robust result requiring only that some parameters of
electroweak symmetry breaking scan, and that the multi-
verse distribution is strongly varying. A distribution
fðMÞ �Mq gives a large hierarchy if q � 2 and a little
hierarchy (or no hierarchy) for q < 2, which includes the
important case of M being induced by a dimensional
transmutation (q ¼ 0) For q < 2 the little hierarchy
v2=M2 gains a factor of� 1=n from the multiverse, where
n describes the peaking of a distribution in some other
parameter of the electroweak symmetry breaking sector. In
multiverses where electroweak symmetry breaking is only
possible if M is below some critical value Mc;max, a little

hierarchy develops from a distribution favoring large M.
The size of the hierarchy v2=M2 is enhanced by a loop
factor 	, gaining a factor of � 	=q, so that M is typically
in the TeV region or larger. These results are independent
of what other standard model parameters are scanning,
including Yukawa couplings and �QCD, and do not even

depend on whether selection is happening at the nuclear
stability boundaries, or at the phase boundary for electro-
weak symmetry breaking itself. Hence, we stress that the
multiverse provides a very general solution to the hierarchy
problem, whether little or large.
All three naturalness problems have the common feature

of being solved by a multiverse distribution that makes
observers typically close to an observer boundary. There
may be connections between the three problems, arising
from integrating out certain parameters in a more funda-
mental theory. For example, the probability force driving a
little hierarchy may originates from the probability distri-
bution for the cosmological constant, with WIMP dark
matter acting as a mediator.
The current status of naturalness in electroweak symme-

try breaking, Eq. (122), indicates that either we have not
yet arrived at the right theory or that environmental selec-
tion is playing an important role. The LHC will determine
the correct interpretation of Eq. (122), leading us either to a
new natural theory, or to a third arena for multiverse
evidence. Even if the naturalness probability is much larger
than for the cosmological constant, the pervasive pattern of
a finely tuned universe will make the multiverse much
harder to dismiss. The importance of the LHC in this
regard cannot be overemphasized: for the cosmological
constant and nuclear naturalness problems we are
stuck—we may not be able to experimentally determine
the relevant theory beyond what we already know, in which
case increasing the naturalness probability is a theoretical
enterprise. However, the LHC will teach us a great deal
about the theory of electroweak symmetry breaking and
hence will lead to a better determination of PEWSB. One
possibility is that the LHC will reveal a completely natural
theory that we have not been able to invent. Below, we
mention a few examples where LHC data could determine
a small value for PEWSB.
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If the LHC discovers a light Higgs boson of mass mHiggs

and sets a limit of Mcol on new colored particles, then

PEWSB & 0:08

�
mHiggs

150 GeV

�
2
�
2 TeV

Mcol

�
2
: (123)

This result is true in the vast majority of theories, although
some counterexamples are known. Another possibility is
that only a light Higgs boson is discovered, with a mass
very close to the vacuum instability limit of the standard
model. While Eq. (123) still applies as a direct conse-
quence, there is the additional implication that the hier-
archy is large with a very much smaller PEWSB. Evidence
for a large hierarchy could also emerge from the discovery
of split supersymmetry. Alternatively, the discovery of
weak scale supersymmetry, with a light Higgs boson and
a top squark heavier than � 1 TeV would indicate a little
hierarchy with a naturalness probability

PEWSB & 0:05

�
mHiggs

130 GeV

�
2
�
1 TeV

m~t

�
2
�
ln
Mmess=m~t

10

��1
;

(124)

where Mmess is the messenger scale of supersymmetry
breaking.

The discovery of dark energy has verified a remarkable
prediction of the multiverse; but this could be undermined
by the discovery of an alternative solution to the cosmo-
logical constant problem. The nuclear stability boundaries
imply at least 1% fine-tuning in any known theory, and the
multiverse allows a striking understanding of mu;d;e. Our

current theories of electroweak symmetry breaking are
unnatural; a confirmation by the LHC would solidify evi-
dence for the multiverse in a third arena. Even with Pnuc

and PEWSB much larger than P�, the three arenas together
would provide significant, robust evidence for a
multiverse.
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