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Using the example of the SUð2Þ gauge theory in 3þ 1 dimensions we consider the construction of a 3-

dimensional effective model in terms of Polyakov loops. We demonstrate the application of an equilibrium

self-consistency condition to the systematic analysis of the contribution of various [global Zð2Þ sym-

metric] terms in the effective model action. We apply this analysis to the construction of a simple effective

action with the minimum necessary number of operators. Such an action is shown to be capable of

reproducing relevant observables, e.g. the Polyakov loop ensemble average, within the desired accuracy.
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I. INTRODUCTION

There has been renewed interest in the construction of
effective models for the finite temperature confinement-
deconfinement phase transition of non-Abelian SUðNÞ
gauge theories, see Ref. [1] for SUð3Þ and Refs. [2,3] for
SUð2Þ. The idea is to use relevant variables to rewrite the
gauge theory as an effective lower-dimensional spin model
with the goal of simplifying the description of phase tran-
sition dynamics. For SUðNÞ gauge theories the center
group global symmetry ZðNÞ controls the transition: it is
spontaneously broken in the deconfined phase but unbro-
ken in the confined phase. Therefore, the effective model
can be expressed in terms of the relevant order parameter
(Polyakov loop) [4,5]:

P x ¼
YNt

n¼1

Uxþnt̂;0; LðxÞ ¼ 1

N
TrP x: (1)

For SUð2Þ gauge theory the transition is second order and
the universality argument holds. It is conjectured that for
N > 2 groups the integration of all degrees of freedom but
the order parameter leads to a short-range effective model
[6].

The successful construction of such an effective model
results in significant simplification of the description of the
physics. Also, in practical terms, it is much easier to
perform Monte Carlo simulations of a ðd�
1Þ-dimensional spin system than a d-dimensional gauge
theory.

Using pure symmetry considerations it is straightfor-
ward to identify an infinite set of possible operators that
may enter in the effective model construction. As the next
step, it is necessary to order these operators by their
importance. This would allow for a discriminative trunca-
tion of the effective action to a manageable minimal set of
operators. It is possible to use the strong coupling and
character expansions, together with natural truncation cri-

teria, to sort the hierarchy of operators of a given interac-
tion range [7]. The interplay, however, of truncating in the
coupling versus the range of hopping terms in the action
cannot be resolved by this approach.
In general, truncations result in an action which is

capable only of an approximate description of the original
gauge theory ensemble. Passing to the effective model
defined by the truncated action may introduce nonequilib-
rium effects (thermalization). This is especially important
since the effective theory parameters are estimated starting
from the gauge theory ensemble, which may not be a
representative equilibrium ensemble of the effective ac-
tion. Therefore, it is important to control residual nonequi-
librium effects.
The most interesting aspect of the study of nonequilib-

rium effects, however, is that it provides a natural classifi-
cation of the importance of various effective model
operators. This is achieved by adhering to the following
procedure:
(i) From a given ensemble of 4D gauge configurations

Ux;x0 produced by standard gauge theory methods

(heatbath/overrelaxation), we extract a 3D field of
Polyakov loops P x.

(ii) An effective action is chosen by specifying a par-
ticular set of operators.

(iii) The system is allowed to evolve microcanonically
along the sheet of constant energy measured accord-
ing to the effective action.

(iv) The process of equilibration is observed. Particularly
we measure the evolution of various physical ob-
servables as they thermalize at new values.

The microcanonical evolution is realized through demon
updating [8,9]. We conduct our study over a range of lattice
couplings. Since, however, the normalization procedure for
the demon energy is unknown we decided to study only the
ensemble average of the fundamental Polyakov loop hLi
[10]. Its evolution is monitored as the system is evolved
toward equilibrium. We quantify the overall nonequilib-
rium effect by the difference between the final (equilib-
rium) value and a starting (gauge ensemble) value �hLi. If*vel@theory.uchicago.edu

PHYSICAL REVIEW D 78, 034505 (2008)

1550-7998=2008=78(3)=034505(6) 034505-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.034505


one could chose an effective action capable of reproducing
the dynamics of Polyakov loops exactly, then no discern-
ible change in observables would be observed. By adding
or removing operators and then observing the change, we
can sort these operators by their importance. The trunca-
tion criteria can be set so as to minimize the nonequilib-
rium effects (thermalization flow) in the transition to the
effective model, starting from an ensemble generated with
the gauge theory Lagrangian. This approach is similar to
equilibrium self-consistency ideas used in previous
Monte Carlo renormalization group decimation studies
[11–13].

Note that the use of the demon method allows for easy
monitoring of observables while performing the measure-
ments. This is in contrast to previous studies relying on the
Schwinger-Dyson method for measurements of effective
couplings. In that method ‘‘black box’’ measurements are
performed without any control of nonequilibrium effects.
One could improve on the Schwinger-Dyson procedure by
performing the Monte Carlo evolution with the new mea-
sured action starting from the gauge configurations, while
observing the equilibration of observables. Then the analy-
sis of effective action terms similar to the one proposed
here should be used with the end goal of avoiding any
equilibration changes in observables.

It should also be noted that the equilibration effect can
be easily missed on small lattices: 203 � 4 shows almost
no effect.

This approach will be pursued in this paper in the case of
the SUð2Þ gauge theory. The same method is also appli-
cable to other SUðNÞ gauge theories, and, in particular,
SUð3Þ gauge theory.

II. THE SIMPLEST ONE-OPERATOR EFFECTIVE
ACTION

It is natural to start building an effective model consid-
ering only the simplest possible term. Therefore, in this
section we focus on the fundamental character nearest
neighbor hopping term

Â 1 ¼ �1=2ðP xÞ�1=2ðP yÞ: (2)

After preparing a typical gauge configuration at gauge
coupling � we apply the demon method assuming the

effective action S1 ¼ �1Â1. The demon was originally
thermalized for 100 sweeps on an equivalent gauge con-
figuration which was then discarded. In this way we re-
move the effect of demon thermalization. In Fig. 1 we
present the evolution of the Polyakov loop average hLi at
fixed physical temperature T ¼ 4Tc and different lattice
couplings. Since the renormalization of the Polyakov loop
is multiplicative, in order to compare the relative flow
scales at different � we normalize the Polyakov loop to
unity. One notable feature of the plot is that the Polyakov
loop shows vanishingly small change as � values become
smaller.

In all measurements presented here there are several
independent simulations which allow us to extract errors
using the jackknife method. For this simulation we take �
values to correspond to critical coupling values at some
integer Nt (see the last column in Table I), which were
estimated in [14]. This makes fixing the temperature very
straightforward.
In Table I we present the data for the relative change in

the Polyakov loop �hLi=hLi after 1000 sweeps evolution. It
shows insignificant flow as one approaches the strong
coupling region while the flow in the weak coupling region
is considerable.
In the limits of strong and weak coupling the considered

action is expected to reproduce the physics of the under-
lying gauge theory [15]. It is possible to estimate the
coupling of the spin model �1 using perturbative expan-
sion. In the strong coupling limit it is [7,15,16],

�1 ¼ ð�=4ÞNt : (3)

In the weak coupling one expects

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  20  40  60  80  100

L

t

β=2.5104, Nt=2

β=2.6355, Nt=3
β=2.7310, Nt=4

β=3.00, Nt=8

FIG. 1 (color online). The renormalized Polyakov loop aver-
age at T ¼ 4Tc on different 403 � Nt lattices.

TABLE I. The relative change of the Polyakov loop ensemble
average �L=L � �hLi=hLi after 1000 Monte Carlo sweeps at
various temperatures and inverse lattice couplings on 403 � Nt

lattices. The starred ( � ) value is computed using the weak
coupling 1 loop formula.

T ¼ 4Tc T ¼ 2Tc T ¼ Tc

� Nt �L=L Nt �L=L Nt

300� 8 0.974(4) 32

2.7310 4 0.191(1) 8 0.973(3) 16

2.6355 3 0.0501(4) 6 0.975(3) 12

2.5104 2 0.0073(1) 4 0.57(1) 8

2.2991 2 0.0153(3) 4

1.187 348 2
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�1 ¼ �=ðN2NtÞ ¼ �=ð4NtÞ: (4)

This part of our study is similar to [17]. We measure the
effective coupling using the demon method. For this we
allow the demon to thermalize the system for 500 sweeps,
and then monitor the demon energy value for the next 10
sweeps. We present the values of coupling in Table II for
various � values and 3 lattices. In Fig. 2 we plot the
effective coupling values. Note that the figure contains
more data points than the table. We check the weak and
strong coupling behavior against the perturbation theory
results. For the strong coupling we perform the fit to
as�

Nt þ c, while for the weak coupling the functional

form is aw�þ c0. The results of the fits are presented in
the lower part of Table II. We indicate by solid lines in
Fig. 2 the perturbation theory results.
We observe that at strong coupling the perturbation

scaling is indeed achieved. This nicely corresponds to the
fact that there is minimal flow in this region. For weak
coupling we observe deviation from the perturbative result
(similar observations were made in [3,17]). This is easy to
understand since in this region we observed significant
flow of the Polyakov loop during the thermalization.
Note that smaller time extent lattices show results closer
to the perturbation theory behavior in the weak coupling
regime. The smallest Nt ¼ 2 lattice indeed shows fairly
good agreement in this region.
We conclude that the one-operator action is capable of

describing the gauge theory in the strong coupling limit. In
the weak coupling limit, however, it represents a good
approximation only for small time extent lattices Nt ¼ 1
and 2. This result is not surprising since the gauge theory at
weak coupling exhibits a nonlocal nature which cannot be
captured by a local effective action.

III. ANALYSIS OF GENERAL EFFECTIVE ACTION

Next we fix the coupling value to � ¼ 2:7310. This is a
value from the region where, as we saw in the previous
section, the simplest action exhibited a significant flow in
the Polyakov loop average. On 404 � 4 lattice it corre-
sponds to fixed temperature 4Tc. We start adding higher
order terms to the simplest action in order to reduce the
flow. It is natural to group the terms by the spatial range of
the hopping terms. The nearest neighbor hopping term
group y ¼ xþ �̂ is

Â 1 ¼ �1=2ðP xÞ�1=2ðP yÞ; OðL2Þ; (5)

Â 2 ¼ �1ðP xÞ�1ðP yÞ; OðL4Þ; (6)

Â 3 ¼ �3=2ðP xÞ�1=2ðP yÞ; OðL4Þ; (7)

Â 4 ¼ �3=2ðP xÞ�3=2ðP yÞ; OðL6Þ; (8)

Â 5 ¼ �2ðP xÞ�1ðP yÞ; OðL6Þ: (9)

The potential terms group is

B̂ 1 ¼ �1ðP xÞ; OðL2Þ; (10)

B̂ 2 ¼ �2ðP xÞ; OðL4Þ; (11)

B̂ 3 ¼ �3ðP xÞ; OðL6Þ: (12)

Here the order of operators OðLnÞ is specified by repre-
senting characters as nth order polynomials of the funda-
mental representation loop L. The next to nearest neighbor
group is

TABLE II. Effective coupling for the simple one-operator
model as a function of the gauge coupling for Nt ¼ 2, 3, and
4 lattices. Last rows show the leading coefficients of the fits.

� Nt ¼ 2 Nt ¼ 3 Nt ¼ 4

0.5 0.0174(4) 0.0022(2) 0.0006(2)

0.8 0.0430(2) 0.0082(2) 0.0016(4)

0.9 0.0542(2) 0.0114(4) 0.0026(2)

1.187 348 0.0924(1) 0.0267(4) 0.0078(2)

1.6 0.1684(2) 0.0672(2) 0.0262(2)

1.8 0.2236(4) 0.1008(2) 0.0456(4)

2.0 0.3150(2) 0.1502(2) 0.0808(2)

2.2991 0.3540(1) 0.3042(2) 0.1978(14)

2.5104 0.3783(1) 0.3170(2) 0.3001(1)

2.6355 0.3921(1) 0.3248(2) 0.3042(2)

2.7310 0.4028(1) 0.3300(4) 0.3072(2)

3.0 0.4326(2) 0.3464(2) 0.3166(2)

as 0.0642(4) 0.0159(3) 0.0038(1)

1=4Nt 0.0625 0.0156 0.0039

aw 0.1109(1) 0.0599(5) 0.0334(5)

1=4Nt 0.125 0.083 0.625
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FIG. 2 (color online). Effective spin model coupling as a
function of gauge coupling. Arrows indicate the critical coupling
values for lattices Nt ¼ 2 and 4.
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Ĉ 1 ¼ �1=2ðP xÞ�1=2ðP yÞ; (13)

Ĉ 2 ¼ �1ðP xÞ�1ðP yÞ; (14)

Ĉ 3 ¼ �3=2ðP xÞ�1=2ðP yÞ: (15)

By analogy we introduce D̂iðx; yÞ for the next-to-next-
to-nearest neighbor terms y ¼ xþ �̂þ �̂þ �̂ and � �

� � �. We consider various actions of the form Si ¼
�Oi

Ôi, where Ô is any of A, B, C, or D. For simplicity

we introduce the shorthand notationOi......j...k ¼ S1 þ . . .þ
Sj þ . . .þ Sk, thus A12 ¼ �A1

Â1 þ �A2
Â2.

It is impractical to consider all combinations of the
indicated operators in the action. Instead we consider
only several combinations which reveal the relative impor-
tance of the terms. We list in Table III the change in the
Polyakov loop average for different combinations of the
operators. If one sets a goal to realistically reproduce the
value of the Polyakov loop within 1% precision then the
A12 þ B1 þ C12 effective action is the minimal action
which is suitable. We also demonstrate the relative contri-
bution of various terms in Fig. 3, where different two-
operator effective actions are compared to the simplest
one-operator action and the A12 þ B1 þ C12 action. We
see that the most significant improvement comes from
the B1 term, while the next significant term is A2.

Next we measure the couplings of the A12 þ B1 þ C12

effective model at different � values and corresponding
temperatures on a 403 � 4 lattice, see Table IV. Note that

among the couplings measured in the confined phase only
potential terms and the fundamental hopping term have
significant values. Also, for comparison, we present in the
table the couplings for the effective model with all 13
operators (computed at � ¼ 2:7310). We use the same
statistics for this measurement. It is obvious that the errors
are much larger for the full action. We also note little
change in the value of the couplings present in both the
full and reduced A12 þ B1 þ C12 effective models. It is
interesting that some of the operators present in the full
action but not present in the reduced action have couplings
which are significant, e.g. �A3

, �B2
, �D1

. However, these

terms’ effect on the Polyakov loop average turns out to be
small.
In Fig. 4 we check the action A12 þ B1 þ C12 over a

wide range of couplings. We observe that the effective

TABLE III. The change of the Polyakov loop L after 1000
sweeps for various combinations of terms in the effective action.
The original gauge theory configuration is at � ¼ 2:7310 on a
404 � 4 lattice.

S �L

A1 0.1556(1)

A1 þ B1 0.047(1)

A12 þ B1 0.031(1)

A13 þ B1 0.045(1)

A1 þ B12 0.044(1)

A123 þ B12 0.034(1)

A1234 þ B12 0.0307(5)

A1235 þ B12 0.0317(5)

A123 þ B123 0.0309(2)

A12345 þ B123 0.0286(4)

A1 þ B1 þ C1 0.0142(4)

A12 þ B1 þ C1 0.0102(3)

A12 þ B1 þ C12 0.0065(2)

A12345 þ B123 þ C123 0.0041(1)

A1 þ B1 þ C1 þD1 0.0102(1)

A12 þ B1 þ C12 þD1 0.0048(1)

A12 þ B1 þ C12 þD12 0.0042(1)

A12345 þ B123 þ C123 þD12 0.0049(1)
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FIG. 3 (color online). The Polyakov loop flow for the simplest
one-operator action, various two-operator actions, and the A12 þ
B1 þ C12 action on a T ¼ 4Tc � ¼ 2:7310 lattice.
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action is tracing the value of the Polyakov loop average
computed from the gauge theory very closely. The agree-
ment is very good in the weak coupling regime. Near the
transition region there is small discrepancy in the values;
however, the location of the phase transition is accurate.

IV. SUMMARY

We presented a simple empirical method of selecting
relevant terms in the construction of an effective spin
action capable of reproducing a single observable (the
Polyakov loop average). By choosing operators for the
effective action and measuring their couplings using the
demon method, we were able to construct and test various
effective action models. The simplest one-operator effec-
tive action was analyzed with respect to the size of non-
equilibrium effects of thermalization of the expectation
value of the Polyakov loop. It was also compared to
perturbation theory results. We find that the strong cou-
pling regime, where the perturbation theory results corre-
spond to the measured observable values, is the regime of
minimal flow. The weak coupling regime exhibits serious
nonequilibrium effects, which indicates that in this region
the one-operator action is not appropriate for the descrip-

tion of Polyakov loop configurations. More general effec-
tive actions with up to 13 operators were considered and
analyzed with respect to Polyakov loop flow. Setting as a
criterion to reproduce the expectation value of the
Polyakov loop with accuracy under 1%, we found that it
is enough to limit the effective action to five operators
A12 þ B1 þ C12. We showed that this action is capable of
correctly reproducing the value of the Polyakov loop av-
erage over a wide range of lattice couplings.
We should note that it is also possible to consider differ-

ent observables. This would, in general, require a construc-
tion of a new action. It is obvious that for long distance
observables, such as Polyakov loop correlators, one would
need a more complex effective action model.
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