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We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A

state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the

continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the

overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian

Coulomb fields is found to have a good overlap with the ground state for all charge separations. In

fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the

Coulomb state is the true ground state in the continuum limit.
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I. INTRODUCTION

Explaining color confinement remains the outstanding
problem in the theory of strong interactions. The confine-
ment mechanism is typically pictured, in the mesonic
sector, for example, as resulting from a change in the
distribution of the glue around two quarks as they are
moved apart. It is expected that the glue forms a flux
tube, the exact geometry of which is unknown, connecting
the charges and resisting their separation. This idea has
been supported by numerous lattice simulations which
have revealed that at large separations the ground state
potential increases linearly with the distance r between
the quarks (see for example [1]).

In this paper, we will model the confining flux tube by
generating gauge invariant states j�i which describe pos-
sible configurations of the gluonic fields around charges,
and testing how well they overlap with the unknown
ground state in the mesonic sector j�i. We will build and
test various proposals for such a state, using a combination
of analytic and lattice techniques. Our focus in this paper
will be the cutoff dependence of the models, as imposed by
the short-distance lattice regulator, and the behavior of our
models in the continuum limit.

Gauge invariance is central to the construction of our
trial states; a naive construction of a mesonic state, when
we act on the empty vacuum j0i with fermionic creation
operators, produces a state which is not gauge invariant and
therefore not physical. The origin of the problem lies with
the Lagrangian fermions, which themselves are not gauge
invariant and do not immediately describe physical observ-
ables. In fact, no such local operator can create physical
charges in a gauge theory [2].

The basis of this observation is that charges always
appear with an associated (chromo-) electromagnetic field.
The result is that the physical electron, for example, is a
composite object comprised of a U(1) fermion together
with its surrounding electromagnetic fields. This mani-
festly nonlocal object is gauge invariant and describes an
observable charge [2–5]. Quantum mechanically, we see
that to construct a charged state, or a multifermion state
with zero overall charge, the fermion creation operators
must be accompanied by a configuration of gauge boson
creation operators, which generate the necessary chromo-
electromagnetic fields. We refer to constructing these fields
as ‘‘dressing’’ the charges. Although gauge invariance
imposes restrictions on such a state, there is still a huge
choice in the form of the dressing.
It transpires that any gauge fixing condition may be used

to define a dressing and therefore a gauge invariant state
[2]. Additional conditions on the state can further refine the
class of gauge fixing used [4]. In particular, the Coulomb
gauge is particularly relevant to the description of static
charges and this can be clearly understood perturbatively
[5]. The extent to which this is also the case nonperturba-
tively is the focus of this work.
In this paper, we concentrate on two model states related

to the Coulomb and axial gauge fixing conditions. The
‘‘Coulomb state’’ j�i describes two individually gauge
invariant charges each surrounded by non-Abelian
Coulombic fields. The ‘‘axial state’’, which we denote
j�i throughout, describes an overall gauge invariant meson
formed by linking two fermions by a string of glue. Wewill
formalize these descriptions below. Here we note two
properties of these states: first, although our numerical
calculations are in SU(2), our analytic constructions apply
to SUðNcÞ; secondly, if we represent the states as wave
functionals of (the matter fields and) the gauge field A,
then the dressing becomes unity whenA satisfies the gauge
condition defining the dressing. For example, the Coulomb
dressing may be written as a functional of A which is
always equal to 1 when @iAi ¼ 0. Therefore, if we work
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in the gauge used to define the dressing, then dressed
fermions are just the usual bare fermions. This observation
provides a link between lattice studies of manifestly gauge
invariant states and analytical techniques such as the
Hamiltonian functional approach based upon Coulomb
gauge [6–12], and investigations of the non-Abelian
Coulomb potential [13–18].

Once we have constructed a trial state j�iwe compare it
with the unknown ground state through their (mod-
squared) overlap jh�j�ij2. This overlap may be calculated
on the lattice through the persistence amplitude
h�je�HTj�i. Since the large Euclidean time limit is a
ground state projector, we have

h�je�HTj�i � e�VðrÞTjh�j�ij2; T � 1; (1)

where the ground state energy in the q� �q sector gives the
well-known confining potential, VðrÞ. This holds provided
that the overlap between the trial and ground states is
nonzero, which has recently been verified for our trial
states [19]: the large time persistence amplitudes for both
the Coulomb and axial states yield the confining potential
VðrÞ, confirming a nonzero overlap with the ground state.

In [20], we studied the overlap for our trial states in U(1)
and SU(2) Higgs theories, in both the confining and de-
confined phases. In the U(1) theory with heavy charges
exact calculations can be performed in the deconfined
phase. There we found that the ground state is exactly
the Coulomb state j�i, describing two individually gauge
invariant charges with the familiar electromagnetic
Coulombic fields. We found that the axial state j�i is an
infinitely excited state, giving, in the time slice where it is
prepared, a confining potential between the charges. The
state is unstable and decays in time to the ground state.
Contrastingly, we found that in the confining phase of U(1)
the axial state had the larger overlap with the ground state.
The physics in this phase therefore appears to be better
described by the confining potential generated by a very
thin string.

In the Higgs phase of SU(2) Higgs theory, we found that
the Coulomb state had the better overlap with the true
ground state. However, contrary to what may have been
expected, the Coulomb state also provided a better descrip-
tion of the ground state in the confining phase than the axial
state. This implies that the SU(2) flux tube is significantly
thicker than the confining string in U(1) theory.

Our previous simulations were performed at a fixed
lattice spacing. In this paper, we will investigate the de-
pendence of our results on the cutoff and so study the
continuum limit. We begin in Sec. II with the axial state,
which describes the flux tube as a string of glue, and
comment on some recent results in the literature. In
Sec. III, we compare our results with those for a thickened
string constructed from smeared links on the lattice. We
will see that the overlap between each of these states with
the ground state decreases as we approach the continuum

limit, indicating that they have little to do with ground state
physics in the continuum. In Sec. IV, we turn to the
Coulomb state, which describes a charge-anticharge pair
surrounded by non-Abelian Coulomb fields. We find very
different behavior as the lattice regulator is removed: the
overlap of the Coulomb and ground states now increases as
we approach the continuum. Finally, in Sec. V we present
our conclusions.

II. THE AXIAL STATE

A. Construction and properties

The axial state is

j�i ¼ qðx2ÞP exp

�Z x1

x2

dzjAjðzÞ
�
qðx1Þj0i; (2)

with qðxÞ the heavy fermion source. This state describes a
gauge invariant, charge neutral meson formed by linking
the matter fields by a gluonic string. We take the string to
lie on the straight line connecting x1 and x2, and so r �
jx2 � x1j is the separation of our fermions. For the axial
state, calculating the persistence amplitude over time T
corresponds to calculating an ordinary rectangular (and
unsmeared) Wilson loop of spatial extent r and temporal
extent T [19]. Before presenting the numerical results it
will be useful to outline the behavior of the analogous state
in QED with heavy charges. There the ground state is
known exactly, and its overlap with the axial state is zero
[20]. The origin of this vanishing overlap can be traced
back to short-distance effects, as the flux is trapped on an
infinitely thin string, even though the axial wave functional
contains no UV (nor IR) divergence. Including a momen-
tum cutoff �, the overlap is found to be, up to terms finite
as � ! 1 in the exponent,

jh�j�ij2 ¼ ðr�Þ4�=� exp½��r�þ . . .�: (3)

Here � ¼ e2=ð4�Þ. The overlap is a function of r�, domi-
nated by exponential decay for large values of the cutoff
which probe the infinitesimal extent of the string in the two
directions transverse to x2 � x1. As the cutoff is removed
this causes the overlap with the ground state to vanish.
We now describe our calculation of the unsmeared SU

(2) Wilson loop. We used a standard heat bath algorithm
combined with microcanonical reflections to generate an
ensemble of 1000 configurations which were used to mea-
sure the persistence amplitudes. Defining a supersweep to
be a combination of 3 heat bath update sweeps followed by
7 microcanonical reflections to enhance the ergodicity of
the algorithm, we allowed 250 supersweeps to reach ther-
mal equilibrium.We found no dependence of our results on
the initial configuration chosen for the lattice. All mea-
surements were taken on a 204 lattice, of varying spacings
a, using a series of configurations separated by 10 super-
sweeps. In analyzing our data we ruled out any measured
value of the persistence amplitudes with relative error
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larger than 0.5. The persistence amplitude data was fitted to
the formula

h�je�HTj�i ¼ e�VðrÞTjh�j�ij2; (4)

which assumes that the elapsed time T is large enough for
contributions from excited states to decouple, following
(1). The axial state data we present was derived from
measurements taken at an elapsed time of T � 5a, for
which no significant deviations from (4) were observed.
The overlaps were extracted from the logarithm of the data
by a weighted least-squares fit to a straight line (measured
for a fixed value of spatial separation r of the static
charges). The quality of such a fit can be controlled by
inspection of the values of two parameters: Q, the
goodness-of-fit, and the reduced�2 value, �2=�where � ¼
N � 2 denotes the number of degrees of freedom for a
linear fit of N data points (this is not to be confused with
the state j�i). Our acceptance criteria were �2=� < 3 and
Q> 10�3.

B. Numerical results

In Fig. 1, we plot the overlap of the axial and ground
states against the number of lattice sites n between the
charges. Only data points for the overlaps with relative
errors smaller than 0.35 are displayed. We note first that all
data points lie on top of one another, signalling that the
overlap is independent of the lattice spacing (and therefore
�) used for the simulations. Given that the U(1) overlap (3)
is a function of r�, we may expect that the SU(2) overlap is
a function of r=a, as 1=a is the UV cutoff on the lattice. We

therefore fit the data to an exponentially decaying function
of the form

jh�j�ij2 ¼ C exp

�
��

r

a

�
: (5)

The fit is shown as the solid line in Fig. 1. We observe a
very close fit to the data, for the parameter values C ¼
1:307, � ¼ 0:359.
For any given charge separation r, the continuum limit

a ! 0 corresponds to n ! 1. Our simulations clearly
show us that as n increases the overlap of the axial state
with the ground state drops exponentially. Both this ex-
ponential decay and the dependence on r=a parallel the U
(1) results. As we approach the continuum limit a ! 0
(which corresponds to � ! 1), we probe more of the
ultraviolet artifacts of the infinitesimally thin string which
lowers the overlap with the ground state.
The overlap may also be expressed as a function of the

physical separation of the charges. The conversion was
performed by interpolating between known values for the
string tension �a2ð�Þ at various values of �. The string
tensions and the perturbative 1-loop interpolation formula
were both taken from [21]. Figure 2 displays the overlap as
a function of r at various �. As � increases the overlap
decreases for all separations of the charges. If we fix r at a
given separation and take the continuum limit � ! 1, the
overlap again tends to zero. If the trends observed in our
results continue to hold at smaller lattice spacings, then in
the continuum limit the overlap with the ground state will
vanish.

FIG. 1 (color online). Overlap between the axial state and the
ground state, at various lattice spacings, plotted against the
number of lattice points n ¼ r=a between charges (for simula-
tion details, see the text). The overlap is independent of �.

FIG. 2 (color online). Overlap between the axial state and the
ground state, plotted against the physical separation of the
charges. Some lines have been added to guide the eye. It is
seen that, for all r, the overlap is smaller for finer lattice spacings
(larger �).
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Recent papers [22,23] have made two claims regarding
the geometry of the SU(2) flux tube: first, that at a fixed
lattice spacing the width of the flux tube grows with
increasing charge separation but, second, that at finer
lattice spacings thickening of the tube is a subleading
effect, as the width of the tube is proportional to the lattice
spacing. The first claim agrees with the interpretation of
our above results—we observe that the very thin string is a
poorer description of the ground state at larger separations.
The second claim would imply that in the continuum limit
all thickening of the tube is suppressed, and that the flux
tube of SU(2) would in fact be an infinitely thin string of
flux. However, we have seen that for a given r the overlap
of this axial state with the ground state drops exponentially
as we move toward the continuum limit.

The linear a dependence of the flux tube width described
in [22,23] was observed to set in at around a ’ 0:06 fm, or
� ’ 2:600. Our largest � values (� ¼ 2:675) probe this
region, yet we see no change to the functional form of
exponential decay. We predict that in the continuum limit
the overlap between the axial and ground states vanishes,
and that the SU(2) ground state is not well described by a
thin string stretched between the charges.

III. SMEARED STATES

A. Smearing the string

If a thin string is not a good description of the q� �q
ground state of the glue, then we must look for a state
which describes a more dispersed distribution of glue. We
have seen in U(1) theory that it is the infinitesimal thick-
ness of the string which leads to a vanishing overlap with

the ground state, and a similar interpretation is supported
by our numerical results in SU(2). As thickening the string
will soften the UV behavior wewould therefore hope to see
an improvement in the overlap with the ground state.
A state with a thicker string may be prepared on the

lattice using ‘‘smearing’’ [24–26]. Smearing replaces links
by a sum of their adjacent staples projected onto an SU(2)
group element. The smeared axial state is prepared by
smearing the links between the charges, the effect being
to broaden the string of glue. It is well known that the use
of such smeared operators greatly improves the accuracy of
calculations of, for example, the glueball spectrum [27]
and the interquark potential [28]. This is because smearing
an operator reduces its sensitivity to higher excitations of
the theory, improving the projection onto the ground state
in the calculation of large time Wilson loops. This is the
origin of the alternative name ‘‘overlap enhancement’’. We
expect, then, that removing the UV modes from our state
by smearing the string should give us a state which is closer
to the true ground state.

B. Numerical results

Repeated smearing gives an increasingly smoother and
more dispersed configuration. We smeared our axial state
with a number S of smearing steps from S ¼ 1 to S ¼ 10.
Wilson loops with T � 4a were sufficient to project onto
the ground state and 500 lattice configurations were used in
the simulations.
Our results are plotted in Fig. 3, as a function of r=a, and

in Fig. 4, as a function of the separation r. These plots also
show some axial state data (no smearing steps, i.e. S ¼ 0)
for comparison. For a given separation, smearing clearly

FIG. 3 (color online). Smeared state overlap with the ground state at various lattice spacings. For a fixed smearing level S the results
lie on the same curve, they are � independent. We have added data for the axial state (S ¼ 0) for comparison, and some lines to guide
the eye. Lattice: 500 configurations, T ¼ 4a, relative error of Wilson line correlator <0:5, �2=� < 3 and Q> 10�2.
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improves the overlap with the ground state. Figure 3 shows
us that the overlap is � independent at fixed S (as it was for
the axial state, S ¼ 0). For a fixed r, we approach the
continuum limit by following one of the curves in Fig. 3
to the right. Each curve falls as we go to the continuum so
the overlap drops to zero. Although not as severe as the
exponential drop of the axial (S ¼ 0) state, the overlap at a
given r still decreases as we go to finer lattices, suggesting
that the smeared overlap also vanishes in the continuum
limit.

The overlap enhancement provided by a given S is
therefore fixed and does not increase as we go to finer
lattices. The practice of smearing to, say, 10 steps, is an
artifact of our current lattice sizes. As computations on
finer lattices become more common, a given level of
smearing will not produce the same improvement in the
overlap as for current lattices. Instead, the smearing level
will have to be increased to see a comparable
improvement.

So far, we have considered states which describe a thin
string, or a thicker string produced from smearing.We have
seen that the thin string gives an increasingly worse de-
scription of the ground state as we go to the continuum
limit. We have also seen that the amount of overlap en-
hancement provided by smearing depends not on� but just
on the number of smearing steps. The overlap of the
smeared state also tends to zero in the continuum limit.

Higher numbers of smearing steps describe successively
more widely spread gluonic fields, and increasing the
number of smearing steps increases the overlap with the

ground state (at a given �). We will therefore now turn to a
model which we expect to describe more widely distrib-
uted glue. We will find a markedly different behavior of the
overlap in the continuum limit.

IV. THE COULOMB STATE

A. Construction and properties

The axial state (2) describes a heavy meson without
gauge invariant constituents. Dressings can, though, also
give us individually gauge invariant color charges, describ-
ing the expected short-distance physics of QCD. We will
now examine the dressing which generalizes Dirac’s static
electron [3] to a static, heavy quark in non-Abelian gauge
theories [2]. A gauge invariant charge can be created from
the vacuum by the operation

h�1½A; x�qðxÞj0i; (6)

where h�1 is a functional of A obeying [2,29]

@j

�
h�1Ajhþ 1

g
h�1@jh

�
¼ 0: (7)

This equation is to be understood in a Schrödinger repre-
sentation where we have diagonalized the operator A. It
defines h½A; x�, the field dependent transformation which
takes A into Coulomb gauge. The dressing itself trans-
forms under gauge transformations as h�1 ! h�1U if q !
U�1q, giving a gauge invariant fermion. Equation (7) may
be used to perturbatively construct this Coulombic dressing
by expanding in powers of the coupling, giving a gauge
invariant charge with a well-defined color [2,29]. A dra-
matic simplification occurs if we choose to work in
Coulomb gauge, however, as the dressing becomes a trivial
factor of unity in color space [2,29], i.e.

h�1½A; x�j@iAi¼0 ¼ 1: (8)

This is easy to see from the definition of h½A; x� as the
rotation into Coulomb gauge—if we are already in that
gauge, no rotation is needed. Our non-Abelian, color sin-
glet Coulomb state j�i contains two such gauge invariant
charges separated by a distance r. In Coulomb gauge we
therefore have

j�i ¼ �qðx2Þqðx1Þj0i; (9)

traced over color indices. In perturbation theory, the
gluonic fields around these charges are distributed over
all space, and the potential h�jHj�i between the charges
is, at lowest order,

h�jHj�i ¼ � g2CF

4�

1

r
þ self energiesþOðg4Þ: (10)

This is the lowest order contribution to the familiar inter-
quark potential. At higher orders, screening and antiscre-
ening structures emerge [30]. It is useful here to outline the
properties of the corresponding state in U(1). There, if we

FIG. 4 (color online). Smeared state overlap with the ground
state, plotted against physical separation. Axial state data (S ¼
0) is displayed for comparison and some lines have been added
to guide the eye. Legend as in Fig. 3.
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have only heavy charges, the Coulomb state is the ground
state in the charge-anticharge sector. It describes two indi-
vidually gauge invariant charges surrounded by Coulomb
fields. When we allow light fermions, however, we know
that the effect of virtual pairs is to screen the charge, which
lowers the energy. This results in an additional, but gauge
invariant, contribution to the U(1) Coulomb state which
incorporates the screening effects [31] and has the form of
Polyakov lines. Returning now to the non-Abelian theory,
it is well known [32] that glue both screens and antiscreens
the heavy charges. The dressing h�1½A; x� contributes the
antiscreening effects [33]. The additional, gauge invariant
contributions which give screening effects come from short
Polyakov lines generated as the state evolves in time.

Our Coulomb dressing describes individually gauge
invariant charges in perturbation theory, where we can
describe the physics of our dressings analytically.
Nonperturbatively we know that any description of a physi-
cal color charge must break down, as no such objects are
observed (as asymptotic states) in nature. The Gribov
ambiguity has been shown to generate just this breakdown
[2,29]. Confinement will appear at the scale where Gribov
copies reintroduce an unphysical gauge dependence to the
single charge dressing. Beyond this scale only dressings for
hadronic (colourless) states exist. This could force our two
individual dressings, h½A; x2� for �qðx2Þ and h�1½A; x1� for
qðx1Þ, to combine into a single mesonic dressing, i.e., the
Coulomb state could still, nonperturbatively, confine the
charges [19,29]. In fact, it is known from lattice results that
the non-Abelian Coulomb gauge potential, which is an
upper bound to the full potential, is confining with a linear
rise [13,34], in contrast to the Abelian theory.

We now turn to the numerical preparation of our state
and the calculation of its overlap with the ground state. We
will see that, nonperturbatively, the Coulomb state is a
good approximation to the true ground state, and that their
overlap in fact improves as the lattice regulator is removed.

B. The Coulomb state on the lattice

Our simulations were performed using an improved
lattice action [21] which gives good scaling and rotational
symmetry properties. Calculating the persistence ampli-
tude for the Coulomb state requires bringing the lattice
into Coulomb gauge and evaluating correlators of
Polyakov lines in the gauge fixed configuration [19]. We
used an iteration-overrelaxation algorithm to fix the
Coulomb gauge by maximizing the gauge fixing functional

F ½U�� ¼ 1

2
<
�
tr

�X
x

X3
i¼1

U�
i ðxÞ

��
: (11)

During gauge fixing we monitored the behavior of

�2 ¼ 1

4N

XN
x¼1

X3
b¼1

ðtr½	bBðxÞ�Þ2: (12)

Here BðxÞ ¼ P3
i¼1½UiðxÞ þUy

i ðx� êiÞ� and 	b are the

three generators of SU(2). Expanding in the lattice spacing
we find

tr ½	bBðxÞ� ¼ a2@iA
b
i ðxÞ þOða3Þ; (13)

which shows that �2 is a measure of violation of the
Coulomb gauge condition. As a stopping criterion we
demanded �2 < 10�10. Our simulations cover quark sepa-
rations from roughly 1.8 fm down to 0.05 fm.
In a first run, we studied the T behavior of the data using

a 204 lattice and� ¼ 1:55, with the aim of identifying Tmin

such that excited states effectively decouple for T � Tmin.
The results of this run are shown in Fig. 5, which plots the
overlap as a function of r for several values of Tmin.
Although the static potential is stable for Tmin � 3, the

overlap retains a Tmin dependence. The high value of the
overlap, over 70%, and the sensitivity to Tmin indicate that
the Coulomb state has a significant overlap not only with
the ground state but also with low lying excited states,
which have not decoupled. We must therefore go to larger
T values to see the overlap with only the ground state. It
seems, though, that the higher modes will decouple not far
beyond T ¼ 5a, as our results show that the difference
between overlaps decreases as T is increased, and the
curves at T ¼ 4a and T ¼ 5a are already very close to-
gether. The results at our larger T values should therefore
serve as a good approximation to the true overlap. Having
addressed the residual T dependence, we now study the

FIG. 5 (color online). Improved action simulation of the
Coulomb overlap at fixed � ¼ 1:55, 204 lattice. As T increases
contributions from excited states decouple, and we see a de-
crease in the overlap, which nevertheless remains above 0.7 for
the T values plotted—however, the difference between results at
different T is decreasing.
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overlap for varying �. We note first, however, that the
dependence on Tmin suggests a small or possibly zero
mass gap in the quark-antiquark channel.

We plot in Fig. 6 the overlap at various lattice spacings
and fixed T. Figure 7 summarizes the data, showing both
the T and � dependencies. The difference between the
behavior of the Coulomb and axial states in the continuum
limit is striking—for a given r the Coulomb overlap in-
creases with decreasing lattice spacing, becoming a better
description of the true ground state as we approach the
continuum. Does this pattern hold as we go to finer latti-
ces? To answer this question and study our Coulomb state
closer to the continuum limit we now turn to the Wilson
action, which will allow us to study the overlap at larger �
values. This will also show that our results are independent
of the discretization method employed. We present the
results of these simulations below.

C. Wilson action results

Our Wilson action results for the Coulomb overlap are
shown in Fig. 8 as a function of r=a. We observe a
markedly different behavior to both the axial and smeared
states. First, we note that the results do not all lie on the
same curve. The form of the data no longer fits a �
independent function of r=a, as found for the axial overlap,
Fig. 1. Instead, as � increases the Coulomb overlap in-
creases for all values of r=a. The origin of the axial over-
lap’s dependence only on r=a was the UV physics of the
infinitesimally thin string of glue between the charges. The
configuration of glue described by the Coulomb dressing

has no such structure. This eliminates the UV artifacts of
the axial state and so the Coulomb overlap depends on both
r and a separately rather than on only their ratio.
We now turn to the overlap as a function of the physical

separation of the charges, plotted in Fig. 9, analogously to
Fig. 6. Notice that the order of the curves corresponding to

FIG. 6 (color online). Improved action simulation of the over-
lap between the Coulomb and ground states. At a fixed time, here
T ¼ 3a, we observe an increase in the overlap in the continuum
limit (� ! 1 or a ! 0).
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FIG. 7 (color online). A summary of the improved action
results for the Coulomb overlap, plotted at a range of � and T
values.

FIG. 8 (color online). Wilson action overlap of the Coulomb
state and ground state, plotted against the number of lattice sites
n ¼ r=a between the charges. For lattice data, see the text.
Measurements were taken from T � 3a. Notably, the overlap
increases as we go to the continuum, � ! 1.
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simulations at different lattice spacings is reversed as
compared to the axial plots. At short separations the over-
lap with the ground state is almost perfect and drops more
slowly with increasing r than the exponential drop of the
string state (see Fig. 2). It is also almost independent of the
lattice spacing in this regime. As we draw the two charges
apart, our physical expectation is that a flux tube forms,
confining the charges into a meson. In this situation the
Coulombic description may not be expected to be appro-
priate, and indeed we see that the overlap drops with
increasing distance. However, this trend does not continue
indefinitely. For a given lattice spacing we see, at some
physical separation, a leveling off in the overlap. This
phenomenon occurs at different distances for different
lattice spacings—as the lattice spacing is decreased, and
we move to the continuum limit, this leveling of the over-
lap begins at smaller and smaller physical separation,
giving a good and almost r independent overlap with
j�i. The Wilson action results therefore confirm our pre-
vious findings with the improved action, Fig. 7.

The most significant difference between the axial and
Coulombic states is that the overlap of the former (and its
smeared counterparts) decreases as we go to the continuum
limit, for all separations of the charges. The Coulombic
state, however, has a good overlap with the ground state
which increases in the continuum limit. For any charge
separation r, we move up the graph in Fig. 9 away from 0
and towards 1.

The small difference from 1 in the overlap of the
Coulomb and ground states is reminiscent of perturbative
results in (Coulomb gauge) time-independent perturbation
theory [32,35]. The overlap between the g ¼ 0 ground

state (essentially N2
c � 1 copies of the Abelian theory)

and the perturbed q� �q sector ground state is 1�Oðg2Þ
in perturbation theory. Here we have seen that the overlap
between our Coulomb state and the true ground state
differs, nonperturbatively, by a small quantity which de-
creases as we go to the continuum. We therefore expect
that the physics of the Coulomb state should give a good
description of the true ground state physics, implying, in
particular, that the ground state of the glue around heavy
charges takes a form much thicker than that of a thin string.
Because of nonperturbative effects, such as the Gribov
ambiguity, we cannot rule out the possibility that, non-
perturbatively, the Coulomb state becomes the true ground
state in the continuum limit—as discussed, the non-
Abelian Coulomb potential is linearly rising for large
separations and a good agreement between the Coulomb
string tension and the full string tension was reported in
[18].

V. CONCLUSIONS

We have constructed and analyzed models of the q� �q
sector ground state in Yang-Mills theory. Our states are
gauge invariant and describe different distributions of glue
around the fermions.
Our first ansatz, the axial state, modeled the flux tube by

a string of glue stretched between the fermions. We calcu-
lated the overlap between this state and the ground state in
SU(2). We saw that for any separation of the fermions the
overlap decayed exponentially with the ultraviolet cutoff
provided by the inverse lattice spacing. These results par-
allel those of U(1), where the infinitesimal transverse ex-
tension of the string leads to a vanishing overlap between
the axial state and the ground state in the continuum. We
conclude that the SU(2) flux tube is not well described by a
very thin string.
This should be contrasted to the confining phase in

compact U(1) where, at a fixed lattice spacing, we have
seen [20] that the axial state provides a good description of
the ground state. Investigating whether this statement holds
in the continuum limit could shed light on the differences
between Abelian and non-Abelian confinement (see also
[36]). It is also interesting to speculate on the role of the
SUðNcÞ axial state for large Nc. Here Yang-Mills theory is
expected [37] to have a dual description as a theory of
strings, and it may be that in such a limit the axial state
again becomes a better description of the ground state.
Smeared states are formed on the lattice by replacing

links with sums over staples. The effect of this procedure is
to broaden the string, removing the UV modes. We found
that the overlap enhancement offered by smearing is inde-
pendent of � for a given number of smearing steps. Our
results show that, for a given separation of the charges, the
overlap between the smeared state and the ground state still
drops toward zero in the continuum limit, though it does so
more slowly than for the unsmeared axial state. This

FIG. 9 (color online). Wilson action overlap of the Coulomb
state and ground state, plotted against the physical separation of
the charges. The overlap increases as we increase �.
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implies that for larger lattices more and more smearing will
be required to improve simulations.

Our final model was the Coulomb state, which describes,
in perturbation theory, two individually gauge invariant
color charges surrounded by non-Abelian Coulombic
fields. This ansatz has through its relationship to
Coulomb gauge fixing [2,29] and its Gribov copies, a
rich nonperturbative structure. We observed that it has a
much better overlap with the ground state than the axial
descriptions did, which implies it captures more of the true
ground state physics. Since the overlap actually increases
as the lattice spacing is reduced, we cannot exclude the
possibility that the Coulomb state is indeed the true ground
state of the q� �q sector in the continuum limit.

There exist many further questions to explore—for ex-
ample, it would be interesting to study the role of Gribov
copies in our numerical calculations and their contributions

as a function of the lattice spacing. The result that the
Coulombic description of the ground state yielded the
best overlap at small lattice spacings deserves future study,
using large scale simulations to further approach the con-
tinuum. Our understanding of the geometry of the flux tube
would be increased by constructing trial states with a
transverse profile for the tube and maximizing their overlap
with the ground state. It would also be very interesting to
explore our surprising result that the data supports a small,
or zero, mass gap in the meson sector.
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