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We study the spectrum of the staggered Dirac operator in SU(2) gauge fields close to the free limit, for

both the fundamental and the adjoint representation. Numerically we find a characteristic cluster structure

with spacings of adjacent levels separating into three scales. We derive an analytical formula which

explains the emergence of these different spectral scales. The behavior on the two coarser scales is

determined by the lattice geometry and the Polyakov loops, respectively. Furthermore, we analyze the

spectral statistics on all three scales, comparing to predictions from random matrix theory.
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I. INTRODUCTION

One of the goals of quantum chromodynamics (QCD),
the fundamental theory of quarks and gluons, is the calcu-
lation of the hadronic mass spectrum from first principles.
For this purpose, a nonperturbative regularization of QCD
can be formulated on a space-time lattice, which makes the
theory mathematically well defined and accessible for
numerical simulations. In order to describe fermionic
fields, one needs a discretized Dirac operator, which can
be constructed in different ways. In particular, the stag-
gered or Kogut-Susskind (KS) Dirac operator [1] is widely
used as it is computationally cheaper than other options.
(We shall not enter the debate of the rooting issue [2,3]
here.)

During the past 15 years it has been shown that some
universal properties of the QCD Dirac spectrum can be
described by a version of random matrix theory (RMT)
[4,5] which incorporates the chiral symmetry of the mass-
less Dirac operator and is accordingly called chiral random
matrix theory (chRMT) [6,7]. In chRMT, one models the
Dirac operator by a block off-diagonal matrix with random
entries, respecting the global symmetries of the massless
Dirac operator. The path integral over the gauge fields is
then replaced by averaging over an ensemble of such
matrices. Chiral RMT reproduces low-energy sum rules
[8] and yields accurate predictions for, e.g., the micro-
scopic spectral density [9], the distribution of the smallest
eigenvalues [10,11], level spacing distributions, and other
short-range spectral correlations. Predictions from
chRMT have been successfully compared with numerical
results from lattice gauge theory in many different settings
[12–21].

When using RMT to predict spectral properties of com-
plex quantum systems, it is essential that the random
matrices have the same antiunitary symmetries as the
system to be modeled, see, e.g., Ref. [22]. One distin-
guishes different symmetry classes and corresponding en-
sembles of random matrices, labeled by their Dyson index
�D ¼ 1, 2, or 4 [4].

The staggered Dirac operator on the lattice exhibits the
peculiar feature that its symmetry properties can be differ-
ent from that of the continuum theory. In particular, for
gauge group SU(2) with fermions in the fundamental
representation and for gauge group SUðNÞ with fermions
in the adjoint representation, the �D ¼ 1 and �D ¼ 4
cases are interchanged compared to the continuum Dirac
operator (see below). This implies that the spectral prop-
erties of the staggered operator are different from those of
the continuum Dirac operator. Accordingly, a transition is
expected to take place in the continuum limit. The first
indication of such a transition has been reported in
Ref. [23].
In this work, we study a related but different case,

namely, the staggered Dirac operator for fermions in the
fundamental and adjoint representation of SU(2) in the free
limit. This limit is approached by increasing the Wilson
gauge action parameter � ¼ 4=g2 at fixed (or mildly vary-
ing) lattice size, i.e., the lattice spacing, and thus the
physical volume, shrinks to zero.
In the free limit the dynamics becomes integrable and

therefore one no longer expects RMT statistics. Con-
sequently, in this limit we do not expect the same transition
between RMT symmetry classes as in the continuum limit
described above. Instead, generically, the eigenvalues
should be uncorrelated, like numbers drawn from a
Poisson process [24,25]. It turns out that in the case we
are studying, the situation is somewhat more complicated:
Close to the free limit it is possible to disentangle three
different scales that appear in the separations between the
eigenvalues.
First, the eigenvalues form well-separated plateaux cen-

tered at the eigenvalues of the free staggered operator.
Second, we observe an internal structure of the plateaux:

The eigenvalues arrange themselves in clusters of eight
eigenvalues each. We will show that, for each configura-
tion, the location of these clusters can be predicted from
the knowledge of only four real variables, i.e., the averaged
traced Polyakov loops in the four lattice directions.
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Third, on the finest scale, the eigenvalue fluctuations
within clusters can be described in terms of chRMT. We
will present numerical results for the level spacing den-
sities which agree with the chRMT prediction for all values
of the Wilson gauge action parameter �.

This article is organized as follows. In Sec. II we briefly
introduce some basic notions of random matrix theory and
discuss the different antiunitary symmetries which are
relevant for the Dirac operator in the continuum and for
the staggered Dirac operator on the lattice. In Sec. III we
derive an analytical prediction for the staggered Dirac
eigenvalues in certain gauge field configurations close to
the free limit. Section IV begins with a comparison of
numerical data from lattice simulations to our analytical
prediction and continues with an analysis of spectral sta-
tistics on all three scales; i.e., we study the distribution of
level spacings within clusters, between clusters, and be-
tween plateaux. Wherever appropriate we compare to the
predictions from chRMT and from a Poisson process.
Throughout Secs. II, III, and IV we discuss the fundamen-
tal and adjoint representation side by side. In Sec. V we
conclude with a discussion of the implications of our
findings. Preliminary results of this study have been pre-
sented in Ref. [26].

II. ANTIUNITARY SYMMETRIES AND RMT
ENSEMBLES

The notion of universality, as commonly used in the
context of RMT and the analysis of spectra of complex
quantum systems, means that spectral statistics can be
described by an appropriate ensemble of random matrices,
which shares the symmetries of the system under consid-
eration. Depending on the presence of antiunitary symme-
tries, the entries of matrices of the ensemble have to be
either real, complex, or quaternion real. The associated
Dyson indices are �D ¼ 1, 2, or 4, respectively.

In particular, RMT yields a prediction for the universal
quantity PðsÞ, the probability density for the unfolded
nearest-neighbor spacings s (see Sec. IVC1 for a discus-
sion of unfolding). This prediction is well approximated by
the Wigner surmise,

PðsÞ ¼ as�De�bs2 ; (2.1)

where

a ¼ 2
��Dþ1ð�D=2þ 1Þ
��Dþ2ðð�D þ 1Þ=2Þ ; b ¼ �2ð�D=2þ 1Þ

�2ðð�D þ 1Þ=2Þ :
(2.2)

The Wigner surmise is the level spacing density for en-
sembles of 2� 2 matrices with Dyson index �D.

For the QCD Dirac operator D the RMT description is
formulated in terms of matrices which reflect the chiral,
flavor, and antiunitary symmetries of D [27]. For gauge
group SUðNÞ with N � 3 colors and fermions in the fun-

damental representation, D generically has complex ele-
ments and does not commute with any antiunitary operator.
Accordingly, universal spectral correlations are described
by the chiral unitary ensemble (chUE), labeled by the
Dyson index �D ¼ 2.
However, the Dirac operator enjoys invariance with

respect to an antiunitary transformation if the fermions
are either in the fundamental representation of the gauge
group SU(2), or in the adjoint representation of SUðNÞwith
N � 2 arbitrary. These two cases are discussed in more
detail in the following.

A. Fundamental representation

In a nutshell, the antiunitary invariance of the Dirac
operator with SU(2) gauge fields and fermions in the
fundamental representation, i.e., QCD with two colors, is
based on the fact that the generators are �a=2, and the Pauli
matrices �a possess the following complex conjugation
property:

��a ¼ ��2�a�2: (2.3)

The antiunitary symmetry operator, however, is realized in
different ways in the continuum and in the lattice formu-
lation with staggered fermions.

1. Continuum

In the continuum, the anti-Hermitian massless Dirac
operator is defined as

D ¼ ��D� ¼ ��ð@� þ iAa
�TaÞ (2.4)

with Ta ¼ �a=2 for the fundamental representation of
SU(2). It anticommutes with the chirality operator �5,
and therefore its nonzero eigenvalues, which are purely
imaginary, come in complex conjugate pairs.
Using Eq. (2.3) one easily verifies that the operator D is

invariant under an antiunitary symmetry,

½C�5�2K;D� ¼ 0; (2.5)

where C ¼ �2�4 is the charge conjugation matrix, and K
denotes complex conjugation (in the position representa-
tion). Note that C�5 acts on the spinor indices, whereas �2
acts in color space. Since ðC�5�2KÞ2 ¼ 1, it follows thatD
can be made real by a basis transformation that does not
depend on the gauge configuration [22,28]. Accordingly,
the RMT description for two-color QCD and fundamental
fermions is formulated in terms of the chiral orthogonal
ensemble (chOE), characterized by �D ¼ 1.

2. Lattice

The staggered or Kogut-Susskind Dirac operator for a
hypercubic lattice of finite spacing a in d dimensions is
given by
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ðDKSÞx;y ¼ 1

2a

Xd
�¼1

��ðxÞ½�xþ�̂;yU
y
�ðxÞ � �x��̂;yU�ðyÞ�

(2.6)

with ��ðxÞ ¼ ð�1Þ
P

�<�
x� and U�ðxÞ 2 SUð2Þ. On the

lattice the operator S ¼ �x;yð�1Þ
P

d
�¼1

x� plays the same

role as �5 does in the continuum: Since fDKS; Sg ¼ 0, the
eigenvalues of DKS also come in (purely imaginary) com-
plex conjugate pairs.

The staggered Dirac operator, which is widely used in
numerical simulations (because it maintains a remnant of
chiral symmetry, partially solves the doubling problem,
and is computationally cheaper than other lattice Dirac
operators) exhibits the peculiar feature that its antiunitary
symmetries are different from those of the continuum
Dirac operator [12,29,30]. Because of Eq. (2.3) the links
obey U�ðxÞ ¼ �2U

�
�ðxÞ�2. Since the � matrices have been

replaced by real numbers, ��ðxÞ, no charge conjugation is

required in order to compensate for the complex conjuga-
tion. Therefore, DKS is invariant under the following anti-
unitary symmetry:

½�2K;DKS� ¼ 0: (2.7)

As ð�2KÞ2 ¼ �1, it follows thatDKS can always be written
as a quaternion real matrix [22]. Hence, the chiral sym-
plectic ensemble (chSE), with �D ¼ 4, is used to describe
its universal properties. Another consequence of invariance
with respect to an antiunitary transformation with square
�1 is Kramers’ degeneracy, see, e.g., [22,31]; i.e., all
eigenvalues have (at least) multiplicity two. This degener-
acy has to be removed by hand before one discusses
spectral correlations.

B. Adjoint representation

In this case, the antiunitary symmetries are determined
by the purely imaginary nature of the matrix elements of
the generators in the adjoint representation (being the
structure constants) of the gauge group SUðNÞ. As in the
previous case, the way this symmetry is realized in the
continuum and for the staggered Dirac operator on the
lattice is different.

1. Continuum

The purely imaginary adjoint generators induce a real
covariant derivative in the continuum Dirac operator of
Eq. (2.4), which is therefore invariant under the following
antiunitary symmetry:

½C�5K;D� ¼ 0: (2.8)

Since ðC�5KÞ2 ¼ �1, it is possible to recast D into real
quaternionic form. This implies that the Dirac spectrum
can be described in terms of the chiral symplectic en-
semble (chSE), labeled by �D ¼ 4.

2. Lattice

For fermions in the adjoint representation, the staggered
Dirac operator DKS is explicitly real, because such are the
U�ðxÞ link matrices appearing on the right-hand side of

Eq. (2.6), which now take values in the adjoint representa-
tion of SU(2). This implies that the appropriate RMT
ensemble is the chOE, characterized by the Dyson index
�D ¼ 1.

III. SPECTRAL PREDICTIONS FROM POLYAKOV
LOOPS

The spectral properties of the Dirac operator are relevant
to the two major unsolved nonperturbative problems in
QCD: confinement and chiral symmetry breaking. On the
one hand, the eigenvalue density is related to the chiral
condensate, the order parameter for the chiral phase tran-
sition, by the Banks-Casher relation [32]. On the other
hand, the average value of the Polyakov loop, which, in
the quenched case, is an order parameter for the
confinement-deconfinement transition, can be expressed
through sums of the eigenvalues of the lattice Dirac opera-
tor with different boundary conditions [33–36].
On commensurate lattices, i.e., on lattices for which the

numbers L�=2,� ¼ 1; . . . ; d, are rationally dependent (the

staggered Dirac operator only makes sense on lattices with
even L�), the spectrum of DKS in the trivial vacuum, i.e.,

for the field configuration with all U�ðxÞ equal to unity, is

highly degenerate. Our analysis of the spectrum close to
the free limit shows that the way in which this degeneracy
is (partially) lifted can be expressed in terms of the traced
and averaged Polyakov loops in all directions,

P� ¼ 1

2
tr

�YL�

n¼1

Uðxþ n�̂Þ
�
x
; (3.1)

where the x average is over the whole lattice. For each
configuration, this effect can be predicted by calculating
the spectrum obtained from a vacuum configuration
with uniform link variables in each direction, taking values
in an Abelian subgroup of the gauge group, and yielding
the same averaged Polyakov loops as the original
configuration.

A. Fundamental representation

For the trivial gauge vacuum (all links set to 1 or any
gauge transform thereof), the eigenvalues of the staggered
Dirac operator read

��
n ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
�¼1

sin2
�
2	

L�

ðk� þ c�Þ
�vuuut ; (3.2)

with the wave numbers taking integer values 0 � k� <

L�=2 and c� ¼ 0 (c� ¼ 1
2 ) for (anti)periodic boundary

conditions for the fermionic wave function in direction �.
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However, the system also admits vacua in different
center sectors, which can be labeled by the traced
Polyakov loops P� ¼ �1 [for SU(2)]. The sign of the

latter can always be inverted by a multiplication of all
the links in the � direction in a given fixed-x� slab by

�1. In the Dirac operator this can be compensated for by
switching from periodic to antiperiodic boundary condi-
tions (or vice versa) in the direction�. Therefore, when we
consider a vacuum where the Polyakov loop in direction�
is �1, we can equivalently set c� ¼ 1

2 (c� ¼ 0) for (anti)

periodic boundary conditions of the Dirac operator in
direction �.

For a generic lattice in d dimensions, the number of
possible free spectra is thus equal to the number of allowed
topological sectors for the vacuum, i.e., 2d. When at least
two lattice extensions are equal, the number of possible
free spectra is reduced. For lattices with L� ¼ L� 8�,

� ¼ 1; . . . ; d the different patterns are labeled by the num-
ber of c� values that are equal to 1

2 , thus yielding dþ 1

inequivalent possibilities.
Configurations close to the free limit are expected to

approach (modulo gauge transformations) one of the pos-
sible free vacua. This is confirmed by our lattice simula-
tions, where we find the distribution of P� to be peaked at

�1. The corresponding free vacua can then easily be
identified by the sign of the averaged traced Polyakov
loops P� in the various directions. Accordingly, Eq. (3.2)

provides a first approximation to the observed spectrum of
the staggered Dirac operator.

This prediction can be refined as follows. For a given
configuration, let us introduce a configuration built from
uniform linksU�ðxÞ � U� in each direction, taking values

in an Abelian subgroup of SU(2) (for instance the diagonal
one), and yielding the same averaged traced Polyakov
loops as the original configuration. Since for uniform and
commuting links all plaquettes are equal to unity these
configurations may also be called vacuum configurations.

For these vacuum configurations, the gauge transforma-
tion

U�ðxÞ � gðxÞU�ðxÞgyðxþ �̂Þ with gðxÞ ¼ Yd
�¼1

ðU�Þx�

(3.3)

can be used in order to trivialize all Polyakov loops to
P� ¼ 1 at the expense of introducing periodicity only up to

gðxÞ (with x� ¼ L�). The latter equals the original

Polyakov loop P� and (in the diagonal subgroup) com-

prises two opposite phases, which behave like the constants
c� (this is a generalization of our previous argument that

P� ¼ �1 can be absorbed by switching c� between 0 and
1
2 ). The spectrum of the staggered Dirac operator in such a

vacuum configuration is given by

��
n ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
�¼1

sin2
�
2	

L�

�
k� þ c� þ arccosP�

2	

��vuuut : (3.4)

Now c� is again fixed to 0 ( 12 ) for (anti)periodic boundary

conditions in the direction�. Our expectation is that, close
to the free limit, Eq. (3.4) provides a better approximation
than Eq. (3.2) to the observed spectrum of DKS.
The eigenvalues in Eq. (3.4) have a multiplicity of 2d,

which we derive in the following paragraph. For dimension
d ¼ 4, this implies an eightfold degeneracy in addition to
Kramers’ degeneracy. A small perturbation of the vacuum
generically lifts this eightfold degeneracy but not Kramers’
degeneracy, which remains exact. This mechanism gives
rise to what we will call clusters of eight eigenvalues
below.
In order to explain how the multiplicity of 2d comes

about, we have to digress to a sketch of the derivation of
Eq. (3.4). The spectrum is most easily obtained by looking
at the square D2

KS of the staggered Dirac operator and

applying it to plane waves. After some algebra, one finds
the eigenvalues of D2

KS to be given by

�n ¼ � Xd
�¼1

sin2
�
2	

L�

�
k� þ c� þ arccosP�

2	

��
(3.5)

with 0 � k� � L� � 1. Since �n is invariant under k� �
k� þ L�=2, we can restrict the wave numbers to 0 � k� �
L�=2� 1 and assign a multiplicity of 2d to each eigen-

value. An additional multiplicity factor of 2 arises from the
color degeneracy, yielding an overall multiplicity of 2dþ1.
Because of the symmetry of the spectrum of DKS about
� ¼ 0 (which arose due to fDKS; Sg ¼ 0, see Sec. II A 2
above), the eigenvalues of DKS are given by the positive
and negative square roots of �n with each eigenvalue ��

n

having half the multiplicity of the corresponding �n,
i.e., 2d.

B. Adjoint representation

The situation is similar for the adjoint representation of
SU(2). Since the latter is insensitive to the group center, all
trivial vacua are equivalent to the configuration with all
links equal to unity.
The construction above can be repeated by considering a

vacuum configuration built from link matrices of the form

U� ¼
cos
� � sin
� 0
sin
� cos
� 0
0 0 1

0
@

1
A; (3.6)

where 
� is related to the traced Polyakov loop P� by

L�
� ¼ arccosððP� � 1Þ=2Þ. The analog of Eq. (3.4) now
reads
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��
n ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
�¼1

sin2
�
2	

L�

ðk� þ c�Þ þ n
�

�vuuut ; (3.7)

where n 2 f�1; 0; 1g and 0 � k� < L�=2. In contrast to

the situation for the fundamental representation, Eq. (3.7)
predicts that one-third of the eigenvalues remains un-
changed, i.e., they are identical to the eigenvalues in the
trivial vacuum (the configuration with all links equal to
unity).

An analysis analogous to that for the fundamental rep-
resentation shows that now the multiplicity is 2d�1 (as
opposed to 2d above). However, here we have no
Kramers degeneracy, and thus a small perturbation of the
vacuum again gives rise to clusters of eight eigenvalues in
dimension d ¼ 4.

IV. NUMERICAL RESULTS

A. Simulation details

Our numerical results are obtained from sets of
quenched SU(2) configurations generated using the
Wilson gauge action. The simulation algorithm is based
on a combination of Metropolis and over-relaxation; center
rotations to explore different topological sectors are im-
plemented as well.

We obtain the full spectrum of the staggered Dirac
operator from ensembles of configurations on hypercubic,
isotropic lattices with volumes ranging from V ¼ 44 to
164. The spectrum is evaluated using the Cullum-
Willoughby version of Lanczos’ algorithm [37]; periodic
(antiperiodic) boundary conditions are assumed in the
spatial (temporal) directions.
For each lattice volume V and for each value of the

Wilson gauge action parameter �, our analysis of the full
staggered spectrum is based on a number of thermalized
and uncorrelated configurations between a few tens and a
few thousands. For each configuration the number of dis-
tinct eigenvalues with positive imaginary part is V=2 for
the fundamental representation and 3V=2 for the adjoint
representation. Hence, our data for each pair ðV;�Þ typi-
cally contains on the order of one million distinct
eigenvalues.
Furthermore, we also generate gauge configurations on

much larger lattices (up to 34� 38� 46� 58) in order to
investigate the distribution of eigenvalues from Eqs. (3.4)
and (3.7). On these lattice we do not diagonalize the Dirac
operator but calculate only the averaged Polyakov loops.

B. Separation of spectral scales

When � is increased to large values, on a lattice with a
fixed number of sites in each of the four directions, the

FIG. 1 (color online). Eigenvalues of DKS close to the free limit for the fundamental representation of SU(2) (L4 ¼ 44, � ¼ 1000).
We display representatives for the five different plateau patterns (indicated by dashed blue lines) described below Eq. (3.2). Within the
plateaux the eigenvalues (black dots) arrange themselves in clusters of eight, whose locations are predicted by Eq. (3.4) (solid red
lines). The lower right panel shows a spectrum from a 64 lattice, with a richer cluster structure.
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spectrum of DKS shows structure on three different scales,
see Figs. 1 and 2 for examples with fundamental and
adjoint fermions, respectively.

1. Plateaux

The coarse structure is given by the free limit, i.e., the
eigenvalues approach the values of Eq. (3.2), with c� 2
f0; 12g chosen to reflect the sign of the Polyakov loops as

described below Eq. (3.2). The collection of all eigenvalues
in the vicinity of the values predicted by Eq. (3.2) we call a
plateau, indicated by dashed blue lines in Figs. 1 and 2.

As discussed in Sec. III A, for the fundamental repre-
sentation there are five different plateau structures. We find
all these classes in our simulated configurations and show
representatives for each class in Fig. 1. (The spectra shown
are the first representatives of each class which we come
across in the Monte Carlo history.)

For adjoint fermions the plateau structure is uniquely
determined by the lattice sizes (and the boundary condi-
tions) since the adjoint representation is center-blind, as
discussed in Sec. III B. Thus, configurations with different
signs of P� lead to the same plateau structure, see Fig. 2.

2. Clusters

A closer look at the staggered spectra reveals that the
distribution of eigenvalues inside a given plateau shows
additional structure. The eigenvalues are grouped in clus-
ters of eight. When the free limit is approached, the typical
separation between nearest clusters within the same pla-
teau is smaller than the separation between different pla-
teaux, but larger than the separation of eigenvalues within
each cluster.

The position of the clusters can be predicted by
Eqs. (3.4) and (3.7) for the fundamental and adjoint repre-
sentation, respectively. In Figs. 1 and 2 these predictions
are indicated by solid red lines. Thus, the cluster structure
is determined by the traces of the averaged Polyakov loops
(and the lattice size and boundary conditions). For the
adjoint representation, we see that one-third of the eigen-

values forming a plateau does not split into clusters, but
stays close to the plateau levels. This is also in agreement
with our discussion of Eq. (3.7).
Recall that, approaching the free limit, the distribution

of the traced Polyakov loops becomes peaked at �1,
corresponding to the center elements of SU(2). This a
posteriori justifies the approximation of the staggered
spectrum by the plateaux.
The observation that each cluster contains eight eigen-

values reflects the fact that the eigenvalues of Eqs. (3.4)
and (3.7) are degenerate with multiplicity 8. These eigen-
values where calculated for vacuum configurations with
uniform and commuting links U�ðxÞ in each direction.

Since the simulated configurations close to the free limit,
which we approximate by these vacuum configurations, do
not have exactly uniform and commuting links, the eight-
fold degeneracy is lifted.
In the lower right panel of Fig. 1 we also show an

example obtained from simulations on a 64 lattice. We
see that for larger lattices the expected patterns get more
and more complicated, but the agreement persists with just
the four parameters P� of Eq. (3.4) determining the com-

plete cluster structure.

C. Spectral statistics

1. Unfolding

Before one can discuss spectral statistics and compare
to, e.g., predictions from RMT, the spectra have to be
unfolded, i.e., the (imaginary parts of the) eigenvalues
have to be rescaled such that the mean separation between
adjacent levels is unity. This can be achieved by defining a
new spectrum fxng with xn :¼ �Nð�nÞ, where �Nð�Þ denotes
the mean integrated spectral density, i.e., �Nð�Þ is a smooth
function satisfying �Nð�Þ 	 #f�n � �g in some approxi-
mate or asymptotic sense.
In low-dimensional quantum chaos, one usually has an

analytical formula for �Nð�Þ, provided by Weyl’s law, see,
e.g., [22]. For the QCD Dirac operator first steps towards
an equivalent asymptotics have been discussed in [38].

FIG. 2 (color online). Eigenvalues of DKS close to the free limit for the adjoint representation of SU(2) (L4 ¼ 44, � ¼ 1500). The
unique plateau structure is marked by dashed blue lines. Within the plateaux the eigenvalues (black dots) arrange themselves in clusters
of eight, whose locations are predicted by Eq. (3.7) (solid red lines).
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Until now, however, this approach does not provide a
formula which can be used for unfolding spectra in lattice
QCD.

If one has no analytical prediction for the mean spectral
density, it has to be extracted from the data themselves.
The latter can be done by averaging over several spectra,
which is known as ensemble unfolding, thus yielding one
mean density for a whole ensemble of spectra. In contrast,
fitting an ansatz to the spectral density of an individual
spectrum or extracting its mean density by a moving
average in � is known as configuration unfolding. The
resulting mean densities will in general differ from each
other. This ambiguity can make it difficult to extract reli-
able information on long-range spectral correlations, see
the detailed discussion of different unfolding methods for
lattice Dirac spectra in Ref. [39]. The statistical function
we are interested in is always the density PðsÞ of nearest-
neighbor spacings. Since PðsÞ measures short-range spec-
tral correlations, changing the unfolding method will not
impair our results, as long as we make sure that each
unfolding procedure is stable and consistent.

As we want to discuss spectral statistics for very differ-
ent values of the gauge action parameter� and on different
scales, we are forced to employ different unfolding meth-
ods, each one of them tailored to fit the requirements of the
particular situation.

For large � the spectra show different scales, see
Sec. IVB. Therefore, we unfold separately on each scale.
The different plateau and cluster structures forbid methods
of ensemble unfolding, and thus we employ configuration
unfolding. The methods we use are all variants of what is
called local unfolding in Ref. [39].

When studying spacings within clusters we divide spac-
ings of adjacent levels by the mean level spacing within the
cluster. The latter we calculate as the difference between
the largest and the smallest level divided by seven. The
unfolded spacings then have unit mean as required.

For spectral statistics between clusters within a plateau,
we proceed analogously. We divide spacings between ad-

jacent clusters by the difference between the position of the
largest and the smallest cluster divided by the number of
clusters within the plateau minus one.
Finally, when we want to study spacings between pla-

teaux, we adapt the previous methods as follows. We
divide the difference between the position of plateau jþ
1 and plateau j by the difference between the positions of
plateaux jþ 5 and j� 4 divided by the number of plateau
spacings in this range, i.e., by nine.
For small � the spectra do not show different scales.

Thus, complete spectra could be unfolded in one go, and
both configuration and ensemble unfolding are admissible.
We experimented with the ensemble unfolding described
in Ref. [18], which works reliably for small �. However,
when we increase � the method has to break down, due to
the different plateau structures which begin to emerge. In
order to have an unfolding method which does not exclude
an intermediate �-range but instead allows us to go
smoothly from small to large �, we decided to unfold
spectra for small � in the same way as we unfold spacings
within clusters for large �. Effectively, this means that we
neglect every eighth spacing and unfold the remaining
spacings on the scale of the neighboring eight eigenvalues.

2. Level spacings for small �

For small values of �, i.e., far away from the free and
continuum limits, the level spacing densities have to be
compared to the predictions reported in Secs. II A 2 and
II B 2.
Figure 3 shows the level spacing densities obtained from

spectra of the staggered Dirac operator in the fundamental
representation of SU(2). The numerical results on all our
lattices are consistent with the chSE, in contrast to the
chOE, which would be expected in the continuum.
Likewise, in Fig. 4 we show level spacing densities

obtained from staggered Dirac spectra in the adjoint rep-
resentation of SU(2), which now are consistent with the
chOE as expected. Again this is in contrast to the contin-
uum situation in which one should have chSE statistics.

FIG. 3 (color online). Level spacing densities obtained from spectra of the staggered Dirac operator in the fundamental representa-
tion of SU(2) for small �. The numerical data are consistent with the Wigner surmise for the chSE—as expected according to the
symmetry properties of the staggered Dirac operator, see Sec. II A.
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This behavior of the staggered Dirac operator in SU(2)
gauge fields, having spectra in different universality classes
than the corresponding continuum operator, has been ob-
served earlier [12,14,17].

3. Level spacings for large �: Approaching the free limit

For large�, plateaux and clusters emerge. Therefore, we
discuss spectral statistics separately on the different scales.

(a) Spacings within clusters.—Generically, the eightfold
degeneracy of the levels predicted by Eqs. (3.4) and (3.7) is
lifted by the nonuniformity of the gauge field configura-
tion. For this reason we observe small clusters of eight
eigenvalues.

Close to the free limit we can think of treating the
nonuniformity of the gauge field configuration as a small
perturbation of the corresponding vacuum configuration,
i.e., of the configuration with uniform and commuting links
leading to the same Polyakov loops. A cluster then arises
by diagonalizing an 8� 8 matrix, the perturbation re-
stricted to the subspace corresponding to a degenerate
eigenvalue of Eq. (3.4) or Eq. (3.7). This matrix inherits
symmetries and effective randomness of the perturbation,
i.e., of the gauge field part of the staggered Dirac operator.
Therefore, we expect the distribution of level spacings to
follow the same chRMT prediction as for small �.

Our data for fermions in the fundamental representation
of SU(2) confirm this expectation. As Fig. 5 shows, the
level spacing density within each cluster is consistent with
the prediction from the chSE. Note that this is true over a
very large range of � values.

Also in the adjoint representation the spacings within
clusters follow the same pattern as the spacings for small
�, in this case leading to a chOE distribution, see Fig. 6.
Note that for the adjoint representation, the clusters at the
ends of a plateau show some nongeneric features which
would require a more sophisticated unfolding procedure.
We avoid this complication by restricting the analysis to
cluster spacings in the central part of each plateau.

These results confirm once more that the spectral prop-
erties of the staggered Dirac operator are different from
those of the continuum operator. Moreover, in the sense
described above, our analysis demonstrates that this dis-
crepancy persists when approaching the free limit.
(b) Spacings between clusters.—For the fundamental

representation the cluster positions are, to a good approxi-
mation, described by Eq. (3.4). Both Eq. (3.2) and Eq. (3.4)
describe spectra of integrable systems, and thus one ge-
nerically expects uncorrelated levels, like for a Poisson
process [24,25].
However, on commensurate lattices, i.e., on lattices with

rationally dependent L�=2, Eq. (3.2) predicts many acci-

dental degeneracies which would lead to nongeneric spec-
tral statistics. Generic behavior can in principle be restored
in two different ways: On the one hand, by changing to
lattices with rationally independent extensions L�=2, and

on the other hand by introducing additional phase shifts,
like the Polyakov loops do in Eq. (3.4). However, as we
pointed out earlier, close to the free limit the distribution of
averaged traced Polyakov loops is peaked at �1. In Fig. 3
of Ref. [26] it has been observed that these almost equal
phase shifts in each direction are not able to restore generic
behavior.
Therefore, we choose to study a large incommensurate

lattice with extensions L1 � L2 � L3 � L4 ¼ 34� 38�
46� 58. We refrain from diagonalizing the Dirac operator
on this lattice but instead calculate the averaged traced
Polyakov loops and determine the approximate cluster
spectrum from Eq. (3.4). Then the density of spacings
between different clusters within the same plateau agrees
well with the prediction from a Poisson process,
PPoissonðsÞ ¼ e�s, see Fig. 7 (left). The same holds true
for fermions in the adjoint representation with the approxi-
mate cluster spectrum determined from Eq. (3.7), see Fig. 7
(middle).
Note that we analyze the spacing distribution for the

spectra (3.4) and (3.7) but not the spacings between the
actual cluster positions which one would obtain by averag-

FIG. 4 (color online). Level spacing densities obtained from spectra of the staggered Dirac operator in the adjoint representation of
SU(2) for small �. The numerical data are consistent with the Wigner surmise for the chOE—as expected according to the symmetry
properties of the staggered Dirac operator, see Sec. II B.
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ing over all eigenvalues belonging to a given cluster. As
can be seen in Figs. 1 and 2, these actual positions differ
slightly from the predicted values. Whether or not these
differences could lead to a deviation from Poisson behavior
is an open question.

(c) Spacings between plateaux.—The positions of the
plateaux can be approximately described by the free spec-
trum, Eq. (3.2). As in the case of spacings between clusters,
which we discussed above, we thus once more study the
spectrum of an integrable system. Again accidental degen-
eracies lead to nongeneric statistics on commensurate lat-
tices. Generic behavior can be restored by switching to an
incommensurate lattice, which we demonstrate in Fig. 7

(right). Level spacing distributions like for a Poisson pro-
cess were predicted and observed earlier for incommensu-
rate lattices [40,41].
We add the same note of caution as for the spacings

between clusters. Our analysis concerns the level spacings
of the spectrum (3.2) but not the spacings between the
actual plateau positions, obtained by averaging over all
eigenvalues within a given plateau.
Let us also point out that, in spite of the strong similar-

ities between the data describing the cluster spacings and
the plateau spacings in Fig. 7, they describe correlations
on spectral scales that typically differ by an order of
magnitude.

FIG. 5 (color online). Level spacing densities for eigenvalues within clusters, obtained from spectra of the staggered Dirac operator
in the fundamental representation of SU(2) for increasing �. Agreement with the chSE persists for large �, i.e., close to the free limit.

FIG. 6 (color online). Level spacing densities for eigenvalues within clusters, obtained from spectra of the staggered Dirac operator
in the adjoint representation of SU(2) for increasing �. In the central part of each plateau (cf. text) agreement with the chOE persists
for large �, i.e., close to the free limit.
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V. CONCLUSIONS AND OUTLOOK

We have studied the spectral properties of the staggered
Dirac operator DKS when approaching the free limit for
gauge group SU(2), both in the fundamental and in the
adjoint representation. With SU(2) gauge fields the stag-
gered Dirac operator on the lattice belongs to a different
symmetry class than the corresponding continuum
operator.

Our numerical analysis revealed that, when the free limit
is approached, the spectrum of the staggered Dirac opera-
tor shows structure on three well-separated scales. The
behavior on the two coarser scales is characterized by the
formation of plateaux and clusters.

We have shown that for a given gauge field configuration
the positions of plateaux and clusters can be predicted
analytically. To this end we have constructed a vacuum
configuration with uniform and commuting links in each
direction, chosen such that they reproduce the averaged
traced Polyakov loops of the original configuration. The
Dirac spectrum in this vacuum configuration yields a good
approximation to the plateau and cluster positions. In turn,
plateaux and clusters are determined by lattice geometry,
boundary conditions, and Polyakov loops alone.

Our model also predicts a systematic degeneracy of the
staggered spectra in nontrivial vacuum configurations: All
eigenvalues have a multiplicity of eight (in addition to
Kramers’ degeneracy in the fundamental representation).
For typical gauge field configurations this degeneracy is
lifted leading to the formation of clusters of eight eigen-
values, which we observe numerically.

We have analyzed spectral correlations on all three
scales in terms of the distribution of spacings between
adjacent eigenvalues, clusters, and plateaux. Spacings be-
tween approximate plateau and cluster positions are un-
correlated as for a Poisson process, whereas level spacings
on the finest scale, i.e., within clusters, follow the chRMT
predictions. For the latter the symmetry class is always that

of the staggered operator and never that of the continuum
operator, even for very large �, i.e., close to the free limit.
Finally, we briefly comment on the possibility to recover

the symmetry class of the continuum operator in spectra of
the staggered Dirac operator in SU(2) gauge fields. We
restrict ourselves to the fundamental representation. For
every finite lattice spacing, the antiunitary symmetries of
theDKS operator are different from those of the continuum
Dirac operator. When approaching the continuum limit,
i.e., when increasing � at fixed physical volume, the
eigenvalues should form near-degenerate quartets (more
precisely, near-degenerate pairs of exactly Kramers-
degenerate pairs), signaling the suppression of unphysical
taste-changing interactions of the staggered operator. This
has been seen for the first time in Ref. [23] using highly
improved staggered fermions. In [23] it was also shown
that the distribution of the smallest eigenvalue makes a
transition from chSE to chOE, i.e., from the symmetry
class of the lattice operator to that of the continuum
operator. Related phenomena have been observed for im-
proved staggered fermions in the fundamental representa-
tion of SU(3) [42–44]. We expect that the distribution of
spacings between eigenvalues will also show a similar
transition to the continuum behavior. Our present findings
do not contradict such an expectation as our study corre-
sponds to a different physical setting: Instead of the con-
tinuum limit we have investigated the behavior in the free
limit, where RMT applies only at the finest scale of eigen-
value fluctuations.
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FIG. 7 (color online). Left: The spacing density of the approximate cluster spectrum of the fundamental representation predicted by
Eq. (3.4) for a single configuration on a 34� 38� 46� 58 lattice at � ¼ 10 000 agrees with the spacing density e�s for a Poisson
process. Middle: Same as left panel, but now for the adjoint representation and Eq. (3.7). Right: The spacing density of the plateau
positions, i.e., the eigenvalues of the free staggered Dirac operator, as predicted by Eq. (3.2) on a 34� 38� 46� 58 lattice also agrees
with the spacing density e�s for a Poisson process.
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