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We calculate nonperturbative renormalization factors at hadronic scale for AS = 2 four-quark operators
in quenched domain-wall QCD using the Schrodinger functional method. Combining them with the
nonperturbative renormalization group running by the Alpha Collaboration, our result yields the fully
nonperturbative renormalization factor, which converts the lattice bare By to the renormalization group
invariant (RGI) By. Applying this to the bare By previously obtained by the CP-PACS Collaboration at
a~'=2,3,4 GeV, we obtain By = 0.782(5)(7) [equivalent to BYS(NDR, 2 GeV) = 0.565(4)(5) by two-
loop running] in the continuum limit, where the first error is statistical and the second is systematic due to
the continuum extrapolation. Except the quenching error, the total error we have achieved is less than 2%,
which is much smaller than the previous ones. Taking the same procedure, we obtain mRS! =

5.613(66) MeV and m}% = 147.1(17) MeV [equivalent to m}5(2 GeV) = 4.026(48) MeV  and

mIS\’I_S(Z GeV) = 105.6(12) MeV by four-loop running] in the continuum limit.
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I. INTRODUCTION
In the standard model, the dimension-six four-quark
operator,

O =5y, (1 —ys)d-5y,(1 — ys)d, (L.1)

of the low-energy effective Hamiltonian induces the K° —
K° mixing, and the estimation of its hadronic matrix
element (K°|O,,|K®) is required to extract Cabibbo-
Kobayashi-Maskawa matrix elements from the experimen-
tal value of the indirect CP violation parameter €x. The
hadronic matrix element is parametrized by the kaon B
parameter By, defined by

B = ’
K (8/3)(K 15y, v5dl0X0I5y , v5dIK)

(1.2)

and lattice QCD can provide the first principle calculation
of it. In the past decades much effort has been devoted to
the estimation of Bg by employing various quark and
gauge actions [1-13]. Recently it is recognized that an
essential step toward the precise determination of By is
to control the systematic error associated with the renor-
malization, and for the precision now required, the non-
perturbative renormalization seems necessary [3,11-13].
Among several nonperturbative schemes on the lattice the
Schrodinger functional (SF) scheme [14—17] has an advan-
tage that systematic errors can be unambiguously con-
trolled: A unique renormalization scale is introduced
through the box size to reduce the lattice artifact and a
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large range of the renormalization scale can be covered by
the step scaling function (SSF) technique.

A few years ago the CP-PACS Collaboration calculated
By using the quenched domain-wall QCD (DWQCD) with
the Iwasaki gauge action [6], and a good scaling behavior
with small statistical errors has been observed. Systematic
errors associated with the perturbative renormalization
factor at one loop, however, cannot be precisely estimated.
A main purpose of this paper is to remove this uncertainty
of the renormalization factor, by evaluating it
nonperturbatively.

We adopt the SF scheme to control systematic uncer-
tainties due to the finite lattice spacing. In the SF schemes,
the renormalization factor Zp_(g), which convert the bare
By to the renormalization group invariant (RGI) By, is
decomposed into three steps as

ZBK(gO) = Z€£+AV(OO, /’Lmax)ZI\\/IX+AV(/Lmax’ lU’min)

X Z§P (80, @ pmin) (1.3)

at a given bare coupling.
The first one is the renormalization factor at the hadronic
scale ., which is given by

Zyy s 4a(80s A Mmin)
Z%(go)

where Zyy 44 and Z, are the renormalization factors for
the parity-even part of O;; and for the axial vector current,
respectively. Here au,;, << 1 should always be satisfied to
keep the lattice artifact small enough for the reliable con-

Zgll:(gO: a:u’min) = s (14)
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tinuum extrapolation. This factor depends on both the
renormalization scheme and lattice regularization.
Multiplying it by the lattice bare operator, the regulariza-
tion dependence is removed and only the scheme depen-
dence remains.

Z0 ¢ av(Mmax Mmix) Tepresents nonperturbative renor-
malization group (RG) running for the parity-odd part of
O;;, from the low energy scale w;, to the high energy
scale . = 27 i Where perturbation theory can be
safely applied. Among three steps this part requires the
most extensive calculation. Since this factor does not de-
pend on a specific lattice regularization after the continuum
extrapolation, we can employ Z)% ., (tmaw Mmin) €val-
uated previously by the Alpha Collaboration with the
improved Wilson fermion action [18], instead of calculat-
ing it by ourselves. Note that the renormalization factors
for the parity-even and the parity-odd parts agree after the
continuum extrapolation, thanks to the chiral symmetry.

The last factor ZPT (00, see) is the RG evolution
from the high energy scale ., to infinity, which absorbs
the scale dependence to give the RGI operator. Since we
are already deep in the perturbative region at (.., we can
evaluate this factor perturbatively, using the two-loop cal-
culation in Ref. [19]. Note that the scheme dependence is
also removed at this stage and the RGI operator becomes
scheme independent.

Our target in this paper is the calculation of the first
factor Zi¥ (g0, @pmin)- In order to further reduce the com-
putational cost, we use a relation that Z;, = Z, implied by
the chiral symmetry of the DWQCD in the SF scheme [20],
together with another one that Zyy x4 = Zys+ay, Which
will be checked numerically in this paper. Therefore,
throughout this paper, we adopt the following definition,

Zyp+av(go ap)
Z%/(go)

This paper is organized as follows. In Sec. II we intro-
duce the SF renormalization scheme and RGI operator for
By following the Alpha Collaboration. Numerical simula-
tion details are described in Sec. III. In Sec. IV we present
our main results for the nonperturbatively renormalized
RGI B k> and we discuss its continuum extrapolation. We
have also made several numerical checks of our formula-
tion. Section V is devoted to the nonperturbative renormal-
ization of light quark masses. Our conclusion and
discussion are given in Sec. VL.

Zp (80, ) = (1.5)

II. SCHRODINGER FUNCTIONAL SCHEME AND
RGI OPERATOR

A. Renormalization group invariant operator

A bare n-point correlation function on the lattice,
Golxy, =+, X503 80, mp) = (O1(xy) = -+ 0, (x,)),

is multiplicatively renormalized in the mass-independent

2.1
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scheme as

Grlxy, -+, xy s (), me(p))

n
= ( ZO,-(gO’ a,u))Go(xl, T Xy a3 8o, M), (2.2)
i=1

1

where g and my are the gauge coupling and the quark
mass, respectively, while corresponding bare quantities
have the subscript 0.

The RG equation for the n-point function reads

Jd J Jd .
(M@ + B(gR)TgR + T(gR)mRM - FZ] Yoi(gk))

X Gglxy, =« o, x5 s gr(p), me(p)) =0, (2.3)
where
9 9
Blgn) = p 288 W) gy = # dmelp)
p me(p) Ip
(2.4)
Yo,(gg) = lim : 920,80 a1) .23

M
a—'OZOI(go, a,LL) a,LL

From the RG equation, the finite scale evolution of Gp
from w to u' is calculated as

Grlxy, -+, x5 ps gr(p)), me(u'))
= (l_[ Ui(w', M))GR(XI’ e X s (), mg(p),
i=1
(2.6)
where

2k vo,(8) Zo, (80, ap')

U/, )=ex<[ dg —1 )=1m‘7

o \aw 7B a=0 Z (80, ap)
2.7

is the scale evolution for each operator in the continuum
limit. Using this factor we can define the RGI operator
O(x) as

2 (4O
O®x) = (gi(:)) v /2b,)
conl- [ - o
T Ul beg))
(2.8)

where b and y(oo) are given by

B(g) = —bog® —b1g> — byg’ + -+ (2.9)

0) 2 _

1
yolg) = =y e? — y\)g* —

yDgt —yPgb + - (2.10)

and Og(x; u) is the renormalized operator at some scale .
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As mentioned in the introduction, the evaluation of the
RGI operator in the SF scheme is decomposed into three
steps. The lattice bare operator is renormalized at scale
Mmin nonperturbatively with the first factor Z¥F (go, @ pmin)-
The scale evolution from g, t0 K. 1S given by the
second one,

ZI(\I)P(/U“max’ lu’min) = U(Mmax’ /‘Lmil’l)’ (211)

which can be evaluated nonperturbatively using the step
scaling function. The last factor is the running from .«
to infinity, which can be calculated safely by the perturba-
tive expansion as

i) 51
dar

2R (Mmax) vo(g) 'yg])))

X - d ——))
exp( j;) g( B(g)  bog

(2.12)

Z%T(OO, Iumax) = (

B. Schrodinger functional scheme

In the SF method, the renormalization scheme is speci-
fied by the choice of the correlation function in the finite
box. Since we rely on the result by the Alpha Collaboration
[18] for the RG running from ., tO .. the same
correlation function must be taken as the renormalization
scheme for our definition of Z5" (g0, Kmin)-

We here consider the following form of the correlation
function,

+ 1 +
-,FI:AFBFC(XO) = F<@21[FA]@45[FB]0\7A+Av(x)@l53[FC]>,
(2.13)

where subscripts 1 ~ 5 represent quark flavors, and

1, - - -
OVasay = 5((9017#%)(9”37#75‘/’4) + Wy ysin)

X 3y utha) = (17 b)) W3y 0 vs512)
+ W1y Ysa) W3y, ¥2))

is the parity-odd four-quark operator made of four different
flavors. Boundary operators O;; and O; are given in terms

of boundary fields ¢ and ¢’ [17] as

O0.[T1=a®y ;B
ijlI=a iZyL(x) &) .15

O4IT] = a®F LR

Xy

(2.14)

Because of the SF boundary condition for fermion fields
the boundary operator should be parity-odd and we then
have two independent choices, I' = ys and I' = v, (k =
1, 2, 3. For the correlation function to be totally parity-even
we need at least three boundary operators as in (2.13).
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The Alpha Collaboration has adopted five independent
choices for the correlation function

Flt(x()) = T}iﬁ’sﬁ’s (XO)’
3

F5(xo) = €1 F5 vy (X0),
ikI=1

AN =

. l &
F5(xg) = 3 ]; Fyovorn o), (2.16)

+ 1 S +
F4_(.X'0) = g Z f;k,yS,yk(xo);
k=1
1 3
Fg(xo) = 5 Z :F;’kxw,ys (XO)'
k=1

To remove logarithmic divergences of boundary fields {’s
from these correlation functions, one can consider the
following nine ratios of the correlation functions,

N Fi (xo) .
h,'_(xo)= 3/20, i=1...,5
A
. Fi(x
hg (xo) = % (2.17)
ky
+ Fi(-xO) .
hi74(xg) = —5—, i=345,
A7k
where
1 /
fi = _ﬁ<(912[75](921[75]>,
(2.18)

1 3
ky = _m Z(Ollz[?’k]@ﬂ[)’k]),
k=1

are the boundary-boundary correlation functions. Each
ratio, distinguished by the label s = 1, ..., 9, gives a differ-
ent renormalization scheme. Among these nine choices,
whose scaling violations are perturbatively shown to be
small.

The renormalization factor we need in this study is
defined by

Zypsav.s(8o w5 (xo = L/2; 80) = hy "9 (xg = L/2),
(2.19)

where s labels the scheme, and A" is the correlation
function at the tree level in the continuum theory.

According to Ref. [21], the renormalization factor for
the local vector current is defined through the Ward-
Takahashi identity as
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S
=L/2)
fv(;C;) /2) (2.20)
fvlxg) = — mz«yn[)’s]vo(i x0)O31[ys)),

where V/,L(-x) = ‘Z’z(x)'}’#‘/%(x)-

III. NUMERICAL SIMULATION DETAILS

A. Gauge action

The theory is defined on an L3 X T lattice of L = T =
Npa = Nra [18], with the periodic boundary condition in
the spatial directions and the Dirichlet boundary condition
in the temporal direction. The dynamical gauge variables
are spatial links Uy(x) at xo = 1,..., Ny — 1 and temporal
ones Uy(x) at xy = 0, ..., Ny — 1. The Dirichlet boundary
condition is imposed on the spatial link at x, = 0 and N7 as

Up(F xg = 0) = GXP[aCk],

3.1
Ui(G %0 = Nyp) = explaCy] G-b

Otherwise
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where C; and Cj are anti-Hermitian diagonal matrices
[14,15], which we set to zero in our simulation.

We employ the renormalization group improved gauge
action,

Sgluon[U] = i(WP(g%) Z Re tI'(I - Upl)

plaquette

+Wg(gd) > Retr(l — Urtg)), (3.2)

rectangle

where Uy, represents the standard plaquette and Uy, a 1 X
2 six-link rectangle. The O(a) lattice artifact due to tem-
poral boundary is removed by setting weight factors Wp
and Wj as

W(g2) = {cocﬁD (g3) Set of temporal plaquettes that just touch one of the boundaries
rl&y) =

We(g2) = {clcf (g3) Set of temporal rectangles that have exactly two links on a boundary
r\&o) = .

Otherwise

The coefficients ¢, and ¢; are normalized such that ¢, +
8c; = 1. In this paper we take ¢; = —0.331 (the Iwasaki
gauge action) [22]. The boundary coefficients are ex-
panded perturbatively as

cocl(83) = co(l + cf Vg2 + 0(gh).  (33)
3
ackgh) = a5+ g+ o) G
Since only a single improvement condition
coc?W + 4¢,c8V = 0.1518 (3.5)

is available [23], there exists no unique choice. Therefore,
in this study, we adopt the condition A [24] that RO =
2¢, .

B. Fermion action

In this paper we adopt the orbifolding construction of the
SF formalism for the domain-wall fermion [25-27].
Instead of folding the temporal direction as was discussed
in Ref. [27], we keep both positive and negative regions in
the temporal direction, in order to implement the even-odd
preconditioning in five dimensions. The gauge link in the
negative region is defined to satisfy the time reflection
symmetry as

|

Ur(%, x9) = Uy(X, —x0), Uy (%, xo) = Uf{(i, —xp — 1).

(3.6)

We implement the Shamir’s domain-wall fermion action
[28,29] on 2N, X N; X Ns lattice,

Nyp Ns
def = Z Z Z lZ/(_X,', S)def(x’ AN l‘)l,lf(y, t);

%V X0.yo=—Nrp+1s1=1
(3.7)

where the temporal coordinates x, and y, run from —N; +
1 to N7, while the fifth dimensional coordinates s and ¢
from 1 to Ns. For the orbifolding we set the antiperiodic

boundary condition in the temporal direction,
$(X, xo + 2Nr, 5) = = (X, xo, 5),
o 0 T g 0 (3.8)
WX, xg + 2Np, 5) = — (X, xo, 9).

On the other hand, the periodic boundary condition with
the phase & = 1/2 in spatial directions [15,18],

P(x + Np, xo, 8) = e(xy, xo, 5),
P(xp + N, xo, 5) = e ih(xp, xp, 9),

is imposed by replacing the spatial gauge link as Uy(x) —
e®/NL U, (x). We set the physical quark mass to be zero for
the mass-independent (massless) scheme.

(3.9
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TABLE 1.

PHYSICAL REVIEW D 78, 034502 (2008)

Numerical values of bare Byx in DWQCD given by CP-PACS Collaboration [6].

Values of lattice spacing and bare quark masses are also listed. Here m,,,; is the u, d quark mass
from the 7 input, m,(K/¢) is the strange quark mass from the K (¢) input, and —m, is a
residual quark mass where the pion mass vanishes. Data at 8 = 3.2 are new and not published in

Ref. [6].

B 2.6 29 32

Bﬁ?) 0.5908(57) 0.5655(69) 0.5478(71)
a” ! (GeV) 1.807(37) 2.807(55) 4.186(65)
m,; MeV) 0.40(34) 1.85(50) 4.65(52)
M,y + M (MeV) 3.306(68) 3.226(72) 3.216(52)
my(K) (MeV) 83.8(19) 83.2(20) 85.8(14)
my(K) + m, MeV) 86.7(18) 84.6(19) 84.3(14)
my(¢) 114.1(93) MeV) 104.6(50) 107.8(27)

The physical quark field is defined in the standard man-
ner as

q(x) = (P8, + Proyn)¥(x, s),

T (3.10)
q(x) = ¥(x, s)(8, NP + 851PR)

with P/ = (1 * 75)/2, and its propagator on the 2Nz X

N3 X Nj lattice is given by

1
unark(x: y) = (PLSS,I + PRSS,NS)( )
def X,y58,1

X (6,5, P + 6,1Pg). (3.11)

Imposing the orbifolding projection we get the physical
quark propagator in the SF formalism as

5
(3.12)

Ggll]:a_rk(x: y) = 2(H — unarkH + )x,y: H +

where R is the time reflection operator: R, , q(X, yo) =
q(X, —xp). Because of the projection, the physical quark
fields satisfy the proper homogeneous SF Dirichlet bound-
ary condition at x, = 0, N7 such that

Pq(x)l 0 =0, P_qx)l-n, =0, (3.13)

Q(X)P—IX():O =0, Q(X)P-%—lxo:NT =0. (314)
As usual, the boundary-bulk and boundary-boundary
propagators are constructed in terms of the SF quark

propagator (3.12) [16].

C. Parameters

The CP-PACS Collaboration has calculated the lattice
bare By in quenched DWQCD with the Iwasaki gauge
action at the domain-wall height M = 1.8 and the fifth
dimensional length N5 = 16 [6]. In order to renormalize
this Bx we have to take the same lattice formulation. The
bare value of By, calculated at three lattice spacings 8 =
2.6, 2.9 and 3.2' (a7! ~ 2, 3 and 4 GeV) in the previous
simulation [6], is listed in Table 1.2

The renormalization scale at the low energy (hadronic
scale) is introduced as 1/ppin = 2Lpax, Where L. is
defined through the renormalized coupling g%(1/L ) =
3.480 in the SF scheme [18], and L,,,./r, = 0.749(18)
[24] in the continuum limit (Wyin = 1/2L 5 ~
263 MeV for ry = 0.5 fm). At 8 = 2.6, 2.9 and 3.2, N,
which satisfies aN; = 2L ., = 1.498r, can be estimated,
using the interpolation formula [24],

1n<ﬁ) = —2.193 — 1.344(B — 3) + 0.191(8 — 3),

ro

(3.15)
valid at 2.456 = B = 3.53. To cover the resulting lattice

TABLE II. Values of 8 which satisfies aNy = 2L,,,, and number of configurations for each lattice size. Data at N; = 20 are used
only for the step scaling function.

Ny 6 8 10 12 14 16 18 20
B 24446  2.6339 27873 29175 3.0313  3.1331 32254  3.3103
Number of configurations for scheme 1 ~ 5 5165 3632 2000 2188 1000 868 778 104
Number of configurations for scheme 6 ~ 9 1165 1032 1000 670 284 312 200 104

'The data at 8 = 3.2 are new and not published in [6]. Its numerical analysis is briefly given in Appendix B.

>We notice the calculation of By is for degenerate quark masses.
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sizes, N; = 7.60625, 11.7144, 17.4317, we take seven lat-
tice sizes, N, = 6, ..., 18, and using the formula (3.15)
again, we tune (8 so that the physical box size satisfies
aN; = 2L, = 1.498r, at each N;.

Quenched gauge configurations are generated by the
Hybrid Monte Carlo (HMC) algorithm. First 2000 trajec-
tories are discarded for thermalization, and the correlation
functions are calculated every 200 trajectories. By the
jackknife analysis we found that each configuration sepa-
rated by 200 trajectories is almost independent. A value of
B and a number of configurations at each lattice size are
listed in Table II.

L/a=6 L/a=8
141 1.1
1 1
0.9 0.9 e N
< £y °
< R=2
0.8 ° 08
07 07
0.6 ° ° 052 e
0 2 4 6 0 2 4 6 8
t t
L/a=10 La=12
1.1 1.1
1 1
© o
© o
= o
0.9 o 5 © 0.9 o T eee®
e o
0.8 08
0.7 07
hd ° o o
0.6 06
0 2 4 6 8 10 0 2 4 6 8 10 12
t t
La=14 La=16
11 1.1
1 = o 1 < ©
© ©
So0p00e® o069 0
0.9 e ©°°0%eT4 0.9
0.8 08
0.7 07
< © © .
0.6 06
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16
t t
L/a=18 L/a=20
11 1.1
© o © o
1 1
Cgo00000000° Cooo00000009e®
© =Y © =3
0.9 0.9
0.8 08
0.7 07
o o o °
0.6 0.6

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20
t t

FIG. 1. x, dependence of Zy(g,) at various lattice sizes.
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IV. NONPERTURBATIVE RENORMALIZATION
OF By

A. Extraction of renormalization factors

The behavior of Z; given in (2.20) is plotted as a
function of time x; in Fig. 1 at N;, = 6 ~20. As a de-
creases (N increases), Zy becomes flatter in x,. Typical
behaviors of Zy, , 4y, (2.19) are given for the schemes s =
1 in Fig. 2 and the schemes s = 2 in Fig. 3, and Zy,, , oy
for s = 1 in Fig. 4 and s = 2 in Fig. 5. Both renormaliza-
tion factors are almost x, independent for s = 1, while they
strongly depend on x, for s = 2.

L/a=6 L/a=8
1.6 1.6
1.2 1.2

<
<
e ° o o
0.8 ° - 0.8 e e
0.4 0.4
© ©
0
0 2 4 6 00 2 4 6 8
t t

L/a=10 L/a=12
1.6 1.6
1.2 s . 1.2 e °

PPN S g0 0Ce
0.8 o e 0.8 e A
0.4 0.4
iS4 ©
0 0
0 2 4 6 8 10 0 2 4 6 8 10 12
t t

L/a=14 L/a=16
1.6 1.6
12} © ° ©

e 0000%s 1.2 eeeeeeeeee
<
0.8 ° © 08} e
0.4 0.4
o <

0 0

0O 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16
t

L/a=18 L/a=20
16 1.6
= =
©
1.2 eeeeeeeeeeee 1.2 e@@@@@@@@@@g@e
< =]
0.8 o 0.8 N
0.4 0.4
© o
0 0

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 1012 14 16 18 20
t t

FIG. 2. x, dependence of Zy, 4y.;(80, @Mmin) for scheme 1.
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L/a=6 L/a=8
1.6 1.6
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0.8 ° e 0.8 e * ©
e © e o
0.4 0.4
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0 0
0 2 4 6 0 2 4 6 8
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08 ° 08 °
© o EN
0.4 0.4
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© ee®s
S
12 A 12 e®
o PN o® e
£=d
0.8 °© 0.8 e®
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04 0.4
© 0 ©
002 4 6 & 10 12 14 0 2 4 6 8 10 12 14 16
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= E=
1.2 & 1.2
= = e@ ©
£ &
0.8 e® 0.8 o®
S o
< S
0.4 0.4
© i3

0

0 2 4 6 8 10 12 14 16 18 002468101214161820
t t

FIG. 3. x, dependence of ZJ ., 4y.2(80, @ftmin) for scheme 2.

Taking the value at x, = L/2 [18], we get renormaliza-
tion factors, whose numerical values are listed in Table III.
Combining Zy,, 4y., and Zy, we get the renormalization
factors for By in (1.5), which is also listed in the Table III.
All errors in the table are evaluated by a single elimination
jackknife procedure.

B. Scaling behavior of the step scaling function at L,

In this subsection, we discuss universality of the scale
evolution function Z)%. 4, (%max Mmin)- More explicitly
we calculate the SSF at the largest coupling u =
82(1/Lax) = 3.480 for four values of B’s (lattice spac-

PHYSICAL REVIEW D 78, 034502 (2008)

L/a=6 L/a=8
1.6 1.6
1.2 1.2
©
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FIG. 4. xy dependence of Zy, ,y.,(80, @) for scheme 1.

ings) to make the continuum extrapolation, and compare
the result with that by the Alpha Collaboration [18]. The
SSF of the four-fermion operator is defined as a ratio of the
renormalization factors at two different box sizes:

Zyasays(80,a/(2L))
Z$A+AV;s(g0’ a/L)

E$A+AV;S(M’ a/L) = .
m=0,g(1/L)=u

.1

Since we have already calculated Z= (g, a/(2L,y)) in the
previous subsection, we need to calculate Z=(gg, @/ L)
except N, = 20 = 2L,,,./a. Number of configuration is
fixed to 100 for all N,. Values of Z*(gg, a/Ly.) at
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FIG. 5. xy dependence of Zy, ,y.,(80, @fmin) for scheme 2.

N; =4,6,8,10, and Z*(g¢, a/(2L ) at N, = 20 are
given in Table I'V.

In Fig. 6, we compare our SSF (open circles) for
Syasava( a/L) and %y, 4p6(u, a/L) with those by
the Alpha Collaboration calculated with the clover fermion
(triangle up) and the Wilson fermion (triangle down) as a
function of a/L, together with their combined continuum
limit by star [18]. We have surprisingly found that the
scaling violation of our SSF is large and they seem to
approach their continuum limits with oscillation. To check
whether this oscillating behavior is caused by the O(a)
bulk chiral symmetry breaking effect of the DWQCD at
finite N5 or not, we investigate the N5 dependence of the

PHYSICAL REVIEW D 78, 034502 (2008)

SSF at u = 3.480. As is shown in Fig. 7, comparisons
between N5 = 8 and N5 = 16 for 2y .4y, (u, L/a = 4)
and between N5 =32 and Ns; =16 for
2ya+av:1(u, L/a = 6) indicate no N5 dependence within
statistical errors. The O(a) bulk chiral symmetry breaking
effect has nothing to do with the oscillating behavior.

We then suspect that the bad scaling behavior is caused
by the O(a) boundary effect in the SF scheme of DWQCD.
To confirm this, we calculate the tree level SSF on the
lattice,

+ lattice
Zypiavi (a/2L)ge

Z;A+Av;1 (a/L){?geice ’

where N5 — oo limit is already taken. At tree level, we
have 27, 4. (a/L) = %, 4y.5(a/L), which of course
approach to 1 in the continuum limit. In this calculation,
we take the tadpole improved value M4 = 1.5 at 8 ~ 2.9
for the value of M instead of the tree level value M = 1.8,
in order to take into account an additive shift of M caused
by the quantum correction. We plot the scaling behavior of
3V a1av:1(a/L) by open circles in Fig. 8, which shows an
oscillation similar to one in Fig. 6. On the other hand, if we
take M as close to but smaller than unity, the scaling
behavior is much improved without oscillation, as is shown
by open triangles at M = 0.9 in Fig. 8.

The tree level analysis indicates that the scaling behavior
can be improved by changing the domain-wall height M so
that the tadpole improved value becomes close to unity.
Motivated by this, we have recalculated the nonperturba-
tive SSF at M = 1.4, which corresponds to M,q = 1.0 at
the range of our . Results are given in Table V, and are
plotted by open diamonds in Fig. 9. It is clearly seen that
the scaling behavior at M = 1.4 is much improved, so that
the linear continuum extrapolation can be made using last
three points. The value in the continuum limit (filled
symbol) is consistent with the previous one by the Alpha
Collaboration (star).

We explore a different method to improve the scaling
behavior of the SSF, without performing new simulations
at different value of M. A main idea is to cancel the
oscillating behavior of the SSF by that at tree level, chang-
ing the renormalization condition from (2.19) to

Ziavavis(8o w3 (xg = L/2; 80) = hf(l(;{fiec)e)(xo = L/2),
4.3)

E;AJrAV;l(a/L) = 4.2)

where the tree level correlation function, evaluated at M =
M,,4 for corresponding B, is used in the right-hand side.
We call this method the tree level improvement. Results are
given in Table VI and VII, and are plotted by open squares
in Fig. 9. We find that the magnitude of oscillation is
reduced, so that a linear continuum extrapolation using
last three data becomes possible. The value in the contin-
uum limit is consistent with both one by the Alpha
Collaboration and one at M = 1.4.
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TABLE IIl.  Numerical values of Zy(g0), Zyayay.s(80 @Mmin), and Zg . (0, dfbmin) at 2Ly, Values of Zp(go, apmin) and

Z,,(g0, apmin) are also listed for the latter use.

N, 6 8 10 12 14 16 18

i 2.4446 2.6339 27873 29175 3.0313 3.1331 3.2254

Zy 0.79580(23)  0.85837(18)  0.87048(15)  0.90395(12)  0.92286(30)  0.94463(13)  0.96184(12)
VAT 0.69767(89)  0.8778(14) 0.9189(18) 1.0179(21) 1.0785(34) 1.1388(37) 1.1821(44)
Zinn 0.7196(13) 0.9089(21) 0.9679(28) 1.0758(31) 1.1521(53) 1.2132(59) 1.264(18)
Zis 0.7398(11) 0.9439(18) 0.9956(23) 1.1088(26) 1.1804(44) 1.2484(48) 1.2994(58)
Zina 0.6850(11) 0.8528(17) 0.9030(23) 0.9982(24) 1.0648(40) 1.1196(45) 1.1645(54)
Zins 0.6819(11) 0.8489(18) 0.8985(23) 0.9933(25) 1.0595(42) 1.1138(47) 1.157(16)
Zine 0.6382(18) 0.7812(25) 0.8224(26) 0.8980(35) 0.9592(53) 1.0093(56) 1.03931)
Zing 0.6817(16) 0.8541(21) 0.8930(23) 0.9822(31) 1.0450(49) 1.1058(49) 1.1409(66)
Zins 0.6319(17) 0.7702(23) 0.8103(24) 0.8838(32) 0.9422(48) 0.9913(50) 1.0202(65)
AT 0.6292(18) 0.7668(25) 0.8061(26) 0.8785(34) 0.9395(51) 0.9859(55) 1.015(28)
Zyan 0.61284(68)  0.7101(11) 0.7024(13) 0.7472(15) 0.7587(25) 0.7886(25) 0.8061(30)
Zyan 0.6677(14) 0.7791(22) 0.7937(28) 0.8516(28) 0.8820(48) 0.9074(53) 0.934(13)
Zyaa 0.69325(88)  0.8290(15) 0.8301(18) 0.8945(20) 0.9152(33) 0.9532(35) 0.9783(41)
Zyra 0.6082(11) 0.6931(17) 0.6974(21) 0.7413(21) 0.7630(35) 0.7837(38) 0.8019(42)
Zyns 0.6074(11) 0.6910(17) 0.6968(21) 0.7400(20) 0.7627(34) 0.7823(38) 0.802(10)
Zyns 0.5924(21) 0.6679(28) 0.6726(27) 0.7135(36) 0.7295(55) 0.7537(56) 0.769(23)
Zyng 0.6391(13) 0.7506(20) 0.7433(19) 0.7958(27) 0.8089(44) 0.8418(44) 0.8618(55)
Zyns 0.5614(19) 0.6245(25) 0.6244(24) 0.6572(32) 0.6698(48) 0.6921(50) 0.7018(55)
Zyno 0.5608(19) 0.6233(25) 0.6235(24) 0.6570(32) 0.6706(48) 0.6909(50) 0.703(19)
Zg 1.1017(12) 1.1914(19) 1.2127(24) 1.2457(25) 1.2663(40) 1.2763(42) 1.2778(47)
Zp oo 1.1363(18) 1.2336(28) 1.2774(37) 1.3166(38) 1.3527(63) 1.3596(66) 1.366(19)
Zs o 1.1682(15) 1.2811(24) 1.3139(30) 1.3570(32) 1.3860(52) 1.3991(55) 1.4045(63)
Zou 1.0816(15) 1.1574(23) 1.1918(29) 1.2216(30) 1.2502(48) 1.2547(50) 1.2587(58)
Z s 1.0768(15) 1.1521(23) 1.1857(30) 1.2157(30) 1.2441(50) 1.2482(53) 1.251(17)
Zs 6 1.0084(23) 1.0605(32) 1.0854(34) 1.0990(42) 1.1285(62) 1.1313(62) 1.123(33)
Zg o 1.0772(20) 1.1594(27) 1.1787(30) 1.2021(37) 1.2294(57) 1.2394(55) 1.2329(72)
Z s 0.9984(22) 1.0456(30) 1.0695(31) 1.0817(39) 1.1086(56) 1.1111(56) 1.1025(71)
Zp o 0.9942(23) 1.0410(32) 1.0640(33) 1.0752(41) 1.1054(60) 1.1050(61) 1.097(30)
Zp 0.65512(64)  0.66259(88)  0.64990(99)  0.6560(10) 0.6580(16) 0.6606(16) 0.6627(18)
Z, 1.5264(15) 1.5092(20) 1.5387(23) 1.5244(24) 1.5198(37) 1.5137(37) 1.5091(42)

In addition to the SSF of VA + AV, we have also con-
sidered the SSF of By defined by

Zp, (g0, a/2L)

EBK(M, af/L) = Zg, (80, a/L)

“4.4)

at L = L,,. Results are plotted as a function of a/L in
Fig. 10 for three “good schemes.” In each figure, results at
M = 1.8 with and without the tree level improvement are
represented by open squares and open circles, respectively,
while the result at M = 1.4 is represented by open dia-
monds. The scaling behaviors are reasonably well behaved
with the tree level improvement or at M = 1.4. Even
without improvement, the oscillation is not so large.
Linear extrapolations with three data at finest lattice spac-
ings give consistent results among all three cases. The large
oscillating behavior seems to be partly canceled between
Zypiay and Zy in Zp_.

We finally perform combined linear fits of the M = 1.4
data and the tree level improved data using the finest three
lattice spacings. Values in the continuum limit of all SSF
are given in Table VIIL

C. Renormalization of By

In this subsection we evaluate the renormalization factor
Zg,.s(go) which converts the lattice bare Bg(gy) of

DWQCD to the RGI Bg. As suggested in the previous
subsection, we here employ the renormalization factor
obtained with the tree level improved condition, hoping
that this also improves the scaling behavior of Bg.
Combining our renormalization factor Zg" (g0, Mmin)
in Table VI with the RG running factor
Zl\>/£+AV(OOJ Mmax)Z\I\/I£+AV(Iu’maX’ Iu’min) given by the Alpha
Collaboration [18], we obtain the renormalization factor
Zg,.s(go) at each B in Table IX.
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TABLE IV. Numerical values of Zy(go), Zy 1 4v.,(80- 20 min)s Zp,:s(80» 20 pmin)s Zp(80, 20 min)> and Z,,,(0, 26 tryin) at Ly for
SSF. A box size of N; = 20 lattice is 2L ..

PHYSICAL REVIEW D 78, 034502 (2008)

N, 4 6 8 10 20

B 2.6339 29175 3.1331 33103 33103
Zy 0.9905(21) 0.87148(98) 0.97930(77) 0.97587(57) 0.978 98(26)
VAT 1.0784(69) 0.7937(48) 1.0967(59) 1.0853(70) 1.258(11)
Zinn 1.0302(74) 0.8061(63) 1.0945(84) 1.1054(91) 1.349(16)
Zis 1.1000(72) 0.8215(56) 1.1446(67) 1.1384(83) 1.376(14)
Zina 1.0058(70) 0.7807(56) 1.0480(74) 1.0555(76) 1.246(12)
Zins 1.0076(71) 0.7811(57) 1.0498(77) 1.0555(76) 1.240(12)
Zine 1.0018(70) 0.7703(54) 1.0346(73) 1.0366(73) 1.1181(91)
Zing 1.0797(69) 0.7969(49) 1.1024(59) 1.0907(71) 1.2145(89)
Zins 0.9871(67) 0.7574(51) 1.0094(68) 1.0113(66) 1.0995(85)
AT 0.9890(68) 0.7578(51) 1.0112(72) 1.0112(66) 1.0942(88)
Zya 1.0609(63) 0.7389(30) 0.9721(49) 0.9349(57) 0.8252(67)
Zyan 0.9831(82) 0.7746(69) 0.9775(93) 0.9847(99) 0.971(15)
Zyaa 1.1135(69) 0.7933(42) 1.0644(60) 1.0334(74) 0.995(10)
Zyra 0.9423(74) 0.7288(58) 0.9043(79) 0.9033(79) 0.842(11)
Zyns 0.9435(74) 0.7329(57) 0.9088(79) 0.9070(75) 0.841(11)
Zyns 0.9559(77) 0.7401(61) 0.9239(83) 0.9234(81) 0.805(11)
Zyng 1.0929(66) 0.7696(37) 1.0252(54) 0.9901(65) 0.8777(72)
Zyns 0.9248(71) 0.7070(53) 0.8710(73) 0.8654(70) 0.7430(93)
Zyno 0.9260(71) 0.7110(54) 0.8753(74) 0.8690(67) 0.7425(93)
Zg 1.0992(51) 1.0450(53) 1.1436(61) 1.1397(73) 1.313(11)
Zp oo 1.0502(59) 1.0615(74) 1.1413(88) 1.1608(96) 1.407(17)
Zs s 1.1213(55) 1.0816(63) 1.1935(71) 1.1954(87) 1.436(15)
Zou 1.0252(54) 1.0280(64) 1.0928(76) 1.1084(80) 1.300(13)
Z s 1.0271(55) 1.0285(65) 1.0947(80) 1.1084(81) 1.294(13)
Zp 6 1.0211(54) 1.0142(62) 1.0788(75) 1.0885(76) 1.1667(95)
Zg o 1.1005(51) 1.0493(54) 1.1495(62) 1.1453(74) 1.2672(93)
Zp s 1.0062(51) 0.9972(57) 1.0525(69) 1.0619(69) 1.1472(89)
Zp o 1.0081(52) 0.9977(58) 1.0544(73) 1.0619(70) 1.1417(93)
Zp 0.8718(36) 0.7680(33) 0.8160(36) 0.8051(37) 0.6712(53)
Z, 1.1471(48) 1.3020(55) 1.2254(54) 1.2421(56) 1.490(12)

In order to obtain the renormalization factors at B8 =

2.6, 2.9 and 3.2, we interpolate the result at each scheme s

by the polynomial,

14 1
13 ¢ ol 0.95 3
12+ o 09r
%= *
S 1y B2 & T 085f 520 4
© jors [
2 1t ¥ - 2 08} T3
% 09r % 0.75
s OCP-PACS (DWF) @ g OCP-PACS (DWF)
W 08 A Alpha (clover) W07 A\ Alpha (clover) [0)
07} V Alpha (Wilson) 065} V Alpha (Wilson)
. 3 Continuum (Alpha) . 3 Continuum (Alpha)
0.6 * > . 5 . * 0.6 * > . * . *
-0.05 0 0.05 0.1 0.15 0.2 025 0.3 -0.05 0 0.05 0.1 0.15 0.2 025 0.3

ZBK;s(B) =a, t+ bx(IB - 3) + CS(B - 3)2’ 4.5)

which is shown in the left panel of Fig. 11 for schemes 1, 3,
7, together with interpolated values at three B’s by solid

a/L

a/L

FIG. 6 (color online). ~Scaling behaviors of the SSF 27, 4. (#, a/L) (left) and %y, ,y.(u, a/L) (right). Open circle shows our
result with the domain-wall fermion at M = 1.8. Open up and down triangles show results by the Alpha Collaboration with improved

and ordinary Wilson fermion actions, together with the combined continuum limit (star) [18].
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FIG. 7 (color online). The SSF X7, 4y., (1, a/L) as a function a/lL
of the fifth dimensional length Ns. Triangles (squares) are results
at L/a = 4(6). FIG. 8 (color online). Scaling behaviors of the tree level SSF.

Open circles are results at M = 1.5 while open triangles are at
M = 0.9. The continuum value is represented by the dotted line.

TABLE V. Numerical values of Zy,, 4y.,(80, ap), Zp,.s(g0, ap), Zp(go, ap) and Z,,(go, ape) at Lyyx and 2Ly, at M = 1.4 for SSE.

Np 4 6 8 10 8 12 16 20

B 2.6339 29175 3.1331 33103 2.6339 29175 3.1331 33103
Ziw  07664(38)  0766949)  0.7928(54)  0.8157(50)  0.8778(14) 1.017921)  1.1388(37)  1.258(11)
Zias  07602(44)  0.7661(60)  0.7977(71)  0.8210(71)  0.9089(21) 1.0758(31)  1.2132(59)  1.349(16)
Ziws  07829(39)  07937(55)  0.8260(62)  0.8629(96)  0.9439(18) 1.1088(26)  1.2484(48)  1.376(14)
Ziwa  07440(42)  07397(52)  0.7655(60)  0.801(14) 0.8528(17) 0.9982(24)  1.1196(45)  1.246(12)
Ziys  07445(42)  07407(52)  0.7670(63)  0.802(14) 0.8489(18) 0.9933(25)  1.1138(47)  1.240(12)
Zine 0737941 07321(51)  0.7542(58)  0.7748(61)  0.7812(25) 0.8980(35)  1.0093(56)  1.1181(91)
Zie,  07675(38) 07700500 0.7957(53)  0.8302(89)  0.8541(21) 0.9822(31)  1.1058(49)  1.2145(89)
Zins  07294(40)  07176(47)  0.7374(52)  0.771(13) 0.7702(23) 0.8838(32)  0.9913(50)  1.0995(85)
Ziwe  07298(41)  07186(48)  0.7389(56)  0.771(14) 0.7668(25) 0.8785(34)  0.9859(55)  1.0942(88)
Zyan  08065(28)  07611(37)  0.7532(41)  0.7437(39)  0.7101(11) 0.7472(15)  0.7886(25)  0.8252(67)
Zyn  0.8076(47)  07693(60)  0.7688(68)  0.7573(81)  0.7791(22) 0.8516(28)  0.9074(53)  0.971(15)
Zya  0.8465(34)  08193(48)  0.8221(52)  0.8241(92)  0.8290(15) 0.894520)  0.9532(35)  0.995(10)
Zywa  07757(43)  0721149)  0.7114(56)  0.711(13) 0.6931(17) 0.741321)  0.7837(38)  0.842(11)
Zyys  0777042)  07247(47)  07165(53)  0.717(13) 0.6910(17) 0.740020)  0.7823(38)  0.841(11)
Zyye  07839(44)  07352(51)  0.7269(56)  0.7147(70)  0.6679(28) 0.713536)  0.7537(56)  0.805(11)
Zyar  0.829932)  0.7948(44)  0.792045)  0.792985)  0.7506(20) 0.7958(27)  0.8418(44)  0.8777(72)
Zyas  07605(41)  0.6996(45)  0.6854(50)  0.684(12) 0.6245(25) 0.6572(32)  0.6921(50)  0.7430(93)
Zyio  07617(40)  07031(43)  0.6902(48)  0.690(12) 0.6233(25) 0.6570(32)  0.6909(50)  0.7425(93)
Zg.q  1.0096(33)  1.0715(63)  1.1041(69)  1.1221(66)  1.1914(19) 12457(25)  12763(42)  1.313(11)
Zyo  1.0014(41)  1.070479)  1.111094)  1.1295(96)  1.2336(28) 1.3166(38)  1.3596(66)  1.407(17)
Zg.s  1.031436)  1.1089(72)  1.150481)  1.187(13) 1.2811(24) 1.357032)  1.3991(55)  1.436(15)
Zg.a  09801(38)  1.0334(67)  1.0661(78)  1.102(19) 1.1574(23) 1.2216(30)  1.2547(50)  1.300(13)
Zy.s  09807(39)  1.0348(68)  1.0683(83)  1.103(19) 1.1521(23) 12157(30)  1.2482(53)  1.294(13)
Zye  09721(37)  1.0228(65)  1.0504(76)  1.0659(82)  1.0605(32) 1.099042)  1.1313(62)  1.1667(95)
Zgg  10112(33)  1.0758(63)  1.1082(68)  1.142(12) 1.1594(27) 12021(37)  1.2394(55)  1.2672(93)
Zg.s  09608(36)  1.0026(59)  1.0270(68)  1.060(18) 1.0456(30) 1.081739)  1.1111(56)  1.1472(89)
Zyo  09615(37)  1.0040(60)  1.0291(73)  1.061(18) 1.0410(32) 1.0752(41)  1.1050(61)  1.1417(93)
Zp 0.8277(22)  0.7670(30)  0.7394(35)  0.724031)  0.66259(88)  0.6560(10)  0.6606(16)  0.6712(53)
Z, 1.2082(32)  1.3038(51)  1.3524(65)  1.3812(60)  1.5092(20) 1.5244(24)  1.5137(37)  1.490(12)
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FIG. 9 (color online). ~ Scaling behaviors of the SSF %y, , 4y, (, a/L) (left) and 2y, , 1y.5(u, a/L) (right). Open diamonds represent
our results with the domain-wall fermion at M = 1.4. Open squares are results at M = 1.8 with a tree level improved definition
Eq. (4.3). Corresponding filled symbols denote linear continuum extrapolations with last three data. Open up and down triangles show
results by the Alpha Collaboration with improved and ordinary Wilson fermion actions, together with the combined continuum limit

(star) [18].

TABLE VI. Numerical values of Zy(g0), Zya:ay.s(€0r @ttmin), and Zg, . (80, Gfimin) at 2Ly, with the tree level improved
renormalization condition (4.3). Values of Zp(gg, dpmin) and Z,,(go, apmin) are also listed.

N, 6 8 10 12 14 16 18

B 2.4446 2.6339 2.7873 29175 3.0313 3.1331 3.2254
Zy 0.85609(24)  0.88162(19)  0.88822(16)  091166(12)  0.92852(30)  0.94719(13)  0.96359(12)
Zin 0.8285(11) 0.9344(15) 0.9645(19) 1.0392(21) 1.0951(34) 1.1470(37) 1.1880(44)
Zinn 0.8546(15) 0.9675(23) 1.0160(30) 1.0983(32) 1.1698(53) 1.2218(59) 1.270(18)
Zina 0.8785(13) 1.0047(19) 1.0450(24) 1.1320(27) 1.1985(44) 1.2573(49) 1.3058(58)
Zina 0.8134(13) 0.9077(18) 0.9479(24) 1.0191(25) 1.0811(41) 1.1276(45) 1.1703(54)
Zins 0.8098(13) 0.9036(19) 0.9431(25) 1.0141(26) 1.0758(42) 1.1218(47) 1.163(16)
Zins 0.7582(21) 0.8317(26) 0.8634(28) 0.9169(35) 0.9741(53) 1.0166(56) 1.044(31)
Zia 0.8099(18) 0.9093(23) 0.9375(24) 1.0029(31) 1.0612(50) 1.1138(50) 1.1467(66)
Zing 0.7507(20) 0.8200(25) 0.8507(26) 0.9024(33) 0.9568(48) 0.9985(51) 1.0254(66)
Zino 0.7475(21) 0.8164(26) 0.8463(27) 0.8970(35) 0.9541(52) 0.9930(55) 1.020(28)
Zya 0.72775(80)  0.7558(12) 0.7373(14) 0.7628(16) 0.7704(25) 0.7942(26) 0.8101(30)
Zyso 0.7929(17) 0.8293(23) 0.8331(29) 0.8694(29) 0.8956(48) 0.9139(53) 0.938(13)
Zyns 0.8232(10) 0.8825(16) 0.8713(19) 0.9132(20) 0.9293(33) 0.9600(36) 0.9832(41)
Zya 0.7223(13) 0.7377(18) 0.7320(22) 0.7568(22) 0.7748(35) 0.7893(38) 0.8058(43)
Zyns 0.7213(13) 0.7355(18) 0.7314(22) 0.7555(21) 0.7745(34) 0.7879(38) 0.806(10)
Zyns 0.7038(24) 0.7111(30) 0.7061(29) 0.7285(36) 0.7408(56) 0.7592(56) 0.773(23)
Zyng 0.7593(16) 0.7991(21) 0.7803(20) 0.8126(28) 0.8214(45) 0.8479(44) 0.8662(55)
Zyns 0.6669(22) 0.6649(26) 0.6555(25) 0.6710(33) 0.6802(49) 0.6971(50) 0.7054(56)
Zyro 0.6663(22) 0.6636(27) 0.6546(26) 0.6708(33) 0.6811(49) 0.6959(50) 0.706(19)
Zg 1.1304(12) 1.2021(19) 1.2225(24) 1.2504(25) 1.2702(40) 1.2784(42) 1.2795(47)
Zp o 1.1660(18) 1.2447(28) 1.2878(37) 1.3215(38) 1.3568(63) 1.3619(66) 1.368(19)
Zyos 1.1987(15) 1.2927(24) 1.3246(31) 1.3621(32) 1.3902(52) 1.4014(55) 1.4064(63)
Zgou 1.1098(15) 1.1679(23) 1.2015(30) 1.2262(30) 1.2540(48) 1.2568(50) 1.2604(59)
Zg s 1.1049(16) 1.1626(23) 1.1954(31) 1.2202(31) 1.2479(50) 1.2503(53) 1.253(17)
Z 6 1.0351(24) 1.0703(32) 1.0945(34) 1.1032(42) 1.1321(62) 1.1333(62) 1.124(33)
Zyoq 1.1056(20) 1.1701(27) 1.1885(30) 1.2067(37) 1.2334(58) 1.2416(56) 1.2347(72)
Z 1.0248(22) 1.0553(30) 1.0784(31) 1.0859(39) 1.1121(56) 1.1131(57) 1.1041(71)
Zp o 1.0204(24) 1.0506(32) 1.0729(33) 1.0794(41) 1.1089(60) 1.1070(61) 1.09931)
Zp 0.70476(69)  0.68054(91)  0.6631(10) 0.6616(10) 0.6620(16) 0.6624(16) 0.6639(18)
z, 1.4189(14) 1.4694(20) 1.5080(23) 1.5115(24) 1.5106(37) 1.5096(37) 1.5063(42)
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TABLE VII.  Numerical values of Zy(go), Zy a4 4v:s(80> 20 min)> Zpy:s(80» 2@ tmin)s Zp(80, 20 min)> and Z,,,(0, 20 i) At Ly for
SSF with the tree level improved renormalization condition (4.3). A box size of N; = 20 lattice is 2L ,y.

N, 4 6 8 10 20

B 2.6339 29175 3.1331 33103 33103

Zy 1.1071(24) 0.9756(11) 1.01320(80) 1.007 82(59) 0.979 70(26)
VAT 1.3728(88) 1.0330(63) 1.1844(64) 1.1716(76) 1.261(11)
Zinn 1.3115(94) 1.0493(83) 1.1820(91) 1.1933(98) 1.352(16)
Zins 1.4004(92) 1.0693(72) 1.2361(72) 1.2289(90) 1.380(14)
Zina 1.2803(89) 1.0162(73) 1.1318(80) 1.1395(82) 1.249(12)
Zins 1.2827(90) 1.0167(74) 1.1338(84) 1.1394(82) 1.243(12)
Zins 1.2753(89) 1.0026(71) 1.1173(79) 1.1190(79) 1.1209(91)
Zing 1.3744(88) 1.0373(64) 1.1906(64) 1.1774(77) 1.2175(89)
Zins 1.2566(85) 0.9858(66) 1.0901(74) 1.0917(71) 1.1022(86)
AT 1.2590(87) 0.9863(67) 1.0920(77) 1.0916(72) 1.0968(89)
Zya 1.3505(80) 0.9618(40) 1.0498(53) 1.0092(62) 0.8273(68)
Zyan 1.251(10) 1.0083(90) 1.056(10) 1.063(11) 0.973(15)
Zyaa 1.4175(88) 1.0325(55) 1.1496(65) 1.1156(79) 0.997(10)
Zyra 1.1995(94) 0.9486(75) 0.9766(85) 0.9751(85) 0.844(11)
Zyns 1.2010(94) 0.9539(75) 0.9815(85) 0.9791(81) 0.843(11)
Zons 1.2169(98) 0.9634(79) 0.9978(89) 0.9968(87) 0.807(11)
Zyg 1.3913(84) 1.0017(48) 1.1072(58) 1.0688(70) 0.8799(73)
Zyns 1.1773(90) 0.9203(69) 0.9407(79) 0.9342(76) 0.7448(94)
Zyno 1.1788(90) 0.9254(70) 0.9453(80) 0.9381(72) 0.7443(93)
Zg 1.1200(52) 1.0854(55) 1.1537(62) 1.1535(74) 1.314(11)
Zp oo 1.0700(60) 1.1025(77) 1.1514(89) 1.1749(98) 1.408(17)
Zs s 1.1425(56) 1.1234(65) 1.2041(72) 1.2099(88) 1.437(15)
Zou 1.0446(55) 1.0677(67) 1.1025(77) 1.1218(81) 1.301(13)
Z s 1.0465(56) 1.0682(68) 1.1044(81) 1.1218(82) 1.295(13)
Z 6 1.0404(55) 1.0534(64) 1.0884(76) 1.1017(77) 1.1678(95)
Zg o 1.1213(52) 1.0898(56) 1.1597(62) 1.1592(75) 1.2685(93)
Z s 1.0252(52) 1.0358(60) 1.0619(70) 1.0748(70) 1.1483(89)
Zp o 1.0271(53) 1.0363(60) 1.0637(74) 1.0748(70) 1.1427(93)
Zp 0.9745(41) 0.8598(36) 0.8443(37) 0.8315(38) 0.6717(53)
Z, 1.0262(43) 1.1631(49) 1.1844(52) 1.2027(55) 1.489(12)

symbols. As is shown in the figure the polynomial inter-
polation works very well with small y?/dof ~ 0.1, where
dof is degrees of freedom. Since the renormalization factor
ZBK;X should not depend on schemes, the discrepancy
between three schemes is considered to be the lattice
artifact and therefore it should disappear at high B, as
seen in the figure. The renormalization factors with and
without the tree level improvement are compared in the
right panel of Fig. 11. Two renormalization factors are
consistent within statistical errors, and agree completely
at high 8 as expected.

Multiplying the renormalization factor to the bare
Bk(go), we obtain the RGI By in Table X. The scaling
behavior of EK is shown in the Fig. 12 for s = 1,3,7, as a
function of mya. Note that the scaling behavior of By with
other (bad) schemes is indeed bad, therefore we do not use
them in our analysis. Since the scaling violations are small,
we have made the constant continuum extrapolation using
the last two data points. We arrive at

By =0.783(9) for Scheme 1, (4.6)
B =0.776(10) for Scheme 3, 4.7)
B =0.786(9) for Scheme 7. (4.8)

Since the values in the three schemes agree within errors in
the continuum limit, we have made the combined constant
fit for all three schemes, which gives

Byx=0782(5  (x*/dof = 0.87). (4.9)

To estimate the ambiguity of the continuum extrapolation,
we have also made the combined linear extrapolation using
all nine data points, and we obtain

By =0.789(14)  (y*/dof = 0.16). (4.10)

Now the final result we obtain leads
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FIG. 10 (color online). Scaling behaviors of the SSF X, (U, a /Linax) Of Bg for schemes s = 1, 3, 7. Open circles represent results at
M = 1.8 with the ordinary renormalization condition and open squares are results at M = 1.8 with the improved condition. Results at
M = 1.4 are given by open diamonds. Linear continuum extrapolations are made using data at finest three lattice spacings.

By =0.782(5)(7), 4.11)
where the central value and the first error are taken from
the combined constant fit, while the systematic error, given
in the second, is estimated by the difference between the
constant and the linear fits. Our result is consistent with
previous results nonperturbatively renormalized by
DWQCD [11] with the regularization independent momen-
tum subtraction (RI/MOM) scheme (Bx = 0.786(31)) and
by twisted mass QCD[12,13] with the SF scheme (By =
0.735(71)).

TABLE VIII. Value of the SSF in the continuum limit
OVarays and og . at Ly, obtained by a combined linear fit

of data at M = 1.8 with the tree level improved renormalization
condition and at M = 1.4.

Scheme TVALAV:s TVA+AV:s 9By

1 1.136(22) 0.841(16) 1.116(23)
2 1.221(33) 0.988(32) 1.197(34)
3 1.164(29) 0.889(22) 1.143(30)
4 1.182(30) 0.944(28) 1.158(31)
5 1.180(30) 0.936(27) 1.154(32)
6 1.120(24) 0.905(26) 1.099(25)
7 1.096(22) 0.835(18) 1.076(23)
8 1.113(24) 0.887(25) 1.091(25)
9 1.111(25) 0.880(25) 1.087(26)

For the latter convenience, we convert By to the renor-
malized By in MS scheme with the naive dimensional
regularization (NDR) at a scale u = 2 GeV. The renor-
malized operator in MS scheme is obtained by inverting
the definition of the RGI operator as

2
g (N /20
O (s 1) = (L:W ) o
— () MS 0) .
X eXp([gMS ~r dg(?’a (g) _ F}/O ))O(X),
0 Buis(8)  bog

4.12)

where By;5(g) and yMS(g) are renormalization group func-

tions in MS scheme, which are estimated at four loops for

Bxis(g) [30] and at two loops for y}3(g) [31]. The gauge
coupling gy5(1) in MS scheme is given in terms of Ay as

1
_ 2 ~(01/263) ayp| — L+
Asts = wlbogsu) 4/ expf 2bog§m(m]
gris(w) 1 1 b,
X ex I:—[MS dg<7+———):|.
P 0 Bus(g)  bog®  big
(4.13)

We adopt a value Ayg = 0.586(48)/r, in Ref. [32], and
take ry = 0.5 fm to set a scale. Multiplying Zp_..(g¢) with
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TABLE IX. Numerical values of renormalization factors Zg_.(go) for the RGI By.

B 2.444 602 2.633 865 2787275 2917468 3.031335 3.133065 3.225 406
Zp1 1.256(22) 1.336(23) 1.358(23) 1.389(24) 1.411(25) 1.420(25) 1.422(25)
Zg.o 1.252(28) 1.337(30) 1.383(31) 1.419(32) 1.457(33) 1.463(33) 1.469(39)
Zg.3 1.208(23) 1.303(25) 1.335(25) 1.373(26) 1.401(27) 1.413(27) 1.418(27)
Zga 1.321(27) 1.390(28) 1.430(29) 1.459(30) 1.492(31) 1.496(31) 1.500(31)
Zp.s 1.294(25) 1.361(27) 1.400(28) 1.429(28) 1.461(29) 1.464(29) 1.467(35)
Zp.6 1.361(25) 1.407(26) 1.439(27) 1.451(27) 1.489(28) 1.490(28) 1.478(51)
ZBK;7 1.273(21) 1.347(22) 1.368(23) 1.389(23) 1.420(24) 1.429(24) 1.421(25)
Zg,s 1.392(26) 1.433(27) 1.464(27) 1.475(28) 1.510(29) 1.512(29) 1.499(29)
Zp.o 1.365(20) 1.406(20) 1.435(21) 1.444(21) 1.484(23) 1.481(23) 1.470(46)
Zyy 4 for RGI Zyy4 for RGI
1.5 T T T 1.5 T T T

14
14
$13 <
3} [3)
N N
Oscheme 1 13
1o % Ascheme 3 : _ OOrdinary condition
2 Oscheme 7 1 g A Improved condition

1.1 e e e et 12
24 25 26 27 28 29 3 3.1 32 33 24 25 26 27 28 29 3 3.1 32 33
B B

FIG. 11 (color online). B dependence of the renormalization factor Zg_for the RGI operator with the polynomial fit. Filled symbols
represent fitted values at 8 = 2.6, 2.9 and 3.2. The left panel shows a comparison between schemes s = 1, 3, 7, with the improved
renormalization condition. The right panel show a comparison between improved and ordinary conditions for scheme 1.

TABLE X. Renormalization factors Zp .(go) and RGI By at three B8’s with their continuum extrapolations for schemes s =
1,...,9. Values of y?/dof are also listed.

B 2.6 2.9 3.2 Continuum x?/dof
Z3,:1(80) 1.314(13) 1.389(13) 1.422(18)

Zp,2(g0) 1.321(17) 1.419(18) 1.470(26)

Zp,3(g0) 1.279(14) 1.373(14) 1.417(20)

Z5,.4(80) 1.378(16) 1.459(16) 1.502(22)

Zp,:5(80) 1.350(15) 1.429(16) 1.470(23)

Zp,6(80) 1.400(15) 1.458(15) 1.493(28)

Zp,7(g0) 1.327(13) 1.395(13) 1.425(18)

Zp.5(20) 1.428(15) 1.482(15) 1.508(21)

Zp,:9(80) 1.399(12) 1.452(12) 1.486(23)

By 0.777(11) 0.786(12) 0.779(14) 0.7830(91) 0.14
By 0.781(12) 0.802(14) 0.806(18) 0.804(11) 0.03
By 0.756(11) 0.776(13) 0.776(15) 0.776(98)

By 0.814(12) 0.825(14) 0.823(16) 0.824(11) 0.009
By:s 0.797(12) 0.808(13) 0.805(17) 0.807(10) 0.019
By 0.827(12) 0.825(13) 0.818(18) 0.823(10) 0.10
By 0.784(11) 0.789(12) 0.781(14) 0.7856(91) 0.19
By 0.844(12) 0.838(13) 0.826(16) 0.833(10) 0.34
Byo 0.827(11) 0.821(12) 0.814(16) 0.8185(96) 0.12
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FIG. 12 (color online). Scaling behaviors of the RGI Bg. Our
results are given by filled circles, up triangle, and diamond
symbols for schemes s = 1, 3,7, respectively. A filled square
is the continuum limit by the combined fit using six data of three
schemes at finest two lattice spacings, while a filled down
triangle shows the continuum limit by the combined fit using
all nine data.
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the_ factor in (4.12), we obtain the renormalization factor
Z)5(g0, 2 GeV), which is listed in Table XI. The scaling

behavior of BMS is given in Fig. 13. Note that our non-
perturbative result differs from that at 8 = 2.6 but agrees
with that at 8 = 2.9 or 8 = 3.2 for the previous result [6]
of the DWQCD with perturbative renormalization [33-35].
The continuum extrapolation has been made as before, and
we obtain the final result,

B@(NDR, 2 GeV) = 0.565(4)(5). (4.14)

D. Chiral symmetry breaking effect

As a further check, we investigate whether the assump-
tion that Zyy 144 = Zya+ay holds or not in our DWQCD.
We give only a result here and a detail of the SF formalism
relevant in the analysis can be found in Appendix A.

If the chiral symmetry were exact, under chiral rotation
of the first flavor

q1 = 41 = 1ys5q1, L — 4 = —iysdh,
4 — &= —ivsdl,
we could have the chiral Ward-Takahashi (WT) identity,

<OVA +AV (9[{]>S = <OVV+AA @[ZDS

(4.15)

(4.16)

TABLE XI. Renormalization factors le\,Tlis(go, 2 GeV) and renormalized By in MS scheme with NDR at three B8’s with their

continuum extrapolations for schemes s = 1, ..., 9. Values of y?/dof are also listed.

B 2.6 2.9 3.2 Continuum x?/dof
Zlg’[_[il(go, 2 GeV) 0.9494(96) 1.003(10) 1.027(13)

ZgT[iz(go, 2 GeV) 0.954(12) 1.025(13) 1.062(19)

Z%Tl%(go, 2 GeV) 0.924(10) 0.991(11) 1.023(15)

Z%’I_Ii4(g0, 2 GeV) 0.995(12) 1.054(12) 1.085(16)

Z%’llis(go, 2 GeV) 0.975(11) 1.032(12) 1.062(17)

le\gzié(g‘)’ 2 GeV) 1.011(11) 1.053(11) 1.078(20)

2%427(&), 2 GeV) 0.9582(94) 1.0080(98) 1.029(13)

Z%’lks;g(go, 2 GeV) 1.032(11) 1.070(12) 1.089(16)

Zlg’llig(go, 2 GeV) 1.0108(90) 1.0490(91) 1.073(17)

B’}éT;S] (NDR, 2 GeV) 0.5609(78) 0.5675(89) 0.563(10) 0.5655(66) 0.11
Bl}g_;sz(NDR, 2 GeV) 0.5638(92) 0.580(10) 0.582(13) 0.5807(79) 0.015
BI}?;%(NDR, 2 GeV) 0.5458(80) 0.5607(92) 0.561(11) 0.5608(71) 0.0004
B@(NDR, 2 GeV) 0.5880(90) 0.596(10) 0.594(12) 0.5952(77) 0.016
B’\Z%(NDR, 2 GeV) 0.5759(87) 0.5837(97) 0.582(12) 0.5830(75) 0.012
BI}(’[_;%(NDR, 2 GeV) 0.5974(88) 0.5956(97) 0.591(14) 0.5941(80) 0.073
B%{%(NDR, 2 GeV) 0.5661(78) 0.5700(89) 0.564(10) 0.5673(66) 0.20
Bl‘,éT%(NDR, 2 GeV) 0.6095(89) 0.6053(99) 0.597(12) 0.6019(76) 0.28
B%{%(NDR, 2 GeV) 0.5972(78) 0.5932(89) 0.588(12) 0.5914(71) 0.12
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FIG. 13 (color online). Scaling behaviors of the renormalized
Bx(MS, u = 2 GeV). Our results are given by filled circle, up
triangle, and diamond symbols for schemes s = 1, 3, 7, respec-
tively. A filled square symbol is the continuum limit by the
combined fit using six data of three schemes, while a filled down
triangle shows the continuum limit by the combined fit with all
nine data. For a comparison, previous results with the perturba-
tive renormalization factor [6] are given by left triangles.

where EO[{ ] is the chirally rotated boundary operator of
(2.15). A subscript S represents an action under which the
expectation value is evaluated. Note that the boundary
fields are also rotated, which satisfies the opposite SF

PHYSICAL REVIEW D 78, 034502 (2008)

boundary condition to (3.14). Therefore both actions are
identical in the bulk but have opposite temporal boundary
conditions. From this WT identity we obtain Zyy 4 =
Zyp+av-
Unfortunately the domain-wall fermion action has a
noninvariant part under the chiral rotation as
Sawt = Sawt T Y, 4.17)
where Y = /X is the bulk chiral symmetry violating

term at the middle of the fifth dimension. Therefore the
WT identity becomes

(Oya+avOlLDs = <OVV+AA(7)[§]>S+Y # <0VV+AA(~9[§]>S'
(4.18)

A possible chiral symmetry violation comes from the con-
tribution of Y, which is expected to be suppressed expo-
nentially in Ns. We estimate the violating effect by
comparing {Oy,+ 4y O[{ s with (Oyy 144 O[{])s directly.

We evaluate the renormalization factor
Zvv+4a(€0» Mmin) Using the chirally rotated boundary con-
dition and correlation functions of (2.16) and (2.18) with
the statistics of 100 configurations. The results are listed in
Table XII for the unimproved renormalization condition,
and the time dependences of Zj, ., and Zj,, ,, are
shown in Fig. 14 and 15 for schemes 1 and 8, respectively.
We observe good agreements between them at all L/a, and
similar results are obtained at other schemes. This inves-
tigation concludes that the relation Zyyiaa = Zystay
holds within statistical errors in our simulations.

TABLE XII.  Numerical values of renormalization factors Zyy , 4.,(80, @fmin) and Zyy . 44.(€0, @fmin) for the parity-even operator
with the chirally rotated scheme. The number of configurations is 100 on each lattice size.

L 6 8 10 12 14 16 18

B 2.444 602 2.633 865 2787275 2917468 3.031335 3.133065 3.225 406
ZYviani 0.7240(31) 0.8799(37) 0.9230(46) 1.0158(94) 1.077(10) 1.138(10) 1.176(13)
ZYy+ann 0.7460(43) 0.9086(55) 0.9720(72) 1.072(14) 1.156(15) 1.213(17) 1.236(18)
Z\tV+AA;3 0.7669(37) 0.9475(47) 1.0012(58) 1.103(12) 1.178(12) 1.251(13) 1.284(16)
Zyyana 0.7102(37) 0.8527(45) 0.9054(58) 0.997(11) 1.069(11) 1.118(13) 1.142(14)
Z;;VMA;S 0.7071(38) 0.8473(45) 0.9007(60) 0.992(12) 1.061(12) 1.109(13) 1.138(14)
ZSyvane 0.6639(33) 0.7827(37) 0.8224(48) 0.9061(96) 0.9581(89) 1.001(11) 1.029(11)
ZY v ans 0.7095(29) 0.8578(34) 0.8957(41) 0.9865(84) 1.0390(75) 1.1008(91) 1.137(11)
Zyyvans 0.6570(32) 0.7720(35) 0.8099(45) 0.8912(88) 0.9431(80) 0.9838(97) 1.0103(99)
ZSytano 0.6542(33) 0.7671(37) 0.8058(47) 0.8866(94) 0.9361(89) 0.976(10) 1.008(11)
Zyyiaa 0.6328(24) 0.7153(30) 0.7056(34) 0.7480(64) 0.7614(73) 0.7928(86) 0.8108(94)
Zyyiann 0.6903(47) 0.7766(58) 0.7986(75) 0.848(14) 0.912(14) 0.909(15) 0.907(14)
Zyyvians 0.7156(31) 0.8347(39) 0.8368(47) 0.8842(91) 0.9246(92) 0.964(11) 0.975(13)
Zyyiana 0.6299(38) 0.6916(45) 0.7004(56) 0.741(11) 0.7914(96) 0.787(11) 0.7836(99)
Zyvians 0.6278(38) 0.6884(43) 0.6990(55) 0.743(11) 0.7829(97) 0.781(11) 0.7856(99)
Zyyians 0.6142(37) 0.6690(43) 0.6757(53) 0.716(11) 0.7559(92) 0.750(10) 0.7550(96)
Zyasava 0.6621(26) 0.7557(32) 0.7486(37) 0.7904(70) 0.8157(75) 0.8480(91) 0.863(10)
Zyyiaas 0.5828(34) 0.6261(37) 0.6266(46) 0.6626(94) 0.6982(76) 0.6928(94) 0.6935(85)
Zyyiano 0.5808(34) 0.6233(38) 0.6253(46) 0.6645(98) 0.6906(81) 0.6873(95) 0.6952(88)
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FIG. 14 (color online). A comparison between two renormalization factors Z,..y.1(80, @min) (Open circle) and
ZVvan " 1(80, @ptin) (open up triangle) as a function of x, for scheme 1 at various lattice sizes.

V. NONPERTURBATIVE RENORMALIZATION OF
QUARK MASSES

From the relation derived from the axial vector Ward-
Takahashi identity in DWQCD [6] that

Zy = 5.1)

1
Zy

we obtain the renormalization factor of quark masses from

Zp, which can easily be extracted as a by-product of the
calculation in the previous sections. In this section, we
report our results for the nonperturbative renormalization
of quark masses.

A. Renormalization group invariant quark mass

The renormalization group invariant quark mass is de-
fined by
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FIG. 15 (color online). A comparison between two renormalization factors Zy,. .. (g0, @ptin) (open circle) and
Zyy+an1(80, @fmin) (Open up triangle) as a function of x, for scheme 8 at various lattice sizes.

M = i(p)(2bog* (w))~(%/20
_fEw 7(g) dy
<on(- dg(ﬁ(g) bog))’ ©-2)

where m(w) is a renormalized mass in some scheme at
scale u. We evaluate the renormalization factor Z;, which
converts the bare quark mass on the lattice in DWQCD to
the RGI quark mass. A strategy to derive the renormaliza-

tion factor is the same as that for Bg, and we write

ZM(gO) = Zl;1T(oo’ Mmax)Z%P(/-Lmax: Iu’min)Z%P(gO’ alu'min)-
(5.3)

The first two factors have already been calculated by the
Alpha Collaboration as [36,37]
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sizes.

xo dependence of Zp(gg, 1/2L ) at various lattice

M
ZZF(OO, lu’max)Zﬁp(:u’maxr lu’min) = —— = 1.157(12)
m(lu‘min)
(5.4)

at the same scale wyin = 1/(2Lnax) as Bg. As in the case
for By what we need to calculate is the third factor,

1

_—. 5.5
ZP(gOr /J‘min) ( )

Zm(gO’ alu‘min) =

The Alpha Collaboration adopted the definition for the

renormalization factor of the pseudoscalar density such
that

PHYSICAL REVIEW D 78, 034502 (2008)

SSF for Z,,
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FIG. 17 (color online). The scaling behavior of the SSF
3p(u, a/L) with the ordinary renormalization condition. Open
circles are our results with the domain-wall fermion at M = 1.8,
while triangles show results by the Alpha Collaboration with the
improved Wilson fermion action. Corresponding continuum
limits are represented by filled symbols.

V3fi

Zp(1/L) = ————~,
frlxo=1L/2)
1 . 1
frlxg) = _§<P8(Xo, ¥)Of), fi= —m(@’“o 6
(5.6)
SSF for Z,
O.g T T T T T T
0.85 r E ]
0.8 1
<
I
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a/L

FIG. 18 (color online). Scaling behaviors of the SSF
3p(u, a/L) for the domain-wall fermion at M = 1.8 with the
ordinary renormalization condition (circles) and the improved
condition (squares), and at M = 1.4 (diamonds), together with
results by the Alpha Collaboration (triangles). Filled symbols are
continuum limits.
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TABLE XIII. Numerical values of the renormalization factor Z,,(g,) for the RGI quark mass.
B 2.444 602 2.633 865 2787275 2917468 3.031335 3.133 065 3.225406
Z,, 1.642(17) 1.700(18) 1.745(18) 1.749(18) 1.748(19) 1.747(19) 1.743(19)
where
Z for RGl mass . .
————— Pe(x) = q(x)ysmq(x), 0 = a®Y LX) ysmL()
xy
1.8 ’
(5.7)
are bulk and boundary pseudoscalar densities.
1.75 Parameters for numerical simulations are the same as
those in Sec. III C. A typical behavior of Zp as a function of
N time is shown in Fig. 16. Values of Zp and Z,,, at x, = L/2

165 | O Without improvement 1
A With improved condition
16 1 1 1 1 1 1 1 1
24 25 26 27 28 29 3 31 32 33

B

FIG. 19 (color online). B dependences of the renormalization
factor Z,, for the RGI operator with the polynomial fit. Filled
symbols represent interpolated values at 8 = 2.6, 2.9 and 3.2. A
comparison is made between the ordinary renormalization con-
dition (circle) and the improved condition (triangle).

are listed in Table III, with errors evaluated by a single
elimination jackknife procedure.

B. Scaling behavior of the step scaling function at L,

We again study the scaling behavior of the SSF,

Zp(go, a/2L)
Zp(go, a/L)

at L = L., which can be calculated from data in Table III
and I'V. As seen in Fig. 17, the scaling violation in this case
is also large and it seems to approach the continuum limit
with oscillation.

As before, we try to improve the scaling behavior by
either taking M = 1.4 or using the tree level improvement

2p(u,a/l) = (5.8)

m=0,g>(1/L)=u

TABLE XIV. The renormalization factor Z,,(g,) and RGI light quark masses at three B’s with their continuum linear extrapolations.

Values of y?/dof are also listed.

B 2.6 2.9 32 Continuum x?/dof
Z,(20) 1.694(10) 1.749(10) 1.742(13)

M,y MeV) 0.68(58) 3.23(87) 8.11(90) 12.2(15) 2.0
A, (K) (MeV) 141.9(33) 145.5(37) 149.4(27) 154.8(52) 0.036
Myg + s MeV) 5.60(12) 5.64(13) 5.60(10) 5.613(66) 0.033
i (K) + ring, (MeV) 146.9(31) 147.934) 146.9(26) 147.1(17) 0.033
i () (MeV) 193(16) 183.0(88) 187.8(49) 187.1(41) 0.20

TABLE XV. The renormalization factor Z%Ts(go, 2 GeV) and renormalized light quark masses in MS scheme at three 8’s with their
continuum linear extrapolations. Values of y?/dof are also listed.

B 2.6 2.9 3.2 Continuum x?/dof
ZM5(g0,2 GeV) 1.2153(72) 1.2545(74) 1.2497(96)

m? MeV) 0.49(42) 2.31(63) 5.81(65) 8.8(10) 2.0
mMS(K) (MeV) 101.8(23) 104.4(26) 107.2(19) 111.0(37) 0.036
(m,y + m )M (MeV) 4.018(86) 4.047(94) 4.020(72) 4.026(48) 0.033
(m,(K) + mo )™ (MeV) 105.3(23) 106.1(25) 05.4(19) 105.6(12) 0.033
m?TS(d)) MeV) 139(11) 131.2(63) 134.7(35) 134.2(30) 0.20
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with the renormalization condition that

fP(XO = L/z) (tree) fP(xO - L/Z)Hl;tel)ce)
ZP(l/L) = (ZP)(lattice)
\/]Tl (fl )(tree.)
(lattice)
5.9
where (Z P)g;z)c o = m . The SSF obtained from the

ratio of Zp in Tables V, VI, and VII, is plotted in Fig. 18 for
data at M = 1.4 (open diamonds) and for the tree level
improvement (open squares). In both cases the scaling
behaviors are improved and the linear continuum extrapo-
lation using the finest three data in each case is consistent
with the value by the Alpha Collaboration. A combined
linear fit to both data gives o,,(u) = 0.853(13) with
x?/dof = 0.71.

C. Renormalization of quark masses

We employ the tree level improved condition (5.9) for
the renormalization of quark masses. Multiplying
ZNP(go, aptpin) in Table VI with the RG running factor
(5.4), we obtain the renormalization factor Z,, in
Table XIII, which is plotted in Fig. 19 by open triangles,
together with data in Table XIV at 8 = 2.6, 2.9 and 3.2
(filled symbols) by the quadratic interpolation. Data with-

PHYSICAL REVIEW D 78, 034502 (2008)

out the improvement are also shown in the figure. A
discrepancy between the two is clearly observed at low (3.

We convert the bare masses in Table I to the RGI light
quark masses, which are listed in Table XIV. Here m,,, is
the up and down averaged quark mass determined by 7,
while m(K) or m () is the strange quark mass by K or ¢,
respectively, and —m,, is the residual mass of the
DWQCD at which the pion mass vanishes. Following the
previous paper [6], we adopt m, + m for our definition
of quark masses. Lattice spacing is given with p meson
input.

Since the scaling behavior of the RGI quark masses is
reasonably good as shown in Fig. 20, we take the constant
continuum extrapolations, which give

mRG = 5613(66) (MeV), (5.10)
mRO(K) = 147.1(17) (MeV), (5.11)
mRA(p) = 187.1(41) (MeV). (5.12)

To compare the previous results, these values are con-
verted to the MS scheme by

RGI m,,
5.9 T
58
S 57+
[0}
=3
E: 56 .
55 r
5.4 O e e
-0 0 01 02 03 04 05 06 0.7
a(GeV)
RGI m (K) RGI m,(0)
152 T 210 r T -
150
200 r
< 148 f q = D
[0} [0}
= S 190 |
g 146 I3
L 180 |
144 | 4L
142 170

-01 0 01 02 03 04 05 06 07

a(GeV')

01 02 03 04 05 06 07
a(GeV’)

-01 0

FIG. 20. Scaling behaviors of RGI quark masses and continuum extrapolations. u, d quark mass, and strange quark mass from the K

input are defined by m, + my.
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FIG. 21.

Scaling behaviors of renormalized quark masses in MS scheme and continuum extrapolations. u, d quark mass (upper

panel), and strange quark masses from the K input (lower left panel), and the ¢ input (lower right panel). Results of this paper are
represented by filled circles, together with the CP-PACS result with the perturbative renormalization [6] (solid squares). The results are
compared with other quenched simulations with different fermion actions. The vector Ward-Takahashi identity (VWI) and axial Ward-
Takahashi identity (AWI) quark mass with the standard (qStd) [40] and the improved (qImp) [41] Wilson fermions are represented by
open circles (squares) and diamonds (down triangles), respectively, while results from the staggered fermion (KS) [42] by open

triangles.

mMS () = M(2by (g™ (w))?)4/2bo

X exp( L 25 dg(;z_z(é)) - ;f)—(jg)), (5.13)

where four-loop expression is used for renormalization
group functions B and 7 in the MS scheme [30,38]. The
results are listed in Table XV and plotted in Fig. 21, which
show good scalings and the constant continuum extrapo-
lations give

mMS(NDR, 2 GeV) = 4.026(48) (MeV), (5.14)
mMS(K)(NDR, 2 GeV) = 105.6(12) (MeV),  (5.15)
mMS($)(NDR, 2 GeV) = 134.2(30) (MeV).  (5.16)

Contrary to the case of By, perturbatively renormalized
quark masses of the previous CP-PACS result (filled
squares) are underestimated, as seen in the figure. This
clearly shows the necessity of the nonperturbative renor-
malization for precision calculations in lattice QCD. We
think that the large effects of the renormalizations are
mainly canceled in the ratio of the By definition, and

therefore, such cancellations cannot be expected for gen-
eral operators.

VI. CONCLUSION AND DISCUSSIONS

In this paper we have performed the nonperturbative
renormalization of Bg and quark masses in the quenched
domain-wall QCD using the Schrodinger functional
method. Combined with the nonperturbative running ob-
tained by the Alpha Collaboration, we have obtained the
renormalization factors, which convert the lattice bare By
and quark masses previously obtained by the CP-PACS
Collaboration to the RGI values. We obtain

B = 0.782(5)(7), 6.1)
MRl = 5.613(66) (MeV), (6.2)
mRA(K) = 147.1(17) (MeV), (6.3)
mRO(p) = 187.1(41) (MeV) (6.4)

in the continuum limit. These values correspond to renor-
malized values in MS scheme with the naive dimensional
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FIG. 22 (color online). Constraint bands in the CKM triangle
from eg. The solid lines are central value and 1 standard
deviation of the constraint with our Bg. The dashed lines are
results with B adopted by the CKMfitter Group [39]. For other
inputs we use those given by the CKMfitter.

regularization given as

BMS(NDR, 2 GeV) = 0.565(4)(5), (6.5)
mMS(NDR, 2 GeV) = 4.026(48) (MeV), (6.6)
mMS(K)(NDR, 2 GeV) = 105.6(12) (MeV),  (6.7)
mMS(4)(NDR, 2 GeV) = 134.2(30) (MeV).  (6.8)

With the nonperturbative renormalization in the
DWQCD and data at a~! =2, 3,4 GeV, we can extract
By within 2% errors, except the quenching errors. The
error in By is directly reflected to that in the Cabibbo-
Kobayashi-Maskawa (CKM) triangle constraint from €.
If we adopt our By for an input, the error of the constraint
is improved as is shown in Fig. 22. The solid lines are
central value and 1 standard deviation of the constraint
from ey with our Bg. The dashed lines are results with By
adopted by the CKMfitter Group [39]. For other inputs we
used those given by the CKMfitter.’

Although the perturbative renormalization can also
achieve the same level of accuracy for By, it is clearly
shown that the nonperturbative renormalization is indeed
necessary for the precise determination of quark masses in
lattice QCD.

3We use the standard formula for € as is given in Ref. [39].
Note however that our figure is not a global fit.
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APPENDIX A: CHIRAL WARD-TAKAHASHI
IDENTITY FOR SF FORMALISM WITH DOMAIN-
WALL FERMION

In this appendix we derive the Ward-Takahashi identity
(4.18) for the Schrodinger functional formalism with
domain-wall fermion. An explicit form of the chirally
rotated correlation function used for evaluation of
Zyvi+aa 1s presented. We use the same notation as
Ref. [27] for the SF formalism in this appendix.

In this paper we adopt the following massless domain-
wall fermion action with an orbifolding projection

1 —
S = a* 2 ST Dyyrip (AD)
_ -+
fi, = L= 707sPOR y‘)z%PQR. (A2)

Here P is a parity transformation in fifth direction
P, (X, x0, 1) = (X, xo, N5 — s + 1), and R is a time re-
flection operator acting on the temporal direction
R s (X, yo, ) = ¥(X, —x, 5). Q is the vector charge ma-
trix for the chiral transformation [29]

1 00 0 0 O

01 0 O 0 0
10 01 O 0 0 o
Q‘v,t - 00 0 -1 0 0 B (for NS - 6)
000 O -1 0
00 0 O 0 -1
(A3)
For this action the physical quark propagator is given by
1 £ yR
Gglll:ark(x; y) = 2(unarkH+)x,y) Hi = %
(A4)

This propagator is shown to agree with (3.12) numerically
and we employ the latter in our numerical simulations.
We consider the chiral rotation of the first flavor

wl (.X, S) - I;Zl (.X, S) = (eiiaQ)stl/jl (.X', t);
J1(x, ) = 1 (x, 8) = iy (x, D(e*Q),,,

under which the physical quark and boundary quark fields
are rotated as

g 1(x) = e *sq(x), g1(x) = g;(x)e*rs,  (A6)

Fix)=eiovsg(x), G =Zi(xe o, (A7)
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2l =eiovsfi(x),  Z1(x) = Zi(x)e i@, (AB)

For a = 77/2 the action for the first flavour is transformed
as

SSF.— S+ Y, (A9)

- 1—=— -
SSF=a* ZilpH_deflp, (A10)
Yy =a*y I _Xy, (A11)

aX = (PL8,n. /20, n. /241 + PROgN. /2410, N /2) 0 y-
(A12)
We notice that the orbifolding projection in the rotated
action S5F. has an opposite sign and the rotated quark

fields satisfy the opposite Dirichlet boundary condition to
(3.14)

P*él(x)lxo:o =0, P+ql(x)|x0:NT =0, (A13)

g 1(x)Psly—0 =0, G1(X)P_|y =y, = 0. (Al4)

Now we derive the Ward-Takahashi identity for the 4-
point function (2.13) and 2-point functions (2.18) as

+ 1 +
TFAFBFC = E<(921[FA](945[F3]0‘7A+AV(X)(9§3[FC]>S

] P N+
= F<(921[FAi'yS](945[FB]i0\7V+AA(x)

X (9g3[FC]>S~+Y, (A15)
1
fi = _ﬁ<@ﬁz[75]@21[75]>s
| R =
= - m<l(9/12[]]l(921[1]>5+w (A16)
1 &, .,
ky = — 616 ;(012[7k](921[7k]>s
1 3 A/ . p .
= T eLf Z<(912[V)’57k]021[7k175]>§+Y’ (A17)
k=1
where
Ovian = @17,9)@3Yuqs) + G1Y,.Y592)
X(G3Yu¥sq4) = (@192 @3Y uq2)
+(q17,7590)(@37  v592)}- (A18)

Operators with tilde consist of the chirally rotated field for
the first flavor, which satisfies the opposite SF Dirichlet

PHYSICAL REVIEW D 78, 034502 (2008)

boundary condition. Subscript S and § + Y mean the ac-
tion under which the vacuum expectation value is taken.

The chiral symmetry breaking effect comes from a con-
tribution of Y on the right-hand side of the WT identity,
which generates an operator mixing with the parity-even
operator. The contribution should be suppressed exponen-
tially in the physical quark propagator and this is the case at
tree level. We evaluate the effect by comparing two corre-
lation functions directly

<(921 [FA]@45 [FB]OéA +Av(x) (9/53[FC]>S
A <C~OZI (L4 i75]@45[FB]i0~§V+AA (x)(9’53[FC]>g. (A.19)

For this purpose we define the renormalization factor for
the parity-even four fermi operator as

hy ) (x = L/2)

Zyyrans(8o ap) = P o= L% g0 (A.20)
() = Frapss() i'Z;']; (o). (A21)
|
F o) = 250 Caivs 10T 1i07y 00
X Og[Tc)s, (A.22)
fi= —2—26<i(~9’12[1]i(~921[1]>5~ (A.23)

and compare it with that for the parity-odd operator.

APPENDIX B: NUMERICAL ANALYSIS OF By FOR
B =32

Since the numerical data of CP-PACS Collaboration at
B = 3.2 are new and not published, we give a short sum-
mary of its numerical analysis in this appendix.

1. Run parameters and measurements

We carry out run at 8 = 3.2, corresponding to a lattice
spacing a~! = 4.19(6) GeV determined from the p meson
mass m, = 770 MeV. We use the lattice size N2 X N, X
Ns = 483 X 80 X 16. This lattice has a reasonably large
spatial size of aN, = 2.3 fm and fifth dimensional length
N5 = 16, which has been confirmed to be enough for By
[6]. In this numerical simulation the domain-wall height is
taken to be M = 1.8.

We take degenerate quarks in our calculations. The value
of bare quark mass is chosen to be msa =
0.009, 0.018, 0.027, 0.036, which covers the range that
mpg/my = 0.5334-0.8224.

Quenched gauge configurations are generated on 4-
dimensional lattices. A sweep of gauge update contains
one pseudoheatbath and four overrelaxation steps. After a
thermalization of 2000 sweeps, hadron propagators and 3-
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Effective masses of the pseudoscalar meson as a function of the temporal distance ¢ at each quark mass. Lines represent the

central value of the exponential fit of the propagator and its fitting range.

point functions necessary to evaluate By are calculated at
every 200th sweep. We adopted 50 independent configu-
rations for the analysis. The gauge configuration on each
fifth dimensional coordinate s is identical and is fixed to
the Coulomb gauge.

The domain-wall quark propagator needed to extract the
By is calculated by the conjugate gradient algorithm with
an even-odd preconditioning. Two quark propagators are
evaluated for each configuration corresponding to the

wall sources placed at either t =4 or 77 in the time
direction with the Dirichlet boundary condition, while
the periodic boundary condition is imposed in the spatial
directions. The two quark propagators are combined to
form the kaon Green function with an insertion of the
four-quark operator at time slices 1 = ¢t = N, in a standard
manner. We employ the same quark propagators to evalu-
ate pseudoscalar and vector meson propagators, and extract
their masses.

04 T T 04 T T
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i
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0 | | | | | | L O
0 10 20 30 40 50 60 70 80 0
t
0.4 T T T 0.4 T T T
o m=0.027 o m=0.036
03f . 03l . ¢
o o ‘H’ "“‘ch
i Tkt | [
g 02f £ o2t -
< < ° +
[}
o0.1f d 01t -
0 Il Il Il Il Il Il Il 0 Il Il Il Il Il Il Il
0 10 20 30 40 30 60 70 80 0 10 20 30 40 30 60 70 80

FIG. 24. Effective masses of the vector meson as a function of z.
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2. Pseudoscalar and vector meson masses

We extract pseudoscalar and vector meson masses mpg
and my at each m; by a single exponential fit with meson
propagators. Representative plots of effective masses are
shown in Figs. 23 and 24. Fitting ranges chosen from
inspection of such plots are 24 =t =55 and 14 =t =
30 for pseudoscalar and vector meson masses, respectively.

For the chiral extrapolation we fit m%g and my linearly in
msa as illustrated in Fig. 25. Since pseudoscalar meson
mass does not vanish at m; = 0, we employ a fit of the
form

mpga* = Aps(msa + myea), (B.1)

mya = Ay + Bymga (B.2)

and determine the parameters Apg, mca for the pseudo-
scalar meson, and Ay, By for the vector meson. The

4
m
Il Il Il Il Il Il Il
0‘40 10 20 30 40 50 60 70 80
t
0.8 T
& %
0] o]
[0] [
0.7 Q o]
M J 9
4
A 06 B
05k 1
O m.= 0.027
Il Il Il Il Il Il Il
04 10 20 30 40 50 60 70 80
t
FIG. 26.

Pseudoscalar meson mass squared (left) and vector meson mass (right) as a function of bare quark mass m a. Lines show

physical bare masses, m}d for the generated u and d quarks
and m} for the s quark, are determined by equations that

JAPS(m?da + mresa) _
AV + va;da m

My

(B.3)

A

VArs((m5(K)a + mia)/2 + mesa) _ mg _ 0495

Ay + Bym“ia m, 077"
(B.4)
Ay + Bymiy(d)a  my  1.0194 B5)
Ay + Bymiia m, 077" '

For the s quark, we extract two values of the s quark mass,
m}(K) from the kaon mass input or m‘ji.(gz')) from the phi

meson mass input. We then fix the lattice spacing a by

0.4 L L L I I I L

0815 T L
b % $ o
0.7¢ Q%»_ . P o
o4 06f g
0.5F 1
o m.=0.036

0.4 I I I I I I I

Ratios of the matrix element to the vacuum saturation (1.2) as a function of ¢.
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FIG. 27. The bare Bk as a function of mya.

setting the vector meson mass at the physical quark mass
point m;id to the experimental value m, = 770 MeV.

Numerical values of lattice spacing and quark masses are
listed in Table I.

PHYSICAL REVIEW D 78, 034502 (2008)

3. Extraction of B parameters

In the course of our simulation we measure the kaon By
(1.2). The s and d quark fields defining B are the physical
fields given by (3.10), and the four-quark and bilinear
operators are taken to be local in the 4-dimensional
space-time.

In Fig. 26 we show typical data for the ratio of kaon
Green functions for Bk as a function of the temporal site ¢
of the weak operator. The values of these quantities at each
m are extracted by fitting the plateau with a constant. The
fitting range, determined by the inspection of plots for the
ratio and those for the effective pseudoscalar meson mass,
is24 =t =255.

The bare value of By is interpolated as a function of ma
using a formula suggested by chiral perturbation theory,

Bx = B(1 — 3cmyalog(msa) + bmga). (B.6)

This interpolation is illustrated in Fig. 27. The physical
value of By is obtained at the point m; = (m}(K) +

m}‘cd) /2 estimated from the experimental value of mg/m,
(a solid circle in Fig. 27). The result is given in Table 1.
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