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We construct efficient interpolating fields for lattice spectroscopy of mesons by applying covariant

derivatives on Jacobi-smeared quark sources. These interpolators are tested in a quenched calculation of

excited mesons based on the variational method. We present results for pseudoscalar, scalar, vector and
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I. INTRODUCTION

A clean extraction of excited hadron masses from a
lattice QCD simulation is a serious challenge. However,
an ab initio determination of properties for excited light
hadrons would provide highly interesting information on
the chiral dynamics of QCD.

Excited hadrons are rather nontrivial objects to study on
the lattice. One of the main reasons for difficulties is the
fact that excited states appear only as subleading contribu-
tions in Euclidean two-point functions. Although a variety
of other approaches has been tried, including Bayesian
methods [1–3], an NMR-inspired blackbox method [4,5]
and evolutionary fitting techniques [6], the most powerful
method is probably the variational approach [7,8]. The
reason for its power is the fact that in the variational
method not only a single correlator is studied, but a whole
matrix of correlation functions. Consequently more infor-
mation is extracted from the system.

The successful implementation of the variational
method hinges crucially on the set of basis interpolators
that are used in the correlation matrix. A particularly
important criterion is that the interpolators have a large
overlap with the physical states in a given channel, i.e.,
with both ground and excited states. In this article we build
on earlier work [9–12], where Jacobi-smeared quark
sources with different width were used to construct hadron
interpolators that allow for nodes in their radial wave
function. To construct a richer set of interpolators, we
now also include derivative sources for light-quark
spectroscopy.

Interpolators with derivatives have been widely used for
heavy-quark systems (see, for example, [13–15]). They
have also been applied by Burch et al. [16,17] for light

mesons and by Lacock et al. [18] to the study of both
orbital excitations of mesons and hybrids. Note that the
approach in [18] differs from ours. In [18] the interpolators
are built with quarks displaced relative to each other con-
nected by certain paths which are classified with respect to
irreducible representations of the symmetry group of the
hypercubic lattice. That approach is similar to the one
adopted by Basak et al. [19–22] for baryons.
In our paper we test derivative sources in a quenched

excited meson spectroscopy calculation. In particular we
study the pseudoscalar, scalar, vector and pseudovector
channels. Depending on the channel we find considerable
improvement of the signal for some of the excited and
ground states. Preliminary results with our derivative
sources were already reported in [23–25].

II. SETTING OF THE CALCULATION

A. Variational method

The central idea of the variational method [7,8] is to use
several different interpolators Oi, i ¼ 1; . . .N with the
quantum numbers of the desired state and to compute all
cross correlators for interpolators projected to fixed spatial
momentum (zero in this work),

CðtÞij ¼ hOiðtÞOy
j ð0Þi: (1)

In Hilbert space these correlators have the decomposition

CðtÞij ¼
X
n

h0jOijnihnjOy
j j0ie�tMn : (2)

Using the factorization of the amplitudes one can show [8]
that the eigenvalues �kðtÞ of the generalized eigenvalue
problem,

CðtÞ ~vk ¼ �kðtÞCðt0Þ ~vk; (3)

behave as

�kðtÞ / e�tMk½1þOðe�t�MkÞ�; (4)

where Mk is the mass of the kth state and �Mk is the
difference to neighboring states. In Eq. (3) the eigenvalue
problem is normalized at a time slice t0 � t.
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Equation (4) shows that each eigenvalue predominantly
decays with a single mass: The largest eigenvalue decays
with the mass of the ground state, the second largest
eigenvalue with the mass of the first excited state, and so
on. Thus, the variational method disentangles the signals of
the ground and excited states. As a consequence simple,
stable two-parameter fits become possible.

At this point we remark that the variational method also
treats ghost contributions correctly, which in some chan-
nels show up in a quenched or partially quenched calcu-
lation at small quark masses [26]. It was shown in [27] that
in the variational approach the ghost contribution couples
to an individual eigenvalue (up to the correction term) in
the same way as a proper physical state. Thus, ghost
contributions are disentangled from the physical states
and need not be modeled in the further analysis of the
exponential decay of the eigenvalues.

To visualize the results and to determine possible fit
ranges, we plot effective masses which are built from the
ratios of eigenvalues

aMk;eff

�
tþ 1

2

�
¼ ln

�
�kðtÞ

�kðtþ 1Þ
�
: (5)

For those values of t where the exponential decay of the
eigenvalue is governed by a single state, the effective
masses form pronounced plateaus.

It is an interesting observation that for the same values of
t, where the effective mass plateaus form, also the corre-
sponding eigenvectors are approximately constant as a
function of t. An example of this behavior is given in
Fig. 5 (discussed later), where we show the entries of the
eigenvectors for the three largest eigenvalues as a function
of t. This time independence of the eigenvectors serves as a
‘‘fingerprint’’ for the physical states. To be more precise,
the eigenvectors we use for such fingerprints are the ei-
genvectors of the regular eigenvalue problem

Cðt0Þ�ð1=2ÞCðtÞCðt0Þ�ð1=2Þ ~v0
k ¼ �kðtÞ ~v0

k; (6)

which obviously has the same eigenvalues �kðtÞ as the
problem (3), but gives rise to orthogonal eigenvectors ~v0

k.

In our analysis we only fit states which give rise to a
plateau in both the effective mass and the corresponding
eigenvector. Ideally, t0 should be chosen large. However,
large t0 also tends to increase the statistical noise. We
explored the dependence of the effective mass plateaus
on the time slice t0 and usually found the best results for
t0 ¼ 1. So unless noted otherwise, t0 will be fixed to t0 ¼ 1
for all results quoted (our sources are located at t ¼ 0; see
next section).

B. Smeared sources and sinks

In order to optimize the overlap with the ground and first
few excited states, one commonly uses quark smearing. We
first construct extended sources by the Jacobi smearing
[28,29] of point sources S0 located at time slice t ¼ 0:

Sð�;aÞ0 ð ~y; tÞ�;c ¼ �ð ~y; ~0Þ�ðt; 0Þ����ca; (7)

Sð�;aÞ ¼ XN
n¼0

�nHnSð�;aÞ0 ; (8)

Hð ~x; ~yÞ ¼ X3
i¼1

ðUið ~x; 0Þ�ð ~xþ î; ~yÞ

þUið ~x� î; 0Þy�ð ~x� î; ~yÞÞ: (9)

The smearing has two parameters � and N and leads to
gauge covariant, approximately Gaussian shaped sources
of different width. We use the same combinations of pa-
rameters as in [9] and we refer to our sources as ‘‘narrow’’
(Sn) and ‘‘wide’’ (Sw).
Our derivative quark sources W@i are constructed by

applying a covariant derivative to the wide sources:

Pið ~x; ~yÞ¼Uið ~x;0Þ�ð ~xþ î; ~yÞ�Uið ~x� î;0Þy�ð ~x� î; ~yÞ; (10)

W@i ¼ PiSw: (11)

These sources are then used in the construction of meson
interpolators of definite quantum numbers.

C. Meson interpolators

Table I shows our interpolators for the different meson
channels considered. In the first column the interpolators
are numbered according to their structure rather than con-
secutively. Numbers 1–6 denote the Jacobi-smeared inter-
polators of [9], while the interpolators 7–12 contain at least
one derivative. Notice also that only the combination of
number and quantum numbers uniquely labels an
interpolator.
In some cases, an (anti-) symmetrization of the interpo-

lators is necessary to obtain the correct behavior under
charge conjugation. Therefore, interpolators denoted as
�u@i�dn=w in Table I should be read as �u@i�dn=w �
�un=w�d@i . We restrict ourselves to light, isovector (I ¼ 1)

mesons with degenerate quark masses mu ¼ md.
All interpolators have been classified by their continuum

quantum numbers IJPC, both for nonvanishing quark mass
and in the chiral limit. As usual, P is the spatial parity, J is
the total spin, and I the isospin. For a neutral q �q system
[30] the C parity is related to the other quantum numbers in
a standard way. To simplify the notation, we omit the spin
and isospin projections in the notation.
In addition to the quantum numbers listed in Table I, the

lattice interpolators will also couple to continuum states
with higher J due to the loss of rotational symmetry
[14,18]. The lattice interpolators for 0PC mesons couple
also to J � 4, but this does not influence our conclusions
since there are no observed resonances with J � 4 in the
energy regime of interest. The lattice interpolators for 1PC

mesons couple also to J � 3 and the issue is discussed in
Sec. III C.
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In the chiral limit, the different interpolators listed in
Table I can be classified into representations of chiral
SUð2ÞL � SUð2ÞR and Uð1ÞA groups [31,32], as well as
with respect to their partial wave 2Sþ1LJ decomposition
[33]. Below we review these properties.

We label with R the index of the chiral representation;
R ¼ ð0; 0Þ, ð1=2; 1=2Þa, ð1=2; 1=2Þb, or ð0; 1Þ � ð1; 0Þ. The
chiral basis fR; IJPCg is obviously consistent with Poincaré
invariance. Each of the interpolators in Table I has a fixed
Uð1ÞA transformation property. Namely, all those interpo-

TABLE I. List of our meson interpolators. The numbers in the first column together with the quantum numbers IJPC given in the
third column label the interpolators uniquely. The fourth and fifth column specify the chiral representation and the coupling in the
chiral limit. The lattice interpolators may also couple to states with higher angular momentum J [14,18]. The subscripts n and w refer
to narrow and wide smearing of u and d quarks. The subscript @i denotes derivative smearing in i direction. Where it appears, the index
i is summed over the spatial directions 1,2,3. The time direction is 4 and the corresponding Dirac matrix is �4. For the vector and
pseudovector channels the index k (not summed !) can have values k ¼ 1, 2, 3.

Number Operator IJPC beyond chiral limit Chiral representation IJPC chiral limit Comment

1 �undn 1 0þþ ð12 ; 12Þb 1 0þþ
2 �undw
3 �uwdw

7 �u@i�idn 1 0þþ ð1; 0Þ � ð0; 1Þ does not exist

(only J � 1)
not coupling to scalar

in the chiral limit8 �u@i�idw

9 �u@i�i�4dn 1 0þþ ð12 ; 12Þb 1 0þþ
10 �u@i�i�4dw

11 �u@id@i 1 0þþ ð12 ; 12Þb 1 0þþ

1 �un�5dn 1 0�þ ð12 ; 12Þa 1 0�þ
2 �un�5dw
3 �uw�5dw

4 �un�4�5dn 10�þ ð1; 0Þ � ð0; 1Þ does not exist

(only J � 1)
time component of axial vector

coupling due to chiral

symmetry breaking

5 �un�4�5dw
6 �uw�4�5dw

9 �u@i�i�4�5dn 1 0�þ ð12 ; 12Þa 1 0�þ
10 �u@i�i�4�5dw

11 �u@i�5d@i 1 0�þ ð12 ; 12Þa 1 0�þ

12 �u@i�4�5d@i 1 0�þ ð1; 0Þ � ð0; 1Þ does not exist

(only J � 1)
time component of axial vector

coupling due to chiral symmetry breaking

1 �un�kdn 1 1�� ð1; 0Þ � ð0; 1Þ 1 1��
2 �un�kdw
3 �uw�kdw

4 �un�k�4dn 1 1�� ð12 ; 12Þb 1 1��
5 �un�k�4dw
6 �uw�k�4dw

7 �u@kdn 1 1�� ð12 ; 12Þb 1 1��
8 �u@kdw

11 �u@i�kd@i 1 1�� ð1; 0Þ � ð0; 1Þ 1 1��

1 �un�k�5dn 1 1þþ ð1; 0Þ � ð0; 1Þ 1 1þþ
2 �un�k�5dw
3 �uw�k�5dw

11 �u@i�k�5d@i 1 1þþ ð1; 0Þ � ð0; 1Þ 1 1þþ
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lators that belong to (0, 0) or ð0; 1Þ � ð1; 0Þ of SUð2ÞL �
SUð2ÞR are scalars with respect to Uð1ÞA, i.e., they trans-
form into themselves under a Uð1ÞA transformation.
However, interpolators with opposite spatial parity and
the same spin J and isospin I from the distinct
ð1=2; 1=2Þa and ð1=2; 1=2Þb representations of SUð2ÞL �
SUð2ÞR transform into each other upon Uð1ÞA.

The set of quantum numbers fR; IJPCg uniquely fixes a
partial wave content jI; 2Sþ1LJi of the quark-antiquark
system in the center-of-mass frame [33]. In particular,
the different interpolators from Table I with quantum
numbers 1 0þþ belonging to ð1=2; 1=2Þb represent the
j1; 3P0i partial wave in the �qq system, irrespective of the

number of derivatives in the interpolator. Note however
that there are some interpolators in the 1 0þþ channel
(numbers 7 and 8) which will not couple to the scalars in
the chiral limit, since they belong to the ð0; 1Þ � ð1; 0Þ
representation which requires J � 1.

For the 1 0�þ sector, there are two types of interpolators:
interpolators (1–3, 9–10, 11) which transform as
ð1=2; 1=2Þa and represent the j1; 1S0i partial wave, and

time components of pseudovector interpolators which
couple to pseudoscalars due to partial conservation of the
axial vector current and which belong to the ð0; 1Þ � ð1; 0Þ
representation.

In the 1 1þþ sector, all interpolators transform as ð0; 1Þ �
ð1; 0Þ and couple only to the j1; 3P1i partial wave.
However, there are two kinds of interpolators with quan-
tum numbers 1 1��. They are the fixed and orthogonal
superpositions of two different partial waves:

jð0; 1Þ þ ð1; 0Þ; 1 1��i ¼
ffiffi
2
3

q
j1; 3S1i þ

ffiffi
1
3

q
j1; 3D1i;

jð1=2; 1=2Þb; 1 1��i ¼
ffiffi
1
3

q
j1; 3S1i �

ffiffi
2
3

q
j1; 3D1i:

The interpolators 1–3 and 11 from Table I belong to the
jð0; 1Þ þ ð1; 0Þ; 1 1��i representation, while all others
transform as jð1=2; 1=2Þb; 1 1��i.

D. Technicalities

For our analysis we used 99 uncorrelated quenched
gauge configurations generated with the Lüscher-Weisz
gauge action [34,35]. We work on a 163 � 32 lattice with
a ¼ 0:148 fm determined [36] from the Sommer parame-
ter (using r0 ¼ 0:5 fm). For comparison we also use old
data from a 203 � 32 lattice at a ¼ 0:119 fm, where,
however, only the Jacobi-smeared sources without addi-
tional derivatives are available. The boundary conditions
for the gauge fields are periodic in all four directions. The
quark propagators were computed from the Chirally
Improved Dirac operator [37,38] with periodic boundary
conditions in space and antiperiodic boundary conditions

in the time coordinate. We study several quark mass pa-
rameters in the range amq ¼ 0:02 . . . 0:2. We fold individ-

ual entries of the correlation matrix resulting from
propagation in positive and negative time direction accord-
ing to their symmetry, which reduces the statistical errors
and improves the quality of the data significantly. Unless
noted otherwise, the errors we quote are statistical errors
determined with the jackknife method.
Where possible we also indicate the systematical uncer-

tainties by a shaded band (Figs. 3 and 4 etc.). The upper
and lower limits of this band are obtained by repeating the
fits of the eigenvalues using different fit ranges and varying
the interpolators used in the correlation matrix. Although
this is certainly only a rough estimate of the systematic
uncertainty in the mass determination, we refer to these
error estimates as ‘‘systematic errors’’. We stress, however,
that these errors do not include the error introduced by the
quenched approximation.
For plots with the pion mass squared on the horizontal

axis, we use a specific combination of Gaussian interpola-
tors for extracting the ground state pion mass. The corre-
sponding statistical error gives rise to the horizontal error
bars in some of our plots which are, however, smaller than
the symbols used.
When fitting eigenvalues obtained with the variational

method we experimented with both correlated and uncor-
related (two-parameter) exponential fits. For the correlated
fits we used a jackknife estimate of the correlation matrix
which was not always stable with our ensemble of con-
figurations. For the generation of the plots we therefore
resorted to simple uncorrelated fits throughout, using only
the diagonal elements of the covariance matrix. For the
cases, where correlated fits are stable and a direct com-
parison with uncorrelated fits is possible, we find that the
latter give larger statistical errors [39]. This explains the
rather small �2=d:o:f:we find. Thus the uncorrelated errors
we give in the plots and in the Appendix (Tables II, III, IV,
V, VI, VII, VIII, IX, and X) are probably overestimated.

E. A first look at the derivative sources

Figure 1 shows the diagonal elements of the correlation
matrix for some of the channels considered. Compared to
the interpolators from Reference [9] (without derivative
sources), the interpolators with derivative sources show
stronger contributions from excited states, i.e., they have
a steeper slope for small Euclidean time t. Nevertheless,
for all interpolators the ground state in the respective
channel dominates the behavior at large time separation,
i.e., all correlators in Fig. 1 display the same slope at
sufficiently large t.
We remark that the propagators in the 0þþ channel at the

lightest quark masses show a deviation from that pattern
for small t due to ghosts. A more detailed discussion of the
scalar correlators will be given in Sec. III B.
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As suggested by Fig. 1, the pion ground state can be
fitted from a single diagonal correlator at all quark masses.
Stable plateaus are obtained in the time interval t ¼
6 . . . 15 where cosh fits can be performed for the individual
correlators. For the lowest quark mass amq ¼ 0:02 the

statistical error usually is of the order of 1–2% of the fitted
value with the derivative sources leading to a somewhat
larger error. An exception is interpolator 12 where the
statistical error is about 3.5% of the fitted value. At larger
masses the error is substantially smaller. The fit values for
the ground state pion mass from the different individual
correlators, shown in the left-hand side plot of Fig. 1, agree
within two sigma. For the 1�� channel similar observa-
tions hold.

F. Contributions from backward propagation

In Fig. 2 we show the three largest eigenvalues obtained
from the generalized problem (3) for the pion case. It is
obvious that on the logarithmic scale used in this plot the
three eigenvalues give rise to three essentially straight lines
for sufficiently small t. The different slopes correspond to
the masses of the ground, first and second excited states.

For mesons, forward and backward propagation behaves
in the same way. Each interpolator coupling to a particular
state at early times will also couple to the same, but back-
ward running, state at later time. Higher channels in the
generalized eigenvalue problem may in this way turn into
lighter state signals. This interesting observation (see also
[40]), particular to the generalized eigenvalue problem, can
be made for the second eigenvalue in Fig. 2: At t� 9
(when using t0 ¼ 1) the data points of the second eigen-
value change their behavior and start to increase again.
Beyond t ¼ 9 the data points form a straight line with
positive slope. This upward pointing straight line turns
around again at t� 13 and from there on decays with a
slope corresponding to the ground state mass. Also the
slope of the upwards pointing piece between t ¼ 9 and t ¼

13 (which is then continued by an upward pointing piece of
the largest eigenvalue), has the slope of the ground state
mass.
This avoided level crossing scenario has an important

consequence: The generalized eigenvalue problem disen-
tangles the forward propagating ground and excited state
masses only up to the first crossing with the backward
running lightest propagator, which for our example hap-
pens at t� 9. Beyond that value also the second eigen-
value, which for small t is dominated by the first excitation,
couples to the lighter ground state (running ‘‘backwards’’)
and no longer provides information on the excitations. In
particular in the 0�þ channel, where a backward running
light pion crosses with the second eigenvalue already at a
small t, this effect limits the analysis of excited states [41].
The comments of this subsection are particularly impor-

tant for light pseudoscalars. For the pions it is the backward
running contributions that limit the fit range with the
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FIG. 1 (color online). Diagonal entries of the correlation matrix as a function of t. The data are for bare quark mass amq ¼ 0:04. The
0�þ (left-hand side plot) and 1�� (right-hand side) channels are shown. The numbers next to the correlators are according to Table I.
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FIG. 2 (color online). First three eigenvalues from the gener-
alized eigenproblem (3) for the 0�þ channel as a function of t.
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generalized eigenproblem, leading to errors comparable
with the errors obtained from fitting single correlators
with the correct functional form.

III. RESULTS FOR INDIVIDUAL MESON
CHANNELS

A. The 0�þ channel

Figure 3 shows the results for the first excited state of the
pion. We display the results for two different sets of
interpolators. Circles are used for the combination of
Gaussian interpolators 1, 4, 5, 6, while the squares corre-
spond to the combination 1, 4, 6, 9, 12 of Gaussian and
derivative interpolators. While combinations of Gaussian
and derivative interpolators allow for fits at slightly lighter
quark masses, the interpolators with derivative sources
couple weaker to the ground state. The systematical uncer-
tainty (shaded region in the figure) from the choice of
interpolators is consistent with statistical effects as reason-
able combinations of four or more interpolators lie within
one sigma of our final fit result. While there is no signifi-
cant improvement, the new results with a larger basis
nicely confirm the existence of the measured state.

With a combination of Gaussian and derivative interpo-
lators, it is also possible to obtain fits for a second excited
state which could not be observed before. This state is
displayed in Fig. 4. In the chiral limit, this state can most
likely be identified with the �ð1800Þ. Fits with various
different combinations of interpolators lead to the same
results which all show stable eigenvector entries.

It is instructive to look at the components of the eigen-
vectors for all three states observed in the pseudoscalar

channel. Figure 5 shows such a plot. While the derivative
interpolators 9 and 10 do not contribute significantly to the
ground and first excited states, they are most important for
obtaining the newly observed second excited state. This
behavior is qualitatively the same for all possible combi-
nations of interpolators where the second excited state
could be seen.
While the reduction in the statistical error for the first

excited state can merely be attributed to an enlargement of
the basis, the second excited state is only observed when
including derivative interpolators. We would like to stress
that a correlation matrix of similar size consisting solely of
nonderivative operators does not enable us to see this
excitation.

B. The 0þþ channel

In the 0þþ channel contributions from ghosts [26,27,42–
45], arising from the 	0� contribution to the isovector-
scalar correlators, are expected and must be identified
for a clean interpretation of the data. These unphysical
contributions due to quenching have a negative spectral
weight and dominate the correlators at small quark
masses, leading to correlators which become negative
at intermediate time separations. Figure 6 shows the di-
agonal correlators for the scalar channel at our smallest
quark mass amq ¼ 0:02. While some of them (1–3) dis-

play a very prominent ghost contribution, others show a
much smaller contribution. Correlators 7 and 8 feel no
effects from ghosts at all with our limited statistics, which
may be related to their different chiral structure (see
Table I). We note that these two interpolators do not
seem to couple in the dynamical case, as our preliminary
dynamical results do not show a signal for these
correlators.
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FIG. 4 (color online). Second excited state for the pseudosca-
lars. The filled symbol indicates the �ð1800Þ.
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FIG. 3 (color online). First excited state of the pseudoscalars
for two different sets of interpolators. The error bars are statis-
tical only and the shaded region indicates the additional system-
atic error as discussed. The filled symbol corresponds to the
experimentally measured �ð1300Þ.
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While the variational approach enables us to disentangle
most of these ghost contributions [27], at low quark masses
the quality of the observed plateaus quickly deteriorates for
the Gaussian interpolators leading to large error bars for
the a0 ground state.

The additional interpolators with derivative sources en-
large the correlation matrix, which is vital in the presence
of ghost contributions. Furthermore, it is these interpola-
tors which couple only weakly to the ghosts. Using the
variational method we are able to disentangle the leading
ghost contribution and in some cases even a subleading
ghost contribution, corresponding to a 	0� state with
relative momentum.

Figure 7 shows the results for the largest eigenvalue of
the variational analysis. The plot demonstrates that deriva-

tive sources enable us to perform fits at smaller quark
masses with reduced statistical errors in the intermediate
and heavy quark mass region.
The shaded region in Fig. 7 indicates our estimate of the

additional systematic errors due to the choice of fit ranges
and interpolators considered. As it remains unclear which
systematics cause the dependence on the choice of inter-
polators in this channel, we refrain from an extrapolation to
the physical mass region. Interpolators with strong ghost
contributions, however, tend to lead to higher mass values
suggesting the ground state to be in the region of the
a0ð1450Þ, while a fit with those interpolators containing
no visible ghost contribution leads to values in the lower
parts of the shaded region.
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For this channel large quenching effects might influence
the result. Thus it is not clear whether the data should
extrapolate to the a0ð980Þ or the a0ð1450Þ. More light
will be shed on this channel only when dynamical data
are available where no quenched ghosts are present [46]. If
the systematic deviations we observe in the choice of
interpolators are due to ghosts, one should expect the
results to become more consistent with dynamical data.

A review of issues faced in the scalar channel and a
detailed discussion of the possible nature of the isovector-
scalar ground state can be found in the recent review by
McNeile [47].

C. The 1�� channel

As mentioned before, the ground state for the vector
meson, the �ð770Þ, can also be fit from single correlators.
However the results improve quite drastically when a
matrix of interpolators is used.

Figure 8 shows the 1�� meson ground state and illus-
trates the good quality of the data in the quenched approxi-
mation, where no decay is possible. The results from
different interpolators and fit ranges agree within error
bars.

The interpretation for the first and second excitation in
the 1�� channel is less clear. From experiment we know of
multiple excitations with J ¼ 1 below 2 GeV, the most
established being the �ð1450Þ and the �ð1700Þ. In addition,
due to loss of continuous Lorentz symmetry, some of the
lattice interpolators we chose may in principle couple to
continuum states with higher J [14,18], and there is at least
one such excitation known in the vector channel, the
�3ð1690Þ. Excluding this possibility would be a difficult
task which might be overcome by taking a look at different
irreducible representations of the hypercubic group where
degeneracy of states in different representations can be

used to identify the correct J, as has been demonstrated
for baryons [19–21].
As can be seen in Figs. 9 and 10, the values obtained

from combinations of Gaussian interpolators agree
qualitatively with the values obtained from the larger
basis, while the larger basis leads to overall smaller error
bars and somewhat more stable plateaus. Nevertheless,
the two excitations are too close together and would
both be consistent with the �ð1700Þ. This problem has
already been encountered in [19], where both the
163 � 32 lattice with spacing a ¼ 0:148 fm, and a finer
203 � 32 lattice with a ¼ 0:119 fm have been used. The
data from the fine lattice lead to two distinct excitations
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FIG. 8 (color online). Ground state for the �ð770Þ meson.
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compatible with an interpretation as the physical �ð1450Þ
and �ð1700Þ. To demonstrate this, we also included an
alternative fit of the old data from the fine lattice in
Figs. 9 and 10.

Inspecting the eigenvectors of the states, we can identify
them by their operator content and come to the conclusion
that they are indeed the same on both lattices. Moreover, as
both lattices have the same physical volume, this leads us
to an interpretation of the difference as a discretization
effect. Such an explanation seems reasonable as the states
are rather close to each other. We therefore are confident
that the method works and that the same calculation on
finer lattices would lead to results in better agreement with
experiment.

D. The 1þþ channel

For the 1þþ channel, there is only one interpolator
containing derivative quark sources. Figure 11 shows
data obtained from different combinations of Gaussian
interpolators and the one containing derivatives. An indi-
cation of error bands, as shown for the other channels, has
been omitted here, since the two combinations plotted
already show the extremes.

Figure 11 demonstrates a clear improvement in the
description of the ground state using the interpolator with
derivative quark sources. While the results from the
Gaussian and the full sets agree qualitatively, the statistical
errors towards smaller quark masses are significantly re-
duced. The reason for this is the longer, more stable
effective mass plateaus allowing for larger fit ranges. At
larger quark masses there is a slight deviation of the order
of 2 sigma.

The excited state previously observed stays the same if
one includes the new interpolator in the analysis. Looking
at the components of the modified eigenvalue problem we

see that this interpolator contributes only weakly to this
excited state.

IV. SUMMARY

In this article we have explored the impact of derivative
sources in light meson spectroscopy. The sources are ob-
tained by applying a covariant derivative on a Jacobi-
smeared quark source. Interpolators based on derivative
sources were tested in a quenched excited meson spectros-
copy calculation based on the variational method.
We find that both ground and excited state signals may

be improved, depending on the channel. For the 0�þ
channel we find that the quality of the first excited state
improves and fits become possible for smaller quark
masses. In addition a second excited state can be identified
when adding interpolators with derivative sources in the
correlation matrix.
The 0þþ channel is dominated by the presence of ghosts

at small quark masses which we essentially disentangle
using the variational method. The additional interpolators
with derivative sources are helpful since they enlarge the
correlation matrix and some of them couple only very
weakly to the ghost states. They allow one to fit scalar
masses at lower quark masses, although the results still
depend significantly on the choice of interpolators used in
the correlation matrix. This indicates that results for this
channel from a quenched calculation should be interpreted
only with the necessary caution.
For the 1�� mesons we demonstrate that the inclusion of

derivative sources leads to results with a smaller statistical
error which agree excellently with the results published
before.
For the 1þþ channel we show that the derivative sources

drastically improve the signal for the ground state. At the
same time a matrix of interpolators enables us to identify a
second excited state.
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APPENDIX: TABLES OF MASSES

The tables in this Appendix collect our results for the
masses in the various meson channels we analyzed for
various values of the quark mass parameter and different
choices of the interpolator set. We furthermore provide the
statistical errors and the corresponding �2=d:o:f:, as well as
the fit ranges that were used.
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TABLE III. First excited state in the 0�þ channel.

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

1,4,5,6 0.20 1.974 0.062 3–7 0.10

0.16 1.891 0.069 3–7 0.09

0.12 1.813 0.079 3–7 0.04

0.10 1.778 0.086 3–7 0.02

0.08 1.743 0.088 3–6 0.01

0.06 1.698 0.100 3–6 0.02

1,6,9,10 0.20 1.999 0.047 3–7 0.02

0.16 1.917 0.054 3–7 0.01

0.12 1.834 0.062 3–6 0.07

0.10 1.791 0.070 3–6 0.14

0.08 1.744 0.082 3–6 0.21

0.06 1.675 0.101 3–6 0.15

0.05 1.618 0.116 3–6 0.05

1,4,6,9,12 0.20 1.972 0.064 3–7 0.11

0.16 1.888 0.069 3–7 0.10

0.12 1.805 0.078 3–7 0.03

0.10 1.766 0.084 3–7 0.05

0.08 1.730 0.088 3–6 0.06

0.06 1.684 0.104 3–6 0.03

0.05 1.646 0.117 3–6 0.07

0.04 1.542 0.133 3–6 0.04

TABLE II. Ground state in the 0�þ channel (pion).

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

1,4,5,6 0.20 1.0535 0.0025 4–10 0.09

0.16 0.9379 0.0025 4–10 0.11

0.12 0.8098 0.0026 4–10 0.13

0.10 0.7391 0.0027 4–10 0.14

0.08 0.6621 0.0028 4–10 0.14

0.06 0.5759 0.0029 4–10 0.14

0.05 0.5279 0.0029 4–10 0.13

0.04 0.4750 0.0030 4–10 0.12

0.03 0.4151 0.0032 4–10 0.12

0.02 0.3420 0.0039 4–10 0.13

1,6,9,10 0.20 1.0536 0.0029 3–9 0.10

0.16 0.9380 0.0029 3–9 0.12

0.12 0.8100 0.0030 3–9 0.17

0.10 0.7392 0.0031 3–9 0.20

0.08 0.6621 0.0032 3–9 0.25

0.06 0.5757 0.0033 3–9 0.29

0.05 0.5274 0.0034 3–9 0.32

0.04 0.4742 0.0036 3–9 0.35

0.03 0.4136 0.0039 3–9 0.40

0.02 0.3414 0.0052 3–9 0.49

1,4,6,9,12 0.20 1.0534 0.0023 3–9 0.10

0.16 0.9377 0.0024 3–9 0.13

0.12 0.8096 0.0024 3–9 0.17

0.10 0.7390 0.0028 3–9 0.20

0.08 0.6619 0.0028 3–9 0.24

0.06 0.5755 0.0029 3–9 0.28

0.05 0.5271 0.0030 3–9 0.30

0.04 0.4744 0.0036 3–9 0.33

0.03 0.4140 0.0039 3–9 0.38

0.02 0.3418 0.0050 3–9 0.48
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TABLE VI. Ground state in the 1�� channel.

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

1,4,5,6 0.20 1.251 0.0041 3–9 0.01

0.16 1.165 0.004 3–9 0.01

0.12 1.079 0.005 3–9 0.01

0.10 1.036 0.005 3–9 0.01

0.08 0.993 0.006 3–9 0.01

0.06 0.950 0.007 3–9 0.02

0.05 0.931 0.009 3–6 0.01

0.04 0.912 0.010 3–6 0.01

0.03 0.893 0.012 3–6 0.02

0.02 0.871 0.016 3–6 0.06

1,2,7,8,11 0.20 1.251 0.003 3–12 0.02

0.16 1.165 0.004 3–12 0.04

0.12 1.079 0.005 3–12 0.06

0.10 1.036 0.005 3–12 0.07

0.08 0.993 0.006 3–12 0.07

0.06 0.952 0.008 3–12 0.06

0.05 0.933 0.009 3–12 0.04

0.04 0.914 0.011 3–12 0.03

0.03 0.896 0.013 3–12 0.02

0.02 0.881 0.017 3–12 0.07

TABLE V. Ground state in the 0þþ channel.

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

8,10,11 0.20 1.676 0.017 4–7 0.07

0.16 1.599 0.019 4–7 0.14

0.12 1.524 0.024 4–7 0.28

0.10 1.487 0.028 4–7 0.37

0.08 1.451 0.036 4–7 0.41

0.06 1.416 0.051 4–7 0.34

0.05 1.393 0.064 4–7 0.24

0.04 1.357 0.081 4–7 0.15

TABLE IV. Second excited state in the 0�þ channel.

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

1,6,9,10 0.20 2.266 0.108 3–7 0.01

0.16 2.199 0.109 3–7 0.02

0.12 2.142 0.120 3–6 0.07

0.10 2.113 0.134 3–6 0.12

0.08 2.082 0.162 3–6 0.14

1,4,6,9,12 0.20 2.291 0.089 3–6 0.08

0.16 2.221 0.096 3–6 0.08

0.12 2.155 0.111 3–6 0.06

0.10 2.125 0.126 3–6 0.04

0.08 2.098 0.154 3–6 0.01
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TABLE IX. Ground state in the 1þþ channel.

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

1,2,3 0.20 1.729 0.021 3–7 0.55

0.16 1.652 0.023 3–7 0.47

0.12 1.576 0.027 3–7 0.36

0.10 1.539 0.031 3–7 0.30

0.08 1.505 0.036 3–7 0.23

0.06 1.478 0.041 3–6 0.26

0.05 1.468 0.048 3–6 0.20

0.04 1.461 0.058 3–6 0.13

0.03 1.459 0.073 3–6 0.06

0.02 1.469 0.099 3–6 0.02

11 0.20 1.771 0.013 4–9 0.19

0.16 1.700 0.015 4–9 0.26

0.12 1.629 0.018 4–9 0.34

0.10 1.592 0.020 4–9 0.34

0.08 1.554 0.023 4–9 0.29

0.06 1.512 0.028 4–9 0.16

0.05 1.488 0.031 4–9 0.08

0.04 1.462 0.036 4–9 0.04

0.03 1.432 0.043 4–9 0.16

0.02 1.390 0.056 4–9 0.76

TABLE VIII. Second excited state in the 1�� channel.

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

1,4,5,6 0.20 2.209 0.065 3–6 1.49

0.16 2.117 0.063 3–6 1.50

0.12 2.036 0.071 3–6 0.98

0.10 1.993 0.079 3–6 0.62

0.08 1.948 0.093 3–6 0.25

0.06 1.909 0.120 3–6 0.08

1,2,7,8,11 0.20 2.178 0.029 3–7 1.25

0.16 2.111 0.030 3–7 1.18

0.12 2.031 0.031 3–7 0.42

0.10 2.000 0.034 3–7 0.33

0.08 1.974 0.038 3–7 0.24

0.06 1.956 0.046 3–6 0.21

TABLE VII. First excited state in the 1�� channel.

Interpolators mq Mass [GeV] Error Fit range �2=d:o:f:

1,4,5,6 0.20 2.094 0.053 3–6 0.05

0.16 2.033 0.059 3–6 0.06

0.12 1.978 0.065 3–6 0.06

0.10 1.954 0.069 3–6 0.05

0.08 1.935 0.074 3–6 0.04

1,2,7,8,11 0.20 2.091 0.037 3–7 0.05

0.16 2.033 0.040 3–7 0.06

0.12 1.985 0.044 3–7 0.11

0.10 1.968 0.046 3–7 0.16

0.08 1.957 0.049 3–7 0.21

0.06 1.941 0.055 3–6 0.14
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