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We summarize the most important arguments for why a perturbative description of finite-temperature

QCD is unlikely to be possible and review various well-established approaches to deal with this problem.

Then, using a recently proposed method, we investigate nonperturbative contributions to the QCD

pressure and other observables (such as energy, anomaly, and bulk viscosity) obtained by imposing a

functional cutoff at the Gribov horizon. Finally, we discuss how such contributions fit into the picture of

consecutive effective theories, as proposed by Braaten and Nieto, and give an outline of the next steps

necessary to improve this type of calculation.
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I. INTRODUCTION

A. Rise and Fall of the Quark-Gluon Plasma

One of the most striking properties of QCD is asymp-
totic freedom. For large momentum p, the coupling gðpÞ is
small, so quarks and gluons can be treated as if they were
almost free particles—in particular, they can be treated
with the sophisticated methods of perturbation theory.

While the situation is obviously different in the regime
of low energies (which is most relevant for nuclear phys-
ics), it was natural to expect that a perturbative description
could be applied to QCD at sufficiently high temperatures.
After all, high-temperature T implies high average particle
momentum and thus a small coupling, i.e. almost free
particles.

For this scenario, the term ‘‘quark-gluon plasma’’ was
coined [1], and one could expect a phase transition where,
on a certain curve in the �-T space (where � denotes the
chemical potential), hadrons melt into such a plasma.

This phase transition offered a natural solution to a
problem posed by Hagedorn [2], who found that, due to
an exponential increase of the number of accessible states,
the temperature of a hadron could not exceed a certain limit
TH � 160 MeV.

The picture of hadrons melting into a plasma of (almost)
free quarks and gluons, however, turned out to be too naive.
In principle, this should have been clear at least since 1980,
when it was shown [3,4] that at order g6 a natural barrier
arises for any perturbative description. Even earlier than
that, the simple fact that the infinite-temperature limit of
four-dimensional Yang-Mills theory is a three-dimensional
confining Yang-Mills theory could and should have been
regarded as a sign that any straightforward perturbative
approach to high-temperature QCD was necessarily
doomed.

It took, however, more than 20 years until it (slowly)
began to be accepted that the high-temperature phase of
QCD has little to do with a conventional plasma. The
results of the Relativistic Heavy Ion Collider experiments

[5] showed clearly that, also above the phase transition,
bound-state phenomena cannot be neglected, and the de-
scription as a perfect fluid is much more accurate than the
one as a weakly interacting plasma.
While the term quark-gluon plasma is still widely used,

one begins to speak (more accurately, though somehow
using an oxymoron) of a ‘‘strongly coupled quark-gluon
plasma’’ [6,7] or even a ‘‘quark-gluon soup.’’
With the experimental results which are—for certain

observables—an order of magnitude away from the pre-
dictions for a weakly coupled plasma (see, for example,
data on the elliptic flow in [8]) an accurate description of
the high-temperature phase remains a challenge for theo-
retical physics. One conclusion, however, seems to be
clear: In the high-T regime, perturbation theory has to be
replaced or at least supplemented by nonperturbative
methods.

B. Organization of paper

After the introduction given in Sec. I, in Sec. II we
briefly review aspects of finite-temperature QCD. In par-
ticular, in Sec. II A we discuss which thermodynamic
quantities might be interesting to look at, while in
Sec. II B we examine the arguments for a breakdown of
perturbation theory. In Sec. II C we summarize the known
perturbative results, which can be rederived and extended
by effective field theory methods, which are discussed in
Sec. II D. In Sec. II E we discuss previous functional
approaches and in Sec. II F lattice results. In Sec. II H we
compare the results of these different methods and discuss
questions of convergence.
In Sec. III we approach the problem with a new ‘‘semi-

perturbative’’ method [9–11] which is briefly reviewed in
Sec. III A. The physics behind this method is that the
functional cutoff at the Gribov horizon suppresses the
infrared components of the gluon field [12], so that the
infrared divergences of finite-temperature field theory
found by Linde [3] do not arise [13]. This method typically
involves a temperature-dependent renormalization scale,
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an issue we discuss in Sec. III C. In Sec. III D we examine
the calculational methods used to solve the resulting equa-
tions and the expansion used to extract the asymptotic
form, before we present our results in Sec. III E.

In Sec. IV we discuss these results and how they are
related to other approaches. In particular, in Sec. IVA we
compare different ways to access the nonperturbative sec-
tor of hot QCD, in Sec. IVB we resume the discussion of
convergence and in Sec. IVC we present some ideas about
how to pursue further research.

In Sec.V we summarize our results and give a brief
outlook.

II. HIGH-TEMPERATURE QCD

A. How to Study High Temperatures

It is useful to rescale thermodynamic quantities with
appropriate powers of the temperature. In particular, the
free energy per unit volume,1 the pressure, and the energy
per unit volume

w ¼ lnZ

V
; p ¼ w

�
; e ¼ �@w

@�
(1)

are rescaled to

wr ¼ w

T3
; pr ¼ p

T4
; er ¼ e

T4
: (2)

The anomaly A ¼ e� 3p is rescaled to

Ar ¼ A

T4
¼ e� 3p

T4
: (3)

According to [14], up to a perturbative contribution, the
bulk viscosity � for hot gauge theories is given by the
logarithmic derivative of the anomaly

� ¼ 1

9!0

�
T5 @

@T

�
e� 3p

T4

�
þ 16j"Vj

�
; (4)

where !0 denotes a perturbative scale and "V is a pertur-
bative contribution. This formula can be derived from the
Kubo formula of linear response theory. That the viscosity
is linear in the trace of the energy-momentum tensor ���

(instead of quadratic) is not surprising in view of the
Schwinger-Dirac relations, as discussed, for example, in
[15].

B. The Perturbative Problem in the Infrared

Perturbative calculations at finite temperature are dra-
matically different from those at T ¼ 0. One of the most
striking differences is that one cannot determine the order
of a graph by simply counting the number of vertices.
Actually a vacuum or propagator graph may be nonanalytic
in g2.

While ultraviolet divergences are regulated exactly the
same way as in the zero-temperature theory, with no addi-
tional effort necessary, for T > 0 additional infrared diver-
gences appear. They come from Matsubara frequency
n ¼ 0, which has the infrared divergences of three-
dimensional Euclidean gauge theory that are even more
severe than in 4 dimensions. For this reason the Gribov
horizon, which affects primarily infrared components of
the gauge field, is more important at finite and high T than
at T ¼ 0.
Here, however, another subtlety of thermal field theory

comes to the rescue: Thermal fluctuations give rise to self-
energy, which in the static limit p ! 0 corresponds to a
massm. At first glance, there are two natural candidates for
the scale of such a mass: the electric screening mass mel �
gT and the magnetic screening mass mmag � g2T.

The mass which is dynamically generated appears in the
value for ladder diagrams like the one depicted in Fig. 1
(see section 8.7 of [16]). For this type of diagram we obtain
(ignoring the complicated tensorial structure)

I‘ �
8><
>:
g2‘T4 for ‘ ¼ 1; 2;
g6T4 lnTm for ‘ ¼ 3;

g6T4ðg2Tm Þ‘�3 for ‘ > 3:

(5)

If m were independent of g or, like mel, of order gT, we
could proceed with perturbation theory without serious
problems, since an increasing number of loops would al-
ways correspond to an increasing power of the coupling g.
It turns out, however, thatm is (in the best case) of the order
of the magnetic screening mass mmag � g2T.

Thus for any value ‘ � 3 one has contributions of order
g6; the perturbative procedure becomes impracticable un-
less a suitable resummation technique is available—and
such a technique has not been found up to now.

C. Direct Perturbative Approach

We have seen that the perturbative treatment of the QCD
free energy runs into fundamental problems at order g6.
Still, one can expect that for sufficiently small values of g
(i.e. for sufficiently high temperatures) the possible pertur-
bative description (to order g5) still provides a good
description.
This is indeed the case (although, as we will see in

Sec. II H, only at ridiculously high temperatures).
Unfortunately, even these calculations turn out to be highly
involved. We summarize here known results, which are

FIG. 1. A ‘‘ladder diagram’’ contributing at order g6 to the free
energy for ‘ � 3.

1In statistical mechanical usage the ‘‘free energy’’ is given by
F ¼ �wVT.
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also collected in [16], but specialize them to the case of
pure gauge theory.

Zeroth order just gives the Stefan-Boltzmann law for
SUðNÞ gauge theory

pð0Þ

T4
¼ �ðN2 � 1Þ�

2

45
: (6)

For the second-order contribution, one obtains [17,18]

pð2Þ

T4
¼ �ðN2 � 1Þ�

2

9
CA

�
g

4�

�
2
; (7)

with CA denoting the Casimir of the adjoint representation
and CA ¼ N for SUðNÞ. Because of nonanalyticity, one has
a contribution of Oðg3Þ, calculated in [19],

pð3Þ

T4
¼ ðN2 � 1Þ�

2

9
C3=2
A

16ffiffiffi
3

p
�
g

4�

�
3
: (8)

The g4 lng contribution has been calculated in [20]; the full
g4 term has been obtained in [21,22]

pð4Þ

T4
¼ ðN2 � 1Þ�

2

9
C2
A

�
g

4�

�
4
�
24 ln

�
CA

3

g

2�

�

�
�
22

3
ln
�ðTÞ
2�T

þ 38

3

� 0ð�3Þ
�ð�3Þ �

148

3

� 0ð�1Þ
�ð�1Þ

� 4�E þ 64

5

��
; (9)

where �E denotes the Euler-Mascheroni constant and � the
Riemann zeta function.

At order g5, one obtains [23]

pð5Þ

T4
¼ ðN2 � 1Þ�

2

9

�
g

4�

�
5

ffiffiffiffiffiffi
CA

3

s
C2
A

�
176 ln

�ðTÞ
2�T

þ 176�E

� 24�2 þ 494þ 264 ln2

�
: (10)

D. Effective Field Theory

The result of order g5 is the last one obtained in strict
perturbation theory. It has been rederived by Braaten and
Nieto [24], using an effective field theory method that is
built on the idea of dimensional reduction [25,26].

The problem of infrared divergences is addressed by two
effective theories that are constructed ‘‘below’’ perturba-
tive QCD. We know that there are three important scales
present, namely,

2�T . . . scale of “hard modes”;

gT . . . chromoelectric scale;

g2T . . . chromomagnetic scale:

Thus it makes sense to describe each scale in a somewhat
different way. To do this, two cutoff scales �E and �M are
introduced that have to satisfy

2�T � �E � gT � �M � g2T: (11)

The region with p >�E can be reliably described by
perturbative QCD, and for this contribution to the free
energy, called fE, one obtains a power series in g2 with
coefficients that can depend on ln T

�E
.

For �E > p >�M, with the hard modes integrated out,
an effective three-dimensional theory, called electrostatic
QCD (EQCD) is introduced:

L EQCD ¼ 1
4F

a
ijF

a
ij þ 1

2ðDiA0ÞaðDiA0Þa þ 1
2m

2
EA

a
0A

a
0

þ 1
8�EðAa

0A
a
0Þ2 þ �LEQCD; (12)

where Fa
ij ¼ @iA

a
j � @jA

a
i þ gEf

abcAb
i A

c
j denotes the

magnetostatic field strength tensor and �LEQCD contains

all other local (three-dimensionally) gauge-invariant op-
erators of dimension three or higher that can be constructed
from Ai and A0. The parameters gE, mE, and �E are
determined by matching to perturbative QCD; in particu-
lar, one has mE �mel � gT.
This theory still allows perturbative treatment, making

use of an expansion in the dimensionless quantities
g2E
mE

� g,
�E

mE
, etc. This gives for the contribution fM to the free

energy a power series in g, with coefficients that depend

on ln�E

gT and lngT
�M

. The whole series is multiplied by the

common factor ðgTÞ3T.
The infrared cutoff �M of EQCD is the UV cutoff of

another theory, magnetostatic QCD (MQCD):

LMQCD ¼ 1
4F

a
ijF

a
ij þ �LMQCD; (13)

with �LMQCD denoting all gauge-invariant operators of

dimension five or higher. This theory is confining and
thus truly nonpertubative, but according to [24], this con-
tribution to the free energy, called fG, can still be expanded
in a power series in g, which is multiplied by a general
factor ðg2TÞ3. However, the value of the coefficient cannot
be determined perturbatively.
Since the (well-established) nomenclature may seem

slightly misleading at first glance, we have tried to give a
graphical representation in Fig. 2.
MQCD is genuinely nonperturbative; its degrees of free-

dom are (2þ 1)-dimensional glueballs. In [26] it was
suggested to calculate the contributions from this scale
directly by lattice methods.
With the effective field theory, it is possible to compute

the g6 lng contribution [27]. The contribution obtained this
way has to be regarded as partly conjectural, since the
argument inside the logarithm is not clearly defined until
the full g6 contribution is known.
The result thus relies on a supposed structure of cancel-

lation patterns. In addition, it is believed to be reliable only
for sufficiently high temperatures (which could, however,
mean down to T � 2TC), since description by a three-
dimensional theory is valid only for such temperatures.
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With these caveats in mind, one obtains for pure SU(3)
gauge theory

pð6Þ

T4
¼ 8�2

45

�
g2

4�2

�
3
��
�659:2þ 742:5 ln

�ðTÞ
2�T

�
ln

g2

4�2

� 475:6 ln
g2

4�2
� 1815

16
ln2

�ðTÞ
2�T

þ 2932:9 ln
�ðTÞ
2�T

þ qð0Þc

�
(14)

with a yet undetermined coefficient qð0Þc for the pure g6

contribution. (See also [28,29].)
This coefficient consists of both perturbative contribu-

tions (from pQCD and EQCD) and nonperturbative con-
tributions (fromMQCD). It was estimated in [27] by a fit to
four-dimensional lattice data for the pressure.2

Some of the perturbative contributions of order g6 are
known by now [30,31], but others remain unknown. The
nonperturbative coefficient has been determined by three-
dimensional lattice calculations and matching to perturba-
tive four-loop calculations in [32] (see also [33] for some
cases with N � 3) and [34]. One obtains

wð6Þ
np ¼ g63

ðN2 � 1ÞN2

ð4�Þ4 BG; (15)

with g23 ¼ g2T½1þOðg2Þ� and the constant

BG ¼ �0:2� 0:4MC � 0:4SQ; (16)

where the first error stems from the Monte Carlo simula-
tion and the second one from the stochastic quantization
procedure employed to obtain the final result. Note that
BG ¼ 0 is compatible with this result.

E. Functional Approaches

Because of the limitations of perturbation theory, non-
perturbative methods definitely deserve a closer look—
moreover, the effective field theory approach also relies on
the ability to calculate certain quantities nonperturbatively.
As in the zero-temperature case [35], also for finite

temperature, fundamental aspects of Yang-Mills theory
and QCD are accessible to functional methods based on
Dyson-Schwinger equations (DSEs) [36,37].
For certain asymptotic situations (deep ultraviolet, deep

infrared, infinite-temperature limit) several analytic results
can be obtained; but, in general, numerical studies of
truncated DSE systems are necessary.
In addition to the standard truncations, finite-

temperature calculations require also some treatment of
the Matsubara series. Usually it is replaced by a finite sum,
even though this means that the limit of four-dimensional
zero-temperature theory is now technically hard to access.
At the present level, these restrictions make it difficult to

obtain precise quantitative results. Nevertheless there is
reasonable confidence about the qualitative picture that
arises from these studies. Both from infrared exponents
and from numerical results one sees that the soft modes are
not significantly affected by the presence of hard modes,
and thus the confining property of the theory cannot be
expected to be lost in the high-temperature phase.
Consequently, while the overscreening (which would

attribute an infinite amount of energy to free color charges)
of chromoelectric gluons is reduced to screening (as is the
case for electric charges in a conventional plasma), chro-
momagnetic gluons remain overscreened and thus con-
fined, which renders any description of such gluons as
almost free (quasi)particles meaningless.
While the functional method yields considerable insight

into propagators and related quantities, unfortunately the
pressure (and quantities derived from it) is, up to now,
difficult to access in this approach. Nevertheless the results
obtained so far by functional methods provide additional
evidence for the picture of bound states playing an impor-
tant role even at very high temperature and part of the
gluon spectrum (the chromomagnetic sector) being con-
fined at any temperature.

F. Lattice Gauge Theory

Lattice gauge theory is generally considered the most
rigorous approach to nonperturbative QCD, and so it is
natural to also study thermodynamics on the lattice.
The drawbacks of the method, however, are known as

well: To reliably approach the thermodynamic and the
continuum limits, extrapolations which require calcula-
tions with various different lattice sizes are necessary.
The inclusion of fermions is expensive, especially if
good chiral properties are required.
Despite these drawbacks, lattice data are (apart from

possible experiments) the thing to which one usually com-

FIG. 2. The scales of perturbative QCD (pQCD), electrostatic
QCD (EQCD), magnetostatic QCD (MQCD) and the different
contributions fE, fM and fG to the free energy. The coefficients
ak and bk are polynomials in logarithms of ratios of scales ak ¼
Pkðln T

�E
Þ, bk ¼ Qkðln�E

gT ; ln
gT
�M

Þ. While the coefficients ak and bk
can be determined, at least in principle, in perturbation theory,
this is not possible for ck.

2The problem with such a procedure is that, in the regime
where lattice data is available, the contributions of higher order
may also be large.
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pares any other calculation. For pure SU(3) gauge theory,
the problem of determining the equation of state is re-
garded as solved since the publication of [38], where
results are further confirmed in [39]. (Note, however, that
there remain certain doubts about the accuracy of the
infinite-volume limit; see [40].) The results for the pressure
and the anomaly are displayed in Figs. 3 and 4.

G. Other approaches

Pisarski [41] has observed from lattice data [38] that
ðe� 3pÞ=T4 � T2 is approximately constant in a broad
range above Tc. From this and physical reasoning he
obtained the formula

ppureglueðTÞ � fpertðT4 � T2
cT

2Þ: (17)

It is notable that no T3 correction is apparent.
An active area of research is the anti-de Sitter/conformal

field theory duality [42] and anti-de Sitter/quantum chro-
modynamics (AdS/QCD) duality [43], including, in par-
ticular, duality at finite temperature (for a pedagogical
introduction see [44]). In this connection it is interesting
to note that a formula similar to Pisarski’s has recently
been obtained from this duality and the (truncated) entropy
density of the horizon of a deformed Euclidean AdS5 black
hole [45].
The role of different channels in the deconfinement

transition, particularly coexistence of hadron clusters
with the quark-gluon plasma, has been elucidated in [46].

H. Comparison of Results

Knowing that perturbation theory is limited to some
fixed order in g, we can still estimate how good the
possible perturbative description actually is. Ways to judge
this are to check whether contributions from higher orders
are small compared to those from lower orders or to
compare perturbative expressions to results of lattice
calculations.
Unfortunately, both methods suggest that the conver-

gence is extremely poor for temperatures of the order of
several Tc, where Tc is the transition temperature, and to
obtain good convergence one has to look at least at the
electroweak scale [23,27]. A plot of the results of opti-
mized perturbation theory is given in Fig. 5.
It has been conjectured [47] that the results of order g6

are not significantly changed by higher orders (since one
can hope to have obtained at order g6 the main contribution
from each scale; perhaps also due to the fact that originally
large terms of higher orders cancel against each other). To
the knowledge of the authors, however, there is no strong
evidence to support this conjecture.
From the existing data one cannot even exclude the

unsettling possibility that for ‘‘physical’’ temperatures
the perturbation series already begins to diverge at some
order n 	 6. This would mean that contributions from
higher orders are of comparable magnitude to those of
low order and no systematic cancellations occur. If this
were indeed the case, we could not expect to have any
reliable perturbative description for temperatures which
are accessible in current experiments.
One should mention that there is an additional ambiguity

in the perturbative results. All terms beyond the Stefan-
Boltzmann contribution contain some power of the running
coupling g. Thus, for all practical calculations there is

FIG. 3. Rescaled pressure of SU(3) lattice gauge theory, from
[38], where Tc is the transition temperature, and N	 ¼ 4; 6; 8.

FIG. 4. Rescaled anomaly of SU(3) lattice gauge theory, from
[38].
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some dependence on the scale �, at which gð�Þ is eval-
uated. Traditionally, one chooses�ðTÞ ¼ 2�T in the high-
temperature regime, but there are alternative approaches,
for example, application of the principle of minimal sensi-
tivity [48–50]. We will discuss this question in more detail
in Sec. III C.

III. THE SEMIPERTURBATIVE APPROACH

A. Equation of State from a Local Action

An alternative approach that combines nonperturbative
elements with perturbative expansions has been developed
in [9–11], which we now briefly describe.

The basic physical idea is that the infrared divergences
of finite-temperature perturbation theory do not arise when
the domain of functional integration is cut off at the Gribov
horizon. The cutoff will be done in Coulomb gauge which
is well adapted to finite-temperature calculations. Indeed
both the gauge condition @iAiðx; tÞ ¼ 0 and the cutoff at
the Gribov horizon are applied to three-dimensional con-
figurations on each time slice t and are entirely indepen-
dent of the temporal extent of the lattice 0 	 t 	 �, where
� ¼ 1=kT.

The functional cutoff at the Gribov horizon is effected at
first by adding a nonlocal term SNLðAÞ to the action
[51,52]. The nonlocal term then gets replaced by a local,
renormalizable term SL in the action by means of an

integration over a multiplet of auxiliary Fermi and Bose
ghost pairs

exp½�SNLðAÞ� ¼
Z

d’d �’d!d �! exp½�SLð’; �’;!; �!Þ�:
(18)

The Becchi-Rouet-Stora-Tyutin (BRST) symmetry is ex-
plicitly broken by this term, an effect which, alternatively,
may be interpreted as spontaneous BRST breaking [53].
Although the breaking of BRST invariance precludes the
definition of observables as elements of the cohomology of
the BRST operator, the equivalence to the canonical for-
mulation has been established [9], thereby ensuring the
physical foundation of the approach, including unitarity.
Here the physicality of the Coulomb gauge plays an essen-
tial role.
The new term in the action depends on a mass parameter

m which appears in the Lagrangian density

Lm ¼ � m4

2Ng2
ðD� 1ÞðN2 � 1Þ

þ m2

ð2NÞ1=2g ½Dið’� �’Þi þ gðDic� �!iÞ�aa: (19)

The adjoint part of the Bose ghost ð’� �’Þi mixes with the
gauge field Ai through the term Dið’� �’Þi ¼ ð@i þ
gAi�Þð’� �’Þi. At tree level one obtains a gluon propa-
gator

D ¼ 1

k20 þ E2ðkÞ (20)

that satisfies the Gribov dispersion relation

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm4

k2

s
: (21)

The functional cutoff at the Gribov horizon imposes the
condition that the free energy W or quantum effective
action � be stationary with respect to m:

@W

@m
¼ � @�

@m
¼ 0: (22)

This ‘‘horizon condition’’ has the form of a nonperturba-
tive gap equation that determines the Gribov mass m ¼
mðT;�QCDÞ and thereby provides a new vacuum, around

which a perturbative expansion is again possible.
The most powerful nonperturbative methods available

are called for to solve this system. However in the present
work we shall modestly investigate a semiperturbative
method [9], in which one calculates all quantities pertur-
batively in g, including �, taking m to be a quantity of
order g0, and then one substitutes form the nonperturbative
solution to the gap equation (22). We shall find that this
method can be a good approximation only at extremely
high energies. Nevertheless as a matter of principle, it is a
significant success that for thermodynamic observables

1 10 100 1000

T/Λ
MS
_

0.0

0.5

1.0

1.5
p/

p 0

F = 0
F up to y

3/2

F up to y

F up to y
1/2

4d lattice

FIG. 5. The convergence of an (optimized) perturbation series
for ‘‘long-distance contribution’’ to the pressure, from [57]. The
order of the expansion is characterized by the dimensionless

parameter y� g2T2

g4
3

, where g23 denotes the gauge coupling in the

effective three-dimensional theory. The perturbative contribution

F to the free energy contains a factor ðg23T Þ3; the inclusion of lower
powers of y corresponds to higher orders in perturbation theory.
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this procedure gives finite results precisely at the order g6

at which ordinary perturbation theory diverges.

B. The Gap Equation

In lowest nontrivial order in the semiperturbative
method [9], the gap equation (22) reads after separation
into an m
-dependent and a T-dependent part

fðm
Þ ¼ yðTÞ; (23)

fðm
Þ :¼ 1

2
ln

1

m
 þ
Z 1

0

dx

uðxÞ
1

em

uðxÞ � 1

; (24)

yðTÞ :¼ 3�2

Ng2ð�Þ �
1

4
ln
e�2ðTÞ
2T2

; (25)

where m
 � mr ¼ m=T is the rescaled Gribov mass and

uðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

x2

s
(26)

is the reduced dispersion relation. An important source of
ambiguity, shared with other (semi)perturbative ap-
proaches, is the choice of the temperature-dependent scale
�ðTÞ at which the coupling g is evaluated.

C. Choice of the Renormalization Scale

We consider the coupling g2ð�Þ at some renormalization
scale �ðTÞ. For a certain temperature T, the optimal renor-
malization scale should be chosen equal to the scale that
governs the behavior of the system. For field theory at high
temperatures, this scale is expected to be equal to the
lowest Matsubara frequency, i.e. 2�T; for small T it should
be constant.

Since we are considering a confining theory with a mass
gap, for low temperatures the optimal renormalization
scale is not expected to go to zero. For a system at very
low (even zero) temperature, the most characteristic scale
is not the very small average kinetic energy but instead the
mass of the lightest physical object, which is some bound
state (a hadron in full QCD, a glueball in pure gauge
theory). Actually, as long as we are in the confining region
(i.e. below T ¼ Tc), the mass of bound states will always
be ‘‘more important’’ than the thermal energy.

These restrictions, together with some conditions of
‘‘naturalness,’’ can be summarized by demanding that the
renormalization scale �ðTÞ should fulfill:

ðIÞ �ðTÞ � �0 ¼ const for T � Tc;

ðIIÞ �ðTÞ � 2�T for T � Tc; ðIIIÞ continuous;
ðIVÞ monotonically rising for all T;

ðVÞ convex for all T:

Conditions (I) and (II) might be replaced or supplemented
by the asymptotic conditions

ðI0Þ lim
T!0

½�ðTÞ ��0� ¼ 0; lim
T!0

�ðTÞ ��0

T
¼ 0;

ðII0Þ lim
T!1T

n½�ðTÞ � 2�T� ¼ 0 for all n 2 N0:

(27)

Because of the phase transition at T ¼ Tc � �QCD, a

simple choice is

�ðTÞ ¼
�
�0;lðTÞ :¼ 2��MS for T <�MS;
�0;hðTÞ :¼ 2�T for T � �MS:

(28)

This choice is supported by the fact that 2��MS is in the

order of magnitude of glueball masses. Another reasonable
choice is

�ðTÞ ¼ 2�T þ 2��MSe
�T=�

MS : (29)

This form, however, is less favorable for numerical rea-
sons, and thus we have exclusively used (28) in the nu-
merical studies performed in Sec. III D. Both forms are
plotted in Fig. 6.
Another ansatz, used especially in functional calcula-

tions [37], is a ’t Hooft-like scaling

g2½�ðTÞ�T ¼ const; (30)

which, at one-loop level, corresponds to an exponential
growth�ðTÞ ¼ �0e


T with some positive constant 
. This
choice provides a smooth infinite-temperature limit but
does not respect condition (II) and has not been used in
the current article.

D. Calculational Methods

The gap equation (23) is an implicit equation for m
ðTÞ,
which, in contrast to ‘‘genuine’’ integral equations, can be
solved independently for each temperature T. Our results
have been obtained in MATHEMATICA by combining a
numerical equation solver with adaptive Gauß-Legendre
integration.
The derivatives necessary to obtain anomaly and bulk

viscosity [see Eqs. (45) and (50)] can be done either

FIG. 6 (color online). Graph of the renormalization scale
�ðTÞ: We show the piecewise linear form �a from (28) and
the exponential form �e from (29) together with the asymptotics
�0;l ¼ 2��QCD and �0;h ¼ 2�T.
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numerically or analytically. The second way unfortunately
involves additional integrals, which can again be evaluated
only numerically. (See Appendix A for details.)

While both methods are potentially susceptible to nu-
merical problems, they are of very different nature.
Actually, the results of both methods agree remarkably
well, inspiring confidence in the stability of the result.

All calculations directly involving T have been per-
formed on logarithmic temperature scale. This allows di-
rect implementation of logarithmic derivatives, reduces
numerical errors as compared to calculations on a linear
scale and enables one to reach significantly higher
temperatures.

For all quantities under consideration, we could obtain
asymptotic expressions by expansion in the coupling g2. In
general, we use [30]

1

g2ð�Þ ¼2-loop 2b0 ln �

�MS

þ b0
b1

ln

�
2 ln

�

�MS

�
; (31)

�
dg2

d�
¼ �ðg2Þ ¼2-loop �0

ð4�Þ2 g
4ð�Þ þ �1

ð4�Þ4 g
6ð�Þ; (32)

with the coefficients

�0 � �2ð4�Þ2b0 ¼
�22CA þ 8Tf

N
¼pure SUð3Þ �22; (33)

�1 � �2ð4�Þ4b1

¼ �68C2
A þ 40CATf þ 24CfTf

N
¼pure SUð3Þ �204; (34)

and the group-theoretical factors CA ¼ N and CF ¼ N2 �
1. Tf is equal to half the number of quark flavors and thus

vanishes in pure gauge. While the results in Sec. III E are
given for the one-loop form [easily obtained by setting
�1 ¼ b1 ¼ 0 in (31) and (32)], there are only minor
changes when switching to the two-loop form.

E. Results

We now summarize the results obtained by numerically
solving the gap equation and the corresponding asymptotic
expressions.

1. Gribov Mass

Solving the gap equation yields the Gribov mass mðTÞ.
An expansion gives to leading order in g2

m
ðTÞ � N

23=23�
g2ð�Þ: (35)

The numerical result and this asymptotic form are dis-
played in Fig. 7. The agreement is excellent down to the
phase transition (below which the formalism is probably
not applicable anyhow), and thus higher-order corrections
to the Gribov mass are small.

2. Free Energy and Pressure

For the pressure p and the free energy w we obtain

p

T4 � w

T3
¼ ðN2 � 1Þ

�
3

2N

m
4

g2ð�Þ þ
1

3�2T4
KðmÞ

�
; (36)

KðmÞ :¼
Z 1

0

dk

EðkÞ
k4 �m4

e�EðkÞ � 1
; (37)

with k ¼ jkj. An expansion for KðmÞ is not completely
straightforward due to a nonanalyticity in m4, but, as
shown in [9], it can be performed and yields the asymptotic
expression

w� ðN2 � 1Þ�
2

45

�
1� 5

18

�
Ng2

4�2

�
3
�
T3: (38)

The full solution and the asymptotic form are given in
Fig. 8, where we have subtracted the Stefan-Boltzmann
part, denoted by wSB. In contrast to the case of m, higher-
order corrections are obviously not small for w since
agreement between the full (numerical) and the asymptotic
result is not good below T � 106�MS.

It is instructive to see that KðmÞ can also be evaluated by
using an intermediate cutoff. While more cumbersome,

FIG. 7 (color online). The rescaled Gribov mass m
 ¼ m
T :

(a) solid red line—numerical solution, dotted line—asymptotic
expression from (35); (b) relative deviation �m


rel ¼ ðm

num �

m

asyÞ=m


asy.
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this method allows us to identify contributions from differ-
ent scales and thus gives some idea how to relate this result
to the one obtained by effective theory approaches (see
Sec. II D).

To do this, we introduce a cutoff �, with m � � � T,
which separates contributions from the scale m� g2T and
from the scale 2�T. Doing so, we obtain

KðmÞ ¼
Z �

0

dk

EðkÞ
k4 �m4

e�EðkÞ � 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K1

þ
Z 1

�

dk

EðkÞ
k4 �m4

e�EðkÞ � 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K2

;

(39)

where

K1 ¼ m4
Z �=m

0
dx

x4 � 1

uðxÞðe�muðxÞ � 1Þ
� m3T

Z �=m

0
dx

x4 � 1

u2ðxÞ ¼ m3T
Z �=m

0
dxx2

x4 � 1

x4 þ 1

¼ m3T

�Z �=m

0
dxx2 � 2

Z �=m

0

x2

x4 þ 1
dx

�
: (40)

The first integral is trivial; for the second we can replace

the upper limit �=m by 1 and apply residue calculus to
obtain

K1 ¼ T

3
�3 � �ffiffiffi

2
p m3T: (41)

For K2 we obtain

K2 �
Z 1

�

dk

k

k4

e�k � 1
¼ T4

Z 1

�=T
dy

y3

ey � 1

¼ T4

�Z 1

0
dy

y3

ey � 1
�

Z �=T

0
dy

y3

ey � 1

�
: (42)

The first integral is the well-known Planck integral. In the

second one we can again expand the exponential, since y 	
�
T � 1, and obtain

K2 � T4

�
�4

15
�

Z �=T

0
dyy2

�
¼ T4 �

4

15
� T

3
�3: (43)

This gives

K ¼ K1 þ K2 ¼ T4 �
4

15
� �ffiffiffi

2
p m3T: (44)

The cutoff-dependent parts in K1 and K2 precisely cancel,
leaving a clear separation of the Stefan-Boltzmann contri-
bution from k� T and the contribution from the scale k�
m� g2T.

3. Energy and Anomaly

From the free energy or the pressure, we can calculate
the rescaled anomaly via

Ar ¼ e� 3p

T4
¼ T

d

dT

p

T4
¼ d

dðlnT�Þ
p

T4
(45)

(with some arbitrary scale �) since, from (1), we have

T
d

dT

p

T4
� T

d

dT

w

T3
¼

@w
@T

T2
� 3

w

T3
¼ T2 @w

@T � 3wT

T4

¼ e� 3p

T4
: (46)

It is also obvious that the energy can be directly obtained
from the anomaly by using the relation e ¼ 3pþ A. Thus
we do not show separate graphs for e. From (45) it is also
clear that all deviations from the Stefan-Boltzmann pres-

sure pr;SB ¼ �4

15 are encoded in the anomaly, since integra-

tion gives

prðTÞ ¼ pr;SB �
Z 1

T

ArðT0Þ
T0 dT0: (47)

FIG. 8 (color online). The rescaled reduced free energy wr �
wr;SB: (a) solid red line—numerical solution, dotted line—

asymptotic expression from (38); (b) relative deviation �wr;rel¼
ðwr;num�wr;asyÞ=ðwr;asy�wr;SBÞ¼ ðwnum�wasyÞ=ðwasy�wSBÞ.
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From (32), (38), and (45) we obtain

Ar ��ðN2 � 1Þ N3

3456�4
g4ð�Þ�ðg2Þ T

�

d�

dT
(48)

for the asymptotic expansion. The numerical result and the
asymptotic form are shown in Fig. 9. Again higher-order
corrections are large except for extremely high
temperatures.

4. Bulk Viscosity

In (4) there is one ambiguity, the choice of the scale !0.
According to [54] a reasonable range of values is !0 ¼
ð0:5–1:5Þ GeV. Neglecting the perturbative contribution
from "V , we obtain

� ¼ 1

9!0

T5 d

dT

e� 3p

T4
: (49)

The rescaled bulk viscosity is given by

�r ¼ 1

9!0

T
d

dT
Ar: (50)

In the asymptotic expression, correction terms originat-

ing from T
�

d�
dT become quite complicated. Since they are

relatively unimportant for reasonable choice of �ðTÞ [and
even vanish identically for the simple form (28)] we
give only the simplified expression, where we have set
T
�

d�
dT ¼ 1,

�r �� 1

9!0

N3ðN2 � 1Þ
3456�4

�
2g2ð�Þ�ðg2Þ

þ g4ð�Þ d�ðg
2Þ

dg2

�
�ðg2Þ: (51)

The full expression is derived in Appendix B. Graphs for
the numerical solution and the asymptotic expression are
shown in Fig. 10 for the choice !0 ¼ 5�MS.

The behavior close to T ¼ �MS is strongly influenced by

the choice of�ðTÞ. Apart from that, however, the viscosity
�r rises significantly when the temperature approaches the
critical temperature from above, in agreement with [54].

IV. DISCUSSION

A. Access to the Nonperturbative Sector

Various results make clear that finite-temperature QCD
contains, in principle, a perturbatively accessible sector,
which, starting at order ðg2TÞ3, interacts with a genuine

FIG. 9 (color online). The rescaled anomaly Ar: (a) solid red
line—numerical solution, dotted line—asymptotic expression
from (48); (b) relative deviation �Ar;rel ¼ ðAr;num �
Ar;asyÞ=Ar;asy.

FIG. 10 (color online). The rescaled bulk viscosity: (a) solid
red line—numerical solution �r;num, dotted line—asymptotic

expression �r;asy from (48); (b) relative deviation ��r;rel ¼
ð�r;num � �r;asyÞ=�r;asy.
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nonperturbative sector. At least formally an expansion in
powers of the coupling g is possible also for nonperturba-
tive contributions.

According to Gribov’s confinement scenario [12,55,56],
the vicinity of the Gribov horizon dominates the nonper-
turbative aspects of the theory. So correctly taking into
account this region should give access to the nonperturba-
tive sector of the theory at high temperatures also. Indeed,
the cutoff at the Gribov horizon employed in this paper
gives a finite nonperturbative contribution to the free en-
ergy at order g6, where the nonperturbative sector of the
theory begins to spoil direct perturbative approaches.

The nonperturbative sector (described by MQCD in the
picture of Sec. II D) is also accessible to lattice calcula-
tions. Comparison of our analytic result (38) with the
lattice expressions (15) and (16) gives

wð6Þ
np; analyt ¼ �ðN2 � 1ÞN3

10368�4
g6T3; (52)

wð6Þ
np; lattice ¼ �ðN2 � 1ÞN3

1280�4
ð1� 4Þg6T3: (53)

These results are compatible, though the errors of the
lattice calculations are too large at the moment to allow a
definite statement about the quality of agreement.

B. Convergence of the Series?

As already mentioned in Sec. II H, the convergence of
perturbation series is extremely poor for temperatures
OðGeVÞ or below. As discussed in [49], this can be traced
back to the poor convergence of contributions from the
EQCD sector, which begin to contribute at order g3.

A similar behavior seems to be true for the contribution
from MQCD. While a formal expansion in g is possible
(and for very high temperatures T � 1010 GeV the agree-
ment is reasonably good), the expansion has little to do
with the full result for low temperatures. From the low-

temperature graphs displayed in Figs. 11–13 it is likely that
higher-order corrections cannot be small compared to the
leading term.
This suggests either that the convergence is extremely

poor or that there is even no convergence at all. The latter
would not be completely unexpected. It is well known that
in quantum field theory series obtained by expansion in the
coupling are rarely convergent but at best asymptotic (and
usually even this cannot be proven).
Assuming that expansion in g of the QCD free energy

yields a divergent asymptotic series would give the follow-
ing scenario: For each temperature T one can expect that an
‘‘optimal order’’ n exists beyond which the series leaves
the ‘‘path of apparent convergence.’’ For low temperatures
and thus large couplings this order may be so small that no
partial sum of the perturbation series can serve as a sat-
isfactory approximation.

C. Further Steps

Our studies leave open several questions that are worth
further investigation. While the analytic result (52) is

FIG. 11 (color online). The rescaled free energy in the low-
temperature region [solid red line—numerical solution, dotted
line—asymptotic expression from (48)].

FIG. 12 (color online). The rescaled anomaly e�3p
T4 in the low-

temperature region [solid red line—numerical solution, dotted
line—asymptotic expression from (48)].

FIG. 13 (color online). The rescaled bulk viscosity in the low-
temperature region (solid red line—numerical solution, dotted
line—asymptotic expression from (48)].
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compatible with the lattice result (53), a reduction of the
errors of the latter would be highly desirable. (Unfor-
tunately the errors would have to be reduced about 1 order
of magnitude, a task which would require considerable
computational resources.)

On the analytic side, higher-order calculations in the
semiperturbative formalism could help to further clarify
the connection of our approach to the sequence of theories
discussed in Sec. II D. They could also help to reveal if (52)
is indeed the full contribution to order g6 from the mag-
netostatic sector or if there are additional contributions
from (formally) higher orders as well, which are not
present in the lowest-order approximation to the gap
equation (23).

Such calculations could also shed some more light on
the question of (apparent) convergence, as just discussed in
Sec. IVB. Of course also determination of the full g6

contribution to the free energy (conceptually possible in
the framework of effective theories) would be very helpful
for further statements about convergence issues.

Our results indicate that the semiperturbative method of
calculation is reliable only at extremely high T. A more
advanced approach to the nonperturbative sector could
involve solving the Dyson-Schwinger equation for the
system with local action and auxiliary Fermi and Bose
ghost pairs [9] or, alternatively, studying bound-state equa-
tions for glueballs in MQCD. Those objects, which deter-
mine higher-order contributions from this sector, are
closely related (though not strictly identical) to chromo-
magnetic glueballs in the four-dimensional theory.

V. SUMMARYAND OUTLOOK

We first presented a short synopsis on current problems
in thermal QCD, where we also reviewed several methods
to approach them, including consecutive effective field
theories, as proposed in [24].

Then, using the local action proposed in [9], we obtained
nonperturbative contributions to several thermodynamic
observables, including free energy, anomaly and bulk vis-
cosity. Being directly related to other nonperturbative ap-
proaches (like magnetostatic QCD), this method provides a
framework for purely analytical studies beyond the limits
of thermal perturbation theory, without the necessity of
lattice calculations (neither in the full nor in an effective
theory.)

While for each quantity we were able to obtain the
leading coefficient of the expansion in the coupling g, we
also noticed that higher-order corrections have to be large
in order to accommodate the numerical results. This is one
more sign that, in thermal QCD, expansion in the coupling
cannot be expected to give reliable approximations except
for extremely high temperatures.

While results are promising, further investigations are
necessary to clarify the limits of this method, illuminate
further the relation to other approaches and perhaps extract

general information about the quality of series expansions
in thermal QCD.
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APPENDIX A: THE ANOMALY FROM AN
ANALYTIC DERIVATIVE

We now show how the anomaly can be obtained without
the necessity for numerical differentiation. In the follow-
ing, we always understand g2 ¼ g2ð�Þ and � ¼ �ðTÞ.
One-loop expansion of the gap equation gives for the

rescaled pressure

p

T4 � w

T3
¼ ðN2 � 1Þ

�
3

2N

m
4

g2ð�Þ þ
1

3�2
Kðm
Þ

�
; (A1)

with Kðm
Þ ¼ m
4Iðm
Þ and

Iðm
Þ :¼
Z 1

0

dx

uðxÞ
x4 � 1

em

uðxÞ � 1

; (A2)

using the reduced dispersion relation (26). From this, we
obtain

Ar ¼ T
d

dT

p

T4

¼ ðN2 � 1Þ
�
3

2N
T

d

dT

m
4

g2
þ 1

3�2
T
@Kðm
Þ
@T

�

¼ 3
N2 � 1

2N

�
�m
4

g4
T
dg2

dT
þ 4m
3

g2
T
dm


dT

�

þ N2 � 1

3�2
T
@Kðm
Þ
@T

: (A3)

The derivative of g2 with respect to T be easily calculated
using the � function

T
dðg2Þ
d�

¼ T

�
�
dðg2Þ
d�

¼ T

�
�ðg2Þ: (A4)

From this, we obtain
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T
dg2ð�Þ
dT

¼ T

�
�
dg2ð�Þ
d�

d�ðTÞ
dT

¼ �½g2ð�Þ� T
�

d�ðTÞ
dT

:

(A5)

For the last term in (A3) we have

T
@Kðm
Þ
@T

¼ T
@m


@T

@Kðm
Þ
@m
 ; (A6)

@Kðm
Þ
@m
 ¼ 4m
3Iðm
Þ �m
4Lðm
Þ; (A7)

Lðm
Þ ¼
Z 1

0
dx

ðx4 � 1Þem
uðxÞ

ðem
uðxÞ � 1Þ2 : (A8)

We obtain T @m

@T by differentiating the gap equation

fðm
Þ ¼ yðTÞ with respect to T, where

fðm
Þ ¼ 1

2
ln

1

m
 þ
Z 1

0

dx

uðxÞ
1

em

uðxÞ � 1

; (A9)

yðTÞ ¼ 3�2

Ng2ð�Þ �
1

4
ln
e�2ðTÞ
2T2

: (A10)

Since the left-hand side depends on T only implicitly via
m
, we have

d

dT
fðm
Þ ¼ df

dm

dm

dT

¼
�
� 1

2

1

m
 � Jðm
Þ
�
dm


dT
;

(A11)

Jðm
Þ ¼
Z 1

0
dx

em

uðxÞ

ðem
uðxÞ � 1Þ2 : (A12)

Differentiation of the right-hand side yields

dyðTÞ
dT

¼ d

dT

�
3�2

Ng2ð�Þ �
1

4
ln
e�2ðTÞ
2T2

�
¼ � 3�2

Ng4½�ðTÞ�
dg2ð�Þ
dT

� d

dT

1

2
ln

� ffiffiffi
e

2

r
�ðTÞ
T

�

¼ � 3�2

Ng4½�ðTÞ�
1

�ðTÞ�ðTÞ dg
2ð�Þ
dT

� 1

2

T

�ðTÞ
�d�
dT

T
� �

T2

�

¼ � 1

�ðTÞ
�
3�2

N

�ðg2Þ
g4ð�Þ

d�

dT
þ 1

2

�
d�

dT
��

T

��
: (A13)

The second term inside the curly brackets is a measure for the deviation from the asymptotic behavior; in the asymptotic
regime with �ðTÞ ¼ 2�T, the above expression simplifies to

dyðTÞ
dT

								asympt
¼ � 3�2

N

1

T

�½g2ð2�TÞ�
g4ð2�TÞ : (A14)

Collecting our results, we obtain

T
dm


dT
¼ T dy

dT

� 1
2m
 � Jðm
Þ ¼

T

�ðTÞ
1

1
2m
 þ Jðm
Þ 

�
3�2

N

�ðg2Þ
g4

d�

dT
þ 1

2

�
@�

@T
��

T

��
; (A15)

and the rescaled anomaly is given by

Ar ¼ 3
N2 � 1

2N

�
�m
4

g4
�ðg2Þ T

�

d�

dT
þ 4m
3

g2
T
dm


dT

�
þ N2 � 1

3�2
½4m
3Iðm
Þ �m
4Lðm
Þ�T dm


dT
: (A16)
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APPENDIX B: ASYMPTOTIC BULK VISCOSITY

Keeping the full dependence on �ðTÞ, we obtain for the bulk viscosity (49), again making use of (A4),

� ¼ 1

9!0

T5 d

dT

e� 3p

T4
�� 1

9!0

N3ðN2 � 1Þ
3456�4

T5 d

dT
g4ð�Þ�ðg2Þ T

�

d�

dT

�� 1

9!0

N3ðN2 � 1Þ
3456�4

T5

��
2g2ð�Þ�ðg2Þ þ g4ð�Þ d�ðg

2Þ
dg2

�
dðg2Þ
d�

d�

dT

T

�

d�

dT

þ g4ð�Þ�ðg2Þ
�
1

�

d�

dT
� T

�2

�
d�

dT

�
2 þ T

�

d2�

dT2

��

�� 1

9!0
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[31] Y. Schröder, arXiv:hep-ph/0410130.
[32] A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen,
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Torrero, J. High Energy Phys. 07 (2006) 026.
[35] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281

(2001).
[36] A. Maas, J. Wambach, B. Gruter, and R. Alkofer, Eur.

Phys. J. C 37, 335 (2004).
[37] A. Maas, J. Wambach, and R. Alkofer, Eur. Phys. J. C 42,

93 (2005).
[38] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland,

M. Lutgemeier, and B. Petersson, Nucl. Phys. B469, 419
(1996).

[39] M. Okamoto et al. (CP-PACS Collaboration), Phys. Rev.
D 60, 094510 (1999).

[40] F. Gliozzi, J. Phys. A 40, F375 (2007).
[41] R. D. Pisarski, Phys. Rev. D 74, 121703 (2006).
[42] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);

Int. J. Theor. Phys. 38, 1113 (1999).
[43] O. Aharony, S. S. Gubser, J.M. Maldacena, H. Ooguri, and

Y. Oz, Phys. Rep. 323, 183 (2000).
[44] K. Peeters and M. Zamaklar, Eur. Phys. J. Special Topics

152, 113 (2007).
[45] O. Andreev, Phys. Rev. D 76, 087702 (2007).
[46] V. I. Yukalov and E. P. Yukalova, Phys. Part. Nucl. 28, 37

(1997)

KLAUS LICHTENEGGER AND DANIEL ZWANZIGER PHYSICAL REVIEW D 78, 034038 (2008)

034038-14



[47] M. Laine, arXiv:hep-ph/0301011.
[48] P.M. Stevenson, Phys. Rev. D 23, 2916 (1981).
[49] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. D 68,

025011 (2003).
[50] M. Inui, A. Niegawa, and H. Ozaki, Prog. Theor. Phys.

115, 411 (2006).
[51] D. Zwanziger, Nucl. Phys. B323, 513 (1989).
[52] D. Zwanziger, Nucl. Phys. B399, 477 (1993).

[53] N. Maggiore and M. Schaden, Phys. Rev. D 50, 6616
(1994).

[54] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663,
217 (2008).

[55] D. Zwanziger, Nucl. Phys. B364, 127 (1991).
[56] D. Zwanziger, Nucl. Phys. B378, 525 (1992).
[57] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schröder,
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