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We point out that a strong phase from the penguin annihilation channel in B meson decays is sensitive

to the treatment of subleading terms with physical b quark mass mb. In the limit of infinite heavy-quark

mass, both the soft-collinear effective theory and the perturbative QCD approach based on the kT
factorization theorem agree that the strong phase is suppressed. For finite heavy-quark mass, the two

approaches predict different results, which are related to the treatment of subleading terms. This is

illustrated by taking a toy model for soft-collinear effective theory, in which a small quantity, suppressed

by Oð�=mbÞ, with � being a hadronic scale, is kept in the denominators of internal particle propagators.

This model can generate a sizable strong phase to accommodate the data of the B0 ! K��� direct CP

asymmetry.
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The effect of scalar penguin annihilation on charmless
nonleptonic B meson decays has attracted intensive atten-
tion. This power-suppressed contribution is chirally en-
hanced, i.e., proportional to �P=mb in B ! PP decays,
where �P is the chiral scale associated with the pseudo-
scalar meson P and mb the b quark mass. Since it involves
end-point singularities, it was described by a free parame-
ter XA ¼ lnðmb=�Þ½1þ �A expði�AÞ� in QCD-improved
factorization (QCDF) [1], with � being a hadronic scale
and �A and �A varied arbitrarily within some artificially
specified ranges. In order to fit data such as the B0 !
K��� direct CP asymmetry ACPðB0 ! K���Þ, �A

must take a sizable value. On the other hand, the contribu-
tion from scalar penguin annihilation has been found to be
almost imaginary in the perturbative QCD (PQCD) ap-
proach based on the kT factorization theorem [2,3], and
the resultant strong phase leads to a prediction consistent
with the measured ACPðB0 ! K���Þ. In soft-collinear
effective theory (SCET) at leading power [4–6], a non-
perturbative complex charming penguin was introduced to
accommodate the data of ACPðB0 ! K���Þ without con-
sidering the annihilation amplitude. In the recent SCET
formalism with the zero-bin subtraction [7], the annihila-
tion contribution becomes factorizable and has been con-
cluded to be almost real [8].

The motivation of this paper is to explain the opposite
theoretical observations on the almost imaginary or almost

real penguin annihilation derived in PQCD and in SCET.
We shall first point out that the comparison of the measured
ACPðB� ! K��0Þ and ACPðB� ! K��0Þ indicates an
imaginary penguin annihilation amplitude [9,10]: The de-
cays B� ! K��0 (B� ! K��0) involve a B ! P (B !
V) transition, so the penguin emission amplitude is pro-
portional to the constructive (destructive) combination of
the Wilson coefficients a4 þ ð�Þ2ð�K=mbÞa6, �K being
the chiral scale associated with the kaon. The annihilation
effect is then less conspicuous in the former than in the
latter. If the penguin annihilation is real, both decays will
exhibit small direct CP asymmetries, i.e., ACPðB� !
K��0Þ � ACPðB� ! K��0Þ � 0. If imaginary,
ACPðB� ! K��0Þ will be larger. The current data
ACPðB� ! K��0Þ ¼ 0:050� 0:025 and ACPðB� !
K��0Þ ¼ 0:31þ0:11

�0:10 [11] favor an imaginary penguin anni-

hilation. We emphasize that strong phases, generated by
subleading corrections, are the leading effect for direct CP
asymmetries of B meson decays. For example, the predic-
tion for the direct CP asymmetry ACPðB� ! K��0Þ is
sensitive to the strong phase of the ratio C=T [12,13],
where C (T) is the color-suppressed (color-allowed) tree
amplitude, though the branching ratio BðB� ! K��0Þ is
not. Assuming this ratio to be real as in the leading-power
SCET [5], it is difficult to explain the data. Therefore,
subleading corrections must be handled carefully in order
to have a reliable evaluation of strong phases.
It will be explained that the different penguin annihila-

tion effects observed in PQCD and SCETarise from how to
treat parton transverse momenta kT or other formally
power-suppressed intrinsic mass scales which appear in
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propagators. In other words, we raise a question about
whether the expansion in powers of �=mb is reliable for
estimating strong phases at finite physical mb. If the small
scales are neglected or expanded, the internal particles are
on their mass shell only at the end points of parton mo-
mentum fractions, where meson distribution amplitudes
usually vanish, or the zero-bin subtraction suppresses the
end-point contribution. An annihilation amplitude is then
real. If kT or a small scale is kept, the on-shell condition of
internal particles does not occur at the end points, so there
is a potential to generate a sizable strong phase. A strong
phase from the known Bander-Silverman-Soni mechanism
[14] is also a consequence of the on-shell condition of
internal particles. Note that this on-shell condition does
not break the factorization theorem, since it belongs to the
so-called nonpinched singularities [15]. They differ from
the pinched singularities, which are absorbed into non-
perturbative distribution amplitudes. When mb approaches
infinity, the on-shell region coincides with the end points,
and the same vanishing results for strong phases will be
derived, irrespective of whether the small scales are ex-
panded into a power series. For the physical value of mb,
however, a formally power-suppressed correction, if not
expanded, may have a significant numerical effect on
strong phases and lead to large direct CP asymmetries in
B meson decays.

We illustrate why a formally power-suppressed correc-
tion of Oð�=mbÞ could produce a sizable strong phase in
an annihilation amplitude using a simple example.
Suppose that we have a kernel of the form using the
principal-value prescription

1

x� rþ i�
¼ P

1

x
� i��ðxÞ; (1)

where x is the momentum fraction and the subleading term
r=x, r��=mb, is neglected at leading power. The effect of
the subleading terms can be included systematically order
by order. Equation (1) holds in principle as long as the
contribution from the small x region is suppressed by a
meson distribution amplitude, namely, as the main contri-
bution comes from the region with r=x�Oð�=mbÞ. The
imaginary part is proportional to �ðxÞ, so it receives con-
tribution from the end point x ¼ 0. The suppression at the
end point from a distribution amplitude then leads to
vanishing of the strong phase. The expansion in Eq. (1)
has been adopted in QCDF and SCET. In the former, if the
evaluation of the convolution develops a singularity from
the end-point contribution, a strong phase has to be pa-
rametrized, and there is no constraint on its magnitude. In
fact, the end-point singularity should imply breakdown of
the expansion in QCDF. In SCET, if the end-point singu-
larity exists, it is removed by the zero-bin subtraction [7],
which is introduced to avoid double counting of soft de-
grees of freedom in the collinear ones. The imaginary part,
proportional to �ðxÞ as in Eq. (1), is then also removed by

the zero-bin subtraction. That is, once the terms of order r
are dropped from the beginning, the imaginary part is
suppressed either by the end-point behavior of a distribu-
tion function or by the zero-bin subtraction in SCET.
Therefore, the strong phase is small and appears only at
higher orders in �s or at higher powers in �=mb (though
the numerical size of these higher-order contributions
needs to be studied explicitly).
On the other hand, writing the kernel without expansion,

Eq. (1) becomes

1

x� rþ i�
¼ P

1

x� r
� i��ðx� rÞ; (2)

and an imaginary part arises in the region away from the
end point by r��=mb. Note that the delta function �ðx�
rÞ in the above expression cannot be obtained by expanding
the denominator to any fixed power in r=x (it can by
expanding the denominator to all powers). Hence, it is
rather a result of all-order summation of the subleading
terms. In the languages of QCDF or SCET, it means that
the above imaginary part cannot be derived by including
subleading operators to some given powers of �=mb. The
treatment of the subleading terms as in Eq. (2) is employed
in the PQCD approach based on the kT factorization theo-
rem. As argued in Ref. [16], a parton, carrying a transverse
momentum kT as small as � initially, accumulates its kT
after emitting infinitely many collinear gluons. When the
parton participates in a hard scattering eventually, kT can
become as large as the hard scale. Such an accumulation is
described by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi evolution [17] for a parton distribution function in
inclusive processes and by the Sudakov evolution [18] for a
hadron wave function in exclusive processes. For two-body
nonleptonic B meson decays, k2T of internal particles in a
hard kernel reaches the hard scale of Oðmb�Þ. That is, the
effect resulting from k2T is suppressed by a power of
k2T=m

2
b �Oð�=mbÞ and could be represented by r in

Eq. (2).
If a meson distribution amplitude convoluted with

Eq. (2) diminishes linearly near the end point, the imagi-
nary part will be of order r��=mb. Nevertheless, it can
be numerically significant due to the constant factor �. For
instance, with the distribution amplitude �ðxÞ ¼ 6xð1�
xÞ, the real parts from Eqs. (1) and (2) differ by only 15%.
The imaginary part from Eq. (1) is zero, but that from
Eq. (2) reaches half of the real part for a typical value of
r ¼ 0:1. Obviously, in order that the imaginary part be-
comes negligible, i.e., about 5% of the real part, r must
decrease to 0.01 (or mb increases up to 50 GeV). The
lessons we learn from this simple example are (i) for
very small r, the expansion in powers of r is justified and
the imaginary part, if any, is suppressed; (ii) if r is small but
away from the end point, there can be an appreciable
imaginary part resulting from subleading terms; (iii) in
any case, r is expected to give a minor effect on branching
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ratios but a larger effect on direct CP asymmetries in B
meson decays.

The above comparison mimics the different treatments
of subleading corrections to B meson decays in SCET and
in PQCD: All of the contributions are expanded in �=mb

and in �s to fixed order for a given accuracy in SCET,
while part of the subleading corrections is summed to all
orders in PQCD. For decay rates, the two approaches agree
roughly, but some observables such as the strong phase
have different values as stated before. In order to see if
there is a possibility to have an imaginary part in the
annihilation channel in SCET, we apply the toy model in
Eq. (2) to SCETwith the zero-bin subtraction [7], keeping
a small scale in particle propagators, such as an averaged
parton transverse momentum in PQCD or the hard-
collinear scale in SCET. Note that subleading terms are
always expanded in SCET to give higher-dimensional
operators and contribute through the matrix elements of

these operators. Therefore, retaining a subleading term
without expansion causes double counting and spoils the
power counting rules of SCET. To avoid these problems,
the leading SCET formalism will be employed here. We
would raise the question by means of this toy model about
handling subleading terms properly as far as the imaginary
part is concerned.
We compute the branching ratio and the direct CP

asymmetry of the B0 ! K��� decays explicitly in our
toy model. Let the momenta of the outgoing quark u and
antiquark �u in opposite directions be k2 ¼ ð0; yP�

2 ; 0TÞ and
k3 ¼ ð �xPþ

3 ; 0; 0TÞ, respectively, for the �B0 ! K��þ mode,

where P2 (P3) is the pion (kaon) momentum and �x ¼ 1�
x. The expression for the penguin annihilation amplitude in
the SCET formalism with the zero-bin subtraction is
quoted from Ref. [8]:

ALannðK��þÞ ¼ �GFfBfKf�ffiffiffi
2

p ð�ðsÞ
c þ �ðsÞ

u Þ 4��sð�hÞ
9

��
C9

6
� C3

3

�
½h �x�2iKhy�1i� � h½yðx �y� 1Þ��1i�K�

� 2��

3mb

�
C6 � C8

2
þ C5

3
� C7

6

�
½hy�2 �y�1i�ppðh �x�2iK þ h �x�1iKÞ � 2��

3mb

�
C5

3
� C7

6

�
h½ð1� x �yÞ �xy2��1i�Kpp

þ 2�K

3mb

�
C5

3
� C7

6

�
h½ð1� x �yÞ �x2y��1iK�

pp � 2�K

3mb

�
C6 � C8

2
þ C5

3
� C7

6

�
½ðhy�2i� þ hy�1i�Þhx�1 �x�2iKpp�

�
;

(3)

where GF is the Fermi constant, fB;K;� the meson decay
constants, �ðsÞ

u;c the products of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, �h �mb the hard
scale, Ci the Wilson coefficients, and �� the chiral scale
associated with the pion. The logarithmic terms ln�� in
Ref. [8], being cancelled in the calculation of the Wilson
coefficients and the zero-bin subtraction, have been
dropped. There is no logarithmic enhancement at higher
orders in �s, since physical quantities should be indepen-
dent of the scales ��. Because of the large theoretical
uncertainty shown below, the constant 	 resulting from the
above logarithmic cancellation will be neglected [8]. The
three-parton twist-3 contribution to the penguin annihila-
tion, being numerically smaller by 1 order of magnitude
than Eq. (3) [19], is not included.

We introduce a small constant r into internal quark
propagators involved in the factorizable piece of Eq. (3),
corresponding to Fig. 1. Inserting r into gluon propagators
generates a strong phase down by a factor of 3. The strong
phase from the nonfactorizable annihilation amplitude is
smaller by 2 orders of magnitude. Applying the principle-
value prescription, we obtain the extra imaginary pieces
via the following substitutions:

h �x�2iM ! h �x�2iM þ i Imh �x�2iM;

Imh �x�2iM ¼ ��
Z 1

0
dx

�MðxÞ þ �x�0
Mð1Þ

�x
�ð �x� rÞ;

(4)

hy�2 �y�1iMpp ! hy�2 �y�1iMpp þ i Imhy�2 �y�1iMpp;

Imhy�2 �y�1iMpp ¼��
Z 1

0
dy

�
�M

ppðyÞ
yð1� yÞ�

y�M0
ppð0Þ
y

�
�ðy� rÞ:

(5)

Employing the parametrizations for the leading-twist dis-
tribution amplitude �MðxÞ and for the two-parton twist-3
distribution amplitudes �M

ppðxÞ [8,19]
FIG. 1. ‘‘Factorizable’’ annihilation diagrams in the �B0 !
K��þ decay, where the black dots denote a scalar penguin
operator in the effective weak Hamiltonian.

POSSIBLE COMPLEX ANNIHILATION AND . . . PHYSICAL REVIEW D 78, 034037 (2008)

034037-3



�MðxÞ ¼ 6xð1� xÞ½1þ aM1 ð6x� 3Þ
þ 6aM2 ð1� 5xþ 5x2Þ
� 10aM3 ð1� 9xþ 21x2 � 14x3Þ
þ 15aM4 ð1� 14xþ 56x2 � 84x3 þ 42x4Þþ � � ��;

�M
ppðxÞ ¼ 6xð1� xÞ½1þ aM1ppð6x� 3Þ

þ 6aM2ppð1� 5xþ 5x2Þþ � � ��; (6)

with M ¼ �;K, it is easy to find that both Eqs. (4) and (5)
are proportional to r as expected.

The importance of the penguin annihilation contribution
relative to the full penguin one has been estimated in SCET
[8] and found to be about 10% with large uncertainty in the
B0 ! K��� decays. The full penguin contribution does
not come from an explicit evaluation in the same SCET
framework but from a fitting to the B ! K� data. We can
certainly take this approach. However, the factorization
formulas for the emission amplitudes have been available
in Ref. [7], so they will be adopted in the numerical
analysis below. The feature of generating strong phases
does not depend on how we estimate the emission ampli-
tudes. Besides, we shall not consider the free parameters
associated with the long-distance charming penguin, which
is not factorizable in SCET. As demonstrated later, a decay
amplitude under the zero-bin subtraction is very sensitive
to higher Gegenbauer moments aMn and aMnpp in Eq. (6)

[20], which are mostly unknown. Hence, we shall deter-
mine these moments by fitting the SCET formulas to data
of branching ratios, which are then used to predict direct
CP asymmetries. If a strong phase from the source con-
sidered here is sizable, the whole CP asymmetry cannot be
attributed to the nonperturbative charming penguin alone.

At lowest order in �sðmbÞ with the Wilson coefficients

TðþÞ ¼ 1 and CðþÞ
J ¼ 1 in SCETI [4], the B ! � transition

form factor is decomposed into

fþðEÞ ¼ 
B�ðEÞ þ 
B�J ðEÞ: (7)

The second term is factorizable, written as


B�J ðEÞ ¼ fBf�mB

4E2

4��sð�iÞ
9

�
2E

mB

þ 2E

mb

� 1

�

�
Z 1

0
dy

��ðyÞ
y

Z 1

0
dkþ

�þ
B ðkþÞ
kþ

; (8)

where �i �
ffiffiffiffiffiffiffiffiffiffi
mb�

p
is the intermediate scale and kþ the

momentum of the spectator quark in the B meson. For
charmless two-body nonleptonic B meson decays, we
take the pion energy E ¼ mB=2, mB being the B meson
mass. The first term also factorizes after implementing the
zero-bin subtraction for the end-point singularity [7]


B�ðEÞ ¼ fBf�mB

4E2

4��sð�iÞ
9

�
Z 1

0
dy

Z 1

0
dkþ

�ð1þ yÞ��ðyÞ
ðy2Þ�

��
B ðkþÞ
ðkþÞ�

þ��

ð�p
� þ 1

6�
�0
� ÞðyÞ

ðy2Þ�
�þ

B ðkþÞ
ðkþ2Þ�

�
; (9)

where only the terms from the two-parton pion distribution
amplitudes are retained. The relation among �p

�, ��
�, and

��
pp can be found in Ref. [8]. The formulas for the B ! K

form factor in SCETare similar. We multiply Eq. (7) by the
appropriate CKMmatrix elements andWilson coefficients,
including a part of next-to-leading-order corrections [21],
to obtain the emission contributions from both the tree and
penguin operators. The Wilson coefficient a6 was ne-
glected in the previous SCETanalysis, since the associated
penguin contribution is power-suppressed. However, it is
enhanced by the chiral scale and numerically large.
Furthermore, the power-suppressed annihilation has been
formulated into SCET, so there is no reason for ignoring a6
[21].
The zero-bin subtraction for the logarithmic end-point

singularity associated with the pion distribution amplitude
�� in the first term of Eq. (9) is referred to in Ref. [7],
where the term proportional to y in (1þ y) does not require
subtraction. We also need the zero-bin subtraction for the
linear end-point singularity present in the second term of
Eq. (9) [22]:

Z 1

0
dy

�p
�ðyÞ

ðy2Þ�
	

Z 1

0
dy

�p
�ðyÞ ��p

�ð0Þ � y�p0
� ð0Þ

y2

�
Z 1

1
dyy�ðy� 1Þ� �

p
�ð0Þ þ y�p0

� ð0Þ
y2

�
�
�n � P2

��

�
2�

¼
Z 1

0
dy

�p
�ðyÞ ��p

�ð0Þ � y�p0
� ð0Þ

y2

��p
�ð0Þ þ ln

�
�n � P2

��

�
�p0

� ð0Þ; (10)

where the lightlike vector �n along a Wilson line is involved
in the definition for the pion distribution amplitudes and �n �
P2 ¼ 2E. The subtraction associated with the derivative of
the two-parton twist-3 pion distribution amplitude ��0

� is
similar.
We consider the models for the B meson distribution

amplitudes��
B proposed by Kawamura et al. (KKQT) [23]

and by Grozin and Neubert (GN) [24]. The associated zero-
bin subtraction is defined by
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Z 1

0
dkþ

��
B ðkþÞ
ðkþÞ� 	

Z 1

0
dkþ

��
B ðkþÞ
kþ

�
Z ��

0
dkþ

��
B ð0Þ
kþ

þ ln

�
n � v ��

�þ

�
��

B ð0Þ

¼
�� 1

��
ð1� ln2Þ þ lnðn�v ��

�þ
Þ��

B ð0Þ for KKQT;

� 1
!0

ð�E þ ln
��
!0
Þ þ lnðn�v ��

�þ
Þ��

B ð0Þ for GN;
(11)

Z 1

0
dkþ

�þ
B ðkþÞ
ðkþ2Þ�

	
Z 1

0
dkþ

�þ
B ðkþÞ
kþ2

�
Z ��

0
dkþ

�þ0
B ð0Þ
kþ

þ ln

�
n � v ��

�þ

�
�þ0

B ð0Þ

¼
� 1
2 ��2 ln2þ lnðn�v ��

�þ
Þ�þ0

B ð0Þ for KKQT;

� 1
!2

0

ð�E þ ln
��
!0
Þ þ lnðn�v ��

�þ
Þ�þ0

B ð0Þ for GN;
(12)

with the parameter relation !0 ¼ 2 ��=3, �� being the B
meson and the b quark mass difference. In the above
expressions, n is a lightlike vector along the Wilson line
in the definition for the B meson distribution amplitudes,
and v is the B meson velocity. The terms containing ln��
in Eqs. (10)–(12) are also dropped.

For the numerical analysis, we assume the Gegenbauer
moments of the pion and kaon distribution amplitudes
a�1 ¼ 0, aK1 ¼ �0:05 consistent with the results in

Refs. [25,26], aK2 ¼ a�2 ¼ 0:2 [26–28], a�3 ¼ 0, aK4 ¼
a�4 , a

�
1pp ¼ aK1pp ¼ 0, and aK2pp ¼ a�2pp, among which aM4

and aM2pp are most uncertain. To simplify the formulas, we

do not consider the Gegenbauer moment aK3 for the twist-2

kaon distribution amplitude. That is, we keep one most
uncertain parameter from each of �M and �M

pp, whose

variation is sufficient for our purpose. The hard and inter-

mediate scales are fixed at �h ¼ mb and �i ¼
ffiffiffiffiffiffiffiffiffiffi
mb

��
q

,

respectively, with �� ¼ 0:55 GeV and mb ¼ m1S
b ¼

4:7 GeV. Other relevant heavy-quark masses are taken to

be mc ¼ m1S
c ¼ 1:4 GeV and �mb ¼ �mMS

b ð �mbÞ ¼ 4:2 GeV.
We obtain the chiral scales ��ð�hÞ ¼ 2:4 GeV,
�Kð�hÞ ¼ 3:0 GeV, ��ð�iÞ ¼ 1:8 GeV, and �Kð�iÞ ¼
2:3 GeV from the two-loop running for the strong coupling
constant with �sðMZ ¼ 91:1876 GeVÞ ¼ 0:118 and for
the light-quark masses with mu;dð2 GeVÞ ¼ 5 MeV and

msð2 GeVÞ ¼ 95 MeV. We take the Wilson coefficients
for four-fermion operators evaluated at �h ¼ mb and at
next-to-leading-logarithmic level: C1 ¼ 1:078, C2 ¼
�0:177, C3 ¼ 0:014, C4 ¼ �0:034, C5 ¼ 0:009, C6 ¼
�0:040, C7 ¼ 0:7� 10�4, C8 ¼ 4:5� 10�4, C9 ¼
�9:9� 10�3, and C10 ¼ 1:8� 10�3. Those for dipole
operators at leading-logarithmic level are C7� ¼ �0:314

and C8G ¼ �0:149 [29]. We also take the Fermi constant
GF ¼ 1:16639� 10�5 GeV�2, the decay constants fB ¼
0:22 GeV, fK ¼ 0:16 GeV, and f� ¼ 0:131 GeV, the me-
son massesmB ¼ 5:28 GeV,mK ¼ 0:497 GeV, andm� ¼
0:14 GeV, the Bmeson lifetime 
0B ¼ 1:530� 10�12 sec ,
and the CKM matrix elements Vus ¼ 0:2257, Vub ¼
ð4:2� 10�3Þ expð�i�3Þ, Vcs ¼ 0:957, and Vcb ¼ 0:0416
with the weak phase �3 ¼ 74
 [30].

Adopting the above parameters, the two pieces 
B� and

B�J of the B ! � form factor are written as


B� ¼
�
0:01þ 0:75a�2 þ 2:57a�4 þ 0:43a�2pp for KKQT;
0:09þ 0:65a�2 þ 2:23a�4 � 2:73a�2pp for GN;

(13)


B�J ¼
�
0:016ð1:0þ a�2 þ a�4 Þ for KKQT;
0:024ð1:0þ a�2 þ a�4 Þ for GN:

(14)

Note that the coefficients in Eq. (13) grow quadratically
with the order n of the Gegenbauer moments a�n [20]. This
sensitivity is attributed to the increasing slope of the higher
Gegenbauer polynomials at the end points of the momen-
tum fraction x. The sign flip of the a�2pp terms indicates that


B� also depends strongly on the models of the B meson
distribution amplitudes in SCET. We mention that the
PQCD approach does not suffer such sensitivity, because
the end-point singularity is smeared by including parton
transverse momenta kT , whose order of magnitude is gov-
erned by the Sudakov factor.
The strong dependence on the higher Gegenbauer mo-

ments also appears in the penguin annihilation amplitude

104P̂ann
K� 	 �104

ffiffiffi
2

p
GFm

2
B

ALannðK��þÞ
ð1 GeVÞ

¼ 2:76ð0:07þ a�4 Þð1:20þ a�4 Þ
þ a�2ppð27:0þ 413:1a�4 Þ
� i�ra�2ppð53:2þ 1747a�4 Þ; (15)

with a significant growth of the coefficients of a�4 . The
imaginary contribution is proportional to the second mo-
ment a�2pp. In fact, it could depend on the zeroth moment,

i.e., the normalization of �M
pp, if the denominator 1� y is

not replaced by 1 in the subtraction term in Eq. (5). The
choice of the denominators 1� y and 1 correspond to
different zero-bin subtraction schemes pointed out before.
That is, the size of the imaginary part depends on the
amount of the subtracted contribution, i.e., on zero-bin
subtraction schemes, since it is generated at �x��=mb or
y��=mb as shown in Eqs. (4) and (5). The dependence
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on subtraction schemes also exists in all other definitions
like Eqs. (10)–(12), which will not be discussed in this
work.

For the range of a�4 , the crude bound a�4 � �0:07 has
been determined in Ref. [28]. The analysis based on the
data of the pion transition form factor suggests a�4 �
�0:05 in Ref. [31] and the constraint a�2 þ a�4 ¼ �0:03�
0:14 in Ref. [32], both of which prefer a negative value of
a�4 (considering a�2 � 0:2). The range of a�2pp is basically

undetermined. We shall regard these two parameters as
being free and fix them by the strategy stated before:
Adjust a�4 and a�2pp, such that the B ! � form factor has

the value around fþ ¼ 0:24� 0:05 [13], and the B0 !
K��� decays have the branching ratio close to the data
BðB0 ! K���Þ ¼ ð19:4� 0:6Þ � 10�6 [11]. Because the
last two terms in 
B� for the KKQT model are of the same
sign, and the coefficient of a�4 is large, the constraint from
the form factor value leads to a smaller a�4 . Equation (15)
then implies that the coefficient of r, i.e., the imaginary
part of the annihilation amplitude, is smaller and that the
strong phase is less sensitive to the variation of r. On the
contrary, the last two terms in 
B� for the GN model have
the coefficients with the same order of magnitude but in
opposite signs. Hence, a�4 (and also a�2pp) is larger, and the

strong phase is more sensitive to the variation of r in this
case.

Employing the KKQT model for the B meson distribu-
tion amplitudes, we obtain a�4 � 0:01 and a�2pp � 0:23,

corresponding to which the B ! � form factor, the B0 !
K��� branching ratio, and the predicted direct CP asym-
metry are given by


B� ¼ 0:29; 
B�J ¼ 0:02;

BðB0 ! K���Þ ¼
8><
>:

20:5� 10�6 for r ¼ 0:0;

20:0� 10�6 for r ¼ 0:1;

19:8� 10�6 for r ¼ 0:2;

ACPðB0 ! K���Þ ¼
8><
>:

0:08 for r ¼ 0:0;

0:05 for r ¼ 0:1;

0:02 for r ¼ 0:2:

(16)

We do not attempt a fine-tuning here but accept the values
of a�4 and a�2pp as solutions, when they produce the B ! �

form factor and the B0 ! K��� branching ratio close to
the designated ranges. The results shift with the slight
variation of a�4 and a�2pp, but the behavior for different r

in Eq. (16) has the same pattern. In principle, 
B� and 
B�J

have the same scaling law in �s and in 1=mb [33,34]. The
numerical hierarchy 
B� � 
B�J in Eq. (16), consistent
with the PQCD results [33], may be altered in different
zero-bin subtraction schemes. It is obvious that the addi-
tional dependence on r has a negligible effect on the
branching ratio. However, it affects the strong phase:
ACPðB0 ! K���Þ decreases by 40% from r ¼ 0 to

r ¼ 0:1. Since the imaginary part is proportional to r, it
is difficult to accommodate the data ACPðB0 ! K���Þ ¼
�0:097� 0:012 [11] with reasonable values of r using the
KKQT model.
For the GN model, we find two sets of solutions corre-

sponding to a�4 � 0:18 and a�2pp � 0:15:


B� ¼ 0:21; 
B�J ¼ 0:03;

BðB0 ! K���Þ ¼
8><
>:

20:1� 10�6 forr ¼ 0:0;

20:4� 10�6 forr ¼ 0:1;

25:1� 10�6 forr ¼ 0:2;

ACPðB0 ! K���Þ ¼
8><
>:

0:06 forr ¼ 0:0;

�0:06 forr ¼ 0:1;

�0:14 forr ¼ 0:2

(17)

and to a�4 � �0:22 and a�2pp � �0:20:


B� ¼ 0:28; 
B�J ¼ 0:02;

BðB0 ! K���Þ ¼
8><
>:

18:6� 10�6 for r ¼ 0:0;

19:4� 10�6 for r ¼ 0:1;

26:5� 10�6 for r ¼ 0:2;

ACPðB0 ! K���Þ ¼
8><
>:

0:08 for r ¼ 0:0;

�0:10 for r ¼ 0:1;

�0:20 for r ¼ 0:2:

(18)

The existence of the two sets of solutions with opposite
signs is understandable. Because the term proportional to
a�4 in the imaginary part of Eq. (15) dominates over the
constant term as ja�4 j reaches about 0.2, the product a�2ppa�4
matters, and a�4 and a�2pp can flip sign simultaneously.

As indicated by Eqs. (17) and (18), the branching ratio is
stable, while the strong phase is very sensitive to the
variation of r, so that we easily accommodate the data of
ACPðB0 ! K���Þ with a typical value of r ¼ 0:1� 0:15.
The predicted ACPðB0 ! K���Þ for r ¼ 0, i.e., real pen-
guin annihilation (r ¼ 0:1, i.e., complex penguin annihila-
tion) is close to that from QCDF in the default scenario
[35] (PQCD [2,13]). Therefore, the strong phases resulting
from the power-suppressed source in the penguin annihi-
lation could be numerically crucial for the estimation of
direct CP asymmetries. We then understand the opposite
conclusions on the effect of the penguin annihilation drawn
in SCET and in PQCD: The almost real annihilation am-
plitude in the former and the almost imaginary annihilation
amplitude in the latter are attributed to the different treat-
ments of the formally power-suppressed terms at the physi-
cal b quark mass. Note that the solutions of a�4 and a�2pp in

Eqs. (16)–(18) will be changed, if higher Gegenbauer mo-
ments in Eq. (6) are taken into account, which cause even
larger variation of the decay amplitudes. However, the
strong dependence of ACPðB0 ! K���Þ on r will persist.
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As stated before, SCET provides a systematical expan-
sion in powers of�=mb, but it is somewhat twisted here by
keeping subleading terms in particle propagators in order
to trace a possible source for generating strong phases.
Note that the zero-bin subtraction is not essential for gen-
erating strong phases, though it may change their numeri-
cal values. The twist actually violates the power counting
rules and other aspects of SCET. Hence, our analysis does
not imply the breakdown of SCET in its application to B
meson decays but helps clarify why there are discrepancies
between the studies of direct CP asymmetries in SCETand
PQCD. It hints that more caution is necessary for fixed-
power evaluations of directCP asymmetries at the physical
mass mb. The expansion would be reliable for decay rates
and direct CP asymmetries, if the b quark mass was
10 times heavier. In that case, the contribution from the
on-shell region of internal particles can be really sup-
pressed by hadron distribution amplitudes or excluded by
the zero-bin subtraction. For mb � 5 GeV, the imaginary
part, despite being down by �=mb, can be numerically
large due to the factor �. In this case, a novel method to
generate strong phases with finite physical mb should be
developed.

We have shown that introducing a small scale into
denominators of internal quark propagators accommodates
both the measured branching ratio and the direct CP
asymmetry of the B0 ! K��� decays. Retaining a small
quantity in denominators without expansion is equivalent
to summation of the associated power corrections to all
orders. It is similar to resummation of part of higher-order
corrections in �s for many QCD processes. It is claimed in
the PQCD approach that the parton transverse momenta
can be maintained in denominators consistently in the kT
factorization theorem [36,37]. This treatment is justified by

different power counting rules, which hold in the region of
small parton momenta [37]. The alternative power expan-
sion postulated in the kT factorization theorem has led to
strong phases in agreement with the indication of data in B
meson decays. In SCET, strong phases from penguin an-
nihilation channels are indeed suppressed in the heavy-
quark limit. The point of our paper is to speculate on the
effects of on-shell conditions with subleading terms being
included, which are not diminished sufficiently by the end-
point behavior of distribution amplitudes or by the zero-bin
subtraction for finite heavy-quark mass. No matter whether
improved experimental data turn out to favor small or large
strong phases, our concern remains: One always needs to
estimate contributions of subleading terms along with the
size of the nonperturbative charming penguins in SCET.
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