
Chiral crossover, deconfinement, and quarkyonic matter within a Nambu–Jona-Lasinio model
with the Polyakov loop

H. Abuki,1,2,* R. Anglani,1,2,+ R. Gatto,3,‡ G. Nardulli,1,2 and M. Ruggieri1,2,x
1I.N.F.N., Sezione di Bari, I-70126 Bari, Italy
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(Received 20 May 2008; published 29 August 2008)

We study the interplay between the chiral and the deconfinement transitions, both at high temperature

and high quark chemical potential, by a nonlocal Nambu–Jona-Lasinio model with the Polyakov loop in

the mean field approximation and requiring neutrality of the ground state. We consider three forms of the

effective potential of the Polyakov loop: two of them with a fixed deconfinement scale, cases I and II, and

the third one with a � dependent scale, case III. In cases I and II, at high chemical potential � and low

temperature T, the main contribution to the free energy is due to the Zð3Þ-neutral three-quark states,

mimicking the quarkyonic phase of the large Nc phase diagram. On the other hand, in case III the

quarkyonic window is shrunk to a small region. Finally we comment on the relations of these results to

lattice studies and on possible common prospects. We also briefly comment on the coexistence of

quarkyonic and color superconductive phases.
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I. INTRODUCTION

Color confinement and chiral symmetry breaking are
some of the most intriguing topics in modern theoretical
physics. Quantum chromodynamics (QCD) is believed to
be the ultimate theory describing strong interactions.
Nowadays it is accepted that the main ground state prop-
erties of QCD can be described in terms of nonperturbative
spontaneous breaking and/or restoring of some of the
global symmetries of the QCD Lagrangian.

Unfortunately, solving QCD in its nonperturbative re-
gime is a hard task. At zero and small quark chemical
potential� lattice calculations are a good tool to derive the
equation of state of QCD matter, the transition tempera-
tures, and so on starting from the first principles; see, for
example, [1–4], and references therein. Several approxi-
mation methods are available to overcome the sign prob-
lem of the fermion determinant with three colors at finite�
(see Refs. [5–7] for reviews on the sign problem): small-�
expansion [8–10], reweighting tecniques [11,12], density
of the states methods [13], and analytic continuation to
imaginary chemical potential [14–18].

Besides lattice calculations, effective descriptions of
QCD exist. Among them Nambu–Jona-Lasinio (NJL)
models [19] are very popular; see [20] for reviews. They
are based on the observation that several properties of the
QCD ground state are related to the spontaneous breaking
of some of the global symmetries of the QCD Lagrangian.
Therefore, one hopes that by a model that has the same

global symmetry breaking of QCD one can capture the
essential physics of QCD itself.
In recent years it has been argued that the NJL model,

which does not contain gluons, can be improved by adding
a nonlinear term to the Lagrangian which describes the
dynamics of the traced Polyakov loop [21], and an inter-
action term of the Polyakov loop with the quarks. The
resulting model is called the PNJL model, introduced in
Refs. [22,23] and extensively studied in [24–44]. In the
PNJL model one assumes that a homogeneous Euclidean
temporal background gluon field couples to the quarks via
the covariant derivative of QCD. This coupling gives rise to
the interplay between the chiral condensate and the
Polyakov loop. Even if it is very simple, the PNJL model
turned out to be a powerful tool which allows one to
compute several quantities that can be computed on the
lattice as well. The agreement with existing lattice data is
satisfactory [24].
One of the exciting characteristics of the PNJL model is

the statistical confinement of quarks at low temperature.1

In a few words this means that at small temperature and
small chemical potential, the contributions to the free
energy, �, of the states with one and two quarks are sup-
pressed, and the leading contribution to � arises from the
thermal excitations of colorless three-quark states. This
property is related to the small value of the expectation
value of the Polyakov loop which is found in the self-
consistent calculations within the PNJL model in the
aforementioned conditions of temperature and chemical
potential.
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1The term statistical confinement was introduced by K.
Redlich during the Workshop ‘‘New Frontiers in QCD08.’’
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It has been shown, first by Sasaki, Friman, and Redlich
in Ref. [30] and shortly after by Fukushima [33] that the
statistical confinement property of the PNJL model persists
even at high chemical potential [33]. This result is in
agreement with the phase diagram of QCD obtained in
the large number of colors Nc approximation [45,46]; see
also Refs. [47,48] for recent related studies. Inspired by
Ref. [45] Fukushima has suggested to interpret the statis-
tical confined phase of the PNJL model at high quark
chemical potential as the quarkyonic state found in [45].

In this work we investigate the ground state of the
electrically neutral two flavor PNJL model, focusing on
its possible quarkyonic structure at high � and low T. We
use a nonlocal four fermion interaction instead of the local
one [19]. The local NJL model is usually regularized by
means of an ultraviolet sharp cutoff, which amounts to
artificially cutoff the quark momenta that are larger than
the cutoff itself. Thus the extensions of the model to
temperatures and/or chemical potentials of the order of
the cutoff are quite dubious. However, if one introduces a
nonlocal interaction, which corresponds to the multiplica-
tion of the NJL coupling by a momentum dependent form
factor fðpÞ, and requires that the form factor satisfies the
asymptotic freedom property of QCD fðp! 1Þ ¼ 0, then
all of the momentum integrals are convergent and the
model is consistent at any value of temperature and chemi-
cal potential. In this paper we use one specific form of the
form factor. Although the choice of a different functional
form for fðpÞ can lead to different quantitative results
(mainly the shift of the critical points) we believe that
our picture should not be modified qualitatively. We con-
sider the logarithmic form of the Polyakov loop effective
potential U suggested by Roessner, Ratti, and Weise in
Ref. [25]. Moreover, we investigate the effects of a depen-
dence of U on the quark chemical potential as well as on
the number of flavors as suggested in Ref. [28]. We com-
pare the phase diagrams obtained in the cases in which we
do not consider (cases I and II) and do consider (case III)
the � dependence of U. Cases I and II differ for the value
of the deconfinement scale in the Polyakov loop effective
potential.

We find that the phase diagrams in the two cases (I and II
on one side, III on the other side) differ even qualitatively.
In particular, on one hand, in cases I and II we confirm the
results of Fukushima [33] and strengthen his interpretation
of the high chemical potential/small temperature state of
the PNJL model as the quarkyonic matter of the large Nc
phase diagram. On the other hand, in case III we find that
the quarkyoniclike window found in cases I and II is shrunk
and becomes a small region in the �� T plane in case III,
opening a wide room for the deconfined quark matter of the
pure NJL model.

The plan of the paper is as follows. In Sec. II we sketch
the formalism. In Sec. III we discuss our results. Finally in
Sec. IV we draw our conclusions.

II. THERMODYNAMIC POTENTIALWITH A
NONLOCAL FOUR FERMION INTERACTION

The Lagrangian density of the two flavor PNJL model is
given by [23,41]

L 0 ¼ �eði��@�Þeþ � ði��D� þ��0 �mÞ þL4

�U½�; ��; T�: (1)

In the above equation e denotes the electron field;  is the
quark spinor with Dirac, color, and flavor indices (implic-
itly summed). m corresponds to the bare quark mass ma-
trix; we assume from the very beginning mu ¼ md. The
covariant derivative is defined as usual asD� ¼ @� � iA�.

The gluon background field A� ¼ �0�A0 is supposed to be

homogeneous and static, with A0 ¼ gAa0Ta and Ta, a ¼
1; . . . ; 8 being the SUð3Þ color generators with the normal-
ization condition Tr½Ta; Tb� ¼ �ab. Finally� is the chemi-
cal mean quark chemical potential, related to the conserved
baryon number.

In Eq. (1) �, �� correspond to the normalized traced
Polyakov loop L and its Hermitian conjugate, respectively,

� ¼ TrW=Nc, �� ¼ TrWy=Nc, with

W ¼ P exp

�
i
Z �

0
A4d�

�
¼ expði�A4Þ; A4 ¼ iA0;

(2)

and � ¼ 1=T. � is a color singlet but it has a Zð3Þ charge
[21], where Zð3Þ is the center of the color group SUð3Þ;
thus if� � 0 in the ground state then the Zð3Þ symmetry is

spontaneously broken. The term U½�; ��; T� is the effec-
tive potential for the traced Polyakov loop; in the absence
of dynamical quarks it is built in order to reproduce the
pure glue lattice data of QCD, namely, thermodynamical
quantities (pressure, entropy, and energy density) and the
deconfinement temperature of heavy (nondynamical)
quarks, T ¼ 270 MeV. Several forms of this potential
have been suggested in the literature; see, for example,
[23–26,33]. In this paper we adopt the following logarith-
mic form [25]:

U½�; ��; T� ¼ T4

�
� b2ðTÞ

2
���þ bðTÞ log½1� 6 ���

þ 4ð ��3 þ�3Þ � 3ð ���Þ2�
�
; (3)

with

b2ðTÞ ¼ a0 þ a1

� �T0

T

�
þ a2

� �T0

T

�
2
; bðTÞ ¼ b3

� �T0

T

�
3
:

(4)

Numerical values of the coefficients are as follows [25]:

a0 ¼ 3:51; a1 ¼ �2:47;

a2 ¼ 15:2; b3 ¼ �1:75:
(5)
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If dynamical quarks were not present then one should
chose �T0 ¼ 270 MeV in order to reproduce the deconfine-
ment transition at T ¼ 270 of the pure gauge theory
[23,24,29]. In the presence of quarks �T0 might get a
dependence on the number of active flavors as well as on
the quark chemical potential [24,28]. Inspired by
Refs. [23,24,28] in this paper we consider three cases:

�T 0 ¼ 208 MeV; case I; (6)

�T 0 ¼ 270 MeV; case II; (7)

�T 0ð�Þ ¼ T�e
�1=�0cð�Þ; case III: (8)

Case II corresponds to the deconfinement temperature in
the pure glue theory; the parameters in cases I and III have
been evaluated in Ref. [28] on the basis of hard dense and
hard thermal loop approximations to QCD. In the equation
corresponding to case III we have set

�0 ¼ 0:304; T� ¼ 1770 MeV; (9)

and

cð�Þ ¼ 11Nc � 2Nf
6�

� 16Nf
�

�2

T2
�

; (10)

with Nf ¼ 2 and Nc ¼ 3. At� ¼ 0 we have �T0ð� ¼ 0Þ ¼
208 MeV as case I; for comparison, at � ¼ 500 MeV the
deconfinement scale is given by �T0ð� ¼ 500Þ ¼ 19 MeV.

In Eq. (1) L4 represents the Lagrangian density for the
four fermion interaction. If we define S4 ¼

R
d4xL4 as the

interaction action, then in the local version of the NJL
model one has

S4 ¼ G
Z
d4x½ð �  Þ2 þ ð � i�5� Þ2�: (11)

In the nonlocal version of the NJL model the contact term
Eq. (11) is replaced by [30,49–54]

S4 ¼ G
Z
d4x½ð �qðxÞqðxÞÞ2 þ ð �qðxÞi�5�qðxÞÞ2�; (12)

where the dressed quark field is defined as

qðxÞ ¼
Z
d4yFðx� yÞ ðyÞ; (13)

and FðrÞ is a form factor whose Fourier transform fðpÞ
satisfies the constraint fðpÞ ! 0 for p! 1, with p being
the 3-momentum. In this paper we follow Ref. [30] and use
the Lorentzian form factor,

fðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðp=�Þ2�p : (14)

In the above equation � ¼ 684:2 MeV and � ¼ 10.
Moreover we use m ¼ 4:46 MeV and G ¼ 2:33=�2 [30].
By these numerical values we reproduce the pion decay
constant f� ¼ 92:3 MeV and the pion mass m� ¼

135 MeV, as well as the chiral condensate h �uui ¼
�ð256:2 MeVÞ3. Although the choice of a different form
factor will lead to different critical temperatures and/or
chemical potentials, it is quite reasonable that the qualita-
tive picture that we draw in this work is insensitive to the
specific form of fðpÞ.
As explained in the Introduction we are interested in the

ground state of the model specified by the Lagrangian in
Eq. (1), at each value of the temperature T and the chemi-
cal potential �, corresponding to a vanishing total electric
charge. In order to build the neutral ground state we use the
standard grand canonical ensemble formalism, adding to
Eq. (1) the term �QNQ, �Q being the chemical potential

(i.e., Lagrange multiplier) for the total charge NQ, and
requiring stationarity of the thermodynamic potential
with respect to variations of �Q, which is equivalent to

the requirement hNQi ¼ 0 in the ground state. This

amounts to write the Lagrangian L in the grand canonical
ensemble L ¼ L0 þ�QNQ as [41]

L ¼ �eði��@� þ�e�0Þeþ � ði��D� þ �̂�0 �mÞ 
þG½ð �  Þ2 þ ð � i�5 ~� Þ2� �U½�; ��; T�; (15)

where�e ¼ ��Q and the quark chemical potential matrix

�̂ is defined in flavor-color space as

�̂ ¼ �� 2
3�e 0
0 �þ 1

3�e

 !
� 1c; (16)

where 1c denotes the identity matrix in color space. At
�e � 0 a difference of the chemical potential between up
and down quarks, �� ¼ �2=2, arises.
In this paper we work in the mean field approximation.

Because of �� � 0, a pion condensation might occur in
the ground state [55]. In order to study simultaneously
chiral symmetry breaking and pion condensation we as-
sume that in the ground state the expectation values, real
and independent on x, for the following operators may
develop [32,41,55–58]:

� ¼ Gh �qðxÞqðxÞi; � ¼ Gh �qðxÞi�5�1qðxÞi: (17)

In the above equation a summation over flavor and color is
understood. We have assumed that the pion condensate
aligns along the �1 direction in flavor space. This choice
is not restrictive. As a matter of fact we should allow for
independent condensation both in �þ and in �� channels
[32]:

�� � Gh � i�5�� i ¼ �ffiffiffi
2

p e�i	; (18)

with �� ¼ ð�1 � �2Þ=
ffiffiffi
2

p
, but the thermodynamical poten-

tial is not dependent on the phase 	. Therefore, we can

assume 	 ¼ 0 which leaves us with �þ ¼ �� ¼ �=
ffiffiffi
2

p
and introduce only one condensate, specified in Eq. (17).
In what follows we consider the system at finite tem-

perature T in the volume V. This implies that the space-
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time integral is
R
d4x ¼ R�

0 d�
R
d3x with � ¼ 1=T. In the

mean field approximation the PNJL action reads

S ¼
Z
d4x½ �eði��@� þ�e�0Þeþ � ði��D� þ �̂�0Þ �

þ 2�
Z
d4x �qðxÞqðxÞ þ 2�

Z
d4x �qðxÞi�5�1qðxÞ

� �V
�2 þ �2

G
� �VU½�; ��; T�; (19)

where V is the quantization volume and � ¼ 1=T. In
momentum space one has

S ¼
Z d4p

ð2�Þ4 ½ �eð��p
� þ�e�0Þe

þ � ð��p� � ��A
� � �̂�0Þ �

þ
Z d4p

ð2�Þ4 fðpÞ
2½2� � ðpÞ ðpÞ þ 2� � ðpÞi�5�1 ðpÞ�

� �V
�2 þ �2

G
� �VU½�; ��; T�; (20)

with A� ¼ gAa�Ta. We introduce the mean field momen-

tum dependent constituent quark mass MðpÞ and renor-
malized pion condensate NðpÞ:

MðpÞ � m� 2�f2ðpÞ; N � �2�f2ðpÞ: (21)

The thermodynamical potential� per unit volume in the
mean field approximation can be obtained by integration
over the fermion fields in the partition function of the
model, see, for example, Ref. [56],

� ¼ �
�
�4
e

12�2
þ�2

eT
2

6
þ 7�2T4

180

�
þU½�; ��; T�

þ �2 þ �2

G
� T

X
n

Z d3p

ð2�Þ3 Tr log
S�1ði!n;pÞ

T
;

(22)

where the sum is over fermion Matsubara frequencies
!n ¼ �Tð2nþ 1Þ, and the trace is over Dirac, flavor,
and color indices. The inverse quark propagator is defined
as

S�1ði!n;pÞ ¼ ði!n þ�� 2
3�e þ iA4Þ�0 � � � p�MðpÞ �i�5NðpÞ

�i�5NðpÞ ði!n þ�þ 1
3�e þ iA4Þ�0 � � � p�MðpÞ

 !
� 1c:

(23)

Performing the trace and the sum over Matsubara frequencies we have the effective potential for �, �, and �, namely,

� ¼ �
�
�4
e

12�2
þ�2

eT
2

6
þ 7�2T4

180

�
þU½�; ��; T� þ �2 þ �2

G
� 2Nc

Z d3p

ð2�Þ3 ½Eþ þ E� � 2p�

� 2T
Z d3p

ð2�Þ3 log½1þ 3�e��ðEþ��Þ þ 3 ��e�2�ðEþ��Þ þ e�3�ðEþ��Þ�

� 2T
Z d3p

ð2�Þ3 log½1þ 3�e��ðE���Þ þ 3 ��e�2�ðE���Þ þ e�3�ðE���Þ�

� 2T
Z d3p

ð2�Þ3 log½1þ 3 ��e��ðEþþ�Þ þ 3�e�2�ðEþþ�Þ þ e�3�ðEþþ�Þ�

� 2T
Z d3p

ð2�Þ3 log½1þ 3 ��e��ðE�þ�Þ þ 3�e�2�ðE�þ�Þ þ e�3�ðE�þ�Þ�; (24)

where

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp ��e=2Þ2 þ N2

q
; (25)

and Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðpÞp

. In Eq. (24) the integral of 2p is
an irrelevant constant that we subtract in order to make the
thermodynamical potential finite at each value of tempera-
ture and chemical potential. The ground state of the model
is defined by the values of �, �,�, and �� that minimize�
and that have a vanishing total charge; the latter condition
is equivalent to the requirement

@�

@�e

¼ 0: (26)

In this paper we use the convenient Polyakov gauge,

� ¼ 1
3 Tr½ei�ð
3�3þi
8�8Þ�; (27)

with �3, �8 being the real parameters. It has been widely
discussed in Ref. [25] that in the mean field approximation
and with the choice of the effective potential U given by

Eq. (3) one has h�i ¼ h ��i for any value of T and �, and

the solution h�i � h ��i at finite � is due to quantum
fluctuations. Since in this paper we consider only the

mean field approximation we chose � ¼ �� in the calcu-
lations. This choice implies �8 ¼ 0, and thus we are left
with only one parameter �3 � �.
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Before closing this section we write the dispersion laws
of the quasiparticles in the Polyakov gauge, defined as the
poles of the quark propagator given by Eq. (23):

Eur ¼ ��� i�þ Eþ; Edr ¼ ��� i�þ E�;
(28)

Eug ¼ ��� i�þ Eþ; Edg ¼ ��� i�þ E�;
(29)

Eub ¼ ��þ Eþ; Edb ¼ ��þ E�: (30)

In the previous equations u, d correspond to up and down
quarks, and r, g, and b to the colors red, green, and blue;
the upper (lower) sign multiplying� and� corresponds to
quarks (antiquarks).

III. SUSCEPTIBILITIES IN THE PNJL MODEL

In order to study the landscape of the phases of the
PNJL model we introduce the susceptibility matrix.
Susceptibilities are useful to identify phase transitions
since they are proportional to the fluctuations of the order
parameters around their mean field values, which usually
are enhanced near a phase transition. We follow closely
Ref. [30] for the formalism settings. The first step is the
definition of the dimensionless curvature matrix of the free
energy around its global minima C [23,30],

C �
CMM CM� CM ��

CM� C�� C� ��

CM �� C� �� C �� ��

0
@

1
A: (31)

In the above equation the diagonal entries are defined as

CMM ¼ �

�

@2�

@M2
; (32)

C�� ¼ �

�3

@2�

@�2
; C �� �� ¼ �

�3

@2�

@ ��2
; (33)

with � ¼ 1=Tf, and � is the mass scale defining the form
factor Eq. (14).� is defined in Eq. (24). In what follows we
denote by M the constituent quark mass computed at p ¼
0, which is a function of � and T. The off-diagonal entries
are given by

CM� ¼ �

�2

@2�

@�@M
; CM �� ¼ �

�2

@2�

@ ��@M
; (34)

C� �� ¼ �

�3

@2�

@�@ ��
; (35)

the derivatives are computed at the global minimum of �.
Notice that the proper definition of the curvature matrix

requires that we put � ¼ ��, namely, the mean field solu-
tion, only after differentiation.

The susceptibility matrix �̂ is computed as the inverse of
the curvature matrix C. We have

�̂ ¼
�MM �M� �M ��

�M� ��� �� ��

�M �� �� �� � �� ��

0
@

1
A: (36)

Here �MM, ���, and � �� �� denote, respectively, the dimen-
sionless susceptibilities of the constituent quark mass, of
the Polyakov loop and of its complex conjugate. We also
introduce the average susceptibility

�� ¼ 1
4ð��� þ � �� �� þ 2�� ��Þ: (37)

IV. RESULTS AND DISCUSSION

In this section we sketch our results. First we discuss the
set of parameters corresponding to case I which corre-
sponds to �T0 ¼ 208 MeV. Case II is qualitatively similar
to case I; therefore, after the discussion of the results
obtained in the latter case we briefly show the results
corresponding to the former case. Finally we compare
both qualitatively and quantitatively cases I and III. We
find that the phase structures of the models corresponding
to cases I and III are quite different.

A. Case I: Masses, Polyakov loop, and quarkyonic
matter

In the upper panel of Fig. 1 we plot the constituent quark
mass at p ¼ 0, the expectation value of the traced
Polyakov and the electron chemical potential as a function
of the temperature, computed at � ¼ 0 (left panel) and
� ¼ 300 MeV (right panel). M0 denotes the constituent
quark mass at p ¼ 0, � ¼ 0, �e ¼ 0 and T ¼ 0, M0 ¼
335 MeV. The pion condensate N is not shown since we
find N ¼ 0 once electrical neutrality has been imposed.
The latter result is in agreement with what we have found
in our previous work, see Ref. [41], where we have con-
sidered the local version of the neutral two flavor PNJL
model. Even if we have shown results only for two values
of the quark chemical potential, we have explicitly verified
that N vanishes in the whole range of chemical potentials
and temperatures considered in this work, namely, 0 �
� � 500 MeV and 0 � T � 250 MeV.
The expectation value of the Polyakov loop at � ¼ 0 is

consistent with zero up to temperatures of the order of
100 MeV.2 It rises as the temperature is increased becom-
ing of the order of 1 for temperatures close to 250 MeV.
This behavior signals a crossover from a low temperature
phase with an unbroken Zð3Þ symmetry, to a high tempera-
ture phase with Zð3Þ symmetry spontaneously broken. The
behavior of � as a function of the temperature is observed
even at higher values of�, see, for example, the upper right
panel of Fig. 1. We call such a crossover the Zð3Þ crossover
throughout this paper.

2� cannot be exactly zero because dynamical quarks break the
Zð3Þ symmetry explicitly; nevertheless � turns out to be very
small, signaling that the center symmetry is broken only softly.
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In the lower panel of Fig. 1 we plot three of the suscep-
tibilities defined in the previous section, namely, �MM
(solid line), �� �� (dashed line), and �� (dot-dashed line),
as a function of temperature at � ¼ 0 (left panel) and� ¼
300 MeV (right panel). In this work we identify the chiral
crossover temperature with the temperature where �MM is
maximum. In the same way and following Ref. [30] we
define the Zð3Þ crossover temperature as the one corre-
sponding to the maximum of ��.

We wish to investigate the spontaneous breaking of the
Zð3Þ symmetry in the neutral PNJL model as the quark
chemical potential is increased at a fixed low temperature.
To this end we plot in Fig. 2 the constituent quark mass at
p ¼ 0, the expectation value of the traced Polyakov and the
electron chemical potential as a function of the quark
chemical potential �, computed at T ¼ 20 MeV (left
panel). M0 denotes the constituent quark mass at p ¼ 0,
� ¼ 0 and T ¼ 0,M0 ¼ 335 MeV. Again we do not show
the pion condensate since it turns out to vanish in the
neutral phase. At low temperatures we find a first order

chiral transition at � 	 353 MeV, in agreement with our
previous analysis [41]. In correspondence with the chiral
restoration the expectation value of the Polyakov loop has a
sudden jump. Nevertheless its value remains much smaller
than 1 even if� is increased to 500 MeV, where� 	 0:04.
For comparison we show the same quantities at T ¼
130 MeV in the right panel.
We now focus on the low temperature regime; therefore

we refer to the left panel of Fig. 2. In this case we cannot
identify the jump of � as the Zð3Þ crossover. Instead the
discontinuity of � is simply due to the coupling of the
Polyakov loop with the chiral condensate. This is con-
firmed by the calculation of the Polyakov loop susceptibil-
ities; see the lower panel of Fig. 2. At T ¼ 20 MeV, in
correspondence with the jump of the constituent quark
mass, the chiral susceptibility has a pronounced peak. On
the other hand, the Polyakov loop susceptibilities are very
smooth functions of�with a small cusp in correspondence
with the chiral transition, signaling the absence of a phase
transition (as well as of a crossover). For comparison we

FIG. 1. Upper panel: constituent quark mass at p ¼ 0, pion condensate at p ¼ 0, and a Polyakov loop as a function of temperature,
computed at � ¼ 0 (left panel) and � ¼ 353:5 MeV (right panel). M0 denotes the constituent quark mass at p ¼ 0, � ¼ 0, �e ¼ 0
and T ¼ 0, M0 ¼ 335 MeV. Lower left panel: susceptibilities at � ¼ 0 as a function of temperature. Lower right panel:
susceptibilities at � ¼ 300 MeV as a function of temperature. Solid line: �MM. Dashed line: �� ��. Dot-dashed line: ��.
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show the same quantities at T ¼ 130 MeV in the right
panel.

Our results can be interpreted by assuming that at low
temperatures the Zð3Þ symmetry is not spontaneously bro-
ken, both at low and at high chemical potentials. The
nonzero value of � can be related to the existence of
dynamical quarks in the system that break explicitly the
center symmetry. The fact that � 
 1 means that in the
ground state colored quarks are suppressed [they have a
finite Zð3Þ charge], and the main contribution to the free
energy is due to the Zð3Þ-invariant multiquark states that
are states with a zero Zð3Þ charge. This point can be
clarified by studying the thermal population of the quasi-
quark excitations at low temperature. To this end we com-
pute the quark number density nq,

nq ¼ � @�

@�
; (38)

as a function of the chemical potential at fixed temperature.
The result is shown in Fig. 3. Evaluation of the derivative of

� defined in Eq. (24) leads to the expression

nq ¼ 3

�2

Z 1

0
p2dp

�
gþ�
fþ�

þ g��
f��

� gþþ
fþþ

� g�þ
f�þ

�
; (39)

where we have introduced the functions

f�� ¼ 1þ 3�e��ðE���Þ þ 3�e�2�ðE���Þ

þ e�3�ðE���Þ; (40)

g�� ¼ �e��ðE���Þ þ 2�e�2�ðE���Þ þ e�3�ðE���Þ;
(41)

and E� are defined in Eq. (25). The addenda in the right-
hand side of Eq. (39) correspond, respectively, to up
quarks, down quarks, up antiquarks, and down antiquarks.
If we put by hand � ¼ 1 in Eq. (39) we recover the usual
expression of the NJL model,

FIG. 2. Upper panel: constituent quark mass at p ¼ 0, a Polyakov loop and electron chemical potential as a function of the quark
chemical potential�, computed at T ¼ 20 MeV (left panel) and T ¼ 130 MeV (right panel).M0 denotes the constituent quark mass at
p ¼ 0 and T ¼ 0,M0 ¼ 335 MeV. In both cases N ¼ 0 and it is not shown. Lower panel: susceptibilities at T ¼ 20 MeV (left panel)
and T ¼ 130 MeV (right panel) as a function of the quark chemical potential. Solid line: �MM. Dashed line: �� ��. Dot-dashed line: ��.
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nq;NJL ¼ 3

�2

Z 1

0
p2dp

�
1

1þ e�ðEþ��Þ þ
1

1þ e�ðE���Þ

� 1

1þ e�ðEþþ�Þ �
1

1þ e�ðE�þ�Þ

�
; (42)

where the 3 overall counts the number of colors.
Equation (42) is the number density of a free fermion
gas; it shows that in the zero temperature limit and �>
M,M denoting the constituent quark mass, the ground state
of the NJL model is made of Fermi spheres of red, green,
and blue quarks. Moreover at small but nonvanishing
temperatures the thermal excitations over the Fermi
spheres are still quarks.

Now we compare Eq. (42) with the analogous result of
the PNJL model. At low temperature we have � 
 1;
therefore, for a rough analysis we can put � ¼ 0 in
Eq. (39). We are left with the expression:

nq;PNJL ¼ 3

�2

Z 1

0
p2dp

�
1

1þ e3�ðEþ��Þ þ
1

1þ e3�ðE���Þ

� 1

1þ e3�ðEþþ�Þ �
1

1þ e3�ðE�þ�Þ

�
: (43)

The above equation is valid for every value of �. In the
limit T ! 0 and for �>M, with M the constituent quark
mass, it gives the equation obtained in the NJL model that
is a ground state of Fermi spheres of red, green, and blue
quarks at the chemical potential �. If we introduce a small
temperature, then the thermal excitations are not quarks but
the Zð3Þ symmetric three-quark states, that is states made
of one red quark, one green quark, and one blue quark. This
is clear from the above Eq. (43) by looking at the argu-
ments of the exponentials in the four addenda. Each of the
addenda corresponds to the occupation number of fermions
with energy given by 3E� � 3� which is exactly the
energy of the lightest Zð3Þ symmetric state, namely [see
Eqs. (28)–(30)],

Ered þ Egreen þ Eblue ¼ 3E� � 3�; (44)

the sign depending on the flavor we consider (Eþ corre-
sponds to up quarks, E� to down quarks). The same result
holds for antiquarks, simply by replacing �! ��. The
combination (44) is exactly the argument of the exponen-
tials in Eq. (43).
To summarize: For the parametrization I the ground state

of PNJL quark matter in the regime of low temperature
T 
 M and �>M is made of Fermi spheres of quarks,
and the thermal excitations above the aforementioned
Fermi spheres are the three-quark states, neutral with
respect to Zð3Þ.
For completeness, in the right panel of Fig. 3 we plot the

dimensionless quark number susceptibilities, �q, defined

as

�q ¼ � 1

�2

@2�

@�2
; (45)

where � is the form factor momentum scale in Eq. (14),
and � is the PNJL free energy given by Eq. (24).

B. Case I: Phase diagram in the �� T plane

In Fig. 4 we summarize the phase diagram of the model
in the�� T plane with the parametrization I. The thin line
corresponds to the chiral crossover; the thick line is the first
order chiral transition. We identify the peaks (or the local
maxima) in the susceptibilities with the phase transitions.
In particular, the chiral crossover is related to the peak of
�MM in Eq. (36); on the other hand following Ref. [30] we
identify the peak of the average susceptibility �� defined in
Eq. (37) with the Polyakov loop crossover.
From the qualitative point of view the phase diagram

does not differ from our previous result [41] obtained in the
sharp cutoff regularization scheme. The chiral crossover at
� ¼ 0 is located at Tc ¼ 215 MeV, to be compared with

FIG. 3. Left panel: quark number densities, in units of the nuclear saturation density 0 ¼ 0:16 fm�3, as a function of the quark
chemical potential � at T ¼ 20 MeV (dashed line) and T ¼ 130 MeV (dot-dashed line). Right panel: dimensionless quark number
susceptibilities as a function of the quark chemical potential � at T ¼ 20 MeV (dashed line) and T ¼ 130 MeV (dot-dashed line).
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our previous work [41] Tc ¼ 206 MeV. The critical end
point is only slightly shifted: in this work we find

ð�E; TEÞ 	 ð350; 55Þ MeV: (46)

This result has to be compared with [41]

ð�E; TEÞ 	 ð340; 80Þ MeV; sharp cutoff: (47)

Finally at T ¼ 0 we find that the chiral crossover occurs at
� ¼ 370 MeV, while in our previous work we have found
� ¼ 350 MeV.

We now discuss the Polyakov loop crossover line, cor-
responding to the thin solid line in Fig. 4. At small values of
the quark chemical potential the peaks of the averaged
susceptibility are well pronounced, see, for example,
Fig. 1. As � is increased, the peaks of �� as well as of the
diagonal ���, � �� �� and off-diagonal � ��� susceptibilities
are broadened and the crossover is dilute over a wide
interval of temperatures; see the right panel of Fig. 1. In
the window of chemical potential studied in this paper, 0 �
� � 500 MeV, we are still able to observe maxima of ��
(as well as for the other susceptibilities) as a function of the
temperature at a fixed value of �; the width of the maxima
increases as � is increased. Therefore we expect that at
high values of � and T the peaks of �� will be very dilute,
meaning that the crossover disappears in the model under
consideration. This result changes if we consider � depen-
dent coefficients of the Polyakov loop effective potential as
we discuss later.

We finally notice that our results for the Zð3Þ crossover
are in qualitative agreement with the results obtained in
Ref. [30], where the authors study the phase diagram and
the susceptibilities of the PNJL model with quarks at the
same chemical potential, and with a polynomial form of
the Polyakov loop effective potentialU. This suggests that
the Zð3Þ crossover is not mainly governed by the specific
form ofU or by electrical neutrality, but by the assumption

that the deconfinement scale �T0 in U is kept independent
on � in this calculation.

C. Case II: Critical points

From the qualitative point of view, the case with �T0 ¼
270 MeV does not differ from the previously analyzed
case II. Therefore we simply give the coordinates of the
critical points obtained in this case. At � ¼ 0 we find the
chiral crossover at T ¼ 219 MeV and the Zð3Þ crossover at
T ¼ 211 MeV. The critical end point coordinates are

ð�E; TEÞ 	 ð336; 103Þ MeV; �T0 ¼ 270 MeV: (48)

D. Case III: Critical points and phase structure

We now discuss the results obtained in case III in which
we assume both a� and a Nf dependence of the parameter
�T0 of the Polyakov loop potential, see Eq. (8). Our main
goal is to emphasize the differences between case III and
case I. The main difference arises at low temperature and
high chemical potential, so we focus on this regime. In
Fig. 5 we plot on the left panel the constituent quark mass
at p ¼ 0 and the expectation value of� as a function of �
at T ¼ 20 MeV, with the related susceptibilities, for
case III, and compare these results with those obtained in
case I at the same temperature (right panel). We have
verified that qualitatively the picture does not change if
we lower the temperature to the order of 1 MeV.
At � ¼ 0 the critical temperatures are equal to those

computed in case I [simply because �T0ð� ¼ 0Þ ¼
208 MeV]. Moreover the coordinates of the critical end
point are

ð�E; TEÞ ¼ ð339; 53Þ MeV; �T0 ¼ �T0ð�Þ: (49)

The data on � corresponding to the parametrization III
show that the case �T0 ¼ �T0ð�Þ is quite different from the
case �T0 ¼ 208 MeV. In case III (left panel) in correspon-
dence with the chiral transition at� � �c 	 350 MeV the
Polyakov loop has a net jump from � 
 1 at � ¼ �c �
0þ to a definitely nonzero value� 	 0:3 at� ¼ �c þ 0þ.
Since the contribution of the one- and two-quark states
[Zð3Þ charges] to the free energy is multiplied by 3�, see
Eq. (24), and in the present case 3� is of the order of unity,
the weight of the Zð3Þ charges in the free energy is the same
of the weight of the three-quark states. This behavior is
different from what we have found in the case of �T0 ¼
208 MeV. The similarity between the two cases is partially
recovered if we consider temperatures of the order of
1 MeV; in this case we find a narrow window in � where
3� is of the order of 0.1, revealing a ground state in which
the leading contribution to the free energy comes from the
thermal excitations of Zð3Þ neutral states. We discuss this
point in more detail in the following section. Finally the
analysis of the peaks of the susceptibilities � ��� and ��
(lower left panel of Fig. 5) reveals that the Zð3Þ crossover
occurs at � 	 460 MeV.

FIG. 4. Phase diagram of the neutral two flavor PNJL model.
The dot-dashed line corresponds to the chiral crossover; the bold
solid line is the first order transition. The thin solid line denotes
the deconfinement crossover.
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V. COMPARISON BETWEEN THE TWO
SCENARIOS

In this section we compare the qualitative picture that
arises from the study of the phase diagram of the neutral
PNJL model within two scenarios: the first one corre-
sponds to keeping an independent �T0, case I; the second
one corresponds to keeping a �-dependent �T0, case III.

The results that we have discussed in the previous sec-
tions show that the phase diagram of the PNJL model in
case I at low temperatures is similar to the phase diagram
obtained in the large Nc approximation of QCD, see
Refs. [45,46]. At low temperatures the latter phase diagram
consists of two regions: the first one at low values of �,
defined as the confined phase and characterized by � ¼ 0
and a vanishing baryon density, and the second one at large
values of � called quarkonia in which � ¼ 0 but the
baryon density is not vanishing. Finally at high tempera-
ture one finds the deconfined phase with � � 0 and a
nonvanishing baryon density. In the quarkyonic phase the

free energy is that of free quarks, but the thermal excita-
tions are those of baryons. Our previous discussion and
Figs. 2 and 3 show that this happens even in the PNJL
model in the low temperature regime. Therefore the PNJL
model with parametrization I approximately reproduces
the large Nc phase diagram at low temperatures, if one
interprets the state with � 
 1 at high � with the quar-
kyonic phase of large Nc. This fact has already been
noticed in a study of the three flavor model by
Fukushima [33] where the author has suggested to identify
the low temperature–high density ground state of the
model as the quarkyonic phase of large Nc QCD. Our
results strengthen this idea and thus suggest that the quar-
kyoniclike ground state of the low temperature–high den-
sity PNJLmodel is not a peculiarity of the three flavor case,
but it seems to be a characteristic of the PNJL model itself,
as far as we do not include an explicit � dependence into
the coefficients of U (we discuss this case in a next
section). The main difference between large Nc and
PNJL is that in the latter model one can excite one- and

FIG. 5. Upper panel: constituent quark mass at p ¼ 0, a Polyakov loop and electron chemical potential as a function of the quark
chemical potential�, computed at T ¼ 20 MeV in case III (left panel) and case I (right panel, shown for comparison with case III; it is
the same plot shown in Fig. 2). M0 denotes the constituent quark mass at p ¼ 0, � ¼ 0 and T ¼ 0, M0 ¼ 335 MeV. In both cases
N ¼ 0 and it is not shown. Lower panel: susceptibilities at T ¼ 20 MeV in case III (left panel) and case II (right panel). Solid line:
�MM. Dashed line: �� ��. Dot-dashed line: ��.
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two-quark states [that is Zð3Þ charges] if the temperature is
high enough. As a consequence, the deconfinement tran-
sition observed in the large Nc model at high temperature
and high chemical potential is replaced in the present
model by a smooth Zð3Þ crossover.

In Fig. 6 we show a cartoon phase diagram of the neutral
two flavor PNJL model and a comparison with that ob-
tained in the large Nc approximation [45]. The bold line
denotes the chiral crossover as well as the chiral first order
transition. The thin line corresponds to the deconfinement
crossover. Both of these lines are the same as those we have
shown in Fig. 4. Since this is simply a cartoon we do not
distinguish between the crossover (small �) and first order
transition (higher values of �). In the PNJL model the
quark density does not vanish at any finite temperature,
even if the small chemical potential nq is very small at low

temperature (see Fig. 3). To compare the phase diagram of
the PNJLmodel with that of the largeNc approximation we
need a criterion to say if nq is zero or not. Analogously to

Ref. [33] we identify the nq crossover with the value of �

corresponding to the inflection point of the quark density.
We find that the nq crossover defined in this way coincides

with the chiral crossover as in Ref. [33]. Therefore the
chiral crossover line in Fig. 6 represents the density
crossover as well. In the chiral broken phase and at low
temperature nq 	 0. On the other hand nq � 0 in corre-

spondence to the chiral symmetric phase at low tempera-

ture. At high temperature nq � 0 both in the chiral broken

and in the chiral restored phases.
At low temperature we have � 	 0 both on the left and

on the right of the dashed line; see Figs. 1 and 2. At low
temperature the region with broken chiral symmetry has
the same characteristics of the hadron phase found in
Ref. [45]; on the other hand at low temperature the region
on the right of the dashed line has the same characteristics
of the quarkyonic phase found in Ref. [45]. For these
reasons we have called the two regions hadroniclike and
quarkyoniclike, respectively. We stress that this analogy
holds strictly speaking only at low temperature (for tem-
peratures of the order of 100MeV nq � 0even in the chiral

broken phase, see Fig. 3). Finally at high temperature
[above the Zð3Þ transition line] we have both � of order
of unity and nq � 0. In analogy to the terminology of

Ref. [45] we call this region of the phase diagram the
deconfinedlike phase.
We briefly compare the results discussed above in rela-

tion to case I with those obtained in the large Nc approxi-
mation and at T ¼ 0 in Ref. [48], where the author
discusses a gap in the spectrum of quarkyonic matter
within a model. Such a gap is given by the pion mass,
M�, which becomes larger as � is increased. Even if the
values of M� as a function of � computed in Ref. [48]
might differ from the nonlocal PNJL ones, the calculations
of M� carried out in Refs. [40,41] using the local NJL
model show that the qualitative behavior of M� as a
function of � is the same in the two models. Thus in the
PNJLmodel we expect a large pion mass at large� as well.
However this mass does not correspond to the gap in the
excitations spectrum in our model. As a matter of fact in
the quarkyoniclike region of the phase diagram in Fig. 6
the three-quark states can be excited; each quark has a
constituent mass MðpÞ given by Eq. (21) and plotted in
Figs. 1 and 2; hence the three-quark state has a mass 3MðpÞ
which at small quark momenta and large � is of the order
of 10 MeV. Therefore in our case a gap in the spectrum still
exists but it is given by the three-quark state mass which is
much lighter than M�.
We now turn on the parametrization III. As discussed in

the previous section, the small chemical potential region of
the phase diagram in case III is qualitatively similar to that
obtained in case I, therefore we focus on the low tempera-
ture/large chemical potential region from now on. In Fig. 7
we draw the low temperature phase diagram of the PNJL
model with parametrization III. The bold line denotes the
chiral transition; the thin line corresponds to the Zð3Þ
transition. As in the previous section the transition lines
are computed by looking at the peaks of the chiral and ��
susceptibilities. The diagram in Fig. 7 should be compared
with the analogous diagram obtained for the
parametrization I which is shown in Fig. 4. The main effect
of choosing the parameter �T0 as a � dependent one in the
Polyakov loop potential is the lowering of the Zð3Þ tran-

Hadroniclike Quarkyoniclike

FIG. 6. Cartoon phase diagram of the neutral two flavor PNJL
model and comparison with that obtained in the large Nc
approximation [45]. The bold line denotes the chiral crossover
as well as the chiral first order transition. The thin line corre-
sponds to the deconfinement crossover. Both of these lines are
the same as those we have shown in Fig. 4. The nq crossover

coincides with the chiral one. At low temperature we have � 	
0 and nq 	 0 in the chiral broken phase, in agreement with the

hadronic phase of Ref. [45]. At low temperature and in the chiral
symmetric phase we find � 	 0 and nq � 0 in agreement with

the quarkyonic phase [45]. For these reasons we have called the
two low temperature regions hadroniclike and quarkyoniclike,
respectively.
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sition line. Moreover the wide quarkyoniclike window in
Fig. 6 is shrunk to a small region in Fig. 7. At low
temperature it is enough to reach a chemical potential of
the order of 500 MeV to have � 	 1 and a net quark
density; both of these characteristics define the deconfined
phase of Fig. 6 [45]. Even if we have used the particular
form �T0ð�Þ suggested in Ref. [28] we are confident that the
aforementioned results are simply due to the lowering of
the deconfinement scale �T0 as� is increased and not to the
detailed analytical form of �T0ð�Þ. Thus our picture should
be qualitatively robust.

Before closing this section we make a brief comment on
the possible study of the scenarios discussed above on
lattice. Recently the density of states (DOS) method has
been used to investigate the QCD phase transition at large
� [13]. In this paper the QCD phase diagram is mapped by
studying the plaquette expectation value in the �� T
plane. Although the lattice size implemented in [13] is
relatively small and a finite volume study is still missing,
so that the results should be taken as preliminary, an
interesting phase transition is observed as � crosses a
critical value �c at a fixed temperature. Moreover the
quark number shows a sudden rise as � reaches �c. The
qualitative behavior is similar to the PNJL model, see
Figs. 1–3. In the PNJL calculation with parametrization
of cases I and II (fixed values of T0) at low temperature and
in the correspondence of the chiral crossover a small jump
of the Polyakov loop occurs, the true Zð3Þ crossover being
shifted to larger values of �. On the other hand, in case III
with a �-dependent T0, a net rise of � occurs in corre-
spondence of the chiral crossover. It would be very inter-
esting if by means of the DOS method one could compute
the expectation value of the Polyakov loop, as well as the
chiral and the Polyakov loop susceptibilities, in the low
temperature regime as a function of �. This lattice calcu-

lation might improve the understanding of the new low
temperature/large chemical potential state of matter
claimed in [13], and at the same time it would allow one
to distinguish between the two PNJL scenarios discussed in
this paper.

VI. CONCLUSIONS

In this paper we have investigated the landscape of the
possible phases of the neutral two flavor PNJL model. We
have considered the logarithmic effective potential of the
Polyakov loop U [23,25], see Eq. (3), and a nonlocal
interaction in the quark sector, see Eqs. (12)–(14). Our
main results are summarized in Figs. 4 and 7. Figure 4
corresponds to a fixed value of �T0 in the Polyakov loop
effective potential. In this case the phase diagram is quali-
tatively similar to that obtained in the large Nc approxi-
mation of QCD [45].
In particular, at high chemical potential and low tem-

perature we find a phase in which the main contribution to
the thermal quark population is given by Zð3Þ neutral
states, that is three-quark states made of one red quark,
one green quark, and one blue quark. This characteristic
resembles the quarkyonic phase of Ref. [45]. The quarkyo-
niclike structure of the ground state of the PNJL model has
already been noticed in Ref. [33] in non-neutral and three
flavor version of the model. Moreover the Zð3Þ transition
line has already been studied in Ref. [30] with a different
effective potential for the Polyakov loop and in a non-
neutral state. The results of Ref. [30] are qualitatively
similar to ours. Therefore we suggest that the quarkyonic-
like state of matter is a feature of the PNJL model, inde-
pendent to the number of flavors and to the difference of
the chemical potentials between quarks, as far as a �
dependence of the coefficients of U is not considered.
In Fig. 7 we show the phase diagram of the model when

a � dependence of the coefficients of the effective poten-
tial of the Polyakov loop is introduced. We have used the
analytic form suggested in Ref. [28]. The main results are
the lowering of the Zð3Þ transition line of Fig. 4, and the
shrinking of the quarkyoniclike phase window of Fig. 4.
We have used the form of �T0ð�Þ of Ref. [28]. We believe
that the result is rather robust as it does not follow from
such a detailed form but only from the lower scale of
deconfinement when � increases.
We have not considered in this work for simplicity the

possibility of color superconductivity at high� [59,60]. At
first sight it could seem that the results found with
parametrizations I and II, i.e., a quarkyoniclike phase at
high chemical potential and low temperature, exclude the
possibility of a superconductive gap in the spectrum. This
reasoning could be supported by the observation that the
quarkyoniclike phase is similar to a confined phase, differ-
ing from the latter only for a nonzero value of the quark
density. Such a conclusion is not necessarily true. As a
matter of fact, even if not noticed explicitly in Ref. [25] for

Hadroniclike

FIG. 7. Low temperature phase diagram of the PNJL model
with parametrization III. The bold line denotes the chiral tran-
sition. The thin line corresponds to the Zð3Þ transition. The
shaded region denoted by Q-L corresponds to the zone of the
quarkyoniclike state of matter.
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the two flavor and in [37,42] for the three flavor models
where the color superconductivity has been kept into ac-
count, in the quarkyoniclike region (high � and small T)
the minimization of the thermodynamic potential leads to a
phase where quarks have a color superconductive gap in
the spectrum. It is the 2SC gap [59] in the two flavor case,
and the CFL gap [60] in the three flavor case. Therefore the
realization of a color superconductive phase in the PNJL
models at high� and small T is not forbidden in principle,
even if the ground state has a quarkyonic structure.

An interesting investigation is the computation of the
spectra of the mesonic and baryonic thermal excitations in
the quarkyoniclike phase of the PNJL model, and we
compare them with those obtained in a different model
[48] that mimics QCD in the large Nc approximation. We

are now working on this topic and the results will be the
object of a forthcoming paper.
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