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We provide a model-independent determination of the quantity B0ðmd �muÞ. Our approach rests only

on chiral symmetry and data from the decay of the eta into three neutral pions. Since the low-energy

prediction at next-to-leading order fails to reproduce the experimental results, we keep the strong

interaction correction as an unknown parameter. As a first step, we relate this parameter to the quark

mass difference using data from the Dalitz plot. A similar relation is obtained using data from the decay

width. Combining both relations we obtain B0ðmd �muÞ ¼ ð4495� 440Þ MeV2. The preceding value,

combined with lattice determinations, leads to the values muð2 GeVÞ ¼ ð2:9� 0:8Þ MeV and

mdð2 GeVÞ ¼ ð4:7� 0:8Þ MeV.
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I. INTRODUCTION

One of the most reliable ways to extract predictions in
the low-energy regime of strong interactions is the use of
the chiral symmetry of QCD. This technique, suggested in
[1], was put on ground in [2,3] and has been fully devel-
oped in chiral perturbation theory over the last 30 years. In
the pion sector one finds strong evidence for the correct-
ness and usefulness of chiral perturbation techniques. A
further step consists of trying to extend this success into the
strangeness sector. The decay � ! �0�0�0 is however not
in good agreement with the experimental data, see for
instance [4]. There can be several sources for this discrep-
ancy: (i) The �� �0 mixing may play a major role in �
decays. However, it was shown that within the chiral
framework these effects are small for the decay � ! 3�
[5]. (ii) Final state interactions are significant in this chan-
nel [6,7]. (iii) The weight of the strange mass, suppressed
by large-Nc arguments at next-to-leading order, can ree-
merge via unconstrained higher-order counterterms [8].
Most probably, as shown by the unitarization procedure
of [9], is some interplay between all these issues the cause
of the disagreement. Our point of view evades a direct
calculation in the strong sector and is instead based on the
experimental data and chiral symmetry only.

Chiral symmetry is explicitly broken by quark masses
and electric charge. Quark masses are ad hoc parameters in
the theory and their determination remains one of the most
challenging tasks. On the experimental side, quark masses
cannot be measured directly due to confinement. One has
to relate them to observables which are sensitive to the
variation of their values and try to extract the latter from
the measurement of these observables. In the low-energy
regime of the theory, quark masses come always multiplied
by the quark condensate and one can only determine quark
mass ratios [10,11]. Limiting ourselves to the light-quark
sector including strangeness, these ratios are equal to one

in the case of exact SUð3Þ flavor symmetry. Excluding
strangeness, ðmu=mdÞ ¼ 1 in the limit of exact SUð2Þ
isospin symmetry. Therefore, deviation of the ratio
mu=md from unity can be detected in processes sensitive
to isospin symmetry breaking. This is the case in the decay
� ! 3� which is given mainly by the difference md �mu

[12,13].
The paper is organized as follows. In Sec. II we give the

analytic expression of the decay amplitude for the process
� ! 3�0 to one-loop order in chiral perturbation theory
(ChPT) including electromagnetic corrections. In Sec. III
we derive a relation between the up and down quark mass
difference and the strong part of the Dalitz plot parameter.
We also give the ChPT prediction at one loop for the mass
difference using data from the Dalitz plot. In Sec. IV we
use one-loop ChPT calculation for the decay width and the
experimental value for the latter to predict the mass differ-
ence. Section V summarizes our method of extracting the
mass difference from data only by relating the decay width
to the Dalitz plot while keeping the strong interaction
correction as a free parameter. In Sec. VI we use our
prediction for the mass difference to determine the size
of the violation of Dashen’s theorem and up and down
quark masses.

II. THE DECAYAMPLITUDE

Consider the process

�ðpÞ ���! �0ðp1Þ þ �0ðp2Þ þ �0ðp3Þ; (1)

with Mandelstam invariants

s � ðp� p1Þ2; t � ðp� p2Þ2; u � ðp� p3Þ2;
(2)

satisfying

sþ tþ u ¼ M2
� þ 3M2

�0 � 3s0: (3)

PHYSICAL REVIEW D 78, 034032 (2008)

1550-7998=2008=78(3)=034032(8) 034032-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.034032


This is a 3-particle decay. Observables depend on 3� 3
free variables. Conservation of 4-momentum reduces the
number of free variables to 3� 3� 4. Since we are dealing
with bosons, absence of spin implies that in the rest frame
of the decaying particle, the orientation of the momentum
configuration (the angles) is irrelevant and hence three
variables are trivial. There remain 3� 3� 7 essential
variables, s and u, say.

Let � define the phase space integral

� ¼
Z Y3

i¼1

d3pi

2Ei

�ð4Þðp1 þ p2 þ p3 � pÞ: (4)

The phase space distribution is therefore a constant

d2�

dsdu
¼ �2

4M2
�

: (5)

It follows that the density of points in a Dalitz plot is
proportional to the square of the matrix element. The
physical region in the ðs; uÞ plane is given by the boundary
of the corresponding Dalitz plot

4M2
�0 � s � ðM� �M�0Þ2; u� � u � uþ; (6)

where

u� ¼ 1
2ð3s0 � sÞ � 1

2�ðs;M2
�0Þ�1=2ðs;M2

�0 ;M
2
�Þ; (7)

and

�ðx;m2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

x

s
; (8)

�ðx;m2
1; m

2
2Þ � ½x� ðm1 �m2Þ2�½x� ðm1 þm2Þ2�: (9)

Integration over u gives

� ¼ �2

4M2
�

Z ðM��M
�0
Þ2

4M2

�0

ds�ðs;M2
�0Þ�1=2ðs;M2

�0 ;M
2
�Þ:

(10)

The differential decay rate is defined as

d2� ¼ 1

26�5M�

jMj2d2�; (11)

and takes the following form

d2�

dsdu
¼ 1

28�3M3
�

jMj2; (12)

by (5). The decay amplitude M is defined as

h�0�0�0j�i � ið2�Þ4�ð4Þðp1 þ p2 þ p3 � pÞM; (13)

and can be deduced from the set of Feynman diagrams
depicted in Fig. 1. In order to evaluate these diagrams, one
has to expand the leading (next-to-leading) order chiral
Lagrangian to the sixth (fourth) order in the meson field
and to first (zeroth) order in the photon field. Let q2 andmq

represent generic energy and generic light-quark mass,
respectively. Chiral power counting of the diagrams shows
that the amplitude counts like q2 ormq at tree level and q

4,

m2
q, ormqq

2 at one-loop level in the isospin limit and in the

classic standard scheme, that is, q2 �mq. In the isospin

breaking case, additional terms arise from the two sources
of isospin breaking, namely, the electric charge and the up
and down quark mass difference. From the electromagnetic
mass of the pion,

�� � M2
�� �M2

�0 ¼ Oðe2Þ; (14)

we see that e2 counts as mq. It follows that the additional

terms count like e2 or md �mu at tree level, and, q
2ðmd �

muÞ, mqðmd �muÞ, ðmd �muÞ2, e2ðmd �muÞ, e2q2,

e2mq, or e
4 at one-loop level. By naive dimensional analy-

sis, the e4 and ðmd �muÞ2 terms are suppressed with
respect to the others and henceforth will be neglected.
The decay amplitude can be written by symmetry con-

siderations as

M ðs; t; uÞ ¼ MðsÞ þMðtÞ þMðuÞ: (15)

The s-channel amplitude can be casted in the following
general form

MðsÞ ¼ �B0ðmd �muÞ
3

ffiffiffi
3

p
F2
�

f1þ �strðsÞ þ �emðsÞg þ ~�emðsÞ;
(16)

1. 2.

3. 4.

FIG. 1. Feynman diagrams contributing to the decay amplitude
at one loop. Diagram 1 represents the wave function renormal-
ization and the �–� mixing. Diagram 2 represents the counter-
terms. Diagram 3 represents the tadpoles. Diagram 4 represents
the unitary corrections.
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where B0 is an order parameter for chiral symmetry which
is related to the quark condensate,

B0 ¼ �lim
mq!0

e!0

h �qqi
F2
�

; (17)

and F� is the pion decay constant.
All three corrections in (16) are separately ultraviolet

finite. Both of them, �str and ~�em, have been already
considered in the literature, [13,14], respectively. In addi-
tion to these we have included a small, with respect to the
previous ones, term proportional to ðmd �muÞe2. For
completeness, we give the analytic expressions for the
corrections in the appendix.

III. THE DALITZ PLOT

The Dalitz plot distribution is parameterized as

jMðs; t; uÞj2 ¼ jMðs0; s0; s0Þj2f1þ 2�zg; (18)

with s0 the center of the Dalitz plot and z a dimensionless
parameter defined in terms of pion energies Ei as

z ¼ 2

3

X3
i¼1

�
3Ei �M�

M� � 3M�0

�
2
; (19)

and in terms of Mandelstam variables like

z¼ 3

2

1

M2
�ðM� � 3M�0Þ2fðs� s0Þ2 þðt� s0Þ2 þðu� s0Þ2g:

(20)

The experimental value of � as quoted by the Particle Data
Group [15] is

�exp ¼ �0:031� 0:004: (21)

In order to conform to the experimental analysis, we ex-
pand the square of the amplitude around the center of the
Dalitz plot with the use of

Mðs; t; uÞ ¼ X1
j¼0

�
1

j!

�
ðs� s0Þ @@s0 þ ðt� s0Þ @

@t0

þ ðu� s0Þ @

@u0

�
j
Mðs0; t0; u0Þ

�
s0¼t0¼u0¼s0

:

(22)

We then match with the parametrization (18), obtaining the
scale-independent expression

B0ðmd �muÞ ¼ ~�em

�exp � �str � �em

��: (23)

Even if we have obtained (23) at next-to-leading order it is
straightforward to convince oneself that its explicit form is
maintained at all orders in the strong interaction and at first
order in the electromagnetic one. Note that the �’s are
given by the second derivative of the corresponding �’s, up

to normalization factors, evaluated at the center of the
Dalitz,

�str ¼ 1
9M

2
�ðM� � 3M�0Þ2 Re�00

strðs0Þ; (24)

�em ¼ 1
9M

2
�ðM� � 3M�0Þ2 Re�00

emðs0Þ; (25)

�� ~�em ¼ �F2
�ffiffiffi
3

p M2
�ðM� � 3M�0Þ2 Re ~�00

emðs0Þ: (26)

Although (23) expresses the up and down quark mass
difference in terms of the electric charge e, it does not
provide the electromagnetic part of that difference. In fact,
taking the limit of vanishing e, both numerator and de-
nominator in (23) tend to zero and one cannot claim that
e ! 0 implies mu ¼ md. On the other hand, expression
(23) relates up and down quark mass difference to the
electric charge through an observable, namely, �exp.

As a first step, we obtain the analytic expressions for the
�’s to first order in the chiral expansion. For compactness,
we use the Gell-Mann–Okubo mass formula, 4M2

K ¼
3M2

� þM2
�, and obtain the reduced expressions for the

�’s given in the appendix.
The main feature of these expressions is the indepen-

dence on any low-energy constant. This can already be
seen from the fact that the coefficients of the latter in the
�’s are polynomials in meson masses and do not depend on
Mandelstam invariants. Taking the second derivative with
respect to these invariants gives a null contribution to the
low-energy constants. The numerical values, at next-to-
leading order, of the �’s are found to be

�ð1Þ
str ¼ þ0:0179; (27)

for the strong piece, and

�ð1Þ
em ¼ �0:0011; ~�ð1Þ

em ¼ 0:0025; (28)

for the electromagnetic ones. Notice that (21) is roughly a
factor two bigger and of opposite sign of (27). Replacing
the �’s by their values in (23), we obtain at one-loop order,

B0ðmd �muÞð1Þ ¼ �ð66� 5Þ MeV2: (29)

As B0 must be positive definite the previous expression
leads to the conclusion that the up quark is heavier than the
down quark. The situation does not improve when includ-
ing higher-order corrections or rescattering effects in the
final state (see Table 5 of [8]). Moreover a 10% correction
to the value of (27) roughly translates in a 4% correction to
(29). A close inspection of (23) reveals that, disregarding
�em, this inconsistency will always show up if �str is not
bigger, in absolute value, than �exp. Notice that this is

against all the findings in the literature tackling so far the
strong sector. We shall attempt in the next sections a differ-
ent approach using a parametrization of available experi-
mental data.

DETERMINATION OF LIGHT QUARK MASSES FROM . . . PHYSICAL REVIEW D 78, 034032 (2008)

034032-3



IV. THE DECAY WIDTH

As in the preceding section, we can repeat a similar
procedure for the total decay rate. The decay rate takes
the following form:

� ¼ B2
0ðmd �muÞ2ð�tree þ �str þ �emÞ

þ B0ðmd �muÞ~�em; (30)

where the �’s are obtained, up to a normalization factor, by
integrating the �’s over the allowed kinematical region,

�tree ¼ 1

3F4
�

F̂ 1; (31)

�str ¼ 2

3F4
�

F̂ Re�strðsÞ; (32)

�em ¼ 2

3F4
�

F̂ Re�emðsÞ; (33)

~� em ¼ � 6ffiffiffi
3

p
F2
�

F̂ Re~�emðsÞ: (34)

The operator F̂ is defined as

F̂ fðsÞ ¼ 1

28�3M3
�

Z ðM��M
�0

Þ2

4M2

�0

ds�ðs;M2
�0Þ

� �1=2ðs;M2
�0 ;M

2
�ÞfðsÞ: (35)

The experimental value of the rate as obtained from the
PDG is

�exp ¼ ð421� 22Þ eV: (36)

Using for the amplitude (16) the Born approximation we
obtain,

�tree ¼ 22:31� 10�12 MeV�3; (37)

while using the next-to-leading expression the contribu-
tions are split as

�ð1Þ
str ¼ ð35:70� 14:14Þ � 10�12 MeV�3; (38)

in the strong sector and

�ð1Þ
em ¼ �ð0:02� 0:34Þ � 10�12 MeV�3; (39)

~� ð1Þ
em ¼ �ð2:50� 2:44Þ � 10�9 MeV�1; (40)

in the electromagnetic one. Replacing the �’s by their
values in (30), solving for the quark mass difference and
discarding the negative root we obtain from �exp the next-

to-leading order value

B0ðmd �muÞð1Þ ¼ ð2717� 342Þ MeV2; (41)

which can be afflicted with sizable and unknown higher-
order contributions. Inserting (41) in (23) one obtains for
�str the experimental value (21), including errors.

Hitherto we have followed two different paths to obtain
B0ðmd �muÞ, leading to incompatible results: (i) First we

calculated the �’s in (16) at one loop in chiral perturbation
theory after we evaluated their second derivative at the
center of the Dalitz in order to obtain the �’s (24). We
matched the latter with the data coming from the Dalitz and
obtained for the quark mass difference the puzzling value
(29). (ii) As a second approach we integrated the very same
expressions for the �’s over the physical region in order to
obtain the �’s, (38)–(40). We matched the latter with the
data coming from the decay width and obtained for the
difference the value (41). Both results, (29) and (41) are in
disagreement, and are just the rephrasing in terms of quark
masses of the very well known result that chiral perturba-
tion theory recovers marginally the experimental decay
width and fails totally in obtaining the Dalitz plot distri-
bution. This observation is a sufficient motivation to seek
for a determination of these quantities that is as model
independent as possible. We shall therefore ignore the
theoretical determinations concerning the strong interac-
tion and provide a determination merely based on chiral
symmetry and on a combination of data from the Dalitz
plot and the decay rate.

V. RELATING THE DALITZ TO THE WIDTH

The decay rate can be obtained by applying two equiva-
lent methods: (i) Either integrating the full amplitude,
expression (16). (ii) Or one can instead integrate the pa-
rametrization for the amplitude (18). By working out ex-
plicitly both approaches and matching them, one can relate
the quark mass difference to the Dalitz parameter in the
strong sector, �str without resorting to any definite value
for �str. In doing so, we avoid attempting to dig out how to
obtain the piece �str from first principles and we leave it as
a free parameter. This is justified by comparing the relative
size of the perturbative values for the �’s at next-to-leading
order and the expectation of strong rescattering effects at
higher order.
As a first step we find a relation between Re�strðs0Þ and

B0ðmd �muÞ. For that purpose we integrate (18) over the
whole Dalitz to obtain the decay rate. Using for � and �
their experimental values given, respectively, by (21) and
(36) we determine the distribution at the center

jMðs0; s0; s0Þj2 ¼ ð88:67� 4:57Þ � 10�3: (42)

From the previous value and the expression of the distri-
bution at the center,

jMðs0; s0; s0Þj2 ¼ 1

3F4
�

B2
0ðmd �muÞ2

� f1þ 2Re�strðs0Þ þ 2Re�emðs0Þg
� 6ffiffiffi

3
p

F2
�

B0ðmd �muÞRe~�emðs0Þ; (43)

derived from (16), we write Re�strðs0Þ in terms of B0ðmd �
muÞ. We shall make use of this relation latter in order to
pull out Re�strðs0Þ in favor of B0ðmd �muÞ.
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For the last step we start from the definition of �str in
terms of �str in (30). Expanding the latter around the center
of the Dalitz and integrating we obtain a relation between
�str, �str, and Re�strðs0Þ,

�str ¼ 2�tree Re�strðs0Þ þ 1

3F4
�

9�str

M2
�ðM� � 3M�0Þ2

� F̂ ðs� s0Þ2: (44)

Equating now the two expressions for �str we obtain a
second (independent) relation between Re�strðs0Þ and
B0ðmd �muÞ. Solving for B0ðmd �muÞ leads to the final
expression

ð�str þ aemÞB2
0ðmd �muÞ2 þ ~aemB0ðmd �muÞ þ aexp ¼ 0;

(45)

with

aem ¼ 2

9
M2

�ðM� � 3M�0Þ2F̂ Re½�emðsÞ � �emðs0Þ�
F̂ ðs� s0Þ2

;

~aem ¼ � 2F2
�ffiffiffi
3

p M2
�ðM� � 3M�0Þ2F̂ Re½~�emðsÞ � ~�emðs0Þ�

F̂ ðs� s0Þ2
;

aexp ¼ � 3F4
�M

2
�ðM� � 3M�0Þ2�exp�exp

9�expF̂ ðs� s0Þ2 þM2
�ðM� � 3M�0Þ2F̂ 1

: (46)

At next-to-leading order in the chiral counting for the
electromagnetic part we obtain the estimates

að1Þem ¼ 145:374� 10�6; (47)

~a ð1Þ
em ¼ 2:905 MeV2; (48)

while

aexp ¼ ð0:601� 0:085Þ � 106 MeV4: (49)

Note that the preceding coefficients are low-energy-
constant independent. This is due to the fact that, in their
analytic expression, we integrate the real part of the �’s
subtracted at the center of the Dalitz, that is, �ðsÞ � �ðs0Þ.
Since the coefficients of the low-energy constants in the �’s
have no kinematical dependence, the subtraction allows
one to get rid of the low-energy constants. In other terms,
the origin of the errors in the a’s, which is also the case for
the �’s, is purely experimental.

Furthermore, we stress that while the electromagnetic
contributions are estimated within chiral perturbation the-
ory, aexp only relies on chiral symmetry and experimental

data.
We have now the two relations (23) and (45) with the

two unknowns, B0ðmd �muÞ and �str. The first relation
comes from the Dalitz alone. The second relation is a
combination of data from both the Dalitz and the width.
The solution of the system, constraining the down quark to
be heavier than the up quark, gives the following numbers:

�str ¼ �ð0:0305� 0:004Þ; (50)

B0ðmd �muÞ ¼ ð4495� 440Þ MeV2: (51)

If instead we use the recent data from KLOE [16] we find
�str ¼ �ð0:0265� 0:0100Þ for the strong interaction
Dalitz parameter and B0ðmd �muÞ ¼ ð4832�
999Þ MeV2 for the quark mass difference.

VI. SURVEY OFAPPLICATIONS

A. Violation of Dashen’s theorem

We consider the square mass difference �K � ��,
which can be split into two pieces

�K � �� ¼ ð�KÞstr þ ð�K � ��Þem; (52)

where �P � M2
P� �M2

P0 . We have used the fact that the

pion mass difference is essentially of electromagnetic ori-
gin [17]. The electromagnetic term in (52) vanishes at
leading chiral order by virtue of Dashen’s theorem [18]
but is subject to corrections from higher orders. These
corrections are commonly known as the violation of
Dashen’s theorem. In order to estimate the size of the
violation we shall introduce the parameter � defined by

ðM2
K� �M2

K0Þem � �ðM2
�� �M2

�0Þem; (53)

and rewrite the difference (52) at next-to-leading order in
the following ultraviolet finite form:

ð�K � ��Þð1Þ ¼ �B0ðmd �muÞf1þ�str þ �emg þ ~�em:

(54)

The origin of the different terms in (54) runs parallel to

those of (16):�str and
~�em were obtained already in [3,19],

while the subleading �em term is new. Numerically its
contribution turns to be around 8%–20% corrections to

the ~�em value depending on the strong low-energy constant
set we use. At next-to-leading order their numerical values
are given by

�str ¼ 0:277� 0:340; (55)

�em ¼ �ð0:0014� 0:0055Þ; (56)

~� em ¼ �ð194� 1517Þ MeV2; (57)

but these are subject to the uncertainty in the low-energy
constants, as is indeed mainly reflected in (57). Comparing
(54) with (52) and using the estimates (56) and (57) we
obtain,

�ð1Þ ¼ 0:85� 1:20: (58)

The central value can be considered moderate in front of
other estimates [20] although no solid conclusion can be
obtained in view of the errors. An alternative, and more
error free, approach consists of replacing in (52) the total
difference by physical masses, the strong piece by its one-
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loop value and deduce the value of the electromagnetic
piece and, a fortiori, that of �. We find

� ¼ 1:4� 1:3: (59)

Notice that this value of � contains, beside the violation of
Dashen’s theorem, the effect of higher-order strong cor-
rections which can be sizeable.

B. Light-quark masses

The parameter B0 is defined by Eq. (17). We take for the
pion decay constant and for the quark condensate in the
chiral limit the unquenched lattice determination [21],
F0ð2 GeVÞ ¼ ð76� 3Þ MeV and h �qqi0ð2 GeVÞ ¼
�ð242� 9Þ3 MeV3, respectively. This leads to the value
B0ð2 GeVÞ ¼ ð2454� 194Þ MeV where the main source
of error comes from F0. Together with Eq. (51), the pre-
ceding estimation leads to

ðmd �muÞð2 GeVÞ ¼ ð1:8� 0:2Þ MeV: (60)

Now we use for md þmu the lattice determination quoted
in [15], namely, ðmd þmuÞð2 GeVÞ ¼ ð7:6� 1:6Þ MeV,
and obtain

muð2 GeVÞ ¼ ð2:9� 0:8Þ MeV; (61)

mdð2 GeVÞ ¼ ð4:7� 0:8Þ MeV: (62)

Both results are, within errors, in agreement with the more
recent lattice results either using domain wall [22,23],
improved Wilson [24], twisted mass [25], or staggered
fermions [21].

VII. CONCLUSION

In this paper we have used chiral symmetry and data to
obtain a consistent parametrization of the � ! 3�0 decay.
From the theoretical side we have pointed out that the
calculation of the strong interaction effects are the most
probable source of disagreement with data. We therefore
take this contribution as a free parameter rather than at-
tempting to evaluate it. The electromagnetic contributions
are instead small with respect to the strong ones and rather
well understood. We incorporate them using chiral pertur-
bation theory. Combining the Dalitz plot parametrization
with data we obtained a relation between the strong inter-
action parameter �str and the quantity B0ðmd �muÞ.
Following a similar procedure for the width we obtained
a second relation between the same quantities. Solving the
system for both unknowns we obtained�str ¼ �ð0:0305�
0:004Þ and B0ðmd �muÞ ¼ ð4495� 440Þ MeV2. As a first
application, we estimated roughly the size of the violation
of Dashen’s theorem (59). As a second application, we
estimated the values of up and down quark masses (61).
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APPENDIX

We give here for completeness the expressions for the
�’s and the �’s appearing in the text:
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expressed in terms of one- and two-point functions. In dimensional regularization, these take the following form:
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The symbol 	 denotes an ultraviolet scale. The ultraviolet divergence is contained in

�� ¼ � 1
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; (A8)

where �E is Euler’s constant and D the spacetime dimension.
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