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We present a construction of the pion electromagnetic form factor where the transition from large-Nc

Regge vector-meson dominance models with infinitely many resonances to perturbative QCD is built in

explicitly. The construction is based on an appropriate assignment of residues to the Regge poles, which

fulfills the constraints of the parton-hadron duality and perturbative QCD. The model contains a slowly

falling off nonperturbative contribution, which dominates over the perturbative QCD radiative corrections

for the experimentally accessible momenta. The leading order and next-to-leading order calculations show

a converging pattern that describes the available data within uncertainties, while the onset of asymptotic

QCD takes place at extremely high momenta Q� 103–104 GeV. The method can be straightforwardly

extended to study other form factors where the perturbative QCD result is available.
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I. INTRODUCTION

The composite nature of hadrons can be best seen by
studying their electromagnetic form factors at a sufficiently
large momentum transfer [1]. The pion, being the lowest u
and d quark-antiquark excitation of the vacuum and iden-
tified with the would-be Goldstone massless mode of the
spontaneously broken chiral symmetry, provides the sim-
plest candidate to test our present knowledge on hadronic
interactions. Because of relativistic and gauge invariance
the pion charge form factor (we take �þ for definiteness)
can be written as

h�þðp0ÞjJem� ð0Þj�þðpÞi ¼ ðp0� þ p�ÞFðq2Þ; (1)

with q ¼ p0 � p, and Jem� ðxÞ ¼ P
q¼u;d;s;...eq �qðxÞ��qðxÞ is

the electromagnetic current, with eq denoting the quark

charge in units of the elementary charge. The charge
normalization requires

Fð0Þ ¼ 1: (2)

The pion charge form factor has been the subject of intense
experimental efforts [2–9]. Moreover, it is expected to be
measured at TJLAB in the spacelike range of 1 GeV2 �
�t � 6 GeV2 with unprecedented high precision
�ð�tFðtÞÞ � 0:02 GeV2. The results might be used as a
stringent test of the perturbative QCD (pQCD) radiative
corrections. Actually, in the spacelike region where t ¼
�Q2, FðtÞ is real and at largeQ2 values the pQCDmethods
can be applied, yielding asymptotically [10–15]

Fð�Q2Þ ¼ 16�f2��ðQ2Þ
Q2

�
1þ 6:58

�ðQ2Þ
�

þ . . .

�
;

Q2 � M2;

(3)

with f� ¼ 92:3 MeV denoting the pion weak decay con-
stant, andM the lowest vector-meson mass. Further higher-
order power corrections are of the order Oð1=Q4Þ and
correspond to higher twist operators [16,17]. The form
factor depends logarithmically on the scale through the
running coupling constant

�ðQ2Þ ¼ 4�

�0 logðQ2=�2Þ ; (4)

�0 ¼ 11
3Nc � 2

3Nf: (5)

We use theMS scheme and the factorization scale coincid-
ing with the renormalization scale. Also, the asymptotic
form of the pion parton distribution amplitude ��ðxÞ ¼
6xð1� xÞ is used. Details of the complete analysis may be
found in Ref. [18]. The second term in brackets in Eq. (3) is
the next-to-leading (NLO) correction. It is at an acceptable
20% level when �� 0:1, which suggests that one might
observe this radiative correction at relatively large scales
Q2 �M2

Z.
In the intermediate energy region the form factor be-

haves to a very good accuracy as

Fð�Q2Þ ¼ M2
V

Q2 þM2
V

; Q2 � M2
V; (6)

with MV ¼ 720 MeV, complying to the old vector-meson
dominance models (VMD) (see e.g. Ref. [19] and refer-
ences therein) and showing no obvious trace of the pQCD
behavior. In the region close to the zero momentum trans-
fer chiral corrections become important [20,21]. For time-
like momenta the pion form factor becomes complex and
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can be related by crossing to the eþe� ! �þ�� annihi-
lation amplitude h�þ��jJem� j0i ¼ FðsÞðp� þ p0�Þ, where
the final state interactions due to �� scattering and uni-
tarity play a crucial role [22]. While both the timelike and
the spacelike regions are related by an unsubtracted dis-
persion relation [23]

FðtÞ ¼ 1

�

Z 1

t0

ImFðt0Þ
t0 � t� i�

dt0; (7)

the well-known timelike region does not determine unam-
biguously when the onset of the pQCD takes place.
Actually, the single VMD model shows that even in the
spacelike region as low as Q�m� the traces of chiral logs

and final-state interactions are meager.
Given the fact that the pQCD effects cannot directly be

observed at presently available energies, numerous phe-
nomenological QCD-based approaches and model calcu-
lations have been suggested in order to understand the
transition from the soft to hard scales. They include stan-
dard QCD sum rules [24], local-duality QCD sum rules
[25,26], light-cone QCD sum rules [27], nonlocal conden-
sates [28,29], Schwinger-Dyson equations [30], instanton-
based models [31,32], constituent quark models [33], non-
local quark models [34,35], etc. The scale of the onset of
pQCD provoked heated debates in the past. The problem is
crucial, as it provides a decisive fingerprint of the under-
lying quark-gluon substructure of the pion. We note that
the upcoming lattice QCD calculations extending the work
reported in [36–40] can directly verify this issue without
necessarily spanning such a wide energy window as in the
experiment. The reason is that a lot of progress has been
achieved in extrapolating the lattice data to the chiral limit,
which incorporates the enhancement and nonlinearities
triggered by the chiral logs.

The class of calculations listed above contains quarks
and gluons as explicit dynamical degrees of freedom, and
hence requires a detailed knowledge of the pion wave
function. On the other hand, the parton-hadron duality
implies that any hadronic property be describable in the
purely hadronic language without an explicit reference to
the basic fundamental fields. For instance, the success of
the simple VMD fit for the pion charge form factor sug-
gests the inclusion of further radially excited IGJPC ¼
1þ1�� states �0; �00; �000 . . .

FðtÞ ¼ XVmax

V¼�;�0;...

cVM
2
V

M2
V � t

: (8)

This finite sum involves states with a mass below MVmax
,

the highest allowed vector-meson mass, which acts as a
high-energy cutoff. Thus, it could reliably reproduce the
data (see below) in a region where Q2 <M2

Vmax
, and will

only produce inverse integer powers of Q2 asymptotically
when Q2 � M2

V;max. This is in formal contradiction with

Eq. (3), where there is no high-energy cutoff and the

behavior 1=ðQ2 logQ2Þ is obtained. Thus, infinitely many
states are clearly needed. This complies to the ’t Hooft
large-Nc limit [41], where any hadronic amplitude can be
written in terms of tree diagrams with (infinitely many)
mesons and glueballs. In particular, in the large-Nc limit
the pion form factor can be written in the form (8) with
infinitely many resonances.
Based on the success of the Veneziano-Lovelace-

Shapiro dual resonance model (see e.g. [42,43] and refer-
ences therein) Suura [44] and Frampton [45] proposed
analytic models, which have recently been resurrected
and further elaborated by Dominguez [46,47].
Incidentally, the resulting expressions for the pion charge
form factor turn out to be quite similar to the AdS/CFT
hard-wall and soft-wall calculations carried out in [48–50].
Despite the successful fit to the data, these calculations do
not reproduce the formal asymptotic pQCD behavior, a fact
which has been interpreted as an intrinsic limitation of the
approach [49]. This poses an intriguing puzzle: how do
hadronic large-Nc models satisfy the QCD constraints,
including the presence of logarithms? Quite generally,
pQCD predicts integer powers and logarithms of Q2,
whereas the models of Refs. [44–47] are able to generate
fractional powers.
In the present paper, we analyze the problem for the case

of the pion charge form factor and show how the pQCD
constraints can judiciously be implemented in a large-Nc

Regge model in an exact manner and at the same time
preserve the good description of the experimental data. The
essence of the approach is a careful assignment of coupling
constants to the infinitely many resonances. As a result, the
form (3) emerges from the infinite sum (8). We term the
mechanism the power-to-log transmutation, which essen-
tially corresponds to a suitable superposition of fractional
twist operators in the Regge model of Refs. [44–47]. The
present study follows our investigation of the two-point
functions [51,52]. In a previous paper [53], we have shown
how the large-Nc Regge models can be used to deal with
the ���0 ! � transition form factor, where the radiative
pQCD corrections characterized by the relevant anomalous
dimensions are generated with the suitable QCD evolution
equations.

II. MESON DOMINANCE

In this preparatory section, we introduce the basic
definitions and notation for the pion form factor in
VMD models. The electromagnetic current is written

as J�;emðxÞ ¼ B�ðxÞ=2þ J
�;3
V ðxÞ with B�ðxÞ ¼P

q �qðxÞ��qðxÞ=Nc being the baryon current and J
�a
V ðxÞ ¼P

q �qðxÞ	a��qðxÞ=2 the isovector current. Using the iso-

spin invariance, assumed throughout, we have

h�aðp0ÞjJ�;b
V ð0Þj�cðpÞi ¼ �abcðp0� þ p�ÞFðq2Þ; (9)

with j�iðpÞi denoting a pion state, and a, b, c the Cartesian
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isospin indices. In the large-Nc limit the meson dominance
of the pion charge form factor is the statement that one can
parameterize the (isovector) current as a superposition of
vector-meson fields, �a

n;�ðxÞ
J
�;a
V ðxÞ ¼ X

n

FVðnÞMVðnÞ��;a
n ðxÞ; (10)

where n ¼ 0 corresponds to the ground state �ð770Þ me-
son, and higher values of n to excited states.
Correspondingly, the matrix element between the vacuum
and the one-vector-meson state is

h0jJa�V ð0Þj�b
n; �i ¼ 
abMVðnÞFVðnÞ��; (11)

with �� denoting the vector-meson polarization. The cou-

pling constants may be determined from the electromag-
netic decay �n ! eþe� using the formula

�ð�n ! eþe�Þ ¼ 4��2

3

FVðnÞ2
MVðnÞ (12)

for the partial decay rate. For MV ¼ m� ¼ 770 MeV and

�ð� ! eþe�Þ ¼ 6:5 keV one gets FV ¼ F� ¼ 150 MeV.

The two-point vector current-vector current correlator is
defined as

�
�a;�b
V ðqÞ ¼ i

Z
d4xe�iq�xh0jTfJ�a

V ðxÞJ�bV ð0Þgj0i
¼ �Vðq2Þðq�q� � g��q2Þ
ab; (13)

where

�VðtÞ ¼
X
n

FVðnÞ2
MVðnÞ2 � t

: (14)

The quark-hadron duality for large values of t in (14)
requires the Regge model—parton model matching condi-
tion [51,52] for asymptotically large values of the radial
quantum number n

FVðnÞ2
dM2

VðnÞ=dn
� Nc

24�2
: (15)

For the radial Regge model (see next section)
dM2

VðnÞ=dn ¼ a ¼ const:; hence, at large n we must
have FVðnÞ ¼ const [51,52].

The vector-meson-pion-pion amplitude is

h�aðp0Þj�b
n;�ð0Þj�cðpÞi ¼ ðp0

� þ p�Þ �
abcgV��ðnÞ
MVðnÞ2 � t

; (16)

with gV��ðnÞ the coupling constant. This yields the �n !
�� partial decay rate

�ð�n ! ��Þ ¼ g2V��MV

48�

�
1� 4m2

�

M2
V

�
3=2

: (17)

For the �ð770Þmeson one gets g��� ’ 6 for �ð� ! 2�Þ ¼
150 MeV.

For the pion electromagnetic form factor we have

FðtÞ ¼ X
n

cnMVðnÞ2
MVðnÞ2 � t

cn ¼ FVðnÞgV��ðnÞ
MVðnÞ : (18)

With the adopted conventions we note that FVðnÞ has the
dimension of energy, while gV��ðnÞ and cn are dimension-
less. Note that the signs of the residues appearing in the
form factor (18) may a priori be positive or negative, while
all contributions to the two-point correlator (14) are posi-
tive. The possibility of different signs in Eq. (18) provides a
mechanism for cancellation. The form factor satisfies the
dispersion relation (7) with the spectral density

1

�
ImFðtÞ ¼ X

n

cnMVðnÞ2
ðt�MVðnÞ2Þ: (19)

Note that with the previously listed parameters for the
lowest �ð770Þ resonance one has c� ¼ g���F�=m� ¼
1:17. Because of charge conservation this requires higher
states with negative cn coefficients. In fact, taking Eq. (8)
with the physical vector-meson masses m� ¼ 770 MeV,

m�0 ¼ 1459ð10Þ MeV, m�00 ¼ 1720ð20Þ MeV, and m�000 ¼
2000ð30Þ MeV and using the coupling constants cn as fit
parameters to the electromagnetic form factor data in the
intermediate Q2 range 0:6 GeV2 <Q2 < 2:4 GeV2 yields
c� ¼ 1:25, c�0 ¼ �0:17 for two resonances, c� ¼ 1:39,

c�0 ¼ �0:53, c�00 ¼ 0:26 for three resonances, and c� ¼
1:39 and c�0 ¼ �0:53, c�00 ¼ 0:26, c�000 ¼ �0:004 for four

resonances. Such an approach, although phenomenologi-
cally appealing and numerically stable for the lowest en-
ergy states, can only yield an integer power falloff and, as
already mentioned, does not match to pQCD, Eq. (3), at
high energies.
Strictly speaking one should consider in Eq. (18) the

leading large-Nc contributions to the vector-meson pa-
rameters. According to Ref. [41], one has MVðnÞ � N0

c ,
FVðnÞ �

ffiffiffiffiffiffi
Nc

p
, and gV��ðnÞ � 1=

ffiffiffiffiffiffi
Nc

p
, such that FðtÞ �

N0
c . Corrections to this behavior are generally 1=Nc sup-

pressed relative to the leading order and hence we expect at
worse a 30% detuning of the physical values. The large-Nc

dependence of meson parameters has been studied in uni-
tarized chiral perturbation theory approaches yielding a

larger value for the vector-meson mass whenmNc
� ! m1

� �
1:2mNc¼3

� [54,55]. Chiral quark models at the one loop
level are large Nc motivated. The spectral quark model
[56] reproduces by construction the simple VMD result,
Eq. (6), for the pion form factor providing, in addition, the
valuem2

� ¼ 24�2f2�=Nc, which for f� ¼ 92:3 MeV yields

m� � 820 MeV, a larger value than the physical mass. The

trend to an increased value of the �-meson mass can also
be traced when in a fit of the two resonance version of the
generalized VMD, Eq. (8), the lowest mass state is allowed
to vary. Keeping m�0 ¼ 1460 MeV this yields c� ¼ 1:29,

c�0 ¼ 1� c� ¼ �0:29, and m� ¼ 864 MeV.
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III. REGGE MODELS

We now proceed to review the Regge models in the
scope necessary for our analysis, in particular, regarding
the pion electromagnetic form factor. The radial Regge
trajectories are

M2
n ¼ M2 þ an: (20)

The slope of the radial Regge trajectory amay be identified
with the string tension � ¼ a=ð2�Þ, which for heavy
quarks corresponds to the confining potential VðrÞ ¼ �r.
Acceptable values are in the range � ¼ 420–500 MeV
[57]. In this work we use for definiteness

� ¼ 450 MeV; M ¼ 820 MeV: (21)

As mentioned above, these parameters need not exactly
reproduce the physical values, as the accuracy of the
present large-Nc Regge approach is not expected to be
better than the large-Nc expansion itself. Fortunately, the
pion electromagnetic form factor turns out not to be very
sensitive to the details of the radial Regge trajectory.

Following Refs. [44–47], we consider the function

fbðtÞ ¼
Bðb� 1; M

2�t
a Þ

Bðb� 1; M
2

a Þ
; (22)

with Bðx; yÞ ¼ �ðxÞ�ðyÞ=�ðxþ yÞ denoting the Euler Beta
function. The function (22) fulfills the normalization con-
dition

fbð0Þ ¼ 1: (23)

For x � y one has Bðx; yÞ � �ðyÞx�y, hence in the asymp-
totic region of M2 � t � ðb� 1Þa we find

fbðtÞ �
�ðM2

a þ b� 1Þ
�ðM2

a Þ
�

a

M2 � t

�
b�1

: (24)

Moreover, this function is positive on the real axis t < 0,
and has single poles at t ¼ M2

n ¼ M2 þ an, with residua
read off from the expansion

fbðtÞ ¼ a

Bðb� 1; M
2

a Þ
X1
n¼0

�ð2� bþ nÞ
�ðnþ 1Þ�ð2� bÞ

1

anþM2 � t
:

(25)

The function depends on three parameters: the lowest-
lying meson mass M, the string tension � ¼ a=ð2�Þ, and
the asymptotic falloff parameter b. An interesting feature is
the fact that for noninteger values of b a large-t expansion
in powers of 1=t has zero coefficients. For integer b ¼
N þ 1 the formula corresponds to exactly N mesons

fNþ1ðtÞ ¼
YN
n¼0

�
M2 þ an

M2 þ an� t

�
: (26)

Particular expressions corresponding to b ¼ 2, 3, 4 are1

f2ðtÞ ¼ M2

M2 � t
; f3ðtÞ ¼ M2ðM2 þ aÞ

ðM2 � tÞðM2 þ a� tÞ ;

f4ðtÞ ¼ M2ðM2 þ aÞðM2 þ 2aÞ
ðM2 � tÞðM2 þ a� tÞðM2 þ 2a� tÞ : (27)

At asymptotic values of Q2 Eq. (25) yields

fbðt ¼ �Q2Þ ¼ �ðM2

a þ b� 1Þ
�ðM2

a Þ
�
a

Q2

�
b�1

: (28)

Thus, the value of b controls the asymptotic falloff in the
Q2 variable.

IV. FROM POWERS TO LOGARITHMS

In this section, we carry out the construction of the pion
electromagnetic form factor, which complies to the asymp-
totic pQCD constraints. For the pion charge form factor
one has the leading power behavior

FðQ2Þ ¼ 16�f2��ðQ2Þ
Q2

X1
n¼0

cn�ðQ2Þn; (29)

with the coefficients cn calculable in pQCD (albeit this
perturbative series may diverge). We have at LO c0 ¼ 1,
which is stable in the large-Nc limit, as �� 1=Nc and
f� � ffiffiffiffiffiffi

Nc

p
. For large momenta FðQ2Þ is bounded as fol-

lows:

C

Q4 < FðQ2Þ< C0

Q2
: (30)

Thus, according to (28), the admissible possible power
dependence effectively corresponds to 2< b< 3. A fit to

1One might think that taking N ! 1 the general result would
be recovered, but according to the product formula for the
gamma function

�ðzÞ ¼ lim
N!1N

z
YN
k¼1

k

ðkþ zÞ ;

we see that this is not the case, since

lim
N!1

YN
n¼1

M2 þ an

M2 þ an� t
¼ lim

N!1N
t=a �ððM2 � tÞ=aÞ

�ðM2=aÞ ;

and the result is ambiguous. This function has the poles located
at the same place as in (22). The ambiguity is manifest in the
choice of the parameter b. Generally speaking, the result for
noninteger N < b< N þ 1 has infinitely many resonances, but it
is closer to the case of finite N rather than to N ! 1. This
suggests that a method based on truncating the tower of mesons
is not expected to be convergent for increasing t values.
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the data yields with b ¼ 2:3ð1Þ [47] in agreement with the
above expectations. This is a remarkable result, for it
indicates on the one hand that even at energies where
pQCD does not clearly set in, there seems to be some
indirect information on the best possible fractional power
behavior. On the other hand, note that in order to have a
fractional power from the leading twist pQCD result (29)

we need a nonanalytic dependence of the form e�c=�ðQ2Þ �
ðQ2=�2Þ�4�c=�0 , which is clearly out of reach for standard
perturbation theory. The previous considerations suggest
that pQCD and large-Nc Regge models are mutually in-
compatible. As we discuss shortly this is not necessarily so.

Now we come to the core of our construction. In order to
generate the asymptotic dependence (29) we superpose the
Regge model formula (22) over the values of b

FðtÞ ¼
Z 1

2
db�ðbÞfbðtÞ; (31)

where the density is given by

�ðbÞ ¼ �highðbÞ þ �lowðbÞ; (32)

and

�highðbÞ ¼ 4�

�0

16�f2�
�2

�
a

�2

�
1�b �ðM2

a Þ
�ðM2

a þ b� 1Þ
X1
n¼0

cn
n!

�
�
4�

�0

�
nðb� 2Þn: (33)

The coefficients cn are precisely the same as in Eq. (29).
Note that Eq. (33) corresponds to a Borel transformation of
the original perturbative series, a feature which is welcome
in view that the pQCD series is generally believed to be
divergent but Borel-summable (see, e.g. Ref. [58] and
references therein). The formula

Z 1

0
d��nx�� ¼ n!

lognþ1x
(34)

is the key ingredient in the power-to-log transmutation,
where � ¼ b� 2. Note that by taking the spectral density
(33) we get the right pQCD asymptotics when the large-Q2

behavior of the Regge model is used. The lower limit of
integration in Eq. (31) controls the power of Q2 in front of
the right-hand side of Eq. (29). In fact, it is the behavior of
�ðbÞ in the vicinity of b ¼ 2 that determines the asymp-
totic behavior of FðQ2Þ, thus �ðbÞ is not determined
uniquely away from b ¼ 2. One could attempt to use the
form (33) for all values of b. However, according to the
charge conservation we have to fulfill the normalization
condition

Fð0Þ ¼
Z 1

0
db�ðbÞ ¼ 1: (35)

Fixing the scale �QCD ¼ 250 MeV, we get both at LO and

NLO

Zhigh ¼
Z 1

2
db�highðbÞ< 1: (36)

To account for the missing strength we add an extra non-
perturbative contribution �lowðbÞ, which has support away
from b ¼ 2. For simplicity is taken in the form of a delta
function

�lowðbÞ ¼ ð1� ZhighÞ
ðb� b0Þ; (37)

with b0 ¼ 2:3, as in the fit of Ref. [47], although other less
singular distributions could also be used. Certainly, the
presence of �lowðbÞ is not affecting the asymptotics of
FðQ2Þ, which is governed by the behavior near b ¼ 2,
but it modifies FðQ2Þ at lower momenta.
Explicitly, at LO and NLO we use

�LO
highðbÞ ¼

4�

�0

16�f2�
�2

�
a

�2

�
1�b �ðM2

a Þ
�ðM2

a þ b� 1Þ ;

�NLO
high ðbÞ ¼ �LO

highðbÞ
�
1þ 4�

�0

6:58

�

ðb� 2Þ
2!

�
;

(38)

which with parameters (21) and Nf ¼ 3 yield

ZLO
high ¼ 0:27; ZNLO

high ¼ 0:39: (39)

The spectral densities (38) are plotted in Fig. 1, with the
dashed and solid lines representing the LO and NLO for-
mulas, respectively. The �lowðbÞ contribution is repre-
sented by the vertical line at b ¼ b0 ¼ 2:3. We note that
the strength of the spectral density is practically contained
in the interval between 2 and 3, and at large b we have a

very fast falloff �highðbÞ � b3=2�M2=aða=�2Þ�be�b logðb=eÞ.
More generally, we might also include a finite upper limit
of integration using the formula

2.0 2.5 3.0 3.5 4.0
b

0.2

0.4

0.6

0.8

ρ b

FIG. 1 (color online). The density �highðbÞ at LO (dashed line)
and NLO (solid line). The �lowðbÞ contribution is represented by
the vertical line at b ¼ b0 ¼ 2:3.
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Z b2

b1

db

�
M2

V � t

a

�
1�b ¼ 1

logðM2
V � tÞ=a

��
M2

V � t

a

�
1�b1

�
�
M2

V � t

a

�
1�b2

�
: (40)

The resulting value for Zhigh changes by a small amount for

b1 > 3, depending on its precise value. Actually, by ex-
tending the integration to infinity we are maximizing the
impact of perturbative corrections, and as we see, they are
not large. Thus, not much change is expected from cutting
off the integral above b ¼ 3.

V. POLE-RESIDUE ASSIGNMENT

Our procedure is equivalent to imposing pQCD con-
straints for the pole-residue assignment in the spectral
representation of the pion charge form factor. Looking
formally at the problem, we need to form the spectral
density (18) in such a manner that the asymptotic pQCD
constraints are satisfied (apart for other constraints, such as
normalization). In the preceding section, we have demon-
strated explicitly that it is possible to accomplish this goal.
More generally, in the large-Nc Regge model we have to
choose the location of poles and fix their residues.
Admittedly, there is a redundancy between shifting the
poles or the residues. We decide to keep the poles fixed
at their original location (20), because they are phenom-
enologically well described by the Regge trajectories. For
the residues the prescription of the previous section is
equivalent to taking

cn ¼
Z 1

2
db�ðbÞ a

Bðb� 1; M
2

a Þ
�ð2� bþ nÞ

�ðnþ 1Þ�ð2� bÞ : (41)

In Fig. 2, we show the values of cn for the three considered
models: the model with fixed b of Dominguez [47], with
�ðbÞ ¼ 
ðb� 2:3Þ (circles), and our model for the LO
(squares) and NLO (diamonds) cases. We note a strong
similarity between all cases. In particular, the first residue

c0 is positive, and the remaining residues are negative,
which leads to the desired cancellation. At very large
values of n (not displayed) the LO and NLO residues
have a larger magnitude than for the model with fixed b.
Despite this similarity, we note that our LO and NLO
models do satisfy the asymptotic pQCD constraints, while
the fixed-b model does not. This reflects in the subtlety of
the cancellation in the power-to-log transmutation mecha-
nism. We stress that within our scheme we may achieve the
goal of reproducing pQCD without modifying the spec-
trum; our spectral method features an effective way of
implementing QCD radiative corrections by appealing to
a modification of the meson wave functions.
At this point it is also interesting to display the values of

the resulting gV��ðnÞ couplings. This requires some
knowledge on the vector-meson-photon coupling FVðnÞ.
As mentioned above, quark-hadron duality for large t at the
level of the two-point vector correlator requires the Regge
model—parton model matching condition, Eq. (15), which
for the mass formula, Eq. (20), becomes

2�� ¼ 24�2F2
V=Nc: (42)

This formula works reasonably well already for the lowest
�ð770Þ state, where F� ¼ 150 MeV yields

ffiffiffiffi
�

p ¼
530 MeV, while we expect � ¼ 420–500 MeV [57].
Following previous works [51,52], the formula (42) will
be assumed to be valid for all n disregarding possible
nonlinearities, which are not very relevant within the
present context.2 With FV ¼ 150 MeV and cn from
Fig. 2 with Eq. (18) we get

g��� ¼ 4:3ð4:4Þ; g�0�� ¼ �2:3ð�2:6Þ;
g�00�� ¼ �0:9ð�0:8Þ; g�000�� ¼ �0:6ð�0:6Þ; (43)

where the first values are for the LO model, and the values
in parenthesis for the NLO model.

VI. PION CHARGE FORM FACTOR RESULTS

In Fig. 3, we display the results of our model for the pion
charge form factor and compare them to the TJLAB [6–8]
and Cornell [3] data. The three lines close to one another
and to the data are the NLO model (solid line), the LO
model (dashed line), and the model with fixed b ¼ b0 ¼
2:3. The two lower curves correspond to the NLO (solid)
and (LO) asymptotic pQCD results. We note that in the
range of momenta accessible to experiments all the con-
sidered models yield very close predictions and describe
the data well. These predictions depart from one another at
very high values of Q2, as can be seen from Fig. 4, where0 1 2 3
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b0 2.3
LO

NLO
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n
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FIG. 2 (color online). Residues cn ¼ FVðnÞgV��ðnÞ=MVðnÞ
for the Regge poles of the pion charge form factor at MVðnÞ2 ¼
M2 þ an for n ¼ 0, 1, 2, 3 (left) and for n ¼ 4; 5; . . . (right).

2The sensitivity to details of the Regge trajectory depends on
the computed observable. While for the pion form factor ana-
lyzed here there is some freedom, condensates with proper signs
are crucially dependent on these details, as shown in
Refs. [51,52].
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we plot the LO result (dashed line) and the asymptotic LO
pQCD expression (solid line). We note that the curves meet
at Q2 � 108 GeV2, which is a very high scale. For com-
parison we also plot the result of the fixed b model (dotted
line), which with the chosen value b0 ¼ 2:3 decays as
ð1=Q2Þ1:3. Figure 5 shows the same study for the NLO
calculation, with the model denoted by the dashed, and the
NLO pQCD calculation by the solid lines, respectively.
The two curves meet at somewhat lower scales Q2 �
107 GeV2 than for the LO case of Fig. 4.

VII. CONCLUSIONS

There have been countless attempts to understand the
delayed onset of pQCD in the pion charge form factor. The
standard VMD model is known to fit the available data
remarkably well, but shows no obvious link to pQCD. In
the present paper, we have approached the problem from
the viewpoint of the large-Nc Regge models. Our approach
exploits explicitly the quark-hadron duality at a nonpertur-
bative level and has the genuine advantage that much of the
discussion can be carried out without an explicit reference
to the light-cone wave functions and/or parton distribution
amplitudes; many uncertainties in current calculations
seem related to our lack of the detailed knowledge of these
nonperturbative objects used in the description of exclusive
processes. Our generalized VMD model includes infinitely
many resonances, describes the data, and simultaneously
complies to the known short-distance pQCD constraints.
The present framework requires a suitable modeling both
of the spectrum and the vector-meson coupling to the
electromagnetic current. While it describes the so far ex-
perimentally explored spacelike momentum region, it is
rather hard to provide estimates of the systematic error of
the calculation. The important feature which has been
clearly identified several times in the past in the analysis
of the data is that at large Q2 the pion form factor seems to
have a noninteger power falloff, which actually turns out to
be in the expected range for the best possible pQCD power-
log behavior, but still is qualitatively different from the
theoretical expectations based on pQCD. We have shown
that there is no contradiction between both behaviors.
Actually, we have spelled out a simple mechanism where
a suitable superposition of noninteger power falloffs may
transmute into the desired asymptotic pQCD behavior,
including the presence of logarithms. We have shown
that such a procedure does not spoil the good agreement
in the so far experimentally accessible region down the low
energy region where chiral corrections cause sizable dis-
tortions from any large-Nc calculation. Moreover, we are
able to reproduce simultaneously the high-energy pQCD
behavior, providing some confidence on the range where
pQCD sets in. We find that about 1=4 for the LO and about
1=3 for the NLO case of the pion charge is due to the high-
energy pQCD tail in our approach. Finally, the present
calculations suggest that nonperturbative contributions
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0.3

0.4

F t

FIG. 4 (color online). The pion charge form factor in the LO
model in the spacelike region t < 0. We plot�tFðtÞ in the region
up to very high t ¼ �1012 GeV2 (on a log scale). The solid line
represents the asymptotic LO pQCD result. The dashed line is
the LO model. The short-dashed line is the model with b0 ¼ 2:3.
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FIG. 5 (color online). Same as Fig. 4 for the NLO case.
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FIG. 3 (color online). The pion charge form factor at LO and
NLO in the spacelike region t < 0: NLO (solid), LO (dashed),
and b0 ¼ 2:3 (dotted). We plot �tFðtÞ in the region up to t ¼
�10 GeV2 and compare with the TJLAB [6–8] (circles and
squares) and Cornell [3] (diamonds) data. The two lower curves
correspond to the NLO (solid) and (LO) asymptotic pQCD
results.
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dominate in the region corresponding to the present and
planned experimental data, and would saturate the full
result only at extremely high values Q2 � 107–108 GeV2.
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