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We present a new analysis of two-jet event shape distributions in soft collinear effective theory.

Extending previous results, we observe that a large class of such distributions can be expressed in terms of

vacuum matrix elements of operators in the effective theory. We match these matrix elements to the full

theory in the two-jet limit without assuming factorization of the complete set of hadronic final states into

independent sums over partonic collinear and soft states. We also briefly discuss the relationship of this

approach to diagrammatic factorization in the full theory.
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I. INTRODUCTION

Hadronic jets provide a window into the fundamental
workings of quantum chromodynamics, since they contain
within themselves the signatures of QCD at both weak and
strong coupling. That hadronic final states in high-energy
collisions are jetlike at all reflects the underlying parton-
level perturbative interactions at weak coupling �s � 1,
while the evolution of individual partons into the final-state
hadrons we detect depends on the transition to nonpertur-
bative dynamics at strong coupling. Jets therefore test our
understanding of QCD over a wide range of scales.

At the same time that jets provide insights into QCD,
they are key elements in signatures for new physics beyond
the standard model. Unfortunately, the challenge of calcu-
lating QCD background events in the hadron collider en-
vironment of the Tevatron or the LHC remains formidable.
To develop incrementally our ability to describe the struc-
ture and evolution of jets in these environments, it is useful
to continue to develop the analysis of jets produced in the
relatively cleaner environment of eþe� collisions.

On the one hand, one can study observables that depend
on specifying the actual number of jets in the final state by
defining a jet algorithm, which sets criteria for what con-
stitutes a jet. On the other hand, one can extract much
useful information about the structure of the final state
from simpler observables called event shapes, which do
not depend on a jet algorithm, but are simple functions of
the momenta of all the particles in the final state. Two-jet
event shapes e are those whose distribution near e ¼ 0 is
dominated by events with two nearly back-to-back colli-
mated jets of particles. This is the case for eþe� annihila-
tion at high energy, and there is no need to specify precisely

what constitutes a jet. Some familiar examples are thrust
� ¼ 1� T [1,2], jet broadening B [3], jet masses [4–6],
and theC parameter [7]. A generic class of event shapes for
events eþe� ! X at center-of-mass energy Q may be
defined by

eðXÞ ¼ 1

Q

X
i2X
feð�iÞjpT

i j; (1)

where�i and p
T
i are the rapidity and transverse momentum

of final-state particle i with respect to the thrust axis of the
event. The function fe is sufficiently well behaved to
guarantee infrared safety. Choices of fe that give familiar
event shapes are

f�ð�Þ ¼ e�j�j; fBð�Þ ¼ 1; fCð�Þ ¼ 3

cosh�
:

(2)

A recently-introduced class of event shapes �a, the angu-
larities [8,9], for which

fað�Þ ¼ e�j�jð1�aÞ; (3)

generalizes thrust and jet broadening. The thrust corre-
sponds to a ¼ 0, and the broadening to a ¼ 1. Any a
with �1< a< 2 defines an infrared-safe observable.
Studying how the behavior of the angularity distributions
vary with a provides insight into the intrinsic structure of
jets [9,10].
In the endpoint region of two-jet event shape distribu-

tions, fixed-order perturbation theory alone is insufficient
to make accurate predictions. This region is dominated by
perturbative logarithms of e and by nonperturbative power
corrections. A tool to separate the perturbative and non-
perturbative contributions and set up a resummation of the
logarithms in these distributions is factorization, which
separates the effects of the hard scattering, jet evolution,
and hadronization occurring at different length and energy
scales. An observable factorizes if it can be calculated as
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the convolution of perturbatively calculable functions and
nonperturbative functions, which are typically universal in
the sense that the same nonperturbative function contrib-
utes to multiple processes. A two-jet event shape distribu-
tion that factorizes takes the form

1

�0

d�

de
¼ Hð�Þ

Z
de1de2des�ðe� e1 � e2 � esÞ

� J1ðe1;�ÞJ2ðe2;�ÞSðes;�Þ; (4)

where Hð�Þ is a perturbatively calculable hard function,
and Ji and S are jet and soft functions, respectively. This
form summarizes the leading-power behavior 1=e � log-
arithms of e of the cross section. Corrections are sup-
pressed by powers of e.

It is important to emphasize that the precise definitions
of the jet and soft functions are somewhat arbitrary and
differ from treatment to treatment. Analyzing both of these
functions perturbatively, one finds logarithmic dependence
on the event shape variables ei and es. This dependence can
be resummed, from which we can generate the resummed
dependence of the cross section on e. The original resum-
mations of thrust and related event shape variables [11]
used the feature that the entire next-to-leading logarithmic
behavior is naturally absorbed into the jet functions. These
discussions do not need to include a soft function. The
general structure of Eq. (4), including both soft and jet
functions, and its relationship to Sudakov resummation at
arbitrary logarithmic level was explored in a general con-
text in Ref. [12]. Perturbative applications to jet shapes
were described in more detail, with explicit constructions
for the jet and soft functions in Ref. [8]. These treatments
assume that perturbation theory provides a leading-power
description of infrared-safe observables in the manner of
an asymptotic series, with power corrections whose behav-
ior can be inferred from the structure of the perturbative
series at high orders, and/or the running of the coupling
[13]. Both the jet and soft functions also generally receive
power corrections in this manner, and nonperturbative
corrections to event shapes based on both fixed-order and
resummed cross sections have been widely discussed, and
reviewed in [14].

Recently the factorization of jet cross sections and event
shape distributions near the two-jet kinematic endpoint has
been revisited in the language of soft collinear effective
theory (SCET) [15–18]. This approach provides an elegant
way, developed in [19–22], to reproduce the results of the
traditional QCD factorization at leading power, and pro-
vides a framework to organize perturbative resummations
[23–26] and nonperturbative power corrections [21,27].
These analyses of massless jets have also been extended
to the case of massive jets [28,29]. The effective field
theory also provides a systematic framework to move
beyond leading-power results. In SCET, the factorization
in Eq. (4) follows from the usual separation of short- and
long-distance physics in effective field theories, as well as

from the decoupling of interactions between collinear and
soft fields in the leading-order SCET Lagrangian. The hard
function H is the square of a Wilson coefficient from the
matching between QCD currents and SCET operators, the
jet functions Ji are matrix elements of operators built of
collinear fields, and the soft function S is the matrix
element of an operator built from ultrasoft (usoft) fields.
One goal of the SCET formulations of factorization in

[19–22,28] has been to use effective theory methods to
improve our insight into nonperturbative corrections by
analyzing matrix elements directly in terms of hadronic
states. As we shall see, the jet cross sections that we study
below can be reformulated in terms of hadronic matrix
elements, involving nonlocal products of currents and the
energy-momentum tensor [30,31]. There is an important
subtlety, however, in the application of effective field
theory methods to semi-inclusive sums over asymptotic
states. This is the assumption that hadronic final states X
can be factorized consistently as

jXi ¼ jXcijXsofti; (5)

where Xc and Xsoft are collinear and soft final states, which
carry nonsinglet color in general. Indeed, it is inconsistent
to impose a color-singlet condition on the collinear and soft
states individually [20]. Furthermore, the relation Eq. (5)
must be associated with power corrections that in principle
depend on the observable to which we intend to apply it.
Thus, corrections to Eq. (5) are not well-defined without
additional input. Similar limitations apply to an appeal to
parton-hadron duality to justify Eq. (5), since this principle
does not come with a systematic method of estimating
corrections. Finally, if we were to take both sides of the
relation literally, it would have to hold at infinite times,
which would violate the spirit of matching the effective to
full theory at a perturbative scale, and only then evolving to
nonperturbative scales. These considerations motivate our
analysis below.
In this paper, we show that the assumption Eq. (5) is not

necessary to prove the factorization Eq. (4). We show that
the phase space delta function �ðe� eðXÞÞ, which restricts
the final states in d�=de to the events with eðXÞ ¼ e, can
be expressed as an operator �ðe� êÞ acting on the final
state X. The operator ê, which can be constructed in
quantum field theory, depends on an energy flow operator
as well as an operator t̂, which picks out the thrust axis of a
final state X. Using these ingredients to express �ðe�
eðXÞÞ as an operator, we remove its dependence on the
final state X and so are able to sum over the complete set of
states before it ever becomes necessary to assume the
factorization of states, Eq. (5).
In the next section, we demonstrate the factorization of

the event shape distribution d�=de in SCET, making use of
the event shape operator ê. In Sec. III, we construct the
energy flow operator that enters in the construction of ê and
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discuss the determination within SCETof the thrust axis on
which ê depends. Section IV contains our conclusions.

II. FACTORIZATION PROOF

A. Event shape distributions in QCD

We start with the distribution in the event shape e in
eþe� ! hadrons, which is given in full QCD by

d�

de
¼ 1

2Q2

X
X

jMðeþe� ! XÞj2ð2�Þ4�4ðq� pXÞ

� �ðe� eðXÞÞ; (6)

where q is the total incoming momentum, with q2 � Q2.
Here, X labels the hadronic final state, and eðXÞ denotes the
value of the event shape variable for a given final state X.
To leading order in the electroweak couplings, the process
eþe� ! X is mediated by the partonic s-channel transition
eþe� ! q �q, with an intermediate photon or Z boson. The
leptonic part of this partonic transition matrix element can
be calculated, and one finds

jMðeþe� ! XÞj2 ¼ X
i¼V;A

Li��h0jj�yi jXihXjj�i j0i; (7)

where we have defined the vector and axial currents,

j
�
i ¼ �qaf�

�
i q

a
f; (8)

with ��V ¼ 	� and ��A ¼ 	�	5. The leptonic tensor is

given by

LV�� ¼ � e4

3Q2

�
g�� �

q�q�

Q2

�

�
�
Q2
f �

2Q2vevfQf

Q2 �M2
Z

þQ4ðv2e þ a2eÞv2f
ðQ2 �M2

ZÞ2
�

(9a)

LA�� ¼ � e4

3Q2

�
g�� �

q�q�

Q2

�Q4ðv2e þ a2eÞa2f
ðQ2 �M2

ZÞ2
; (9b)

where fermion f has electric charge Qf in units of e, and

vector and axial charges vf, af given by

vf ¼ 1

2 sin
W cos
W
ðT3
f � 2Qfsin

2
WÞ;

af ¼ 1

2 sin
W cos
W
T3
f:

(10)

In Eq. (8), a sum over colors a and flavors f is understood.
Writing the four-momentum conserving delta function

as the integral of an exponential, and using the dependence
on pX in the exponential to translate one of the two currents
to the position x we can write the distribution as

d�

de
¼ 1

2Q2

X
X

Z
d4x eiq�x

X
i¼V;A

Li��h0jj�yi ðxÞjXi

� hXjj�i ð0Þj0i�ðe� eðXÞÞ; (11)

B. Eliminating the dependence on the final state

The delta function �ðe� eðXÞÞ restricts the sum over
final states to those states giving the same value e of the
observable event shape. This means that we cannot per-
form the sum over the complete set of final states.
However, as we will now show, it is possible to write the
event shape eðXÞ as the eigenvalue of an operator acting on
the final state X. This can be achieved using the definition
of the transverse energy flow operator ETð�Þ, which was
introduced in [21]. Its action on a hadronic state X is given
by

ETð�ÞjXi ¼
X
i2X

jpTi j�ð�� �iÞjXi; (12)

where pTi is the transverse momentum of the i-th particle
with respect to the thrust axis, and �i is the rapidity of the
i-th particle. The thrust axis is defined to be the unit vector
t, which maximizes the sum

P
ijpi � tj. In the event shapes

of Eq. (1), rapidities and transverse momenta are measured
with respect to this axis. Thus, implicit in the action of
ETð�Þ on jXi is the determination of this thrust axis tðXÞ.
Using the energy flow operator we define an operator ê,
which returns the value of the event shape for a given state
X,

êjXi � eðXÞjXi ¼ 1

Q

Z 1

�1
d�feð�ÞETð�; t̂ÞjXi; (13)

where t̂ is an operator that returns the value of the thrust
axis tðXÞ when acting on the final state X, and we have
denoted explicitly the dependence of ETð�Þ on this axis.
Although the present argument does not rely on explicitly
constructing t̂, it is nevertheless possible to do so, as we
show in Sec. III B 1. In Sec. III B 2, we argue that in SCET
we can choose the thrust axis to be in the jet direction n
appearing in the two-jet current, so that no t̂ operator need
act on the final state at all.
Using the thrust axis and event shape operators t̂ and ê,

we can remove all dependence on the final state in the
factor �ðe� eðXÞÞ in Eq. (11) and can therefore perform
the sum over the complete set of final states. This gives

d�

de
¼ 1

2Q2

Z
d4x eiq�x

X
i¼V;A

Li��h0jj�yi ðxÞ�ðe� êÞj�i ð0Þj0i:

(14)

The expression above involves a delta function of the
operator ê, which requires further comment. Heuristically
this delta function is a way of treating the factorization of
all moments of ê at the same time. To see this we first
define the delta function operator �ðe� êÞ through a
Taylor series expansion in ê

�ðe� êÞ ¼ �ðeÞ þ ê�ð1ÞðeÞ þ . . .þ ên

n!
�ðnÞðeÞ þ . . .

(15)
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From this expression it is clear that the n-th term in the
series is the n-th moment of the event shape distribution.
Thus, if we integrate Eq. (14) against en the delta function
operator on the right picks out the n-th moment of the event
shape distribution.

In order to factorize this matrix element, we need to
match the full theory currents onto operators in SCET, and
to construct explicitly the operator ê in SCET. The operator
ETð�Þ is related to the energy-momentum tensor by [30,31]

ETð�Þ ¼ 1

cosh3�

Z 2�

0
d� lim

R!1R
2
Z 1

0
dt n̂iT0iðt; Rn̂Þ:

(16)

In Sec. III A, we will prove Eq. (16) using the energy-
momentum tensor T�� written in terms of fields corre-

sponding to the hadrons in the state X. In the proof of
factorization below, we will instead use its presumably
equivalent form in terms of quark and gluon fields in
QCD and SCET. We are free to use either form as an
operator is independent of its representation.

C. Matching onto SCET

We now match the currents and energy flow operator
onto SCET. The discussion in this section is purposely kept
brief, and for more details of the techniques used and for
definitions of our notation we refer the reader to
Refs. [20,21,28]. To reproduce the endpoint region of the
two-jet event shape distribution, we match the QCD cur-
rents j�i onto SCET operators containing fields in only two
collinear directions

j�i ðxÞ ¼
X
n1;n2

X
~p1;~p2

Cn1n2ð~p1; ~p2;�ÞOn1n2ðx; ~p1; ~p2Þ: (17)

The operator O can depend on the label directions n1 and
n2, as well as the label momenta ~p1, ~p2. Recall that, in
SCET, collinear momenta p�c ¼ ~p� þ k� are divided into
a large label piece ~p� ¼ ð �n � ~pÞn�=2þ ~p�? and a residual

piece k�, where �n � ~p is OðQÞ, ~p? is OðQ�Þ, and k is
OðQ�2Þ. The residual momenta are the same size as ultra-
soft momenta kus of OðQ�2Þ. The small parameter �

is of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCD=Q

q
. After the Bauer-Pirjol-Stewart

(BPS) field redefinition with usoft Wilson lines [15], the
current in SCET is given by

On1n2ðx; ~p1; ~p2Þ ¼ eið~p1�~p2Þ�x �
n1;p1
ðxÞYn1ðxÞ

� �
�
i
�Yn2ðxÞ
n2;p2

ðxÞ; (18)

where �
�
V ¼ 	

�
? and �

�
A ¼ 	

�
?	5. In Eq. (17), we sum over

directions ni of the light-cone vectors ni ¼ ð1;niÞ. In the
center-of-mass frame the two jet directions are constrained
to be back to back, which eliminates the sum over one of
the directions ni, leaving a sum over a single n. The field
redefinitions replace all usoft-collinear interactions with
usoft Wilson lines Yni ,

�Yni in the directions and color

representations of the corresponding collinear fields.
Since collinear fields in different directions do not

couple to one another in SCETat leading order, the forward
matrix element in Eq. (14) vanishes, unless the directions n
of the operatorO and its complex conjugate agree with one
another. By the same argument, the label momenta on these
fields and their complex conjugates have to agree with one
another. This gives

d�

de
¼ 1

2Q2

X
n

X
~p1;~p2

C�
n �nð~p1; ~p2;�ÞCn �nð~p1; ~p2;�Þ

Z
d4x eiQx

0
eið~p2�~p1Þ�x

X
i¼V;A

Li��

� h0j½ �
a�n;p2
�Yyab
�n

��i�Y
ybc
n 
cn;p1

�ðxÞ�ðe� êÞ½ �
dn;p1
Yden �i� �Y

ef
�n 


f
�n;p2

�ð0Þj0i; (19)

where we have made all color indices explicit. Finally, we
demand that the label momenta that appear in the expo-
nentials of this relation equal the total momentum, thus
requiring �n � ~p1 ¼ �n � ~p2 ¼ Q [18] and ~p?

1 ¼ ~p?
2 ¼ 0.

D. SCET scaling and the event shapes

For our reasoning below, it will be important to estimate
the contributions to event shapes from the label and resid-
ual momenta of collinear particles in the final state as well
as from usoft particles. To be concrete, we consider the

angularities e ¼ �a, from Eq. (1), for which fað�Þ ¼
e�j�jð1�aÞ, and follow the logic of [8]. The contribution of
an individual particle to �aðXÞ is

jpTj
Q

e�j�jð1�aÞ ¼ jpTj
Q

min

�
E� pk
E	 pk

�ð1�aÞ=2
: (20)

For usoft particles we have pT 
Q�2 and the ratio in
parentheses R
 1, while for collinear particles pT 
Q�
and R
 �2. The nominal contribution of a usoft particle to
�a is thus �

2, while for a collinear particle it is �2�a. This is
the case for any value of parameter �� 1. For a < 0, the
scaling behavior of the event shapes is �2, independent of
a, and dominated by the momenta of usoft particles, inde-
pendent of the collinear particles. For 0< a< 1, the event
shapes scale as �2�a. We will establish our results below
for all angularities with a < 1 and related event shapes,
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keeping all contributions to the event shape which are at
least of order �2.

For a � 1, the contribution of ‘‘ultracollinear’’ particles,
for which pT 
Q�2 and R
 �4 become important [21].

Their contribution to the event shape is of the order �2ð2�aÞ,
which is at least as large as �2 for a � 1. Such particles are
described by collinear modes in SCETwith purely residual
(zero label) transverse momenta. Our analysis below ap-
plies to jets whose typical constituents have nonzero trans-
verse label momenta, and so is appropriate only for a < 1.

The subdominance of ultracollinear contributions for
a < 1 corresponds to the observation that at a given pT ,
wide-angle emission with energy comparable to pT con-
tributes to the thrust and related event shapes more than
does collinear emission with energies much larger than pT
[32] at the level of both perturbative and nonperturbative
corrections.

E. Factorizing the vacuum matrix element

At this point, the field content in the forward matrix
element is completely factorized. To complete the factori-
zation of the matrix element in Eq. (19), we must in
addition show that the operator �ðe� êÞ also factorizes
into collinear and soft parts. From Eqs. (13) and (16) we
can see that the operator ê can be written in terms of the
energy-momentum tensor, as well as the operator t̂, which
determines the thrust axis. As we show in Sec. III B, the
thrust axis is determined solely by the labels on the fields in
the two-jet operator On �n, for which one simply finds that
t ¼ n. Wewill also use our observations in Sec. II D above,
that the event shape values, and hence the action of the
operator ê on final state, are dominated by the contributions
of usoft momenta, collinear label momenta �ni � ~p, and ~p?,
and only one component ni � k of collinear residual mo-
menta, for particles in each collinear direction ni.

The energy-momentum tensor, which is defined as

T�� � X
i

@L
@ð@��iÞ@

��i � g��L; (21)

where the sum is over fields �i in the Lagrangian L,
simplifies in SCET since after the BPS field redefinition

the Lagrangian separates into

L ¼ Ln þL �n þLus: (22)

As a result the energy-momentum tensor is a direct sum
over contributions from fields in the different sectors. We
must remember, of course, that Eq. (22) holds only at
leading order in � in SCET, and that there are power-
suppressed terms in the SCET Lagrangian in which inter-
actions between collinear and usoft fields do not decouple
following the BPS field redefintion [33–36].
Using the definition of the event shape operator given in

Eq. (13), we find the important result in SCET

ê ¼ ên þ ê �n þ êus; (23)

where

ê i ¼ 1

Q

Z 1

�1
d�feð�ÞEiTð�Þ; (24)

and EiTð�Þ is defined using Eq. (16), but using the energy-
momentum tensor derived from Li. This means that we
can write the delta function constraining the value of the
event shape to its observed value as

�ðe� êÞ ¼
Z
den�ðen � ênÞ

Z
de �n�ðe �n � ê �nÞ

�
Z
deus�ðeus � êusÞ�ðe� en � e �n � eusÞ:

(25)

Finally, we use the fact that the operators ên (ê �n) are
constructed only from collinear fields in the n ( �n) direction
and êus only from usoft fields. Thus,

½ên; 
 �n� ¼ ½ê �n; 
n� ¼ ½ên; Y� ¼ ½ê �n; Y�
¼ ½êus; 
n� ¼ ½êus; 
 �n� ¼ 0: (26)

This enables us to rewrite Eq. (19) in factorized form,
separating the vacuum expectation values of mutually
commuting fields,

d�

de
¼ 1

6Q2

X
n

jCn �nðQ;�Q;�Þj2
Z
d4x

Z
dende �ndes�ðe� en � e �n � esÞ 1

N2
C

Trh0j
n;QðxÞ��ðen � ênÞ �
n;Qð0Þ	j0i

� Trh0j �
 �n;�QðxÞ��ðe �n � ê �nÞ
 �n;�Qð0Þ�j0iTrh0j �Yy
�n ðxÞYy

n ðxÞ�ðes � êsÞYnð0Þ �Y �nð0Þj0i
X
i¼V;A

Lið ���i Þ��ð�i�Þ	�; (27)

where Li ¼ g��Li��, the traces are over colors, and we now make the spin indices explicit.
The collinear matrix elements define jet functions J n; �n according to
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1

NC
Trh0j
n;QðxÞ��ðen � ênÞ �
n;Qð0Þ	j0i �

Z dkþdk�d2k?
2ð2�Þ4 e�ik�xJ nðen; kþ;�Þ

�6n
2

�
�	
; (28a)

1

NC
Trh0j �
 �n;�QðxÞ��ðe �n � ê �nÞ
 �n;�Qð0Þ�j0i �

Z dlþdl�d2l?
2ð2�Þ4 e�il�xJ �nðe �n; l�;�Þ

� �6n
2

�
��
; (28b)

while the usoft matrix element defines a soft function

1

NC
Trh0j �Y �nðxÞYy

n ðxÞ�ðes � êsÞYnð0Þ �Y �nð0Þj0i

�
Z d4r

ð2�Þ4 e
�ir�xSðes; r;�Þ: (29)

Furthermore, we can use that J nðen; kþ;�Þ depends only
on the single light-cone component kþ � n � k of the
residual momentum, as only in � @ appears in the
n-collinear SCET Lagrangian [17] at leading order in �.
Similarly, J �nðe �n; l�;�Þ depends only on l� � �n � l. To
express the cross section, Eq. (27), in terms of the jet and
soft functions directly, we follow a variation of the reason-
ing of Ref. [28] for massive quarks.

Given the discussion of Sec. II D above, the residual
transverse (k? and l?) and parallel-moving (k� and lþ)
components of the jet functions enter the angularity event
shapes only at nonleading power in �, as long as the

parameter a � 1. This is the case for all values of ��
1, and therefore holds for perturbative, logarithmic correc-
tions to the angularity cross sections, as well as in the
nonperturbative region. For the following discussion, we
therefore define the jet event shape operators ên and ê �n to
measure only the residual components kþ and l� in the
collinear sector. Corrections to this approximation from
extending integrations over residual momenta to order Q
are perturbative and nonlogarithmic, and hence can be
absorbed into the matching coefficients Cn �n. For simplic-
ity, however, we do not change our notation for the match-
ing coefficients to reflect this here.
Because the jet functions are independent of the residual

transverse momenta, it is natural to change variables to
their sum and difference K? � k? þ l?, �? ¼ ð1=2Þ�
ðk? � l?Þ. The integral over the sum gives ð2�Þ2�2ðx?Þ.
In this notation, the formula Eq. (27) for the event shape
distribution can now be written as

d�

de
¼ NC

6Q2
L
X
n

Z
d2�?jCn �nðQ;�Q;�Þj2

Z
d4x

Z
dende �ndes�ðe� en � e �n � esÞ�

�
xþ

2

�
�

�
x�

2

�
�2ðx?Þ

Z dkþdl�

4ð2�Þ4

�
Z d4r

ð2�Þ4 e
�iðrþþkþÞx�=2�iðr�þl�Þxþ=2�ir?�x?J nðen; kþ;�ÞJ �nðe �n; l�;�ÞSðes; r;�Þ; (30)

where the factor L is defined

L � LV Tr

�6n
2
	�?

�6n
2
	?
�

�
þ LA Tr

�6n
2
	�?	5

�6n
2
	?
�	5

�
: (31)

In Eq. (30), we have integrated over k�, lþ, and K? to
generate delta functions setting all components of x to
zero. This allows us to perform the integrals over x.

In Eq. (30), there remains a sum over label directions n
and an integral over the residual momenta �?, which
combined are simply an integral over total solid angle [28]

X
n

d2�? ¼ Q2

4
d�; (32)

where the overall factor arises from the magnitude of
the label three momentum of the jet in direction n, which
is j~pj ¼ Q=2. We carry out the integral over solid angle
to obtain our final result. To simplify our expression
we define the Wilson coefficient C2ðQ;�Þ �
Cn �nðQ;�Q;�Þ, since it is independent of n. We now
define jet and soft functions integrated over all momenta

Jnðen;�Þ �
Z dkþ

2�
J nðen; kþ;�Þ; (33a)

J �nðe �n;�Þ �
Z dl�

2�
J �nðe �n; l�;�Þ; (33b)

Sðes;�Þ �
Z d4r

ð2�Þ4 Sðes; r;�Þ: (33c)

We note that the differential cross section can be expressed
in terms of the total Born cross section for eþe� ! q �q

�0 ¼ 4��2NC
3Q2

X
f

�
Q2
f �

2Q2vevfQf

Q2 �M2
Z

þQ4ðv2e þ a2eÞðv2f þ a2fÞ
ðQ2 �M2

ZÞ2
�
; (34)

and we find as the final result for the differential event
shape distribution

1

�0

d�

de
¼ jC2ðQ;�Þj2

Z
dende �ndes�ðe� en � e �n � esÞ

� Jnðen;�ÞJ �nðe �n;�ÞSðes;�Þ: (35)
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This is the main result of this paper, in which the hard
scattering function Hð�Þ of Eq. (4) is identified with the
absolute square of an SCET matching coefficient, and the
jet and soft functions have been given effective theory
definitions. Corrections suppressed at least by a power of
� to this formula enter from effects at subleading order in
the SCET power expansion.

F. Comment on final states in SCET

In earlier studies of event shape distributions and two-jet
cross sections in SCET [19–21,25,28], the hadronic final
states X appearing in the cross sections were not summed
over before matching the full and effective theories. In
these cases, the state X was itself factored into separate
collinear and soft parts

jXi ¼ jXnijX �nijXusi: (36)

In these studies, the factorization theorem Eq. (35) is of the
same form, but the jet function J n is defined byX

Xn

h0j
n;QðxÞ�jXnihXnj �
n;Qð0Þ	j0i�ðen � eðXnÞÞ

�
Z d4k

ð2�Þ4 e
�ik�xJ nðen; kþ;�Þ

�
n6
2

�
�	
; (37)

and similarly for J �n and S. Such definitions, of course, can
be derived from the vacuum matrix elements in Eqs. (28)
and (29), if we assume that each set of Xn, X �n, Xus form
individually a complete set of states. We note, however,
that the fields 
n; �n overlap with states Xn; �n only if these

states are color triplet. Similarly, the states Xus in general
carry nonsinglet color. At this level, discussions that begin
with the assumption of Eq. (36) yield results that are
equivalent to those of our reasoning. We have outlined
the conceptual drawbacks of the use of this assumption
in the Introduction. The advantages of avoiding the sepa-
ration of states as in Eq. (36), however, are not only
conceptual. By defining the jet functions in terms of matrix
elements as in Eqs. (28) and (29), we can estimate correc-
tions to the factorized cross section. These are due on the
one hand to the leading-� approximation in the equation
for the QCD Lagrange density, (22), and on the other hand
to our ability to calculate or otherwise estimate through
power corrections [21] the specific vacuum matrix ele-
ments involving the operators êi.

We may also compare the role of partonic final states in
SCET to their treatment in Ref. [8], in which factorized jet
and soft functions are each associated with individual sums
over final states. In Ref. [8], as in previous derivations of
resummed event shapes [37,38], final states are always
partonic. The factorization is carried out at the level of
the diagrammatic cross section order by order in the cou-
pling and region by region in phase space. Each such
region is characterized by a definite set of jet and soft
final-state partons, which are grouped into factorized jet

and soft functions. In Ref. [8], each of these factors is
initially associated with a limited phase space for its
final-state partons. These initial sums over partonic final
states are then extended into unconstrained phase space
sums for the jet and final states by redefining the functions
systematically to avoid double counting in any region that
is infrared sensitive. This procedure relies on the exponen-
tiation properties of eikonal cross sections [39–42].
In the diagrammatic treatment just described, specific

classes of nonperturbative power corrections may be in-
ferred from ambiguities in the resummed expressions [13].
A full treatment of nonperturbative corrections would re-
quire analyzing the observables in terms of matrix ele-
ments of the full theory, as advocated in [21,30,31], a
viewpoint that is consistent with the SCET analysis de-
scribed above.

III. DEFINITION OF REQUIRED OPERATORS

In this section we explicitly construct the operator ê
defined in Eq. (13), which we used to eliminate the depen-
dence on the final hadronic state X of the weight �ðe�
eðXÞÞ appearing in the event shape distribution d�=de.
This operator ê itself depends on the transverse momentum
flow operator ETð�Þ and the thrust axis operator t̂. We first
confirm Eq. (16) giving ETð�Þ in terms of the energy-
momentum tensor T��, and then argue that t̂ can be re-

placed with an axis tL that depends only on labels in the
effective theory two-jet operator up to subleading power
corrections (at least for a large set of event shapes, which
we identify).

A. Energy flow from energy-momentum tensor

The transverse momentum flow operator ETð�; t̂Þ in
Eq. (13) is related to the energy flow operator Eðn̂Þ defined
in Ref. [43], whose action on states jXi ¼ jk1; . . . ; kni is

E ðn̂ÞjXi ¼ X
i2X
!i�

2ðn̂� n̂iÞjXi; (38)

where !i is the energy of particle i, n̂ is the unit vector
pointing in the direction ð
;�Þ, and �2ðn̂� n̂iÞ ¼
�ðcos
� cos
iÞ�ð���iÞ. To change variables from 

to �, we use the relation cos
 ¼ tanh� for massless par-
ticles, to obtain

�ðcos
� cos
iÞ ¼ �ðtanh�� tanh�iÞ
¼ cosh2��ð�� �iÞ: (39)

We define 
 and� to be measured with respect to the thrust
axis. Also, the energy !i and the momentum jpTi j trans-
verse to the thrust axis are related by

jpTi j ¼ !i sin
i ¼ !i

cosh�i
: (40)

Thus, we can relate the transverse momentum flow opera-
tor in Eq. (12) to the energy flow operator in Eq. (38) by
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ETð�Þ ¼ 1

cosh3�

Z 2�

0
d�Eðn̂Þ: (41)

We will now verify that Eðn̂Þ is related to the energy-
momentum tensor by

E ðn̂Þ ¼ lim
R!1R

2
Z 1

0
dt n̂iT0iðt; Rn̂Þ; (42)

the form of which was introduced in Ref. [31].1 We will
think of the variable R as a truly macroscopic distance,
literally the distance from the scattering interaction to a
detector. Thus, R is typically many orders of magnitude
larger than the inverse minimum mass scale of the process.

Consider the observable

Fðn̂; qÞ ¼ X
X

Z
d4x eiq�xh0jjyðxÞEðn̂ÞjXihXjjð0Þj0i; (43)

where the sum is over a complete set of out states X, and
the current jðxÞ couples to the field �. Using the definition
of the energy flow operators given in Eq. (38), one can
easily show that this observable gives the weighted cross
section

Fðn̂; qÞ ¼ X
states X

ð2�Þ4�4ðpX � qÞ

� X
particles i2X

!i�
2ðn̂� n̂iÞh0jjyð0ÞjXihXjjð0Þj0i;

(44)

where n̂i is a unit vector in the direction of the three
momentum of particle i. Our aim is to show that the
representation of the energy flow operator in terms of the
energy-momentum tensor, as given in Eq. (42), reproduces
this result, with corrections entering with inverse powers of
the distance R from the interaction region to the detector.

To begin, we insert another sum over out states X0
between the current jðxÞ and E in Eq. (43). This gives

Fðn̂; qÞ ¼ X
states X;X0

Z
d4x eiq�xh0jjðxÞjXihXjEðn̂ÞjX0i

� hX0jjð0Þj0i: (45)

We then observe that since Eðn̂Þ is at the macroscopic
distance R from the scattering, all hadrons in the states
X, X0 will have stopped interacting by the time they reach
the position of the operator Eðn̂Þ. The matrix elements of
Eðn̂Þ between states X, X0 are thus those of a free hadronic
theory.

To prove Eq. (42), we must show that Eðn̂Þ acts on these
hadronic states according to Eq. (38). We do so by plug-
ging the energy-momentum tensor T�� appropriate for

hadrons of a given type into Eq. (42) and testing its action
on these states in the appropriate free field theory. This

works for hadrons of any spin. Below, we will demonstrate
this explicitly for real scalars and Dirac fermions. Note that
the scalar and Dirac fields represent the hadronic final
states, not the partonic states. Since the hadrons are non-
interacting, we only need to consider free field theories.

1. Scalar fields

We will first evaluate the matrix elements of Eðn̂Þ in
Eq. (45) for a free, neutral scalar field �ðxÞ for which

T0iðxÞ ¼ �ðxÞ@i�ðxÞ; (46)

with �ðxÞ ¼ _�ðxÞ the corresponding conjugate
momentum.
In the free scalar theory we can expand the energy-

momentum tensor, and thus Eðn̂Þ, in terms of particle
creation and annihilation operators. Employing the mode
expansion of T0i in Eq. (42), we obtain for Eðn̂Þ in the free
theory

Eðn̂Þ ¼ lim
R!1R

2
Z 1

0
dt

Z d3p

ð2�Þ32!p

Z d3q

ð2�Þ32!q

�!pn̂ � q½apaqe�ið!pþ!qÞteiRn̂�ðpþqÞ

� apa
y
qe

�ið!p�!qÞteiRn̂�ðp�qÞ þ H:c:�: (47)

We have chosen a normalization for which ½ap; ayq� ¼
2!pð2�Þ3�3ðp� qÞ. We evaluate the integrals in spherical

coordinates, performing the angular 
p;q, �p;q integrals in

the stationary phase approximation. We find the stationary
point 
p;q ¼ 
n̂ and �p;q ¼ �n̂, that is, p, q are aligned

with n̂. Then,

E ðn̂Þ ¼ lim
R!1

1

4ð2�Þ4
Z 1

�R
dxþ

Z 1

0
dpp

Z 1

0
dqq

q

!q

�½apn̂ayqn̂e�ið!p�!qÞxþe�iRðpþ�qþÞ

� apn̂aqn̂e
�ið!pþ!qÞxþe�iRðpþþqþÞ þ H:c:�;

(48)

where we made use of the light-cone coordinates with
respect to n ¼ ð1; n̂Þ, xþ ¼ n � x ¼ t� R, pþ ¼ n � p ¼
!p � p. The R! 1 limit of the xþ integral produces delta

functions ð2�Þ�ð!p �!qÞ and ð2�Þ�ð!p þ!qÞ. The lat-
ter delta function cannot be satisfied, so we are left with
simply

E ðn̂Þ ¼
Z d3p

ð2�Þ32!p

!pa
y
pap�

2ðn̂� p̂Þ; (49)

where we have normal ordered the operators in Eq. (48)
and dropped the infinite constant term. The operator thus
picks out the total energy of all scalar hadrons in the
direction n̂. Inserting the result into Eq. (45) we reproduce
the weighted cross section given in Eq. (44), completing
the proof.

1A similar formula integrating over distance in the direction n̂
with time taken to infinity is derived in Refs. [30,44].
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There are corrections to this result from terms dropped
in the stationary phase approximation used in Eq. (48) of
order Oð1=RÞ, or, more precisely of order Oð1=ðm0RÞÞ,
where m0 is the smallest momentum scale that occurs
naturally in the S-matrix elements. Although possibly
small, it is still the inverse of some microscopic length
scale. When multiplied by the macroscopic scale R, the
result is a very large dimensionless number such that these
corrections can safely be neglected.

2. Dirac fermions

We can repeat the above derivation for Dirac fermions.
The canonical energy-momentum tensor is

T�� ¼ i � 	�@� � g��L: (50)

Using the mode expansion of T0i in Eq. (42) gives for Eðn̂Þ

Eðn̂Þ ¼ lim
R!1R

2
Z 1

0
dt

Z d3p

ð2�Þ32!p

Z d3q

ð2�Þ32!q

� n̂ � qX
r;s

½brpbsyq vryðpÞvsðqÞe�ið!p�!qÞteiRn̂�ðp�qÞ

� aryp asquryðpÞusðqÞeið!p�!qÞte�iRn̂�ðp�qÞ

� brpa
s
qv

ryðpÞusðqÞe�ið!pþ!qÞteiRn̂�ðpþqÞ

þ aryp bsyq uryðpÞvsðqÞeið!pþ!qÞte�iRn̂�ðpþqÞ�: (51)

Performing the angular integrals in the stationary phase
approximation and taking the R! 1 limit of the t (or
xþ ¼ t� R) integral as in the previous section, we are left
with the terms

Eðn̂Þ ¼ 1

4ð2�Þ3
Z 1

0
dpp

p

!p

½arypn̂aspn̂uryðpn̂Þusðpn̂Þ

� brpn̂b
sy
pn̂v

ryðpn̂Þvsðpn̂Þ�: (52)

The spinors satisfy the relations

uryðpn̂Þusðpn̂Þ ¼ 2!p�
rs; vryðpn̂Þvsðpn̂Þ ¼ 2!p�

rs;

(53)

and we obtain the final form of Eðn̂Þ

E ðn̂Þ ¼
Z d3p

ð2�Þ32!p

!p

X
s

ðasyp asp þ bsyp bspÞ�2ðp̂� n̂Þ;

(54)

after normal ordering the bby term and dropping the
infinite constant. In this form, Eðn̂Þ picks out the energy
of hadronic spin-1=2 Dirac fermions in direction n̂.

B. Defining the thrust axis

The factorization proof in Sec. II makes use of an
operator t̂, which gives the thrust axis tðXÞ when acting
on a final state X. We begin by illustrating one explicit
construction of t̂, which we can use in full QCD. Then, in

SCET we argue that we can eliminate the use of the
operator t̂ entirely by identifying the thrust axis with the
jet direction n in the two-jet current; an identification that
is valid up to subleading power corrections in the event
shapes we consider here.

1. Thrust axis in QCD

The thrust axis is the axis that is picked out by the
maximum operation in the definition of thrust

T ¼ 1

Q
max

t

X
i

jpi � tj: (55)

Each choice of axis t divides space into two hemispheres
A, B, so that the sum in Eq. (55) splits into two correspond-
ing pieces,

T ¼ 1

Q
max

t
ðpA � pBÞ � t; (56)

where pA;B are the total three momentum in hemisphere A,
B. By momentum conservation pA ¼ �pB, so

T ¼ max
t

2pA � t
Q

; (57)

which is maximized by choosing

t ¼ pA
jpAj ; (58)

the unit vector in the direction of the total three momentum
in hemisphere A. Thrust then simplifies to

T ¼ max
A

2jpAj
Q

: (59)

Thus, to find the thrust, we need simply find the hemi-
sphere with the largest total three-momentum, and the
direction of this three-momentum is the thrust axis. To
construct the operator which gives this axis, define the
four-vector of momentum flow operators

P �ðn̂Þ � ðEðn̂Þ;Pðn̂ÞÞ ¼ lim
R!1R

2
Z 1

0
dtn̂iT�iðt; Rn̂Þ;

(60)

extending the definition of the energy flow operator Eðn̂Þ.
Then the thrust axis operator is

t̂ ¼ N ½max
A

Z
A
d�Pðn̂Þ�; (61)

where the quantity maximized by the max operator is the
length of its three-vector argument, the integral is over the
hemisphere A, and the operator N normalizes three-
vectors N ðvÞ ¼ v=jvj. This construction manifests that
the thrust axis of an event is just a function of particles’
three-momenta and can be written in terms of the energy-
momentum tensor in similar manner to the event shapes
themselves.
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2. Thrust axis in SCET

In SCET, we can replace t̂with the value tL of a ‘‘label’’
thrust axis whose determination is very simple. Namely, tL
is determined by the momentum labels in the two-jet
operator On1n2 and returns the thrust axis tLð~p1; ~p2Þ deter-
mined by these label momenta. The axis tL thus depends
not on the final state X but only on the operator On1n2 . For

back-to-back jets, this label thrust axis is simply in the
direction of the vector n in the operator On �n. In this
section, we argue that identifying this label thrust axis
with the true thrust axis is valid up to power corrections
that are subleading in the SCET expansion parameter � for
angularities with a < 1. For a � 1 these corrections be-
come leading order, and the thrust axis cannot be deter-
mined from label momenta alone.

The true thrust axis t is that which maximizes the sum

T ¼ 1

Q

X
i

jt � pij; (62)

where pi are the full three momenta of all the particles in
the event. The label thrust axis tL is defined to maximize

TL ¼ 1

Q

X
i

jtL � ~pij; (63)

where ~pi are the label momenta of all the particles in the
event. The terms in Eq. (63) corresponding to each of the
two jets may be grouped together, so that the individual
label momenta in each group sum up to equal the total label
momentum of each jet. This total label momentum is given
by the label on the corresponding collinear field in the
operator On1n2 , so tL depends not on the final state but

only on this operator. In SCET, then, each of the operators
ên, ê �n, êus in Eq. (23) depends on this axis tL, which in turn
is completely determined by the choice of operator On1n2 .

As we will show, the error induced in the event shape
distribution by approximating the true thrust axis t by the
label thrust axis tL will be a subleading correction in the
SCET expansion parameter �. The only condition is that
the event shape in question sufficiently suppresses the
contribution of collinear particles close to the thrust axis,
as is the case for angularity distributions with a < 1. To
prove this, we will show that the two thrust axes are related
by transformations of the light-cone vectors ni, which
leave the effective theory Lagrangian invariant, a property
known as reparametrization invariance (RPI) [45]. They
induce variations of the operators On �n and ê appearing in
d�=de in Eq. (19) only at subleading order in �.

The true and label thrust axes differ by a quantity �t,
where t ¼ tL þ �t. The expression Eq. (62) that must be
maximized to determine the true t is

1

Q

X
i

jt � ð~pi þ kiÞj; (64)

where we expanded the momentum pi into its label and

residual parts (for soft particles ~pi ¼ 0). This expression is
identical, through terms of order �, to the expression that
must be maximized to determine the label thrust axis tL,
Eq. (63). Thus, t ¼ tL through order �, and we conclude
that �t is of order �2. Furthermore, since t and tL are both
unit vectors, we have

1 ¼ jtj2 ¼ jtL þ �tj2 ¼ jtLj2 þ 2tL � �tþ j�tj2
¼ 1þ 2tL � �tþOð�4Þ: (65)

Thus, tL � �t ¼ 0þOð�4Þ; that is, �t is orthogonal to tL
up to terms of order �4. For a two-jet operator On �n, the
label thrust axis tL is just n, and �t is almost purely
transverse to n: �t ¼ �t? þOð�4Þ.
Because of RPI, each of the collinear sectors in SCET is

invariant under changes in the light-cone vectors ni and �ni
that leave the conditions n2i ¼ �n2i ¼ 0 and ni � �ni ¼ 2 un-
changed. Here, we are considering an arbitrary number of
collinear sectors each labeled by i, and associated with a
corresponding light-cone direction ni, where n

�
i ¼ ð1;niÞ,

�n�i ¼ ð1;�niÞ with n2
i ¼ 1. Note that for only two label

directions, momentum conservation fixes n�1 ¼ �n�2 � n�

and �n
�
1 ¼ n

�
2 � �n�; however, for the analysis below we

will continue to distinguish i ¼ 1, 2 until the very end.
Under RPI type-I and type-II transformations [45] in the

i-th collinear sector the four-vectors ni, �ni are shifted by
transverse pieces �?

i , "
?
i ,

ðIÞni ! ni þ �?
i ðIIÞ �ni ! �ni þ "?i ; (66)

where �?
i is allowed to be Oð�Þ or smaller, and "?i is

allowed to be Oð1Þ or smaller. Below, we will choose both
�?
i , "

?
i to be only Oð�2Þ. Under these transformations

label momenta ~p� ¼ �ni � ~pn�=2þ ~p
�
? in the i-th sector

transform as

ðIÞ~p� ! ~p0� ¼ ~p� � 1
2�

?
i � ~p? �n�i (67a)

ðIIÞ~p� ! ~p0� ¼ ~p� � 1
2"

?
i � ~p?n�i : (67b)

Since the label thrust axis tL depends on label momenta
in each collinear sector, tL also transforms under repara-
meterizations of ni, �ni in any sector: tL ! tL

0 ¼
tL þ �tiL. Thus, we can bring tL to coincide with the
full thrust axis t by performing a suitable set of RPI trans-
formations on ni, �ni. For the case of two jets, we will use an
RPI type-I and a type-II transformation of each of n1 and
n2 to bring tL to equal t. To find the correct transforma-
tions, we require that the full thrust axis t maximize the
sum in Eq. (63) after the label momenta are transformed as
in Eq. (67). After these transformations, the sum takes the
form
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X
j

jx � ~p0
jj ¼

X
j21

��������x �
�
~pj � 1

2
ð�?

1 � ~p?
j Þn1

þ 1

2
ð"?2 � ~p?

j Þn1

���������
þ X

j22

��������x �
�
~pj � 1

2
ð�?

2 � ~p?
j Þn2

þ 1

2
ð"?2 � ~p?

j Þn2

���������; (68)

where the sum is divided into the n1 and n2 sectors, and x is
the variable vector that must be chosen to maximize the
sum. Let us use that n1 ¼ �n2 � n, and consider RPI
transformations such that �?

1 ¼ ��?
2 � �? and "?2 ¼

�"?2 � "?. Then we can write Eq. (68) as

X
j

��������
�
x� 1

2
ðx � nÞð�? � "?Þ

�
� ~pj

��������: (69)

But this is the same form as the sum giving the label thrust
axis in Eq. (63), so we know that Eq. (69) is maximized by
choosing x such that the vector in brackets is just tL itself,

x � 1
2ðx � nÞð�? � "?Þ ¼ tL: (70)

Using our choice of power counting �?, "? 
Oð�2Þ, we
can solve for x order by order in �. The solution starts as
x ¼ tL þOð�2Þ, and we can use tL � n ¼ 1 to obtain

x ¼ tL þ 1
2ð�? � "?Þ: (71)

This new solution for the label thrust axis coincides with
the true thrust axis if we choose

�? ¼ �"? ¼ �t: (72)

In terms of four vectors, Eq. (72) corresponds to the set of
RPI transformations

n1 ! ð1;n1 þ �tÞ; �n1 ! ð1;�n1 � �tÞ
n2 ! ð1;n2 � �tÞ; �n2 ! ð1;�n2 þ �tÞ: (73)

The label thrust axis corresponding to the operatorOn1n2 is

thereby brought to coincide with the true thrust axis. These
leave the SCET Lagrangian invariant. The operator On �n is
invariant up to corrections subleading in �.

Finally, we need to estimate the size of the variation in
the operator ê given in Eq. (13), but with the full thrust axis
replaced by the label thrust axis, which is just the direction
n appearing in On �n. Consider again the example of angu-

larities e ¼ �a, for which fað�Þ ¼ e�j�jð1�aÞ, following
[8]. As in Eq. (20), the contribution of an individual
particle to �aðXÞ is

jpTj
Q

e�j�jð1�aÞ ¼ jpTj
Q

min

�
E� pk
E	 pk

�ð1�aÞ=2
: (74)

We recall from Sec. II D that for usoft particles pT 
Q�2

and the ratio in parentheses R
 1, while for collinear
particles pT 
Q� and R
 �2. The shift in the thrust
axis identified above induces for usoft particles �pT 

Q�4 and �R
 �2, while for collinear particles we find
�pT 
Q�2 and �R
 �3. This changes the total contribu-
tion of a usoft particle to eðXÞ by �es 
 �4, and of a
collinear particle by �ec 
 �3�a.
As long as a < 1, �ec is smaller than �2. If, as in this

paper, we are interested in calculating the event shape
accurately only to order �2, then we may neglect the shifts
�es and �ec. Beginning with a ¼ 1, for which �1 ¼ B
(broadening), the power corrections induced by the shift
in the thrust axis cannot be neglected, since �ec 
 �3�a
becomes as large as the terms we considered in this paper.
The necessity of accounting for this ‘‘recoil’’ of the thrust
axis against usoft-scale momenta was demonstrated in full
QCD for B in [37] and for �a with a � 1 in [8].

IV. CONCLUSIONS

We have proved the factorization of two-jet event shape
distributions in soft collinear effective theory without as-
suming the factorization of hadronic final states into sepa-
rate colored collinear and soft sectors as in previous
discussions. To do this we expressed the weight of each
final state �ðe� eðXÞÞ in the differential cross section
d�=de as an operator built out of energy flow and thrust
axis operators acting on the final state, allowing us to sum
over a complete set of hadronic states before factorizing
soft and collinear matrix elements. These results are valid
up to Oð�Þ corrections to the decoupling of usoft and
collinear degrees of freedom in SCET,Oð1=RÞ corrections
to the relation between the energy flow operator and
energy-momentum tensor, and Oð�bÞ corrections due to
the difference between the thrust axis and the collinear jet
direction n, where the power b depends on the event shape
in question. Similar methods should also be useful in
studying the factorization of other jet observables in both
leptonic and hadronic collisions.
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