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We study two effective models for QCD, the Nambu-Jona-Lasinio -model and the linear sigma model

extended by including a Polyakov loop potential, which is fitted to reproduce the pure gauge theory

thermodynamics, and a coupling between the chiral fields and the Polyakov loop. Thus the resulting

models have as relevant degrees of freedom the Polyakov loop and chiral fields. By comparing the

extended models with the bare chiral models we can conclude that the addition of the Polyakov loop is

necessary in order to obtain both qualitative and quantitative agreement with known results at finite

temperatures. These results are extended to finite net-quark densities, several thermodynamical quantities

are investigated in detail, and possible applications and consequences for relativistic heavy ion collision

phenomenology are discussed.
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I. INTRODUCTION

Phase transitions in strongly interacting matter have
been a subject of intense theoretical, computational and
experimental research over the past decades. Apart from
the values of quark masses and numbers of colors and
flavors relevant for the physical QCD, a lot of effort has
been devoted to understand different limits of the theory as
these parameter values are varied. Several qualitative and
in some cases quantitative aspects have been revealed; for
example, we know that in the absence of quarks the SUðNÞ
Yang-Mills theory has a global ZN symmetry [1], and there
exists a gauge-invariant operator charged under ZN, the
Polyakov loop, which can be identified as the order pa-
rameter of the theory. Hence, the deconfinement phase
transition can be characterized using the universality argu-
ments [2]. Numerical studies have confirmed this picture as
it has been found that the deconfinement phase transition is
second order when the number of colors is Nc ¼ 2 [3], first
order for Nc ¼ 3 [4] (although weakly [5]), and presum-
ably first order for Nc � 4 [6].

Adding quarks to the theory changes the picture consid-
erably. For light fermions in the fundamental and pseudor-
eal representations for Nc ¼ 3 and Nc ¼ 2, respectively,
the corresponding Z3 or Z2 the center of the gauge group is
not anymore a good symmetry. However, the exact chiral
symmetry of massless fermions is only little perturbed by
small masses and the order parameter is the chiral conden-
sate which characterizes the chiral phase transition. For
Nc ¼ 3 and two massless quark flavors at finite tempera-
ture and zero net baryon density, the chiral phase transition
is in the same universality class as the three dimensional
Oð4Þ spin model [7], becoming a smooth crossover as

small quark masses are accounted for [8]. For Nc ¼ 2 the
relevant universality class is that of Oð6Þ [9].
In addition to finite temperature, one can also study the

response of the QCD vacuum by considering finite net
quark densities. At finite chemical potential one needs to
take into account the pairing phenomena and supercon-
ducting phases result. However, a systematic approach
based on the full QCD dynamics can be applied only in
asymptotically high densities [10] where asymptotic free-
dom simplifies the analysis. To determine the phases at
intermediate densities relevant for phenomenological ap-
plications one needs to resort to effective models. Within
the model studies taking into account the patterns of chiral
symmetry breaking, one usually hopes to gain insight on
the qualitative aspects of the phase diagram. Studies within
different models have revealed that in cold dense matter, a
first order phase transition to a superconducting phase
characterized by nonzero diquark condensate takes place.
Contrasting this with the finite temperature crossover tran-
sition at� ¼ 0 one concludes that in the ðT;�Þ-plane there
must exist a critical endpoint. A central paradigm for the
first-principle studies of the QCD equation of state [11] in
the ðT;�Þ-plane is therefore the existence and location of
this critical point as well as its other properties. The lattice
determinations using different techniques have provided
estimates for the location of the critical point. For two
flavors see [12,13]. The existence of the critical point in
three flavor QCD is currently under debate, [14,15], and in
any case one should be careful in drawing any conclusions
from the Nf ¼ 2 results to the physical Nf ¼ 2þ 1 case.

The perturbative calculations for cold quark matter at
asymptotically large chemical potential or for hot quark
gluon gas at high temperature cannot be directly applied to
the phenomenologically relevant densities and tempera-
tures. At finite temperature the perturbation expansion is
known to converge poorly and reliable results can be
obtained only at near-zero chemical potential well above
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the suitably defined transition temperature T � 3Tc, where
the picture of weakly interacting dressed quark and gluon
quasiparticles obviously becomes correct. To address
quantitative phenomenology for all temperatures at zero
net quark density, a numerical ‘‘recipe’’ for interpolating
smoothly between thermodynamics described by perturba-
tion theory at high temperatures and by a resonance gas at
low temperatures was proposed in [16], taking also into
account the contribution of quarks with finite masses. This
approach provides one with a working definition of
pðT; fmigÞ; i ¼ 1; . . . ; Nf and of the resulting thermody-

namics, but it does not yield insight to the nature of the
underlying effective degrees of freedom and mechanisms
responsible for the dynamics between the thermally
dressed hot quarks and gluons and low temperature had-
ronic resonances. Lattice results at finite baryochemical
potential have been compared with hadron resonance gas
calculations e.g. in [17].

In this work we concentrate on the case of QCD with
two light quark flavors and study a particular effective
model description of it. This effective model is based on
the following picture: As a function of the quark mass there
exist two separate dynamical sectors. For massless quarks
there is spontaneous breaking of exact chiral symmetry,
while if the quarks are very heavy, and decouple from the
dynamics, the center symmetry and its spontaneous break-
ing becomes relevant. In real QCD neither of these two is
exact. Lattice calculations indicate that for quarks with
finite masses, the transition is a smooth crossover as is
also expected on the basis of universality arguments, and
the transition can be located by measuring the expectation
value of the chiral condensate. However, even if the dis-
crete symmetry associated with deconfinement is broken
by the presence of light quarks, one can still study the
temperature dependence of the Polyakov loop on the lat-
tice. This has been done, and one observes the Polyakov
loop to rise from zero to one as temperature is increased
from low to high values. Because of this behavior one also
speaks of deconfining phase transition [18]. Moreover, the
lattice results [18] indicate that at zero chemical potential
chiral symmetry breaking and confinement (i.e. a decrease
of the Polyakov loop) occur at the same critical tempera-
ture. Several attempts to explain these behaviors exist [19].
Relying only on the exact and approximate symmetries of
the system and general effective field theory methods a
qualitative solution to this puzzle was established in [20]
based on the idea of transfer of information from the order
parameters to noncritical fields. As a function of quark
mass, from light to heavy quarks, this mechanism allows
one to treat either chiral symmetry or center symmetry as
the relevant one driving the transition and through inter-
actions allowing also the other would-be-order parameter
field to behave in a similar way. The framework proposed
in [20] also explains the independence of deconfinement
and chiral symmetry restoration in the case of adjoint

quarks which do not break the center symmetry. The
ðT;�Þ phase diagram for adjoint two color QCD was
considered in detail in [21].
This behavior has been reanalyzed and confirmed in

numerical studies of the NJL model and linear sigma
model coupled to the Polyakov loop via quarks which are
integrated out in the random phase approximation [22–25].
In this work we study the coupling of Polyakov loop and
chiral degrees of freedom described either with the linear
sigma model (LSM) or the Nambu-Jona-Lasinio (NJL)
model, and compare the resulting thermodynamics to that
of two-flavor QCD. Inclusion of the Polyakov loop makes
the result qualitatively and, to some extent, even quantita-
tively insensitive to the underlying model which is used to
describe the chiral degrees of freedom at finite temperature
and small values of quark chemical potential. The impor-
tance of the Polyakov loop is not surprising, since the
gluonic degrees of freedom are known to be important
for the bulk thermodynamics of QCD matter when the
net baryon densities are small. We consider also finite
densities, and show that quantitative discrepancy between
the two models increases as larger values of chemical
potential are considered. To display this concretely, we
determine the location of the critical point in the
ðT;�Þ-plane and show how the two models lead to very
different results.
The effective models studied here may provide input to

the phenomenology of relativistic heavy ion collisions.
Recently, with the advent of RHIC data, it has been estab-
lished that the spacetime evolution of the hot dense QCD
matter is well described by nearly ideal hydrodynamics.
This means, in particular, that the system evolves along the
lines of constant S=N. Hence, we study, in particular, the
behavior of isentropic lines in the ðT;�Þ phase diagram in
these two models. Whether these have the tendency to
focus on the critical point is important for the possible
experimental discovery of the critical point in heavy ion
collisions. We find that in these models such strong focus-
ing behavior does not exist.
We introduce the models in some detail in Sec. II, and

carry out an analysis of the thermodynamics in Sec. III.
Comparing these models at zero chemical potential, we
find that they imply very similar results. We also compare
with the results of the resummed perturbation theory [16].
At finite chemical potential we find that the quantitative
results of the models show large deviations. Especially the
location of the QCD critical point cannot be estimated
reliably within these models. We end with concluding
remarks and discussion of further prospects in Sec. IV.

II. MODELS

The chiral dynamics of two-flavor QCD is often formu-
lated in terms of a linear or nonlinear sigma model, which
treats the Goldstone bosons as the relevant degrees of
freedom. Of these two possibilities, the linear representa-
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tion is more useful to study the finite temperatures and
densities in order to find the phase diagrams of the theory,
since also the order parameter is included explicitly. Yet
another possibility is to treat the fundamental fermion
fields as basic degrees of freedom, the mesons appearing
as the bound states of the theory, and this leads to NJL
models. The effects of small quark masses are taken into
account in the effective model Lagrangians by terms ex-
plicitly breaking chiral symmetry. These terms, appearing
with small coefficients, render the chiral symmetry of the
theory only approximate. Both of the above mentioned
effective models for the phenomenology of two-flavor
QCD can be parametrized to describe equally well the
vacuum structure at T ¼ � ¼ 0.

Finite temperature dynamics of SUðNÞ pure gauge the-
ory on the other hand is represented by ZN symmetric
effective theory for which the order parameter is the
Polykov loop. Polyakov loop can be constructed and
studied also in a theory with quarks even though the
presence of fermions in the fundamental representation
of the gauge group breaks the center symmetry explicitly
due to the antiperiodic boundary conditions of the fermion
fields at finite temperature.

Therefore, in real QCD neither chiral symmetry or the
center symmetry is exact, and we know that the finite
temperature phase transition at � ¼ 0 is a smooth cross-
over. However, one may ask which of the two symmetries
is more accurate and would act as a ‘‘driving force’’ for the
transition. Since chiral symmetry breaking is proportional
tomq, and ZN breaking is proportional to 1=mq, in the case

of two light flavors, it seems natural to consider the system
to have an approximate chiral symmetry. This expectation
is strengthened also by looking at the spectrum of the
bound states, as the pions clearly show the approximate
Goldstone behavior. Based on these motivations, in [20]
the situation was considered taking the mq ¼ 0 limit in

which the chiral symmetry becomes exact, while the ZN

symmetry is completely broken. Then the general prin-
ciples of effective theory dictate the following form for the
potential

L ½�;�a;�� ¼ L0½�;�a� þL0½�� þLint½�;�a;��;
(1)

where L0½�;�a� is the chiral Lagrangian which has exact
chiral symmetry, L0½�� is the potential for the Polyakov
loop and contains both ZN symmetric and symmetry vio-
lating terms and finally Lint is the part containing the
interactions between the chiral fields and the Polyakov
loop. As shown in [20], the most important term for the
dynamics is ��ð�2 þ �2Þ, which leads to transfer of
information between the order parameter and a nonorder
parameter field. When quark mass is increased away from
the chiral limit, the transition becomes a smooth crossover,
but the coincidence of the chiral symemtry restoration and

deconfinement is expected as long as chiral symmetry
remains good approximation.
On the other hand one can consider infinitely heavy

quarks, i.e. the pure gauge limit. Then the mechanism
described above works similarly, but the roles of chiral
symmetry and center symmetry are switched and the de-
confinement order parameter drives the change of the
chiral condensate. Again the two phenomena will coincide.
Decreasing the quark mass from the pure gauge limit, the
first order deconfinement line is expected to terminate at a
critical point at some value of quark mass and for smaller
values become a smooth crossover. Since lattice investiga-
tions find coincidence of critical temperatures related to
chiral symmetry restoration and deconfinement for the
accessible quark masses, it is reasonable to expect that in
the ðmq; TÞ plane there is a single phase border interpolat-
ing between these well-known small and large quark mass
behaviors. The results of [20] can be applied to understand
the behaviors near either small or large quark mass critical
points. For intermediate values, more specific model stud-
ies or first principle lattice calculations are needed.
A specific model framework claimed applicable for all

values of mq was proposed in [22,23]. In the present work

we study this framework in detail. We consider, side-by-
side, both the NJL model and the linear sigma model
(LSM) for two mass-degenerate quark flavors coupled to
the Polyakov loop. The important feature underlying the
dynamics in the approaches [22,23,25] is the assumption of
independent deconfinement and chiral symmetry restora-
tion described by the order parameters � and �, respec-
tively, and having independent effective potentials,U� and

U�, connected by interactions between the two. The cen-
tral further assumption, then, is that the proposed interac-
tion term yields the correct form for the resulting effective
potential at all values of the quark mass, i.e. interpolates
correctly between the limits of exact center symmetry and
exact chiral symmetry hence describing also correctly the
behaviors at the point ðmphys; TÞ, corresponding to the real

two-flavor QCD.We aim to test this underlying assumption
in detail by cartographing the thermodynamics of these
models over the ðT;�Þ plane and study in quantitative
detail these two models against each other as well as
against the numerical knowledge of real two-flavor QCD
at zero net quark density. Let us start by describing the
details of the models we use. To derive the grand canonical
potential, we consider the following Lagrangian

L ¼ Lchiral þU�; (2)

where we have separated the contributions of chiral de-
grees of freedom and the Polyakov loop. The partLchiral is
for the LSM and NJL models, respectively,

Lchiral ¼ �qði��ð@� � igsA0��0Þ � gð�þ i�5 ~� � ~�ÞÞq

� �2

4
ð�2 þ �2 � v2Þ2 þH�; LSM (3)
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Lchiral ¼ �qði��ð@� � igsA0��0Þ �m0Þq� ðM�m0Þ2
2G

;

NJL (4)

where q ¼ ðu; dÞ is the light quark field, m0 the bare quark
mass (m0 ¼ mu ¼ md, i.e. exact isospin is assumed), �
and ~�T ¼ ð�1; �2; �3Þ constitute a chiral field �T ¼
ð�; ~�Þ and finally M ¼ m0 �Gh �qqi. We work under the
mean field approximation, hence the kinetic term of the
chiral field is neglected in (3) and the four-fermion inter-
action of the NJL-model Lagrangian has been linearized in
the condensate h �qqi in (4). The symmetry breaking field H
in (3) is H ¼ f�m

2
�, where f� ¼ 0:093 GeV and m� ¼

0:138 GeV. The coupling �2 is determined by the tree level
mass m2

� ¼ 2�2f2� þm2
�, which is set to be 0.60 GeV. In

vacuum the expectation values of the fields are� ¼ f� and
� ¼ 0. Requiring that the constituent mass in vacuum is
about 1=3 of the nucleon mass yields g ¼ 3:3. In the NJL
model the bare quark mass m0 is taken to be 5.5 MeV and
the coupling G ¼ 10:08 GeV�2. For a summary of the
parameter values see Table I.

The Polyakov loop is included through the mean field
potential

Uð�;��; TÞ=T4 ¼ � b2ðTÞ
2

j�j2 � b3
6
ð�3 þ��3Þ

þ b4
4
ðj�j2Þ2; (5)

where

b2ðTÞ ¼ a0 þ a1
T0

T
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
; (6)

and the constants ai, bi are fixed to reproduce the pure
gauge theory thermodynamics with the phase transition at
T0 ¼ 270 MeV. We adopt the values determined in [23]
and shown for completeness in Table I. Here � is the
gauge-invariant Polyakov loop in the fundamental
representation.

Since the Polyakov loop microscopically contains only
contribution from the longitudinal gluons while also trans-
verse gluons contribute to the QCD pressure, one could
consider more general Wilson lines and also include other
loop degrees of freedom, say, adjoint or the sextet. Here we

choose to start with the mean field potential of the funda-
mental loop parametrized to describe the pure gauge ther-
modynamics and study how the interactions with the chiral
degrees of freedom affect it and compare against full QCD
thermodynamics. The extensions towards other possible
degrees of freedom we leave for future work. Recently
there has been interesting developents in the construction
of effective theory for the pure gauge thermodynamics, e.g.
[26,27], which could be in principle coupled to chiral fields
to obtain an effective theory for QCD. Here we choose to
remain with the mean field potential (5) which seems to
capture the pure gauge thermodynamics sufficiently well
for our purposes.
Then, for a spatially uniform system in thermodynam-

ical equilibrium at temperature T and quark chemical
potential � the partition function is

Z ¼ Tr exp½�ðH ��N Þ�

¼
Z

D �qDq exp

�Z
x
ðLþ� �q�0qÞ

�
: (7)

The integration over the spacetime in the action is over the
compact Euclidean time direction and over the spatial

three-volume V,
R
x ¼

R1=T
0 d�

R
V d

3x. Since the action is

quadratic in quark fields, the functional integral is easily
performed with standard methods, leading to the grand
canonical potential

� ¼ �T lnZ
V

¼ Uchiral þU� þ��qq; (8)

where

Uchiral ¼ �2

4
ð�2 þ �2 � v2Þ2 �H�; LSM

Uchiral ¼ ðm0 �MÞ2
2G

; NJL

(9)

for the chiral contribution and U� ¼ Uð�;��; TÞ. The

Wilson line is now L ¼ expð�A0=TÞ, and therefore the
interactions connecting the deconfinement and chiral sec-
tors become

��qq ¼ �2NfT
Z d3p

ð2�Þ3 ðTrc ln½1þ Le�ðE��Þ=T�

þ Trc ln½1þ Lye�ðEþ�Þ=T�Þ

� 6Nf

Z d3p

ð2�Þ3 E	ð�
2 � j ~pj2Þ; (10)

where the trace over color remains, E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

p
(and

further M ¼ g� in LSM). In LSM we neglect the vacuum
contribution term in ��qq and in the NJL model it is

controlled by the cutoff � as indicated in (10).
Performing the remaining trace, and using � ¼
TrcðLÞ=Nc gives

TABLE I. The parameters used for the effective potential.

LSM: v ¼ f� � g
0.093 GeV 4.44 3.3

NJL: m0 � G
5.5 MeV 651 MeV 10:08 ðGeVÞ�2

Polyakov: a0 a1 a2
6.75 �1:95 2.625

a3 b3 b4
�7:44 0.75 7.5
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ðTrc ln½1þ Le�ðE��Þ=T� þ Trc ln½1þ Lye�ðEþ�Þ=T�Þ
¼ lnð1þ 3ð�þ��e�ðE��Þ=TÞe�ðE��Þ=T þ e�3ðE��Þ=TÞ

þ lnð1þ 3ð�� þ�e�ðEþ�Þ=TÞe�ðEþ�Þ=T þ e�3ðEþ�Þ=TÞ:
(11)

Note that in principle the chemical potential affects the
Polyakov loop potential directly, see [25], but we will not
consider these effects. Having determined the grand ca-
nonical potential both for the Polyakov loop linear sigma
model (PLSM) and Polykov loop NJL model (PNJL), the
thermodynamics is now determined by solving the equa-
tions of motion for the mean fields,

@�

@�
¼ 0;

@�

@�
¼ 0;

@�

@�� ¼ 0; (12)

and then the pressure is given by evaluating the potential
on the minimum: p ¼ ��ðT;�Þ. We now proceed to
solve numerically the thermodynamics of PLSM and
PNJL models and compare them with each other as well
as against the numerical results on two-flavor QCD at zero
chemical potential.

III. NUMERICAL RESULTS

A. Thermodynamics at � ¼ 0, comparison to QCD

Let us first consider the models at zero chemical poten-
tial but finite temperature. When finite temperature is
considered, it is well known that the quantitative results
of chiral effective theories differ: While NJL model pre-
dicts chiral restoration at T � 150 MeV, the linear sigma
model leads to result T � 190 MeV [8]; allowing for finite
chemical potentials only widens the spread. Including
the Polyakov loop has important consequence as now
both of these models predict a crossover near T �
210 . . . 230 MeV within 20 MeV of each other, as we
show in Fig. 1, where we plot the temperature derivatives
of the condensates. The location of the peak defines the
critical temperature around which the crossover takes
place.

Then consider the pressure. The coupled models, PNJL
and PLSM, have already been shown to agree with lattice
data at and above Tc fairly well [23,25] with some fine-
tuning. Namely, lattice data implies a critical temperature
Tc � 175 MeV, a value �20% lower than we obtain. In
[23] it has been noted that better agreement can be
achieved in the PNJL model by detuning the Polyakov
loop potential away from the pure gauge thermodynamics
through shifting of the parameter T0 down to 190 MeV.
Since the lattice data has still some uncertainty to it due to
the extrapolation to the continuum limit, we choose not to
aim for perfect fits and rather plot the thermodynamical
quantities as a function of T=Tc when comparing different
models. Actually, the value of Tc should be determined by
allowing for additional degrees of freedom below Tc which
are not considered in these effective models. We have not
included the finite temperature contributions of the pions
and more massive resonances, since we do not have a
dynamical way to decouple their contribution at high tem-
peratures. However, our aim is to study the interplay of
chiral fields and Polyakov loop and the resulting thermo-
dynamics for the temperature range Tc < T < 3Tc for
which the coupled models under consideration are ex-
pected work well.
Here, to compare with QCD, we use the numerical result

of [16] in which the high-temperature part of the curve is
based on the fullOðg6 logðgÞÞ calculation in the pure gauge
theory, supplemented with a more phenomenological rec-
ipe to include the contribution of Nf massive quarks at

order Oðg2Þ. At low temperatures this result is matched
smoothly on the resonance gas result from [28]. This
QCDþ resonance gas result is shown in the left panel of
Fig. 2 atNf ¼ 2 appropriate for this work [29]. Also shown

are our results for the pressure obtained from the coupled
models PLSM and PNJL as a function of t ¼ T=Tc. For
comparison we show the corresponding results from the
LSM and NJL models without the Polyakov loop. Observe
how the inclusion of the Polyakov loop increases the result
for the absolute value of the pressure by roughly 80%. The
addition of the Polyakov loop is therefore necessary in
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FIG. 1 (color online). Left panel: Temperature derivatives of the mean fields �ðTÞ and �ðTÞ at � ¼ 0 in the PLSM model. Right
panel: Same observables as in the left panel but in the PNJL model.
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order to quantitatively obtain the required rise in the pres-
sure towards the Stefan–Boltzmann limit of QCD corre-
sponding to the horizontal dashed line in the figure. The
difference between the chiral model pressure and the addi-
tional increase due to the Polyakov loop can be understood
by looking at the contribution of bosons and fermions in
the ideal gas result which for zero chemical potentials is

pSB ¼ �2T4

45

�
ðN2

c � 1Þ þ 7NcNf

4

�
:

Setting Nc ¼ 3 and Nf ¼ 2, the ratio of the bosonic and

fermionic contributions is gB=gF ¼ 16=21 � 0:76.
Both PNJL and PLSM models give a good overall

description of QCD pressure above Tc. They lead to
slightly smaller deviation from the ideal gas limit at T �
4Tc than actually observed, but quantitatively this differ-
ence is small. Let us then turn to the analysis of more
differential observables like the entropy density sðTÞ ¼
p0ðTÞ, the energy density 
ðTÞ ¼ TsðTÞ � pðTÞ, trace of
the energy momentum tensor 	

�
�ðTÞ ¼ 
ðTÞ � 3pðTÞ and

the heat capacity cðTÞ ¼ 
0ðTÞ ¼ Tp00ðTÞ. These serve as
important probes which, together with lattice data, allow us
to probe the validity of different models and the knowledge
of the temperature dependence of these quantities is im-
portant for phenomenology of relativistic heavy ion colli-
sions as well as for cosmology.

Let us first consider the trace of the energy momentum
tensor. We show the result of different models in the right
panel of Fig. 2. Notice how also here the inclusion of the
Polyakov loop is imperative to match lattice data in com-
parison to LSM and NJL models: First, the addition of the
Polyakov loop removes the qualitatively different struc-
tures in LSM and NJL model around Tc and in the coupled
models a smooth universal curve results. Second, the in-
clusion of the Polyakov loop is important also for obtaining
agreement with the asymptotic behavior above Tc. In
fact both LSM and NJL models alone predict that at
high temperatures 	

�
�ðTÞ � T4 ¼ const contrary to the

observation.

The information contained in the trace anomaly can also
be represented in terms of the ‘‘equation-of-state parame-
ter’’ wðTÞ ¼ pðTÞ=
ðTÞ which we show in Fig. 3. Both
PLSM and PNJL models give again very similar results,
significantly lower than the pQCD result also shown in the
figure. The effective model results are similar to recent
lattice data [30]. There are two clear features deserving
further numerical and theoretical studies: First, the drop
near Tc leads to w� 0:1 in PNJL and PLSM models as
well as in the lattice data while the perturbation theory
result is larger, w� 0:15. Second, below Tc the pQCD
model leads to a larger rise in wðTÞ than the lattice data
and the PNJL and PLSM models. These features are likely
to be affected by the resonance gas dynamics which is now
neglected in the effective models but which is present in
the pQCDþ resonance gas -model.
The information contained in the derivatives defined

above can be presented and explored in various ways. We
choose to follow the presentation in [16], since that allows
also a quantitative comparison against the results from the
resummed perturbation theory. In Fig. 4 we plot the effec-

FIG. 2 (color online). Left panel: Pressure from the models with and without the Polyakov loop at � ¼ 0. Also shown is the curve
interpolating between the resonance gas and resummed perturbation theory results [16] as well as the constant corresponding to the
Stefan–Boltzmann limit of two-flavor QCD. Right panel: Similar figure for the trace anomaly ð
� 3PÞ=T4.

FIG. 3 (color online). The equation-of-state parameter wðTÞ ¼
pðTÞ=
ðTÞ.
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tive numbers of degrees of freedom defined by

geff 	 
ðTÞ
½�2T4

30 � ; heff 	 sðTÞ
½2�2T3

45 � ; ieff 	 cðTÞ
½2�2T3

15 � :

(13)

Looking at the effective degrees of freedom, we again
see that both PLSM and PNJL model results are consistent
with each other and with the corresponding QCDþ
resonance gas results. Only ieff shows some qualitative
differences in how these two models respond to finite
temperature as the peak at Tc is sharper in PLSM model
than in PNJL model. This peak arises since ieff is propor-
tional to heat capacity which diverges in a second order
phase transition. Another issue present in the temperature
dependence of ieff is a small second peak visible very
weakly in PNJL model but more strongly in PLSM model.
This is due to the remnant of the deconfinement transition
described by the temperature dependence of the parameters
in the Polyakov loop potential. Note how it is vital to look
at more differential observables, second derivatives in this
case, to see this effect. More precise lattice data is needed
to determine whether the central assumption of these mod-
els about two independent phase transitions connected by
interactions is indeed correct.

B. Thermodynamics at � � 0: Location of the critical
point?

Let us then consider the consequences of nonzero net-
quark density by allowing for a finite chemical potential.
As a starting point we will use the grand canonical poten-
tial derived in Sec. II, and neglect a possible explicit
�-dependence of the Polyakov loop potential which has
been discussed e.g. in Ref. [25].
First we study whether the coincidence of deconfine-

ment and chiral symmetry restoration holds also at finite
chemical potential. In Fig. 5 we show the derivatives of the
condensates as a function of temperature at� ¼ 100 MeV
and in Fig. 6 at � ¼ 250 MeV. We observe a coincident
peaks in the derivatives of the condensates in both of these
effective models. Note that at finite chemical potential �
and �� are no more equal and note also that at large
chemical potentials already at first derivatives of the con-
densates a double peak structure arises. The latter is due to
the fact that as chemical potential is increased, the critical
temperature in the chiral sector decreases as shown by the
location of the left-most peak in the figures, while the
remnant of the deconfinement transition in the Polyakov
loop potential is unaffected by the value of the chemical
potential and remains visible at temperature T �
200 MeV. Of course the meaning of the peaks in � (and

FIG. 4 (color online). Effective degrees of freedom in the PLSM, PJNL and pQCDþ resonance gas model [16]. Left panel: geffðTÞ
at � ¼ 0. Middle panel: heffðTÞ at � ¼ 0. Right panel: ieffðTÞ at � ¼ 0.

FIG. 5 (color online). Temperature derivatives of the mean fields �ðTÞ and �ðTÞ at � ¼ 100 MeV. Left panel: The PLSM model.
Right panel: The PNJL model.
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��) and their relation to deconfiment is debatable; perhaps
the system becomes deconfined at temperature related to
the second peak in �. This interpretation can be motivated
by studying the value of the Polyakov loop which is small
at temperatures near the peak in the chiral condensate and
of the order of 0.5 at higher temperatures around the second
peak. In any case, as the two distinct transitions underlying
these effective models are separated over a wider tempera-
ture range, their separate features become also more vis-
ible. Hence, this provides another way to numerically
investigate the correctness of the initial assumption of
independent deconfinement and chiral symmetry restora-
tion underlying these models.

Next, we will use the information in the temperature
dependence of the condensates to obtain ðT;�Þ-phase dia-
grams of these models. As already discussed above, in
these models the expectation value of the Polyakov loop
varies rapidly first when the chiral condensate � drops as
chiral symmetry is restored and second, at higher tempera-
ture due to the temperature dependent coefficient b2ðTÞ in
the Polyakov loop potential. Moreover, at high temperature
the temperature derivatives of the expectation values of
Polyakov loop � and its conjugate �� display noncoinci-
dent peaks. The whole situation is summarized for PLSM
in Fig. 7, where we have plotted in the ðT;�Þ-plane the
locations where the coincident peaks in the temperature
derivatives of�,�� and� as well as the second peaks in�
and �� are shown. Note that in the LSM model the double
peak structure in � remains visible also at � ¼ 0. This
double peak structure is a feature of these effective models,
and whether true in real QCD remains to be determined. In
what follows, we therefore choose to plot the phase dia-
grams showing only the location of the coincident peaks of
�,�� and� corresponding to a chiral phase transition. See
also [31]. We show the ðT;�Þ phase diagram in Fig. 8,
where two sets of curves are plotted. These two sets
correspond to the two chiral models with and without the
Polyakov loop. The solid lines correspond to the first order
transition and the dotted lines to the crossover. The lines
have been determined by finding the location of the peak in

the chiral condensate �ðTÞ at each chemical potential. The
phase at low temperature and low net-quark density is
confined and chiral symmetry is broken, while at high
temperature the chiral symmetry is restored and the system
is deconfined. The two models yield very different values
for the location of the critical point: while the PLSM gives
ðTc;�cÞ ¼ ð195; 141Þ for the position of the critical point,
the PNJL model yields (88, 329). This can be due to several
reasons, e.g. the neglect of the possible chemical potential
dependence of the Polyakov loop potential. On the other
hand, this can be due to the neglect of possible relevant
degrees of freedom. It is likely that at finite chemical
potential diquark degrees of freedom become important
and should be taken into account; see [32]. This situation
would be similar to the differences between LSM and NJL
models at finite temperature which were shown to reduce
once the Polyakov loop dynamics is accounted for.
To discover the critical point experimentally in heavy

ion collisions, it would be desirable to have a reliable
quantitative theoretical estimate of its location. As we
have explicitly seen here, various effective theory esti-

FIG. 7 (color online). Location of the peaks in the temperature
derivatives of �, � and �� over the ðT;�Þ-plane.

FIG. 6 (color online). Temperature derivatives of the mean fields �ðTÞ and �ðTÞ at � ¼ 250 MeV. Left panel: The PLSM model.
Right panel: The PNJL model.
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mates deviate a lot when finite chemical potentials are
considered. The lattice determinations using different tech-
niques also lead to very different results for the location of
the critical point. For example, for two flavors the authors
of [12] find the critical point at �B � 360 MeV while in
[13] a value �B � 180 MeV is reported. Currently the
existence of the critical point is debatable [14,15], and in
any case one should be careful in drawing any conclusions
from Nf ¼ 2 results to the physical 2þ 1 case.

With these remarks in mind, let us assume that the
critical point in the ðT;�Þ plane exists as implied by the
PNJL and PLSM models. Then, even if the exact location
of the critical point is not known, one may argue in favor of
its experimental detection if the spacetime evolution of the
strongly interacting elementary particle matter is such that
the system passes through the vicinity of the critical point
starting from almost any initial condition. The outcomes of
such focusing behavior have been recently advocated for in
[33] strongly motivated by [34]. However, the focusing

observed in [34] can be due to the particular equation of
state applied in that work and is not a general feature of
hydrodynamics approach applied successfully to describe
the RHIC data as in e.g. [35]. Given the success of ideal
fluid hydrodynamics in the description of the RHIC data, it
is likely that the system expands nearly isentropically.
Therefore, to decide whether the focusing behavior in the
models studied here should occur, we find the adiabats of
PLSM and PNJL models in the ðT;�Þ plane. The result is
shown in Figs. 9 and 10, and the conclusion for both of
these models is that no strong focusing behavior exists.
Based on these figures we conclude that for the hydro-
dynamical evolution starting from a near-zero net-quark
density, as would be the case in a centralAuþ Au collision
at RHIC, the trajectory of the system in ðT;�Þ-plane is
nonfocusing. As the closeups in the right panels of Figs. 9
and 10 show, there is no special behavior near the critical
points. This result is similar to the one obtained on the
lattice [30].
Note that from the behavior of the isentropic lines one

can deduce the location of the phase boundary exactly
where the coincident peaks in the temperature derivatives
of � and � would put it. These lines show no special
behavior when crossing the lines indicating the location
of the second peaks in the temperature derivatives of �
and ��.
Another interesting quantity is the sound speed csðTÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@
=@p

p
shown in Fig. 11 for chemical potentials near the

critical one. The stronger dependence of the location of the
minimum in csðTÞ as a function of the chemical potential in
PNJL model is due to the fact that near the critical point the
value of Tcð�Þ changes more rapidly than in the case of
PLSM model. Together with Figs. 9 and 10 we see from
here that in the hydrodynamical evolution the sound speed
is very small during the part of the evolution the system
spends near the phase transition region. At the ðT;�Þ
regions relevant for RHIC and LHC/ALICE phenomenol-
ogy, the sound speed is probably well approximated by the
� ¼ 0 result as the system evolves very close to the�� 0
axis along a nearly parallel trajectory until low tempera-
tures deep in the hadronic phase are reached and the

FIG. 8 (color online). The ðT;�Þ phase diagram. Left-most
pair of curves shows the result for the LSM and PLSM while the
second pair is for the NJL and PNJL models. The solid part of
the curve denotes a first order transition while the dashed part is
a crossover.

FIG. 9. Left panel: Constant S=N curves in the PLSM model. Right panel: A close-up on the critical point at ðTc;�cÞ ¼ ð195; 141Þ
MeV. Every second curve has been drawn with the dashed line to enhance readability.
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trajectory bends to end at the finite value �vac at zero
temperature. However, if it was possible to create systems
which would follow the trajectory bending along the phase
boundary as the ones at large chemical potential in Figs. 9
and 10, then the sound speed could stay small over larger
temperature range and this might have consequences for
e.g. Mach cones created by high momentum jets traversing
the thermal medium [36]. On the other hand, while the
collisions planned at the GSI/FAIR facility might lead to
more optimal S=N trajectories for this argument to work,
the probability for the production of the required high
momentum probes is much smaller. However, we remind
the reader that a thorough investigation of the heavy ion
phenomenology should be carried out with an effective
theory suited to describe the Nf ¼ 2þ 1 case.

IV. CONCLUSIONS AND OUTLOOK

In this paper we have analyzed thermodynamics of two
effective theories for QCD which contain as relevant de-
grees of freedom the Polyakov loop and chiral fields within
a framework proposed to correctly interpolate between the
pure gauge, center symmetric, and chirally symmetric two-
flavor QCD. At zero chemical potential but finite tempera-
ture we observed that the contribution from the Polyakov
loop to thermodynamical quantities like the pressure is

very important; roughly half of the total pressure.
Another aspect which underlines the importance of the
Polyakov loop sector is the fact that adding it to the
dynamics tends to diminish the qualitative differences
present in the bare chiral theories at finite temperature.
We have considered explicitly two realizations, the linear
sigma model and the NJL model. Our results indicate that
even if both models describe the chiral dynamics of the
QCD vacuum correctly, they must be supplied by other
degrees of freedom in order to obtain quantitatively correct
effective description of QCD thermodynamics. We pre-
sented a comparison with a recent result which interpolates
between resummed perturbation theory result and reso-
nance gas result [16], and outlined how future lattice
simulations could allow one to obtain more insight into
the QCD dynamics near the phase transition.
We also considered finite chemical potentials and deter-

mined the ðT;�Þ phase diagram of these theories. Here we
observed large discrepancies between the PLSM and PNJL
models. Based on the above discussion, an obvious expla-
nation would be that some important dynamics is again
being missed. A natural candidate for a new relevant
degree of freedom is the diquark condensate responsible
for the color superconducting phenomena. We aim to ex-
tend our work towards this direction next. We also deter-
mined the lines of constant S=A in the ðT;�Þ-plane and

FIG. 10. Left panel: Constant S=N curves in the PNJL model. Right panel: A close-up on the critical point at ðTc; �cÞ ¼
ð88; 329Þ MeV.

FIG. 11 (color online). Left panel: Sound speed at different chemical potentials in the PLSM model. Right panel: Same for the PNJL
model.
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discussed the implications for the equation of state as well
as for the possible focusing behavior relevant for the
experimental discovery of the QCD critical point.

These results can be used for phenomenological appli-
cations. The parametrization of the equation of state ob-
tained from these models has been shown to agree with
lattice data at � ¼ 0 but is easily evaluated also at finite
values of the chemical potential. Hence it could be applied
in hydrodynamical simulations of ultrarelativistic heavy
ion collisions. We have evaluated the sound speed, and
shown that on the hydrodynamically relevant trajectories
there may be substantial temperature range over which the
sound speed is small. However, it may prove difficult in the
laboratory to create systems which would follow these
particular trajectories. We hope to extend these phenome-
nological studies within realistic hydrodynamics in near
future.

There are several improvements to be addressed. We
have already stressed that below the critical temperature, a
more careful treatment of hadronic degrees of freedom is
required, and the lack of this treatment is best seen in the
apparent underestimate of the pressure below Tc. Another

issue clearly concerns the number of active flavors. Here
we have concentrated only on the case of two flavors, while
for more quantitative phenomenology it is vital to have the
effects of the strange quark under control. However, as a
first approximation for the equation of state at small chemi-
cal potential it should be reasonable to multiply the pres-
sure by the overall factor gSBðNf ¼ 3Þ=gSBðNf ¼ 2Þ
where g counts both the bosonic and fermionic degrees
of freedom. Lattice data [37] indicates that the flavor
dependence of the QCD pressure is dominated by the
Stefan-Boltzman factor and the above scaling can be ap-
plied within 10% accuracy. Similar reasoning has been
used also in [16] to obtain the perturbative QCD result
for full Nf flavors with masses fmNf

g. We aim to address

these issues in future work within the effective theory
framework discussed here.
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