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We derived simple analytical parametrizations for energy distributions of photons, electrons, and

neutrinos produced in interactions of relativistic protons with an isotropic monochromatic radiation field.

The results on photomeson processes are obtained using numerical simulations of proton-photon

interactions based on the public available Monte Carlo code SOPHIA. For calculations of energy spectra

of electrons and positrons from the pair-production (Bethe-Heitler) process we suggest a simple formal-

ism based on the well-known differential cross section of the process in the rest frame of the proton. The

analytical presentations of energy distributions of photons and leptons provide a simple but accurate

approach for calculations of broadband energy spectra of gamma rays and neutrinos in cosmic proton

accelerators located in radiation dominated environments.
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I. INTRODUCTION

In astrophysical environments the density of low energy
radiation often exceeds the density of the gas component.
Under such conditions, the interactions of ultrarelativistic
protons and nuclei with radiation can dominate over inter-
actions with the ambient gas. These interactions proceed
through three channels: (i) inverse Compton scattering,
p�! p�0, (ii) electron-positron pair production, pþ
�! peþe�, and (iii) photomeson production, p�! N þ
k�. While the inverse Compton scattering does not have
a kinematic threshold, the electron-positron pair produc-
tion and the photomeson production processes take place
when the energy of the photon in the rest frame of the
projectile proton exceeds 2mec

2 ’ 1 MeV and m�c
2ð1þ

m�=2mpÞ ’ 145 MeV, respectively.

The process of inverse Compton scattering of protons is
identical to the inverse Compton scattering of electrons,
but the energy loss rate of protons is suppressed by a factor
of ðme=mpÞ4 � 10�13. At energies above the threshold of

production of electron-positron pairs this process is 4 or-
ders of magnitude slower compare to the losses caused by
pair production. Therefore, generally the inverse Compton
scattering does not play a significant role even in extremely
dense radiation fields.

The cross section of ðeþ; e�Þ pair production (often
called the Bethe-Heitler cross section) is quite large, but
only a small ( � 2me=mp) fraction of the proton energy is

converted to the secondary electrons. The cross section of
photomeson production is smaller, but instead a substantial
(10% or more) fraction of the proton energy is transferred
to the secondary product. As a result, when the proton

energy exceeds the �-meson production threshold, the
hadronic interactions of protons dominate over the pair
production.
The cross section of pair production is calculated with a

very high accuracy using the standard routines of quantum
electrodynamics. The cross sections of photomeson pro-
cesses are provided from accelerator experiments and phe-
nomenological studies. Generally, for astrophysical
applications the data obtained in fixed target experiments
with gamma-ray beams of energies from 150 MeV to
10 GeV are sufficient, especially in the case of the broad-
band spectra of target photons, when the hadron-photon
interactions are contributed mainly from the region not far
from the energy threshold of the process.
The energy losses of protons in the photon fields, in

particular, in the context of interactions of highest energy
cosmic rays with 2.7 K cosmic microwave background
radiation (CMBR), have been comprehensively studied
by many authors (see, e.g., Refs. [1–5]). Less attention
has been given to calculations of the product energy dis-
tributions. This can be partly explained by the fact that the
cross sections of secondary electrons and gamma rays with
the ambient photons significantly exceeds the cross sec-
tions of interactions of protons with the same target pho-
tons. Therefore the electrons and gamma rays cannot leave
the active regions of their production, but rather trigger
electromagnetic cascades in the surrounding radiation and
magnetic fields. The spectra of gamma rays formed during
the cascade development are not sensitive to the initial
energy distributions, and therefore simple approximate
approaches (see, e.g., Ref. [6]) can provide adequate ac-
curacies for calculations of the characteristics of optically
thick sources. This does not concern, however, neutrinos
which freely escape the source and thus have an undis-
torted imprint of parent protons. Moreover, at some spe-
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cific conditions, the secondary electrons from the pair-
and photomeson production processes can cool mainly
through synchrotron radiation for which the source can
be optically thin (see, e.g., [7–10]). Thus the exact calcu-
lations of spectra of secondary electrons are quite impor-
tant, since the synchrotron radiation of these electrons
carry direct information about the energy spectra of accel-
erated protons.

The interactions of hadrons with radiation fields can be
effectively modeled by Monte Carlo simulations of char-
acteristics of secondary products. In particular, the SOPHIA

code [11] provides an adequate tool for the comprehensive
study of high energy properties of hadronic sources in
which interactions of ultrarelativistic protons with ambient
low energy photons dominate over other processes. At the
same time, it is useful to have a complementary tool for
study of radiation characteristics of hadronic sources, es-
pecially when one deals with simple scenarios, e.g., inter-
actions of protons with a homogeneous and isotropic
source of radiation in which the hadronic cascades (i.e.,
the next generation particles) do not play an important role.
Motivated by this objective, in this paper we develop a
simple approach based on the description of the energy
distributions of final products from the photomeson and
electron-positron pair-production processes in analytical
forms which can be easily integrated in any complex model
of hadronic interactions in high energy astrophysical
sources. To a certain extent, this paper can be considered
as a continuation of our first paper [12] where we obtained
analytical presentations for proton-proton interactions.

II. PHOTOMESON PROCESSES

The formation of high energy gamma rays, electrons,
and neutrinos in photomeson interactions proceeds through
production and decay of nonstable secondary products,
mainly �0 and �� mesons:

�þ p! n0�
0 þ nþ�þ þ n��� þ � � � ; (1)

where n0, nþ, and n� are the numbers of produced pions.
Hereafter we will assume that the density of the ambient
medium is sufficiently low, thus the pions decay before
they interact with the surrounding gas, radiation, and mag-
netic fields. We will also assume that (i) both the relativ-
istic protons and the target low energy photons are
isotropically distributed, and (ii) the energy of colliding
particles

�� m�c
2; Ep � mpc

2; (2)

where � is the energy of the target photon, m� is the mass
of the � meson (we will assume that m0

� ¼ mþ
� ), and Ep

and mp are the energy and the mass of proton. Those

conditions, which are always satisfied in astronomical
environments, allow us to obtain simple analytical presen-
tations for energy distributions of the final products of �
decays—photons and leptons.

The total cross section of inelastic �-p interactions is a
function of the scalar E� � ðk � pÞ=mp, where k and p are

four-momenta of the photon and proton. The scalar E� is

simply the energy of the photon in the proton rest frame.
The total cross section �ðE�Þ, calculated using the routines
of the code SOPHIA [11], is presented in Fig. 1. Although
the production of pions dominates in the �-p interactions,
some other channels, in particular, the ones leading to
production of K and � mesons, contribute noticeably (up
to 10% to 20%) to the overall production of photons and
leptons. These channels are taken into account in our
calculations presented below. They are based on the
SOPHIA code which allows simulations of all important

processes belong to �-p interactions.

A. Production of gamma rays

The inclusive cross section of production of �0 mesons

d��0 ¼ Sðk;p;p�0Þd3p�0 (3)

depends on the momenta k, p, p�0 of the photon, proton,
and �0 meson, respectively. Let us denote by

dw ¼ Wðp�0 ;p�Þd3p� (4)

the probability of decay of a �0 meson with momentum
p�0 into a gamma-ray photon of momentum p� in the

volume d3p� of the momentum space. Then

d�� ¼ 2d3p�
Z
Sðk;p;p�0ÞWðp�0 ;p�Þd3p�0 (5)

can be treated as the inclusive cross section of �-rays
production through the chain �þ p! n0�

0 þ � � � !
2n0�þ � � � .

FIG. 1. The total cross section of the inelastic �-p interactions
as a function of energy of the gamma ray in the proton rest
frame. The calculations have been performed using the routine
of the code SOPHIA [11].
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For isotropic distributions of initial particles, the final
products will be isotropically distributed as well. Therefore
for the determination of the energy spectra of gamma rays
we can use the inclusive cross section given by Eq. (5) but
integrated over the gamma-rays emission angles:

d�� � G�ðEp; �; cos�; E�Þ
dE�
Ep

: (6)

The function G� depends on Ep, �, E�, and the angle �

between the momenta of colliding proton and photon. The
corresponding differential interaction rate is

dw� ¼ cð1� cos�ÞG�ðEp; �; cos�; E�Þ
dE�
Ep

: (7)

Let fpðEpÞ and fphð�Þ be functions characterizing the

energy distributions of initial protons and photons, i.e.,
fpðEpÞdEp and fphð�Þd� are the numbers of protons and

photons per 1 cm3 in the energy intervals dEp and d�,

respectively. Since it is assumed that the target photons are
isotropically distributed, their angular distribution is de-
scribed as d�=4�. Then the production rate of gamma
rays (i.e., the number of gamma rays in the energy interval
ðE�; E� þ dE�Þ per sec, per 1 cm3) can be obtained after

integration of Eq. (7) over energies of protons and target
photons, as well as over the solid angle d�:

dN�ðE�Þ ¼ dE�
Z dEp

Ep

d�

4�
d�fpðEpÞfphð�Þcð1� cos�Þ

	G�ðEp; �; cos�; E�Þ: (8)

Let us introduce the function �� defined as

��ð�; xÞ �
Z
cð1� cos�ÞG�ðEp; �; cos�; E�Þd�4� ; (9)

where

� ¼ 4�Ep

m2
pc

4
; x ¼ E�

Ep
: (10)

Then Eq. (8) can be written in the following form:

dN�
dE�

¼
Z
fpðEpÞfphð�Þ��ð�; xÞ

dEp
Ep

d�: (11)

Note that �� can be treated as a function of two (but not

three) variables. This is connected with the fact that, as we
assume, at Ep ! 1 and �! 0, E� ! 1, and for fixed x

and �, the function�� should have a certain limit. In other

words, at the rescaling

Ep ! �Ep E� ! �E�; �! �=�; (12)

where � is an arbitrary number (� > 1), the function�� is

not changed, therefore the following relation takes place:

Z
ð1� cos�ÞG�ð�Ep; �=�; cos�; �E�Þd�

¼
Z
ð1� cos�ÞG�ðEp; �; cos�; E�Þd�: (13)

Numerical calculations based on the code SOPHIA [11]
show that already at

� < 10�3m�c
2; Ep > 103mpc

2 (14)

the relation given by Eq. (13) is readily fulfilled.
Some features of the energy spectra of gamma rays can

be understood from the analysis of the kinematics of the
process. In particular, for production of a single �0 meson
the following condition should be satisfied:

2�Epð1� �p cos�Þ> ð2m�mp þm2
�Þc4; (15)

where �p is the proton speed (in units of c).

Since the protons are ultrarelativistic, we will assume
�p ¼ 1. If the condition of Eq. (15) is not satisfied, then

the interaction rate given by Eq. (7) is equal to zero.
Therefore, for the case of 4�Ep � ð2m�mp þm2

�Þc4, the
function �� ¼ 0. The integration of Eq. (11) should be

performed over the region1

� 
 �0 � 2
m�

mp

þm2
�

m2
p

� 0:313: (16)

As it follows from kinematics of production of a single
pion, the energy of the latter appears within

E�min � E� � E�max; (17)

where

E�max ¼ Epxþ; E�min ¼ Epx� (18)

are the maximum and minimum energies, respectively,
with

x� ¼ 1

2ð1þ �Þ ½�þ r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� r2 � 2rÞð�� r2 þ 2rÞ

q
�;

(19)

where r ¼ m�=mp � 0:146.

Let us consider now the general case when the total mass
of particles produced in proton-photon interactions isMþ
m�. For example, the single-pion production impliesM ¼
mp, while in the case of two-pion production M ¼ mp þ
m�, etc. In this case the maximum and minimum energies
of pions are

~E�max ¼ Ep~xþ; ~E�min ¼ Ep~x�; (20)

with

1For determination of the region allowed by kinematics, we
will assume m�� ¼ m�0 ¼ 0:137 GeV. Since on the border of
this region the function �� ¼ 0, this approximation does not
affect the accuracy of numerical calculations.

ENERGY SPECTRA OF GAMMA RAYS, ELECTRONS, AND . . . PHYSICAL REVIEW D 78, 034013 (2008)

034013-3



~x� ¼ 1

2ð1þ �Þ ½�þ r2 þ 1� R2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ 1� ðRþ rÞ2Þð�þ 1� ðR� rÞ2Þ

q
�;
(21)

where R ¼ M=mp. In particular, for R ¼ 1, Eqs. (19) and

(21) coincide. For R> 1, we have the following inequal-
ities:

E�min < ~E�min; E�max > ~E�max: (22)

The decay of ultrarelativistic �0 mesons with energy
distribution J�ðE�Þ within the limits given by Eq. (17),
results in the energy spectrum of gamma rays

dN�
dE�

¼ 2
Z E�max

E1

dE�
E�

J�ðE�Þ; (23)

where

E1 ¼ max

�
E�;

m2
�c

4

4E�
; E�min

�
; E� < E�max: (24)

Below we will be interested in gamma rays with energy
E� > m�=2. While in the energy range E� < E�min, the

differential spectrum of gamma rays is flat,

dN�
dE�

¼ 2
Z E�max

E�min

dE�
E�

J�ðE�Þ; (25)

within the interval E�min < E� < E�max the spectrum de-

creases with energy,

dN�
dE�

¼ 2
Z E�max

E�

dE�
E�

J�ðE�Þ: (26)

The above quantitative features of the spectrum of gamma
rays appear quite useful for the choice of approximate
analytical presentations. The results of numerical calcula-
tions of the function �� based on simulations using the

code SOPHIA [11] can be approximated, with an accuracy
better than 10% by simple analytical formulas. Namely, in
the range x� < x< xþ

��ð�; xÞ ¼ B� exp

�
�s�

�
ln

�
x

x�

��
	�
�

	
�
ln

�
2

1þ y2

��
2:5þ0:4 lnð�=�0Þ

; (27)

where

y ¼ x� x�
xþ � x�

: (28)

At low energies, x < x�, the spectrum does not depend on
x,

��ð�; xÞ ¼ B�ðln2Þ2:5þ0:4 lnð�=�0Þ: (29)

Finally in the range x > xþ, the function �� ¼ 0.

All three parameters B�, s�, and 	� used in this pre-

sentation are functions of �. The numerical values of these
parameters are shown in Table I. At �=�0 ¼ 1, i.e., at the
threshold of �0-meson production, B� ¼ 0. In Fig. 2 we

show the functions x��ð�; xÞ obtained with the code

SOPHIA (histograms) and the analytical presentations given

by Eqs. (27) and (29) for two values of �.
Equation (11) provides a simple approach for calcula-

tions of gamma-ray spectra for arbitrary energy distribu-
tions of ultrarelativistic protons and ambient photons. The
parameters B�, s�, and 	� are quite smooth functions of �;

thus for calculations of these parameters at intermediate
values of � one can use linear interpolations of the nu-
merical results presented in Table I. Note that for interac-
tions of protons with 2.7 K CMBR, the results presented in
Table I allow calculations of gamma-ray spectra up to
�1021 eV.

B. Production of electrons and neutrinos

The production of leptons in proton-photon interactions
is dominated by the decay of secondary charged pions. In
analogy with Eq. (11), the spectrum of each type of leptons
can be presented in the form

NlðElÞdEl ¼ dEl
Z
fpðEpÞfphð�Þ�lð�; xÞ

dEp
Ep

d�; (30)

where � is determined in Eq. (10), x ¼ El=Ep, and l

TABLE I. Numerical values of parameters B�, s�, and 	�
characterizing the gamma-ray spectra given by Eq. (11).

�=�0 s� 	� B�; cm
3=s

1.1 0.0768 0.544 2:86	 10�19

1.2 0.106 0.540 2:24	 10�18

1.3 0.182 0.750 5:61	 10�18

1.4 0.201 0.791 1:02	 10�17

1.5 0.219 0.788 1:60	 10�17

1.6 0.216 0.831 2:23	 10�17

1.7 0.233 0.839 3:10	 10�17

1.8 0.233 0.825 4:07	 10�17

1.9 0.248 0.805 5:30	 10�17

2.0 0.244 0.779 6:74	 10�17

3.0 0.188 1.23 1:51	 10�16

4.0 0.131 1.82 1:24	 10�16

5.0 0.120 2.05 1:37	 10�16

6.0 0.107 2.19 1:62	 10�16

7.0 0.102 2.23 1:71	 10�16

8.0 0.0932 2.29 1:78	 10�16

9.0 0.0838 2.37 1:84	 10�16

10.0 0.0761 2.43 1:93	 10�16

20.0 0.107 2.27 4:74	 10�16

30.0 0.0928 2.33 7:70	 10�16

40.0 0.0772 2.42 1:06	 10�15

100.0 0.0479 2.59 2:73	 10�15
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implies one of the following symbols: eþ, e�, 
�, �
�, 
e,
or �
e.

As in the case of gamma rays, the energy range of
leptons, for the fixed values of Ep and �, is determined

by kinematics. We obtained analytical forms for the energy
spectra for all lepton types, �l, using numerical results
of simulations of the SOPHIA code. In the range of x0� <
x < x0þ

�lð�; xÞ ¼ Bl exp

�
�sl

�
ln

�
x

x0�

��
	l
��
ln

�
2

1þ y02

��
 
;

(31)

where

y0 ¼ x� x0�
x0þ � x0�

: (32)

In range of x < x0�, the function �l does not depend on x:

�lð�; xÞ ¼ Blðln2Þ : (33)

For x 
 x0þ, the function �l ¼ 0. The analytical presenta-
tion in the form of Eq. (31) contains three parameters sl, 	l,
and Bl which themselves are functions of �. The numerical
values of these parameters obtained with the method of
least squares are tabulated in Table II (for eþ, �
�, 
�, and

e) and Table III (for e� and �
e). The values of x

0� and  
are given below for each type of leptons.

TABLE II. Numerical values of parameters sl, 	l, and Bl for e
þ, �
�, 
�, and 
e.

�=�0 seþ 	eþ Beþ ; cm
3=s s �
� 	 �
� B �
� ; cm

3=s s
� 	
� B
� ; cm
3=s s
e 	
e B
e ; cm

3=s

1.1 0.367 3.12 8:09	 10�19 0.365 3.09 8:09	 10�19 0.0 0.0 1:08	 10�18 0.768 2.49 9:43	 10�19

1.2 0.282 2.96 7:70	 10�18 0.287 2.96 7:70	 10�18 0.0778 0.306 9:91	 10�18 0.569 2.35 9:22	 10�18

1.3 0.260 2.83 2:05	 10�17 0.250 2.89 1:99	 10�17 0.242 0.792 2:47	 10�17 0.491 2.41 2:35	 10�17

1.4 0.239 2.76 3:66	 10�17 0.238 2.76 3:62	 10�17 0.377 1.09 4:43	 10�17 0.395 2.45 4:20	 10�17

1.5 0.224 2.69 5:48	 10�17 0.220 2.71 5:39	 10�17 0.440 1.06 6:70	 10�17 0.31 2.45 6:26	 10�17

1.6 0.207 2.66 7:39	 10�17 0.206 2.67 7:39	 10�17 0.450 0.953 9:04	 10�17 0.323 2.43 8:57	 10�17

1.7 0.198 2.62 9:52	 10�17 0.197 2.62 9:48	 10�17 0.461 0.956 1:18	 10�16 0.305 2.40 1:13	 10�16

1.8 0.193 2.56 1:20	 10�16 0.193 2.56 1:20	 10�16 0.451 0.922 1:32	 10�16 0.285 2.39 1:39	 10�16

1.9 0.187 2.52 1:47	 10�16 0.187 2.52 1:47	 10�16 0.464 0.912 1:77	 10�16 0.270 2.37 1:70	 10�16

2.0 0.181 2.49 1:75	 10�16 0.178 2.51 1:74	 10�16 0.446 0.940 2:11	 10�16 0.259 2.35 2:05	 10�16

3.0 0.122 2.48 3:31	 10�16 0.123 2.48 3:38	 10�16 0.366 1.49 3:83	 10�16 0.158 2.42 3:81	 10�16

4.0 0.106 2.50 4:16	 10�16 0.106 2.56 5:17	 10�16 0.249 2.03 5:09	 10�16 0.129 2.46 4:74	 10�16

5.0 0.0983 2.46 5:57	 10�16 0.0944 2.57 7:61	 10�16 0.204 2.18 7:26	 10�16 0.113 2.45 6:30	 10�16

6.0 0.0875 2.46 6:78	 10�16 0.0829 2.58 9:57	 10�16 0.174 2.24 9:26	 10�16 0.0996 2.46 7:65	 10�16

7.0 0.0830 2.44 7:65	 10�16 0.0801 2.54 1:11	 10�15 0.156 2.28 1:07	 10�15 0.0921 2.46 8:61	 10�16

8.0 0.0783 2.44 8:52	 10�16 0.0752 2.53 1:25	 10�15 0.140 2.32 1:19	 10�15 0.0861 2.45 9:61	 10�16

9.0 0.0735 2.45 9:17	 10�16 0.0680 2.56 1:36	 10�15 0.121 2.39 1:29	 10�15 0.0800 2.47 1:03	 10�15

10.0 0.0644 2.50 9:57	 10�16 0.0615 2.60 1:46	 10�15 0.107 2.46 1:40	 10�15 0.0723 2.51 1:10	 10�15

30.0 0.0333 2.77 3:07	 10�15 0.0361 2.78 5:87	 10�15 0.0705 2.53 5:65	 10�15 0.0411 2.70 3:55	 10�15

100.0 0.0224 2.86 1:58	 10�14 0.0228 2.88 3:10	 10�14 0.0463 2.62 3:01	 10�14 0.0283 2.77 1:86	 10�14

FIG. 2. Gamma-ray spectra produced in photomeson interactions calculated for two values of � ¼ 4�Ep=m
2
pc

4. Solid lines are
calculated using the analytical presentations given by Eq. (11), and the histograms are from simulations using the SOPHIA code.
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1. Energy spectra of positrons, muon antineutrinos, and
electron neutrinos

For eþ, �
�, and 
e, the parameter  is presented in the

form

 ¼ 2:5þ 1:4 ln

�
�

�0

�
; (34)

with

x0� ¼ x�
4

and x0þ ¼ xþ; (35)

where xþ and x� are determined from Eq. (19); �0 is
defined in Eq. (16). Note that here  is different than the
relevant function in Eq. (27). In Figs. 3 and 4 the analytical
presentations of distributions x�eþ and x��
� are com-

pared with Monte Carlo simulations based on the SOPHIA

code.
In the range

�< 4
m�

mp

þ 4

�
m�

mp

�
2 ¼ 2:14�0;

only a single �þ meson can be produced. It decays to
�þ ! �þ
�. The positrons and muon antineutrinos are

produced from the decay�þ ! eþ �
�
e. Since the spectra

of eþ and �
� from the decay of �þ coincide (see, e.g.,

[13]), the parameters in Table II calculated for eþ and �
�
for small � should be identical. The slight difference at
�< 2�0 is explained by fluctuations related to the statis-
tical character of simulations.
At �> 2:14�0, a new channel is opened for production

of �
�, because of the production of �� mesons and their

decay �� ! �� �
�. Therefore, for large values of �, the

parameters characterizing eþ and �
� differ significantly

(see Table II). This can be seen from the comparison of
results presented in the right panels of Figs. 3 and 4; for
� ¼ 30, x��
� significantly exceeds x�eþ .

2. Muon neutrinos

The distribution for 
� is described by Eq. (34) with the

same function  as for eþ, �
�, and 
e, given by Eq. (34),

but with different parameters x0�:

x0þ ¼
8><
>:
0:427xþ; � < 2:14;
ð0:427þ 0:0729ð�� 2:14ÞÞxþ; 2:14<�< 10;
xþ; � > 10;

(36)

where � ¼ �=�0, and

FIG. 3. Energy spectra of positrons produced in photomeson interactions calculated for two values of � ¼ 4�Ep=m
2
pc

4. Solid lines
are calculated using the analytical presentations, and the histograms are from Monte Carlo simulations using the SOPHIA code.

TABLE III. Numerical values of parameters sl, 	l, and Bl for electrons and electron antineutrinos.

�=�0 se� 	e� Be� ; cm
3=s s �
e 	 �
e B �
e ; cm

3=s

3.0 0.658 3.09 6:43	 10�19 0.985 2.63 6:61	 10�19

4.0 0.348 2.81 9:91	 10�18 0.378 2.98 9:74	 10�18

5.0 0.286 2.39 1:24	 10�16 0.31 2.31 1:34	 10�16

6.0 0.256 2.27 2:67	 10�16 0.327 2.11 2:91	 10�16

7.0 0.258 2.13 3:50	 10�16 0.308 2.03 3:81	 10�16

8.0 0.220 2.20 4:03	 10�16 0.292 1.98 4:48	 10�16

9.0 0.217 2.13 4:48	 10�16 0.260 2.02 4:83	 10�16

10.0 0.192 2.19 4:78	 10�15 0.233 2.07 5:13	 10�16

30.0 0.125 2.27 1:64	 10�15 0.135 2.24 1:75	 10�15

100.0 0.0507 2.63 4:52	 10�15 0.0770 2.40 5:48	 10�15
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x0� ¼ 0:427x�: (37)

The difference of values of x� for �
� and 
� appears for

the following reason. At the decay �þ ! �þ �
� the maxi-

mum energy of �
� is equal to ð1�m2
�=m

2
�ÞE� �

0:427E�, where m� is the mass of the muon. On the other

hand, the maximum energy of �
�, produced at the decay of

the muon is equal to E�. With an increase of the parameter
�, �� mesons start to be produced, the decay of which
leads to 
�, with maximum energy comparable to the

energy of the pion (a detailed discussion of these questions
can be found in [12]).

In Fig. 5 the function x�
�ð�; xÞ is shown. The histo-

grams are from Monte Carlo simulations using the SOPHIA

code, and the solid lines correspond to the analytical
approximations.

3. Electrons and electron antineutrinos

The electrons and electron antineutrinos are produced
through the decay ��, which in its turn is a product of the
decay of the �� meson. Therefore, for production of e�
and �
e, at least two pions should be produced. The pro-
duction of two pions is energetically allowed if

�> �00
min ¼ 4rð1þ rÞ � 2:14�0: (38)

The maximum and minimum energies of the pion corre-
spondingly are

E0
�max ¼ x0þEp; E�min ¼ x0�Ep; (39)

where

x0� ¼ 1

2ð1þ �Þ ð�� 2r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�� 4rð1þ rÞÞ

q
Þ: (40)

Equation (40) is obtained from Eq. (21) if one sets R ¼
1þ r. These functions together with

 ¼ 6ð1� e1:5ð4��ÞÞ�ð�� 4Þ; � ¼ �

�0

; (41)

determine the distributions for e� and �
e given in a general
form by Eqs. (31)–(33); �ð�Þ is the Heaviside function
[�ð�Þ ¼ 0 if � < 0 and �ð�Þ ¼ 1 if � 
 0].

III. PHOTONS AND LEPTONS PRODUCED AT
INTERACTIONS OF PROTONS WITH 2.7 K CMBR

In this section we compare the energy spectra of gamma
rays, neutrinos, and electrons produced at photomeson
interactions. For monoenergetic protons interacting with

FIG. 5. The same as in Fig. 3 but for muon neutrinos.

FIG. 4. The same as in Fig. 3 but for muon antineutrinos.
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a radiation field with energy distribution fphð�Þ, the energy
spectra of photons and leptons can be reduced to the
calculation of a one-dimensional integral

dN

dx
¼

Z 1

�0

fphð�Þ�ð�; xÞd�; (42)

where �0 ¼ �0m
2
pc

4=ð4EpÞ, and x ¼ E=Ep is the fraction

of energy of the protons transferred to the given type of
secondary particle; � is one of the functions described in
the previous section.

In Figs. 6 and 7 we show the energy spectra of gamma
rays and electrons (left panels) and all neutrino types (right
panels) produced by protons of energy 1020 and 1021 eV
interacting with blackbody radiation of temperature T ¼
2:7 K. The results depend only on the product Ep 	 T;

therefore they can be easily rescaled to a blackbody radia-
tion of an arbitrary temperature. The chosen radiation field
and proton energies are of great practical interest in the
context of origin and intergalactic propagation of ultrahigh
energy cosmic rays. Because of interactions with the in-
tergalactic radiation fields, ultrahigh energy gamma rays
achieve the observer from distances less than 1 Mpc (see,
e.g., Ref. [14]). The electrons rapidly cool via synchrotron
radiation or, in the case of very small intergalactic mag-

netic field, initiate electromagnetic cascades supported by
interactions of electrons and gamma rays with the 2.7 K
CMBR. Only neutrinos freely penetrate through interga-
lactic radiation and magnetic fields and thus carry a clear
imprint of parent protons.
In Fig. 8 we show the average number of secondaries

(multiplicity) produced in one inelastic interaction of pro-
tons with 2.7 K CMBR as a function of proton energy. The
results of numerical calculations are obtained using the
energy spectra of secondary photons, electrons, and neu-
trinos, and the total cross section shown in Fig. 1. Note that
below the threshold of production of two pions one should
have the following relations:

1
2 hn�i þ hneþi ¼ 1; hneþi ¼ hn �
�i ¼ hn
�i: (43)

The results of calculations based on approximate analytical
presentations of functions�l satisfy these relations with an
accuracy of better than 5%.
Note that at very low energies the average number of

gamma rays hn�i appears smaller than the average number

of positrons hneþi. This, at first glance, unexpected result is
actually a direct consequence of the experimental fact that
near the threshold the total cross section ��þ of �þ
production significantly exceeds ��0 (see Fig. 9).

FIG. 6. The energy spectra of stable products of photomeson interactions of a proton of energy Ep ¼ 1020 eV with the 2.7 K CMBR.
Left panel—gamma rays, electrons, and positrons; right panel—electron and muon neutrinos and antineutrinos.

FIG. 7. The same as in Fig. 3, but for a proton of energy Ep ¼ 1021 eV.

S. R. KELNER AND F.A. AHARONIAN PHYSICAL REVIEW D 78, 034013 (2008)

034013-8



IV. PRODUCTION OF
ELECTRON-POSITRON PAIRS

At energies below the photomeson production, the main
channel of inelastic interactions for protons with ambient
photons proceeds through the direct production of
electron-positron pairs. In the rest frame of the proton,
this process is described by the so-called Bethe-Heitler
cross section. In astrophysical environments, the process

is more often realized when ultrarelativistic protons collide
with low energy photons,

pþ �! eþ þ e� þ p: (44)

The process is energetically allowed when

�p� > mec
2; (45)

where �p ¼ Ep=mpc
2 is the proton Lorentz factor, � is the

soft photon energy, and me is the mass of electron. The
maximum energy of the electron (positron) is determined
by the kinematics of the process

Eemax ¼
�p

1þ 4�p�=ðmpc
2Þ ð

ffiffiffiffiffiffiffiffiffi
�p�

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�p��mec

2
q

Þ2:
(46)

This equation is valid when �p � 1 and �� mp�pc
2. In

the interval

mec
2 � �p�� mpc

2; (47)

the maximum electron energy is

Eemax ¼ 4�2
p�: (48)

This applies for Eemax � Ep. In the limit of �p�� mpc
2

Eemax ¼ mpc
2�p ¼ Ep; (49)

i.e., the whole energy of the proton is transferred to one of
the electrons.
Let us denote by d� the differential cross section of the

process. The interaction rate is

dw ¼ c3
ðk � pÞ
�Ep

d� ¼ c2
ðk � upÞ
��p

d�; (50)

where k and p are four-momenta of the photon and proton,
up ¼ p=mpc is the four-velocity of the proton, ðk � pÞ ¼
�Ep=c

2 � kp is the scalar product of four-vectors. Let us

assume that in a unit volume we have fphð�Þd�d�=4�
photons between the energy interval ð�; �þ d�Þ and mov-
ing within the solid angle d�. Then the number of inter-
actions per unit of time is

N ¼ c2
Z
d�
d�

4�
fphð�Þ

ðk � upÞ
��p

Z
d�; (51)

where the integration is performed over all variables.
Below we perform calculations based on the following

approach. If we are interested in a distribution of some
variable 
, which is a function ’ of particle momenta, this
distribution can be found introducing an additional
	 function under the integral in Eq. (51):

dN

d

¼ c2

Z
d�
d�

4�
fphð�Þ

ðk � upÞ
��p

Z
	ð
� ’Þd�: (52)

In particular, the energy distribution of electrons in the
laboratory frame can be calculated using the following

FIG. 9. The total cross sections of production of �þ and
�0 mesons as a function of energy of the incident gamma ray
in the rest frame of a proton. The experimental points are taken
from http://wwwppds.ihep.su:8001.

FIG. 8. The multiplicity of photons and leptons produced in
one interaction of a relativistic proton with 2.7 CMBR.
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formula:

dN

dEe
¼ c2

Z
d�
d�

4�
fphð�Þ

ðk � upÞ
��p

	
Z
	ðEe � cðulf � peÞÞd�; (53)

where ulf is the four-velocity of the laboratory frame, and

pe is the four-momentum of the electron since the scalar
cðulf � peÞ is equal to the energy of the electron in the

laboratory system. The proton Lorentz factor in the labo-
ratory system also can be considered as a relativistic in-
variant: �p ¼ ðulf � upÞ.

Note that the integral

S �
Z
	ðEe � cðulf � peÞÞd� (54)

is a relativistic invariant, so it can be calculated in any
frame of coordinates. The differential cross section d� can
be written in the simplest form in the rest frame of the
proton; therefore for calculations of S we will use this
system of coordinate where

cðulf � peÞ ¼ �pðE� � Vpp� cos��Þ: (55)

Here E� is the energy and p� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2�=c2 �m2

ec
2

p
is the

momentum modulus of electron in the rest frame of the
proton., �� is the angle between the momenta of the
photon and the electron. Therefore

S ¼
Z
d�	ðEe � �pðE� � Vpp� cos��ÞÞ: (56)

After integration over all variables, except for E� and ��,
the result can be written in the form

S ¼
Z
Wð!;E�; cos��Þ

	 	ðEe � �pðE� � Vpp� cos��ÞÞdE�dðcos��Þ;
(57)

where

Wð!;E�; cos��Þ ¼ d2�

dE�dðcos��Þ (58)

is the double-differential cross section as a function of
energy and emission angle of the electron in the rest frame
of the proton; ! ¼ ðup � kÞ=ðmecÞ is the energy of the

photon the rest frame of proton in unitsmec
2. The function

W has been derived in the Born approximation in
Refs. [15,16]. The approach used in these papers describes
the production of an electron-positron pair by a photon in
the Coulomb field which formally corresponds to the limit
mp ! 1. However, we warn the reader that there is a

misprint in the cross section published in these papers;
therefore we advise one to use Eq. (10) of the paper by
Blumenthal [2], where the typo is fixed. Note that in

Refs. [2,15,16] the system of units is used in which c ¼
@ ¼ me ¼ 1. Since here we cite certain equations of these
papers, in this section, in order to avoid confusion, we use
the same system of units.
The presence of the 	 function in the integrand allows

the integration over the variable dðcos��Þ, which gives

S ¼ 1

�pVp

Z dE�
p�

Wð!;E�; 
Þ; (59)

where


 � cos�� ¼ �pE� � Ee
�pVpp�

: (60)

After substituting Eq. (59) into Eq. (53), and using the
relation

! ¼ ðup � kÞ ¼ ��pð1� cos�Þ; (61)

it is convenient to perform the integration over! instead of
integration over the angle. Then, for ultrarelativistic pro-
tons (�p � 1), we obtain

dN

dEe
¼ 1

2�3
p

Z 1

ðð�pþEeÞ2=4�2
pEeÞ

d�
fphð�Þ
�2

	
Z 2�p�

ðð�pþEeÞ2=2�pEeÞ
d!!

	
Z !�1

ð�2
pþE2

e=2�pEeÞ
dE�
p�

Wð!;E�; 
Þ: (62)

When substituting Eq. (60) into (62) we set Vp ¼ 1, and

correspondingly 
 ¼ ð�pE� � EeÞ=ð�pp�Þ. The integra-

tion limits in Eq. (62) are found from the analysis of
kinematics.
In the case of monoenergetic target photon field,

fphð�0Þ ¼ C	ð�0 � �Þ; (63)

the energy distribution of electrons can be written in the
form of the double integral

dN

dEe
¼ C

2�3
p�

2

Z 2�p�

ðð�pþEeÞ2=2�pEeÞ
d!!

	
Z !�1

ð�2
pþE2

e=2�pEeÞ
dE�
p�

Wð!;E�; 
Þ;

with the following kinematic condition:

4��2
pEe 
 ð�p þ EeÞ2: (64)

For the important case of Planckian distribution of target
photons,

fphð�Þ ¼ 1

�2

�2

e�=kT � 1
; (65)

the expression can be simplified. Indeed, rewriting the first
term in the integrand of Eq. (62) in the form
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d�
fphð�Þ
�2

¼ kT

�2
d lnð1� e��=kTÞ; (66)

we can perform integration over d� by parts, which after
simple transformation leads to the energy spectrum of
electrons in the form of a double integral

dN

dEe
¼ � kT

2�2�3
p

Z 1

ðð�pþEeÞ2=2�pEeÞ
d!! lnð1� e�!=ð2�pkTÞÞ

	
Z !�1

ð�2
pþE2

e=2�pEeÞ
dE�
p�

Wð!;E�; 
Þ: (67)

In the Born approximation used in [2,15,16], the energy
and angular distributions of electrons and positrons are
identical, and therefore Eqs. (62) and (67) do not distin-
guish between electrons and positrons. Let us discuss the
condition of applicability of Eqs. (62) and (67). In the
proton rest system, the cross section of production of an
electron-positron pair by the proton and in the Coulomb
potential coincide for all emission angles of pairs, when
!� mp. In the laboratory frame this is equivalent to the

condition ��p � mp, which, taking into account Eq. (48),

can be written in the form Eemax � Ep. Thus, the above

obtained results can be applied to production of electrons
and positrons when Ee � Ep.

In Fig. 10 we show the energy distributions of electrons
and positrons produced in interactions of protons of three
different energies with the 2.7 K CMBR: 6:4	 1019 eV,
1020 eV, and 3	 1020 eV. Note that the energy of the

primary proton 6:4	 1019 eV is interesting in the sense
that at this energy the loss rates of protons, E�1

p dEp=dt,

due to pair production and photomeson production are
equal. The spectral energy distribution of electron and
positrons from the pair-production process, E2dN=dE,
has a bell-type shape with a broad maximum around
ðme=mpÞRp � 10�3Ep. This spectrum is quite different

from the dN=dE / E�7=4-type energy dependence as it
was hypothesized in [10]. Figure 10 demonstrates that
while the low energy range of electrons (positrons) is
dominated by the process of pair production, at higher
energies the main contribution comes from photomeson
processes. Fortunately, in the energy range where Eqs. (62)
and (67) are not valid, the contribution of pair production
to the spectrum of electrons is negligible compared to the
contribution of photomeson processes.
It should be noted that the 	-functional approximation,

which is often used for qualitative estimates of character-
istics of products of high energy interactions, in this spe-
cific process does not provide adequate accuracy. The
reason is that the electrons produced in a single act of
interaction have very broad energy distribution. The cal-
culations show that the 	-functional approximation leads
to significant deviation from the exact result given by
Eq. (62), even when one takes into account the energy
dependence of the average fraction of the proton energy
transferred to the electron.

A. Energy losses

The analytical presentations of the energy spectra of
stable products of interactions of protons with ambient
low energy photons allow us to calculate the energy losses
of protons in a radiation field with arbitrary energy distri-
bution,

1

Ep

��������
dEp
dt

��������¼
Z 1

0
dxx

Z 1

�min

d�fphð�Þ�ð�; xÞ; (68)

where �min ¼ �0m
2
pc

4=ð4EpÞ, and�ð�; xÞ is the sum of all

seven energy distribution (relevant to �, eþ, e�, 
�, �
�,


e, and �
e) derived in Sec. II. Equation (68) describes the
average energy losses transferred to gamma rays and lep-
tons. In order to calculate the energy losses due to pair
production one should multiply Eq. (67) to 2Ee and inte-
grate over dEe.
Calculations of energy losses of protons can be per-

formed directly, without intermediate calculations of en-
ergy distributions of secondary photons and leptons. In this
regard, the energy losses of protons in 2.7 K CMBR have
been studied in great detail by many authors, in particular,
by Berezinsky and coauthors [3] based on a semianalytical
method of calculations and Stanev et al. [5] based on
Monte Carlo simulations using the SOPHIA code.
Therefore it is interesting to compare our results with direct
calculations of energy losses. In Fig. 11 we show the

FIG. 10. Energy distributions of electrons and positrons (Ne ¼
Nþ þ N�) produced at interactions of protons with 2.7 K
CMBR. Dashed lines and dot-dashed lines correspond to the
pair-production and photomeson processes, respectively. Solid
lines show the sums of two contributions. The curves correspond
to three energies of protons: 6:4	 1019 eV, 1020 eV, and 3	
1020 eV.
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energy loss rate of protons in the blackbody radiation field
with temperature T ¼ 2:726 K. For comparison, we show
the result of calculations performed using the code SOPHIA

[5]. The agreement of two calculations is an indirect test of
a good accuracy of the above obtained approximate ana-
lytical presentations for energy distributions of stable prod-
ucts from proton-photon interaction.

In Fig. 12 we show the interaction rate of protons with
2.7 K CMBR, as well as the fraction of energy lost by the
proton per interaction (the so-called inelasticity coeffi-
cient). Close to the threshold of pair production aroundE ’
1018 eV, hxieþe� ¼ 2me=mp � 1:1	 10�3, as it is ex-

pected from the kinematics of the process. However, with
an increase of energy, hxi� gradually decreases down to
10�4 at 1020 eV. This effect has also been noticed in
[4,17]. In the case of photomeson production the inelas-
ticity coefficient has a quite different behavior. At the
threshold, hxi� increases from the value of m�=ðmp þ
m�Þ � 0:13 to approximately 0.4 at energy 1022 eV.
Therefore, despite the fact that the cross section of pair
production significantly, by 2 orders of magnitude, exceeds
the cross section of photomeson production, the energy
losses at high energies are dominated by photomeson
interactions.

V. CALCULATIONS FOR POWER-LAW
DISTRIBUTION OF PROTONS

Instead of integrating Eqs. (11) and (30) over d�, it is
more convenient to perform integration of these equations
over d�. This allows the spectra of photons and leptons to
be presented in the form

dN

dE
¼

Z 1

�0

Hð�;EÞd�: (69)

Here

Hð�;EÞ ¼ m2
pc

4

4

Z 1

E

dEp

E2
p

fpðEpÞfph
�
�m2

pc
4

4Ep

�
�

�
�;

E

Ep

�
;

(70)

where E is the energy of gamma rays or leptons, and � is
the energy distribution of the given type of particle.
For photomeson interactions, it is useful to introduce the

following characteristic energy of proton:

E
 ¼ mpc
2

�
mpc

2

4kT
�0

�
� 3:0	 1020 eV: (71)

At energy Ep ¼ E
, the proton and a photon of energy kT

can produce a pion through a head-on collision.
The function Hð�;EÞ at fixed energy E describes distri-

bution over �. For a power-law distribution of protons,
fpðEpÞ / E��

p , the function Hð�;EÞ has a maximum at

�=�0 � 3E=E
; the position of the maximum slightly
depends on the power-law index � of the proton distribu-
tion. The function Hð�;EÞ for gamma rays is shown in
Fig. 13 at E� ¼ 0:5E? and two power-law indices, � ¼ 2

FIG. 12. The interaction rates of protons with photons of 2.7 K
CMBR (left axis) and the coefficient of inelasticity (right axis).
The curves 1a and 2a are the electron-positron and photomeson
production rates, respectively. The curves 1b and 2b are the
average energy lost by a proton of given energy due to pair
production and photomeson production, respectively.FIG. 11. The average energy loss rates of protons in the

CMBR with temperature 2.726 K. The lines are obtained using
our method of integration of energy spectra of all final (stable)
secondaries, and the points are from [5]. They are obtained from
Monte Carlo simulations of interactions of protons with the
CMBR photons using the SOPHIA code. The dashed and dash-
dotted lines describe the energy losses due to pair-production
and photomeson interactions, respectively; the solid lines repre-
sent the sum of these two contributions.
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and 2.5. At low energies the function Hð�;EÞ drops very
quickly. A cutoff in the spectrum of protons results in a
faster decrease of Hð�;EÞ and to a shift of the point of
maximum towards smaller �. For electrons and neutrinos

Hð�;EÞ has similar behavior—a maximum at �� 100�0

and strong decrease with increase of �.
To use the analytical parametrizations for distributions

of photons and electrons given by Eqs. (27) and (31) and
related Tables I, II, and III, which are applicable for
�=�0 � 100, the following condition should be fulfilled:
3E=E
 � 100. In this case the main contribution to the
integral (69) comes from the region �� 100�0, i.e., from
events close to threshold. Therefore the obtained approxi-
mate analytical presentations allow calculations of distri-
bution of particles in the energy range E & E
.
Finally, let us discuss the production of photons and

leptons at interactions of photons with a realistic distribu-
tion of protons, namely, a power law with an exponential
cutoff:

fpðEpÞ ¼ AE�2
p exp

�
� Ep
Ecut

�
; (72)

where the normalization coefficient is determined from the
condition

Z 1

1 GeV
EpJpðEpÞdEp ¼ 1

erg

cm3
: (73)

In Figs. 14–17 we show the spectra of photons, elec-
trons, and neutrinos produced in photomeson interactions

FIG. 14. The production spectra (EdN=dE) of photons and electrons (left panel) and neutrinos (right panel) produced with energy
distribution described by Eq. (72) through the photomeson channel. The cutoff energy in the proton spectrum is assumed Ecut ¼ 0:1E
.

FIG. 13. Function Hð�; E�Þ at fixed energy of gamma rays,
E� ¼ 1=2E?, calculated for a power-law distribution of protons

fpðEpÞ / E��
p with � ¼ 2 and 2.5.

FIG. 15. The same as in Fig. 14 but for Ecut ¼ E
.
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FIG. 17. The same as in Fig. 14 but for Ecut ¼ 1000 � E
.

FIG. 16. The same as in Fig. 14 but for Ecut ¼ 10 � E
.

FIG. 18. The production energy spectra of electrons and positrons produced through the channel of pair production (curve 1) and
positrons and electrons produced through the photomeson interactions of protons (curves 2 and 3, respectively). The proton spectrum is
assumed in the form given by Eq. (72) with cutoff energy at Ecut ¼ 0:1E
 (left panel) and Ecut ¼ E
 (right panel). Note that the
contribution of electrons (curve 3) in the left panel appears below the low bound of the y axis.

FIG. 19. The same as in Fig. 18, but for cutoff energies Ecut ¼ 10E
 (left panel) and Ecut ¼ 1000E
 (right panel).
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calculated for four values of the cutoff energy in the proton
spectrum Ecut ¼ 0:1 � E
, E
, 10 � E
, and 103 � E
, respec-
tively. The case Ecut ¼ 103 � E
 is almost identical to a
pure power-law spectrum of protons.

In Figs. 18 and 19 we compare the spectra of electrons
(and positrons) produced through the pair-production

channel with the spectra of electrons from the decay of
photoproduced charged pions.
Finally, in Fig. 20, we show the steady-state spectra of

cooled electrons. We assume that electrons are cooled via
synchrotron radiation in the intergalactic magnetic field
B ¼ 1 �G and inverse Compton (IC) scattering on the
2.7 K CMBR. Since the production spectrum of pair-
produced electrons below E� 1015 eV drops sharply
(see Figs. 18 and 19), the synchrotron and IC cooling (in
the Thomson regime) leads to the formation of a standard
E�2-type spectrum. This is clearly seen in Fig. 20.
In Fig. 21 we show the spectra of synchrotron and IC

radiation of secondary electrons produced via pair-
production and photomeson production channels for a
fixed magnetic field of B ¼ 1 �G, the temperature of
CMBR T ¼ 2:7 K, and for four different cutoff energies
in the proton spectrumEcut. Figure 21(a) corresponds to the
cutoff energy of protons E ¼ 0:1E
. In this case the elec-
trons are contributed mainly from the pair-production pro-
cess with a maximum in the energy distribution
(E2dN=dE) at energy E� 1015 eV. While synchrotron
radiation of these electrons peaks at E� / BE2 � 106 eV,

the maximum of the IC radiation appears, because of the
Klein-Nishina effect, at E� � E� � 1014–1015 eV. Note

that although energy density of the magnetic field corre-
sponding to B ¼ 1 �G is B2=8� � 4	 10�14 erg=cm3,
i.e., an order of magnitude smaller than the energy density
of 2.7 K CMBR, emissivity of the synchrotron and IC
components are comparable. This is also a direct conse-

FIG. 20. The cooled spectra of electrons and positrons, N ¼
Nþ þ N�. Dashed lines—electrons produced through the pair-
production channel; dot-dashed lines—electrons produced
through photomeson interactions. The sum of two contributions
is shown by the solid curves. The proton spectrum is given in the
form of Eq. (72), with Ecut ¼ 0:1 � E
 (a), E
 (b), 10 � E
 (c), and
1000 � E
 (d).

FIG. 21. The synchrotron and IC spectra of cooled electrons. Dashed lines correspond to synchrotron (S) and IC radiation of
electrons and positrons produced in the pair-production process; the dotted lines correspond to radiation of positrons (electrons)
produced through photomeson interactions. Curve 1 (solid lines) is the sum of these contributions. Curve 2 represents the spectrum of
gamma rays produced at the decay of photoproduced �0 mesons. The proton spectrum is given in the form of Eq. (72), with
Ecut ¼ 0:1E
 (a), Ecut ¼ E
 (b), Ecut ¼ 10E
 (c), and Ecut ¼ 10E
 (d). Magnetic field B ¼ 1 �G; temperature T ¼ 2:7K.
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quence of the reduction of the cross section of IC scattering
of 1015 eV electrons in the Klein-Nishina regime. The
second component of synchrotron radiation related to the
electrons from photomeson processes peaks at much
higher energies, E� � 1012 eV;, however, its contribution

is not significant because of suppression of the protons at
energies above the threshold of photomeson reactions. The
increase of the cutoff energy in the proton spectrum, Ecut,
leads to dramatic orders of magnitude, increase of the
emissivity of the synchrotron radiation of photomeson
electrons [see Figs. 21(b)–21(d)]. At the same time, be-
cause of the Klein-Nishina cross section, only pair-
produced electrons contribute to the IC radiation.
Therefore the cutoff energy Ecut does not have any impact
on the IC spectrum and emissivity, as it is seen in Figs. 21.

VI. SUMMARY

We present simple analytical parametrizations for en-
ergy distributions of photons, electrons, and neutrinos
produced in interactions of relativistic protons with an
isotropic monochromatic radiation field. The results on
photomeson processes are obtained using numerical simu-
lations of proton-photon interactions based on the public
available Monte Carlo code SOPHIA. We also developed a
simple formalism for calculations of energy spectra of
electrons and positron from the pair-production (Bethe-

Heitler) process based on the well-known differential cross
section in the rest frame of the proton. The energy loss rate
of protons due to photomeson and pair-production pro-
cesses in the 2.7 K CMBR calculated by integrating the
energy distributions of the stable products of interactions is
in excellent agreement with results of previous works
based on direct calculations of energy losses (without an
intermediate stage of energy distributions of secondaries).
The analytical presentations of energy distributions of
photons and leptons obtained in this paper provide a simple
but accurate approach for calculations of broadband energy
spectra of gamma rays, electrons, and neutrinos in different
astrophysical environments.
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