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Charmless two-body B, — VP decays in soft collinear effective theory
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We provide the analysis of charmless two-body B — VP decays under the framework of the soft
collinear effective theory (SCET), where V(P) denotes a light vector (pseudoscalar) meson. Besides the
leading power contributions, some power corrections (chiraly enhanced penguins) are also taken into
account. Using the current available B — PP and B — VP experimental data on branching fractions and
CP asymmetry variables, we find two kinds of solutions in y? fit for the 16 nonperturbative inputs which
are essential in the 87 B — PP and B — VP decay channels. Chiraly enhanced penguins can change
several charming penguins sizably, since they share the same topology. However, most of the other
nonperturbative inputs and predictions on branching ratios and CP asymmetries are not changed too
much. With the two sets of inputs, we predict the branching fractions and CP asymmetries of other modes
especially B, — VP decays. The agreements and differences with results in QCD factorization and
perturbative QCD approach are analyzed. We also study the time-dependent CP asymmetries in channels
with CP eigenstates in the final states and some other channels such as B°/B® — 7= p* and BY/B? —
K*K**. In the perturbative QCD approach, the (S — P)(S + P) penguins in annihilation diagrams play an
important role. Although they have the same topology with charming penguins in SCET, there are many
differences between the two objects in weak phases, magnitudes, strong phases, and factorization

properties.
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L. INTRODUCTION

Studies on B decays are mainly concentrated on the
precise test of the standard model (SM) and the search
for possible new physics scenarios. To map out the apex in
the unitarity triangle of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, many precise experimental data together
with reliable theoretical predictions are required. In charm-
less two-body nonleptonic B decays, the main experimen-
tal observables are branching ratios and CP asymmetries.
To predict these observables, one has to compute the
hadronic decay amplitudes (M ,M,|0;|B), where O; is
typically a four-quark or a magnetic moment type operator.
Since three hadronic states are involved in these decays,
the predictions on these observables are often polluted by
our poor knowledge of the nonperturbative QCD.
Fortunately, it has been suggested that in the mj;, — o
limit, decay amplitudes can be studied in a well-organized
way: they can be factorized into the convolution of non-
perturbative objects such as B to light form factors and
decay constants of light pseudoscalars/vectors with pertur-
bative hard kernels. In recent years, great progresses have
been made in studies of charmless two-body B decays.
These decays were investigated in the so-called naive
factorization approach [1,2] and the generalized factoriza-
tion approach [3-7]. At present, there are three commonly
accepted theoretical approaches to investigate the dynam-
ics of these decays, the QCD factorization (QCDF) [8-10],
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the perturbative QCD (PQCD) [11-13], and the soft col-
linear effective theory (SCET) [14,15]. Despite many dif-
ferences, all of them are based on power expansions in
Aqcp/my,, where my, is the b-quark mass and Aqgcp is the
typical hadronic scale. Factorization of the hadronic matrix
elements is proved to hold in the leading power in
Agcp/my, in a number of decays.

In the present work, we will focus on the SCET. The
matching from QCD onto SCET is always performed in
two stages. The fluctuations with off-shellness O(m2) is
first integrated out and one results in the intermediate
effective theory. At the final stage, we integrate out the
hard-collinear modes with off-shellness O(m,Aqcp) to
derive SCETy;. In B — MM, decays, both of the final
state mesons move very fast and are generated back-to-
back in the rest frame of the B meson. Correspondingly,
there exist three typical scales: the b quark mass m,, the
soft scale Agcp set by the typical momentum of the light
degrees of freedom in the heavy B meson, and the inter-

mediate scale ,/mbAQCD which arises from the interaction

between collinear particles and soft modes. SCET provides
an elegant theoretical tool to separate the physics at differ-
ent scales and factorization for B — MM, proved to hold
to all orders in «, at leading power of 1/m,, [16-20]. After
integrating out the fluctuations with off-shellness m?, one
reaches the intermediate effective theory SCETy, in which
the generic factorization formula for B — MM, is written
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(M \M5|0;|B) = T(u) ® ppy, ()M + T (u, 2)
® ¢y, (u) ® £ (2), (1)

where T and T are perturbatively calculable Wilson co-
efficients which depend on the Lorentz structure and flavor
structure. Calculations for these hard kernel functions are
approaching next-to-leading order accuracy [8,9,19,21—
23]. In the second step, the fluctuations with typical off-
shellness mj,Aqcp are integrated out and one reaches
SCET}. In SCETy;, end-point singularities prohibit the
factorization of £, while the function {; can be further
factorized into the convolution of a hard kernel (jet func-
tion) with light-cone distribution amplitudes:

{(2) = du,(x) @ J(z, x, ki) ® dplks). 2

An essential question is whether power corrections in
SCET can be analyzed in a similar way. It is almost an
impossible task to include all power corrections, but we
can include the relatively important one. Importance of
chiraly enhanced penguins was noted a long time ago, and
numerics show that chirally enhanced penguins are com-
parable with the penguin contributions at leading power.
Thus in both of QCDF [8-10] and PQCD [11-13] ap-
proaches, it has been incorporated into the decay ampli-
tudes besides the leading power penguins. In SCET, the
complete operator basis and the corresponding factoriza-
tion formulas for this term are recently derived in
Refs. [23,24]. A new factorization formula for chirally
enhanced penguin was proved to hold to all orders in «,
and more importantly the factorization formula does not
suffer from the end-point divergence. In the factorization
formula, a new form factor named ¢, and a twist-3 light-
cone distribution amplitude ¢”” are introduced.

In Ref. [25], one phenomenological framework is intro-
duced, in which the expansion at the intermediate scale

MKpe = 1/mbAQCD is not used. Instead the experimental

data are used to fit the nonperturbative inputs. This method
is very useful especially at tree level, since the function
T(u) is a constant and T (u, z) is a function of only «. Thus
only a few inputs are required in decay amplitudes. In this
framework, an additional term from the intermediate
charm quark loops, which is called charming penguin
[20,25-29], is also taken into account. Charming penguins
are not factorized into the LCDAs and form factors, since
the heavy charm quark pair cannot be viewed as collinear
quarks. They are also treated as nonperturbative inputs.
This method is first applied to B— K, B— KK, and
B — 77 decays [25]. Subsequently, it is extended to
charmless two-body B — PP decays involving the isosing-
let mesons 1 and 7’ [30].

In the present work, we extend this method to the B —
VP decays. We will use the wealth of the experimental data
to fit the nonperturbative inputs (in our analysis, we also
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take the B — PP decays into account). In doing this, we
would assume SU(3) symmetry for form factors and
charming penguins to reduce the number of independent
nonperturbative inputs: there are totally 16 nonperturbative
inputs to be determined. Utilizing the meson matrices, we
give the master equations for the hard kernels for B —
MM, decays. After analyzing the B — VP decays at
leading power, we take part of chirally enhanced penguin
into account. With the chirally enhanced penguins taken
into account, we find most of the 16 inputs are not changed
sizably except charming penguins. Flavor-singlet mesons
1 and 7’ receive additional contributions (gluonic contri-
butions) from a higher Fock state component. In Ref. [30],
the gluonic form factors and gluonic charming penguins
which are responsible for B — PP decays are fitted using
the related experimental data. Since there are not enough
experimental results, the authors find two solutions for
these inputs. This situation is changed when considering
B — VP decays since we have more data to give more
stringent constraint. Incorporating the B — VP experi-
mental results for branching fractions and CP asymme-
tries, we find that our results are consistent with their
second solution. We find two solutions for the inputs
only responsible for B — VP decays. One of the solutions
for B — V form factors are smaller than those given in
Ref. [23], where the B — p; p; data (p; denotes a longi-
tudinally polarized meson), B — p’p~ and B— ptp~
branching ratios, and CP asymmetries S,+,_ and C,+ -,
are used. Our second solution for B — V form factors is
more consistent with them. Generally speaking, charming
penguins in SCET have a similar role with (S — P)(S + P)
annihilation penguin operators in PQCD approach. Both of
them are essential to give the correct branching ratios in
these two different approaches. But there are indeed some
differences in predictions on other parameters such as
direct CP asymmetries and mixing-induced CP asymme-
tries. We also make some comparisons between these two
objects.

The paper is organized as follows. B — VP decay am-
plitudes at leading power are briefly given in Sec. II. What
follows is the factorization analysis in which chirally en-
hanced penguins are taken into account. In Sec. II, utilizing
the rich experimental data on branching fractions and time-
dependent CP asymmetry observables, we give two kinds
of solutions for the 16 nonperturbative parameters respon-
sible for B— PP and B — VP decays at the leading power
accuracy. With the inclusion of a chirally enhanced pen-
guin, most parameters remain unchanged except the
charming penguin parameters. Predictions on branching
fractions and other observables, including direct CP asym-
metries, time-dependent CP asymmetries, and ratios of
branching fractions, are given subsequently. A comparison
between charming penguins in SCET and annihilation
diagrams in the PQCD approach is presented in Sec. V.
Section VI contains our conclusions. In the appendix, we

034011-2



CHARMLESS TWO-BODY B, — VP ...

give the master equations for the hard kernels in both
b — d and b — s transitions.

II. B— VP DECAY AMPLITUDES AT LEADING
POWER IN SCET

In this section, we briefly review the factorization analy-
sis at the leading power and collect the corresponding
leading order short-distance coefficients. The weak effec-
tive Hamiltonian which describes b — D (D = d, s) tran-
sitions is [31]

H o = { > Va ViplC107 + C,07]

q=u,c

10,7y,88

l_:zs C,»O,-]}+H.c., (3)

where V,,p) are the CKM matrix elements and in the
following we will also use products of the CKM matrix
elements A(f) (g =u, c, 1) defined by A(f ) = Vs
Functions O; (i =1, ..., 10, 7y, 8g) are the local four-
quark operators or the moment type operators:

(i) current-current (tree) operators

= Vi V;DI:

07 = (Guba)v-a(Dpgp)y—a

_ - “4)
3 = (Gabp)v-a(Dgqa)yv-a
(i) QCD penguin operators
= (D_aba)v—AZ(C_]fgq;;)v—A,
q!
i o 5)
04 = (Dgbo)v-1D (Guqp)v—a
q!
05 = (Daba)V*AZ(qlﬁq/ﬁ)Vﬁ»A;
q/
_ (6)
O = (D,Bba)VfAZ(C_]/aq‘lg)VwLA,
q/
(iii) electroweak penguin operators
= 2 BubadvosY e @pdls)
5 \WaPalv- /eq’ qp9p)v+as
q
(N

3 _
Og = E(Dﬁba)V—Azeq’(q;q/B)w’A’
q/

3
Oy =§(D ba)y- AZE (GpdB)v-ar
q' (8)
3
O1o =§(Dﬁb V- Azeq (GaqB)v-a

q
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(iv) magnetic moment operators

em
04, = 4—bD TP PrboF

gmy ©)
Oss = HD o* PTG b Gl

where @ and B are color indices and ¢’ are the active
quarks at the scale my, i.e. ¢' = (u, d, s, ¢, b). The m, is
the b quark mass and we use m;, = 4.8 GeV. The left-
handed current is defined as (7aqp)v-4 = Gav,(1 —
¥s)qp and the right-handed current (gaqj)yv+a =
da?¥»(1 + ¥5)q)s. The projection operators are defined as
P, = (1 — vs)/2 and P = (1 + 75)/2. The electroweak
penguin operators Og o can be eliminated using e,gq =
iy + cc — %ch. In the following, we will work to leading
order in ag(m,). In the naive dimensional regularization
scheme for a,(my) =0.119, a, =1/128, m, =
174.3 GeV, the Wilson coefficients C; at leading logarithm
order for tree and QCD penguin operators are

C-¢(my) ={1.110, —0.253,0.011, —0.026, 0.008, —0.032},
(10)

while the Wilson coefficients for electroweak penguin
operators are

Co1o(my) = {0.09,0.24, —10.3,2.2} X 1073, (11)
and for the magnetic operators Cs,(m,) = —0.315,
Cg,(m),) = —0.149. We have used the sign convention

for the electromagnetic and strong coupling constant as
D, =0, —igT"Aj, — ieQsA,, so that the Feynman rule
for the vertex is igT“y, + ieQsy,.

In the present work, we will adopt the notations as in
Ref. [32] and use A = ‘/AQCD /my,. The emitted quark and

antiquark mainly move along the direction n, and the
recoiling meson is moving on the direction n_, where n.
are two light-cone vectors: n5 = 0 and ny - n_ = 2. The
matching from QCD onto SCET are always performed in
two stages. We will first integrate out the fluctuations with
off-shellness O(m3) to give the intermediate effective the-
ory. At the final stage, we integrate out the hard-collinear
modes with off-shellness O(m, Aqcp) to derive SCET);.

A. Matching onto SCET);

To study the decay amplitudes of B — MM, decays in
SCET, we first consider the possible operators using the
building blocks. The power counting rule for these blocks
has been given in Ref. [32]. Integrating out the hard scales
with typical off-shellness m?, the electroweak operators
can match onto two kinds of operators in SCET where the
situation is similar with that in B to light form factors: the
first kind of operators involve four quark fields while the
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second one involves an additional transverse gluon field. For flavor-singlet mesons, one needs to consider the operators
which are composed by two gluon fields. Then the leading power operators responsible for » — s transitions are chosen by

(0)(t) —

0
(ZS?BS(I) -

(0) (t) _

0
(5s?65(t) -

%—m,,zeWTr[[wzsz W ltn IWhiDy WL TGW. )i (1

[5Wadm )1 = Wl W (= o)
[@Wa)n )" (15 Wi (Wi (1 = 50,
[Ween )5 (1 = 7 )W) J@We (1 = 350, (12)

(W) (1% ot ) J[6Weh (1= 35,

- 75)hv],

with the trace over the color indices. The operators suppressed by A are given by

0116.9) = = [ Weodon ) 2 (1 = )W) W) OV B et Woa)om )1 = 50

0y(6) = —mih @Wain ) 1 (1% )W) [ )W B We om0 = o, ]

0)0.9) = = [ Weodon ) 2= (1 = 7)) @)W B o Woa) 5.1 = 750 )

Dt 5) = —mib @We)in ) = (1% 3 W) [ W) Wi LW )0 =35I, (13
01(,5) = =~ [Weo)n - V(L + ) (W W) WD Wer)sm (1 = y)(om )

08/(1,5) = — o [GWedtm -7 (1 + Y Wha T aW OV D Wer)om )1 = 5 )

(1, 5) = —2myie,, THIWhIDY , Weal(in )IWSIDT W llGWe)Wh i L Wer)(sn)(1 = y5)h, ]

where the fields without position argument are at x = 0.
The field products within the square brackets are color-
singlet and we will neglect the color-octet operators since
they give vanishing matrix elements at leading order. The
operators responsible for b — d transitions could be di-
rectly obtained by replacing s quark fields by the corre-
sponding d quark fields. Although the operators given in
Eq. (13) are suppressed by A compared with those in
Eq. (12), all of the operators in Egs. (12) and (13) contrib-
ute to (M;M,|O|B) at the same power when matching onto
SCETy;. Hence the effective Hamiltonians are matched
onto SCETI by the following equation:

H o = { [ die,(HOV (1) + j didsb;(7, 50" (s, s)}
(14)

with§ = ny - p's = mps,f = n_ - qt = mpt (p' and g are
the momentum of the recoiling and emitted meson, respec-
tively). We usually evaluate the Wilson coefficients c;(u)
and b;(u, z) in momentum space which is related to the

I
ones in coordinated space by

c;(u) = /dfe_i”mﬂféi(?), (15)

bi(u, 2) = [ die—ims ) f (7 7).

The tree-level matching coefficients for the four-body
operators in Eq. (12) are given by

: : 1 3ri1
C(1f2) = ’\y)[cl,z + N_CZ,I] - )\Sf)i[ﬁ Co 10 + C1o,9],

c c

3 1
C(3f) = —5)\5”[& + FCCS:I’

1 1
Cé(‘fj) )lgf)[ﬁ C3y4 + C4’3 - N
c c

- : 1 1 1
) = —A&”[Cs + G~ 5C1 5y Cg],

' =0 (16)
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The tree level matching of five-body operators leads to

b = Af,f)l:Cl,z + NL<1 - Z—i’)Cz,l]

- )\Ef)%l:clo,g + NLL(I - IZ—z)Calo]’
iarifer (-2 i)
e e (1]

+ )\y)l[clw + L(1 - ﬂ>C9’10]’

w3

2 N,
b = —/\ﬁf)[cS +i<1 —@)Cﬁ] an
Nc w)

(f) b
+ A +—(1- ,
2|:C7 Nc( w2>C8:|

b = A<f>3c7 1 (mb mb),

N w) w3
1 1 (m m
b(sf) = _)‘z(f)<C5 C7) ( b J),
N (1)2 (1)3
' 1
B = AV A(m,,)<___)
8s 16CF u u

X [f o 2(1 B Nif)(l = zub;?l = za)]’

where w, = ump and w3 = —iimg with u is the momen-
tum fraction of the positive quark in the emitted meson. mp
is the B-meson mass. Cp = (N> — 1)/2N, and N, = 3.
The one-loop corrections are given in Refs. [8,9,19,21-
23]. The coefficients c£ and bf are zero at O(a?), thus they
are not relevant for the present study in which we concen-
trate on the leading order analysis.

In SCET), the matrix elements of OEO’I) can be decom-
posed into some simple and universal ones defined as
follows:

M IGW i) (1 = ) Wh 10

_ lfMlmB f duelufngl (M),
2 0

(M| TI(xW ) (1 = ys)h, 1IB) = mp,
M| TL@W ) Wi | i We)(sn)(1 — y5)h, 1B

= —mj f dze™** {)(2),

(18)

where M, is an arbitrary pseudoscalar meson or vector
meson except i and 7’.
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B. Matching to SCETy;

The matching of SCET; onto SCETYy; is performed by
integrating out the degrees of freedom with p? ~ Amy,,. To
do so, it is useful to perform a redefintion of collinear
fields: ¢ — Y,q, where Y, is a soft Wilson line. The
SCET Lagrangian contains no leading order interactions
between the collinear-2 and collinear-1 fields after decou-
pling soft gluons from a collinear-2 sector by a field
redefinition. Although soft Wilson lines still appear in the
effective electroweak operators, the Wilson line only ap-
pears in the combination of Y A,. Thus the two kinds of
collinear sectors decouple and the decay amplitudes
factorize.

In SCETy;, the end-point singularity prevents the facto-
rization of ¢ while the form factor {¥¥(z) can be further
factorized into a convolution of light-cone-distribution
amplitudes (LCDAs) and jet functions:

M (z) Y f dk,dx¢ i (k)J(z, x, ky)duy(x). (19)
mp

At the lowest
x)a,mCp/(N Xk).

order, J(z, x, ki) = 8(z —

C. Decay amplitudes involving flavor-singlet mesons 7
and 0’

For isosinglet mesons 7 and 7', we adopt the Feldmann-
Kroll-Stech mixing scheme [33-35]. In this scheme, an
arbitrary isosinglet biquark operator O can be written as a
linear combination of O, ~ (ui + dd)/~/2 and O, ~ 5§
operators with the well-defined flavor structure. Matrix
elements of O = ¢,0, + ¢;0, between 7, 7’ states and
the vacuum state can be parameterized by

0l0[n) = ¢, cos,(0,) — c;sing(O0,),  (20)

010In') = ¢, sing (O,) + ¢, cosp (Oy), 21

where the four matrix elements (0|0, ;[9(’)) are expressed
by the two angles ¢, and two reduced matrix elements
(0,,). Phenomenologically, one can neglect the OZI
(Okubo-Zweig-lizuka) suppressed matrix elements and
obtain ¢, = ¢, = 6. Thus, the mass eigenstates 1, 7’
are related to the flavor basis through

1 = 7, cosf — 7,sind, n' = n,sind + 7, cosb.

(22)

For these isosinglet mesons 7, and 7, we need in addition
more theoretical inputs which arise from the higher Fock
state component:
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lEJ_;u/<1’q(p) |TI'[[WT lDlicZ

i€ 1y (pITAIWSiDY

(g TIGYW )AL (1 = y5)h, 1IB)),

Wl )WhiD" ,

Wl )[WLiD" ,

= \/imeg,
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! iut i / 2 He
W lll0) = o due 4 Cr gfr,qq)p(u),

a0 1 -
Weall0) = [ due’ JCryfos, B,
23
Yy IBY, @)

(| TIOYWe A (1 — = mp{,,

(I TIERW ) WEiB LaWe)(sn)(1 = 5k, IB)), = —\/_mgfa’ze””ﬂ’ *e(2),

(<ns|T[()_(Wcl)(W:1 iﬁ_]_chcl)(sn-F)(l - 75)hv]|B>)g = _m% '/-dzeimBZ.S{Jg(Z)r

where only the gluonic contributions to B — n,, 7, form
factors are shown. Note that our convention is different
from the one used in Ref. [30], where the form factors £,
and {;, are incorporated in the definition of { 7 M Here we
have separated them out and the two functions g’( 7 M2 4o not
contain contributions from the gluonic term. ThlS conven-
tion is more convenient when extracting the hard kernels
using master equations given in the appendix.

In SCETy;, {, cannot be factorized either for the pres-
ence of end-point singularity but {7V(z) is given in terms

of the jet functions by
|

1 (Cr 0

(24)
At the lowest order, J,(z, x, k;) = 8(z — x)a,27/(N k).
D. A summary of the factorization formulas

In summary, the b — s(d) decay amplitudes at leading
power in SCET can be expressed by

AB — M\My) = %mé{m [ dwda T+ py, [ dudy ) [zt 2"

+ fu j ducpyy, Ty + fy ] dudyy, () j 42T (1, DL (2)

+fM1 /duq)g (u)Tg(u)ZBMZ +fM [dud)g (u)[dszJ(u Z)fsz(Z) +fM1 [du(l)g (u)T (M)é’BMZ

+ fh f du®f; (u) f dzT§; (u, " (@) + AL AN + (1 - 2)}, (25)

where AX™2 denotes the nonperturbative charming pen-
guins. 7; are hard kernels which can be calculated using
perturbation theory. In the appendix, based on the flavor
structure of the four-body operators and five-body opera-
tors, we give the master equations for hard kernels 7
which utilize the coefficients given in Eqgs. (16) and (17).
For distinct decay channels, one can easily evaluate the
equation to obtain the corresponding hard kernels.

In SCET, the factorization formula for B — MM, is
easily proved to hold to all orders in «;: the amplitudes
given in Eq. (25) have the form of a convolution of the
universal light-cone distribution amplitudes and the per-
turbative hard kernels. Utilizing the perturbative expansion

in a,(y/m,A) for the jet functions and in «,(m,) for the
Wilson coefficients, one can predict the branching ratios,
CP asymmetries, and other observables for B — MM,
decays. One can also use another parallel method: the
nonperturbative parameters can be fitted by experimental
measurements on the B — M| M, decays. This approach is

f

especially useful at leading order in «, since then the hard
kernels T, (u) are constants, while T ;(u, z) are functions of
u only. Furthermore, at this order terms with hard kernels
T$,(u, z), TS (u), leg(u 2), T (1) do not contribute at all.
Thus the decay amplitudes of B — MM, decays at lead-
ing order in a,(m;) are written by

m2{ [ BMZ[d”¢M1 @)T,(u)

+ 02" [ dudu @iy

+ fu, (T, L5M + T ngz) + A AN

G
A(B— M\M,) = —L%

Nl

(1 e z)}, 26)
where the four functions {#*1, £, and

= fagm@, gt = [aegte. @)
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are treated as nonperturbative parameters to be fitted from
experiment measurements.

In order to reduce the independent inputs, one can utilize
the SU(3) symmetry for B to light form factors and charm-
ing penguins. In the exact SU(3) limit, only two form
factors are needed for B — PP decays without isosinglet
mesons:

— _ B,K
Loy =40y =40y = 4oy (28)

Besides these two form factors, there are two additional
new nonperturbative functions {{;), in decays involving
isosinglet mesons 7, and m,. They are contributions
from the intrinsic gluons. The B — V form factors are
rather simple, since there is no gluonic contribution at
all. The flavor SU(3) symmetry implies the relation for
B — V form factors:

évBV = ng — gBK _

Bw __ BK __ «B¢
0 =50 Y =40 (29)

) ) ) -

If the SU(3) symmetry is assumed for charming penguins,
there are totally five complex charming penguins which
depend on the spin and isospin properties of the emitted

mesons and recoiling mesons: ALY, ALY AYE, APE . AVE.

AMM Genotes the charming penguins in which the M,
meson is emitted and the M, meson is recoiled. The two
charming penguins ALL, A‘c/fg only contribute to decays in
which a isosinglet meson is recoiled.

With the assumption of flavor SU(3) symmetry for B to
light form factors and charming penguin terms, the non-
perturbative, totally 16 real inputs responsible for B — PP

and B — VP decays are summarized in the following:
EPF 070 Lo Ly 87V, 7Y ATE ALY ALE AT AT
(30)

III. CHIRALLY ENHANCED PENGUINS

Power corrections are expected to be suppressed by at
least the factor Aqcp/my,, but chirally enhanced penguins
are large enough to compete with the leading power QCD
penguins as the suppression factor becomes 2up/m,,
where wp ~ 2 GeV is the chiral scale parameter. Thus in
both of QCDF [8-10] and PQCD [11-13] approaches, it
has been incorporated in the phenomenological analysis. In
the framework of SCET, the complete operator basis and
the corresponding factorization formulas for the chirally
enhanced penguin are recently derived in Refs. [23,24] and
the amplitudes do not suffer from additional end-point
singularities. The factorization formula will introduce a
new form factor {, and a new light-cone distribution
amplitude ¢??.

As discussed in Ref. [23], there are three different kinds

of chirally enhanced penguin operators in SCET;: /LX ,

U and Q%Y. The basis for the Q( X _type operators is
glven by

PHYSICAL REVIEW D 78, 034011 (2008)

ap _ L
Qll(g/fq) - m_b[(qul)(l - 75)hv]
x [<§Wﬂ>(m>’{—‘im<1 7 )Wha]
n_v
o4y, = 0, e, 3D

These two operators Q(IB() will contribute to B — PP, VP,
V.V, decays (here V; denotes a longitudinally polarized
vector meson). There are in addition several operators
omitted here, as they can only contribute to B — V; V7
decays (V7 denotes a transversely polarized vector meson).
The second kind of operators which are responsible for
B — PP, VP, V,;V; decays are given by

e _ ~I- |
Q) = m_b[(qWCI)m—-i(?lal

WDy W) (s ) (1 + mhu]
X [GWo)(mn -(1 — y)Whe)l  (32)

1

oo _ 1T < :
Qz(fuu) m, [(SWcl)n+ l.ala_l_

WD W) (sna (1 + n)hy]

X [@Wo)(tnYh-(1 + ys)(Whuw)],  (33)

2
Q( X) —

B = A L@W) Wi Lo We)sm )1 = 5)h,]
b

X [(swczxm_)’{ i (1+ y5)(wqu)],
n_v
(34)

2
Q( X)

_ 2x)
dqfq) %qu . (35)

3(qfq)

plus operators with the same Dirac structure but different

flavors, Q(lz(ff}u) and Q(12(}(L)¢u)- If n_-iso-singlet operators are
2x)

included, we have two additional operators Ql(qu) and

Q(zz(;(;q)- Operators Q(IZ,XK contribute to B — PP, VP,

V;V, decays, while operators which only contribute to
B — V;V; decays are also given in Ref. [23] but omitted
here, since we mainly concentrate on B — PP and B —
VP decays.

Matching from QCD to SCET], one obtains the effective
Hamiltonian expressed by the (1 x) and (2 y)-type operators
contributing to B — PP, VP, V; V; decays:

G
Hx = T;[fdt X (HON (1)

+ f didsb ., (1, 90N, s)], (36)
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where the indices run over the operator number i and
possibilities for the flavors F for the Qyp). ¢ and b)EF)
are the short-distance Wilson coefficients in coordinate
space. At tree level, the corresponding coefficients in

momentum space are

1(qfq> AU)<C6 ]fls)ﬂ

cg(qfq) AU)(CS ]C\Z)ulf

Digre) = )‘y)[l :zuz (1?/3 2?\?) TG %]

b3y = 3A£f)[c7 + % - MCIH

Plugg = 2 D (- 20+ 3200) G37)
— 20, A =3C,0a),

bi\/(fuu) 2(1;-Zuz)< f]i AW 4 32(;]160 )‘gf))
— QCAL = 3C0),

b/;(qu/) )‘ (C6 N )u_lu

C\ 1
4afg) — 1 N.) uii

AX(B— M M;) =

\/i
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Matrix elements for these operators can be parametrized
into the following universal distributions:

<M|[<51Wc1)_
__ fym de eimss £BM (2),

#
<M<p)|[<swcz)<m =iy (14 ), zq)]|o>
=—lngMMj;)duei“f¢f4p(u),

1 ) _
01 (WHD L W) om )1+ 5)h, [1B)

(38)

where ), is the chiral scale parameter which is set to zero
for vector mesons. Using equation of motion, the pseudo-
scalar’s light-cone distribution amplitude ¢%”(u) can be
related to ones defined in QCD [24,36]:

by, 2fsr
6 frip

o) =3 4, + Y v, 0]

(39)

In the Wandzura-Wilczek approximation, ¢sp vanishes
and one gets ¢r’(u) = 6u(l — u) for the asymptotic
form. With the above matrix elements, generic decay am-
plitudes from the chiral enhanced penguin could be written
as

] =2 [ auoriaes - 00 [ duazalyory w e

-t fMl f dugp (T} () g — FH fM‘ f dudz ey (T} (1, 285" (2)

- % [ audzm, 9@ + 01 =) (40)

where £, (z) can be expressed as convolutions of LCDAs
and jet functions:

foM JJ_(Z) k )C)
{BM( ) [ [ dk+

l—z
X ¢B (k+)¢pp(x)' (41)

Here J,(z, x, ki) = 6(x — z2)7ma,Cr/(N.xk,) at lowest
order.

As emphasized in Sec. II, the leading power SCET
phenomenological analysis is very useful especially at
tree level. It does simplify the analysis. Even taking into
account the first four terms in Eq. (40), the scheme for
phenomenological studies will remain. But considering the
chirally enhanced penguins, the factorization formulas in-
volve a new form factor ¢, which cannot be simplified into
a normalization constant even at tree level. As shown in

Ref. [23], the fifth term proportional to ¢, is small which
does not give sizable contributions. Thus in our analysis,
we neglect it and only consider the first four terms:

2
AY(B — M My) = = F 2( —“M‘f’”')
\/_ mpg
XATY B + T 7Y + T 2™
+ T 00"+ (1o 2)) (42)

For B — PP decays, the chirally enhanced penguin takes a
plus sign; while in B— VP decays, when emitting a
pseudoscalar meson, the amplitude take a minus sign;
when a vector meson is emitted, there is no contribution
from a chirally enhanced penguin since py = 0.
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IV. NUMERICAL ANALYSIS OF B — VP DECAYS

A. Input parameters

In the factorization formulas, we will use the following
values for decay constants of the light pseudoscalars and
vector mesons (in units of GeV):

f==0.131,  fxr=0160,  f, =107/, =0.140,
fn =1.34f, =0.176, f, = 0.209, fx- = 0.217,
fo=0195  f,=0.231 (43)

The mixing angle between 1, and 7, is chosen as 6 =
39.3° [33-35]. For the CKM matrix elements and CKM
angles, we use the updated global fit results from the
CKMfitter group [37]:

V,, = 0.97400,  V,, = 0.22653,
|Vub| = (357t8%;) X 10_3, Vcd = _022638,
V,, =097316, V., = (40.5%32)x 1073,

[Vial = (8.68%933) X 1073,
V= 0.999135,
y = (67.6:2‘:25; °,

[Vl = (40.7253) X 1073,
B = QLTI
€= (1.0547002)°. (44

For the inverse moments of light-cone distribution ampli-
tudes for pseudoscalar mesons, we use the same value as in
Ref. [30]:

Ty =Gy, =&, =33
(x~ Dy = 3.24, (x~ g = 3.42,

(45)

and the inverse moment of vector mesons’ light-cone
distribution amplitudes are obtained utilizing the
Gegenbauer moments evaluated in QCD sum rules [38]:

(x7h), =&7h, =3.45,
(e = 279,

(x~1y, = 3.54,

46
(x g = 3.81. o

For the chiral scale parameters, we use a universal value
mp = 2.0 GeV for pseudoscalars and py = 0 for vectors.

The experimental data of B — PP and B — VP branch-
ing ratios, the direct CP asymmetries, and the parameters
in B’/B° — 7= p™ decays [which are defined in Eqgs. (73)—
(75)] are given by the Heavy Flavor Averaging Group
(HFAG) [39] and Particle Data Group (PDG) [40]. The
following mixing-induced CP asymmetries in B — PP
and B — VP decays are also used in our analysis:

PHYSICAL REVIEW D 78, 034011 (2008)
—n;S(Kgn') = 0.61 = 0.07,
—1S(Kgm°) = 0.38 = 0.19,
S(mt7) = —0.61 = 0.08,

—1;S(¢Ks) = 0.39 = 0.17,

S(7m0p%) = 0.12 = 0.38,
—n;8(p°Kg) = 0.611022 + 0.09 = 0.08 = 0.617533,
—n,S(wKg) = 0.48 = 0.24,

(47)

where 7, is the CP eigenvalue for the final state f. The
branching ratio of B® — K*7r° is not used in this fitting,
since the experimental data could only be viewed as an
upper bound.

With these data for branching fractions and CP asym-
metries, the y? fit method is used to determine the non-
perturbative inputs: form factors and charming penguins.
Straightforwardly, we obtain the two solutions for numeri-
cal results of the 16 nonperturbative inputs. At leading
order and leading power accuracy, the first solution is
(the charming penguins are given in units of GeV)

P = (128 = 1.2) X 1072,
P =(712%207) X 1072,
V= (124 £ 1.8) X 1072,
7 = (10.8 £ 1.9) X 1072,
{=(-53%22)x1072
£, =(=2.3+2.9) X 1072,
|APP| = (48.1 = 0.6) X 1074,
arg[APP] = (167.5 = 2.5)°,
|AYP| = (40.6 = 0.9) X 1074,
arg[AYF] = (10.7 = 4.3)°,
|APY| = (30.7 = 1.3) X 1074,
arg[ADV] = (194.3 + 4.6)°,
|APP| = (38.4 = 1.9) X 1074,
arg[AFP] = (83.0 £ 3.8)°,
|AYE] = (23.0 = 2.4) X 1074,

arg[AVL] = (38.4 = 23.0)°,

(48)

and one can obtain the predictions for B — P (here P
denotes a pseudoscalar except n and n’') and B—V
form factors at tree level:

FB=F =[P 4+ (P =0.201 = 0.015,

(49)
ABY =V + ) =0.232 £ 0.037.
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In the above equations (and also in the following), the
uncertainties are obtained through the y?-fit program.
After including the chirally enhanced penguin, the numeri-
cal results for these inputs are (the charming penguins are
given in units of GeV)

(P =(137+08) X 1072,
F=(069%07) %1072,
Y =(117+10)%x1072
¢V =(11.6 +0.9) X 1072,
{,=(-49+24)x 1072
(g = (=27%32) X 1072,
|APP| = (40.0 = 0.6) X 1074,
arg[ALF] = (165.2 = 2.8)°,
|AYP| = (41.0 = 0.9) X 1074
arg[AVP] = (11.9 = 4.2)°,
|APY| = (39.9 + 1.0) X 1074,
arg[AFY] = (191.5 = 3.6)°,
|AZP | = (37.7 = 1.8) X 1074,
arg[AFR] = (88.3 £ 4.1)°,
|AVE| = (25.3 £2.3) X 1074,

arg[AYL] = (—18.7 = 12.3)°,

(50)

which gives the predictions for B— P and B — V form

d(s) q d(s) q
A J
q b m q
=
—/ q/ (jl ql
d(s) q d(s) q
A J
b q b q
q/ / q/ q/

FIG. 1. Feynman diagrams for chiraly enhanced penguins
(left) and charming penguins (right). The two diagrams in the
lower line only contribute to decays involving 7 or n’, where

9=4q"

PHYSICAL REVIEW D 78, 034011 (2008)

factors at tree level:

F5=F = 0.206 + 0.004, A5~V =0.233 £ 0.017.

(D

As shown in Fig. 1, chirally enhanced penguins have the
same topology with the charming penguins. The former
two diagrams do not only contribute to decays without
isosinglet mesons 1 or n’ but also decays with these
mesons. The two diagrams in the lower line only contribute
to decays involving 1 or n’, where ¢ = ¢'. The inclusion
of a chirally enhanced penguin will mainly change the size
of three charming penguins AZY, ALF | ALY . Predictions for
branching fractions and CP asymmetries will not be
changed sizably. After including the chirally enhanced
penguins, the total y?/d.o.f for observables B — PP and
B — VP is 301/(86 — 16). If only the 55 observables in
B — VP decays are concerned, the total y? is 112.

Besides the above results, there is another solution at
leading power:

(P =(13.4+03) X 1072,
F=(5.8%204)x1072,
V' =(229+ 1.3) X 1072,
) = (6.6 =1.4)x 1072,
{,=(-103%12)x 1072,
L =(58%15 %1072
|APP| = (48.4 + 0.4) X 1074,
arg[AFF] = (167.1 + 2.6)°,
|AYP| = (29.7 = 0.8) X 1074,
arg[AYP] = (159.3 = 6.9)°,
|ARY| = (44.9 + 1.1) X 1074,
arg[AFY] = (—10.5 £ 2.9)°,
|AEP | = (38.4 +2.2) X 1074,
arg[ALR] = (83.8 £ 4.5)°,
|AYE| = (18.6 +2.3) X 1074,

arg[AVL] = (220.6 = 10.7)°,

(52)

which gives

F5~F =0.192 + 0.005, A5~V =0.295 % 0.009.

(53)

With the inclusion of a chirally enhanced penguin, these
inputs become
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(P =(141%+0.8) X 1072,
{F=(56*0.7) %1072,
V=227*17) X102

YV =(6.5*1.8) X 1072,
{ = (=10.0 £ 0.9) X 1072,
{,=0B.1x11)X1072
|ALP] = (40.6 = 0.6) X 1074,
arg[APP] = (164.9 = 2.8)°,
|AYP| = (29.4 + 0.8) X 1074,
arg[AYF] = (158.4 £ 5.8)°,
JAPY| = (33.5 + 1.1) X 1074,
arg[APY] = (—14.3 £ 3.8)°,
|ALE | = (37.8 £ 1.3) X 1074,
arg[Aff] = (87.5 = 2.1)°,
|AYE] = (18.3 £2.4) X 1074,
arg[AVL] = (225.6 = 10.0)°,

(54)

with the form factors

FB~FP =0.198 = 0.003, AB~V =0.291 = 0.011.

(55)

The corresponding x> = 271/(86 — 16) (x? for the 55
observables in all B — VP decays is 69). Comparing the
results in the leading order analysis and those with chirally
enhanced penguins, we can see that the charming penguins
APP and ALY are changed sizably. It is reasonable since
chirally enhanced penguins and charming penguins have
the same topology. The phase of AY% is also changed
sizably. It implies that the total statistical significance x>
is not very sensitive to arg[AXf;,]. The large error in this
parameter also confirms this feature.

Using the two solutions for these nonperturbative inputs,
we obtain two different kinds of predictions (labeled as
This work 1 and This work 2) on branching fractions and
CP asymmetries, where the chirally enhanced penguins are
taken into account. As we have shown in the above, the
leading power results are not very different from these
results, as the inclusion of chirally enhanced penguins
only amounts to a redefinition of charming penguins.
Results for CP-averaged branching fractions are summa-
rized in Tables I, III, and V, while predictions on direct CP
asymmetries are given in Tables II, IV, and VI. In B°/B° —
= p* decays, it is easy to identify the final state mesons.
Thus one can sum B°/B° — 7~ p* up as one channel,
although the summed channels are not CP conjugates.
The B°/B° — 77 p~ can be summed as another channel
and it is also similar for the branching ratios of B’/B° —
K*K and BY/B? — K*K decays. In Tables I and V, we give

PHYSICAL REVIEW D 78, 034011 (2008)

our predictions on the summed branching ratios in
B°/B° — 7= p*, K**K°(K*°K") and two B, — K*K de-
cays. We also give the predictions on the sum of the
CP-averaged branching ratios of B — 7~ p* and B® —
7" p~ and the other three By, decays in Tables I and VI. In
order to compare with the QCDF approach [10,49-53] and
PQCD approach [41-44,46-48,54-59], we also collect
their results in these tables, together with the experimental
data available at HFAG [39].

Because several approximations are made in this work,
there are some important possible corrections which we
would like to address. First of all, our results for the 16
inputs are obtained through the exact flavor SU(3) symme-
try for the form factors and charming penguins. The am-
plitudes may receive sizable corrections from the SU(3)
symmetry breaking effect proportional to m,/Aqcp ~ 0.3.
Second, since we have concentrated on the leading order
analysis, the radiative corrections proportional to

as(‘/mbAQCD) /m ~ 0.1 are also neglected. Although we

have included one of the most important power corrections
(chirally enhanced penguins), the other parts of power

corrections proportional to A = 1/AQCD /my, ~ 0.3 are not

incorporated in our analysis. At last, there are also uncer-
tainties from the input parameters such as the b quark
mass, Wilson coefficients, etc. To characterize these ef-
fects, we vary the magnitudes of the nonperturbative
charming penguins by 20% and the phases by 20°. We
also assume that the gluonic form factors {, and {;, have
additional uncertainties ( = 0.05). In the predictions for
branching fractions and CP asymmetries collected in
Tables I, IL, III, IV, V, and V1, the first kinds of uncertainties
are from these hadronic uncertainties: charming penguins
and gluonic form factors; the second kinds of uncertainties
are from those in the CKM matrix elements.

B. b — d transitions without 7(’)

b — d transitions are induced by the operators whose
CKM matrix elements are V,;,V},(i = u, c, t). To make it
clear, we decompose the decay amplitudes into three terms
according to the CKM matrix elements:

G s %
A(B - MlMZ) = _Fm%{vubvudAu + VcchdAc

NGl
= Vi VA (56)

where A, is from the charming penguin term. The decom-
position is over complete since the unitarity property of the
CKM matrix can be used to eliminate one of the three
combinations of CKM matrix elements. We keep all of
them according to the different dynamics in the corre-
sponding amplitudes. The values for CKM matrix ele-
ments,
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TABLE I

PHYSICAL REVIEW D 78, 034011 (2008)

Branching ratios (in units of 107°) of B — VP decays induced by the b — d (AS = 0) transition: the first solution (This

work 1) and the second solution (This work 2). In both cases, we have included the chirally enhanced penguin in B — VP decay
amplitudes. The first kind of uncertainties are from uncertainties in charming penguins and gluonic form factors as discussed in the
text; the second kind of uncertainties are from those in the CKM matrix elements. We also cite the experimental data and theoretical
results given in QCDF [10] and PQCD [41-44] approaches to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2
B~ —p 10.97}4 14.0783% 53766705 6-9 8.9%03110 11.4306% 5
B~ — pm~ 87419 119583539530 104733 + 2.1 10.7507%69 7.9%0310%
B~ — o 6.9+ 0.5 8.87337 35755700 113733 + 1.4 67103104 85103108
BT KUK~ <Ll 0305 03143 e i S e
B — KK 030G 100 1834 0S4 0sIgd
B~ — ¢m <0.24 ~ 0.005 ~ 0.003 ~ 0.003
gﬁ _ Z J; } 24.0+25  365112H103120139 1845 13.4408+12 16,8703+ 16
B°/B — p* 24-34 12.0% 2% 11 14.8% 1413
B°/B®— p~m* 24-34 14.9%19%13 18.75 13414
B — pta? 8.9 2.5 15.4180133707419 59103103 6.6:0107
B"— p-at? 139227  21.27103187113420 7.550750% 10.2794403
B — pOr" 1.870¢ 0410350140903 0.07-0.11 2.5+02+92 1540101
B = o <12 00IRRT Y 0.10-228 0.0003:5R00 0,015 45803
B — KR! 026 4SO 04SERE T 04T iae
B = KK <L 020ty 0SURRER  0astiigl
o o] ~ 1.9 096703708 095*03pl
B/B — KK 095Kl 09argRg
B/B0 — KK 097 0973l
B — ¢m° <0.28 ~ 0.002 ~ 0.001 ~ 0.001
B~ —pn 5412 94TTETNIG) 8.5 30 0 063" 3.9%39754 33516703
B —p 7 91534 6.3535730703703 8.7 3903 03 5" 0.3725537 667 04455507605
B~ o' <15 OOMRBICURGE  002euauRAR I ooaiil 014ty
B — o S SR e e T 6 i e e 1 S e
B"— wn <LO 03150105 0.27531 0.9155:576:60 L4ZGe501
B = wr <22 0201 AR GR 00751443 0IBTER 3
B — ¢ <0.6 ~ 0.001 0.0063* 39033 ~ 0.0004 ~ 0.0008
B — ¢/ <0.5 ~ 0.001 0.0073+9003 ~ 0.0001 ~ 0.0007

*We quote the branching ratios for B — p* 7~ and B® — p* 7~ from Ref. [45].

For B — pn decays, there are two different predictions given in Ref. [42] according to the different mixing angles between 5 and 7n'.
We quote the results in which 8, = —10° is used. There are not too many changes for the other predictions as the value for the mixing
angle 6p = —17° is very close to the first one.

[V Vil = 3.48 X 1073,
Ve Vil =9.17 X 1073,
[V, Vi = 8.60 X 1073

will definitely characterize the branching fractions and CP

asymmetries.

B — 7% p¥ are dominated by tree operators which

(57)

of GeV):

have the CKM matrix elements: V,,V; ;. To illustrate the
situation, we will use the second kind of inputs given in

Eq. (54) and take B® — p* 7~ as an example (in units

034011-12

~ 260 X 1074,

~5X%X 1074,

|A,(B® — p* )| = 0.131 X (1.03Z" + 0.77Z))

|A.(B® — p*77)| = |ALY| ~ (30 ~ 40) X 1074,
|A,(B® — p* 7)) =10.131(—0.0015¢" — 0.007¢))]

(58)

Our predictions on branching fractions of B® — 75p*
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TABLE II. Direct CP asymmetries involving b — d (AS = 0) transitions: the first solution (This work 1) and the second solution
(This work 2). In both solutions, we have included the chirally enhanced penguin in B — VP decay amplitudes. The first kind of
uncertainties are from uncertainties in charming penguins and gluonic form factors which are discussed in the text; the second kind of
uncertainties are from those in the CKM matrix elements. We also cite the experimental data and theoretical results given in QCDF
[10] and PQCD [41-44] approaches to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2
- -0 + A ()F12+1.8404+175 +16.9+1.6 +9.440.9
B™—pm 211 40215595 04177 0-20 15.5%180 114 12.35500-11
- 0,.— _A+12 +1.3+2.240.6+19.0 _ _ _ +13.14+0.9 _ +15.5+1.7
B™ —p'm [ASE 4120925507188 20--0 10.82177 507 19.27132 19
- - 4+ 1 QF0.5+2.7+0.8+2.1 - +19.1+0.1 +13.4402
B™ — wm 46 187455753507 22 0 0.5% 196 0.0 2.37135703
- 0 gr— _ +6.9+7.845.5+25.2 90 + &+ _ 2 (61404 A 4TA1H02
B~ — KK 23.5757700-65-36.8 2052 3.6753704 44751702
- *— 10 _ +3.7+7.844.2+27.4 _AQ+T+T _1 5+26+0.1 _ 1~ +L7+01
B~ — K"K 13.4750755747 7367 497377 15733701 1.27 7776,
R0 - 19 + F0.2+134+0.1+11.5 _ 0 Q+17.2+09 _ +17.6+1.1
B®— pTm 18 £ 12 0.6757 15 01117 9.9%167 07 1247153715
R0 — + _ 1 §+04+1.24+02+85 +17.5+1.2 +9.440.9
B —p 7 11=6 1576471370382 11.8%505-11 10.8%755 710
R0 0,0 _20 + _ +4.8+12.3+11.0+19.8 _s _ _() (214401 _ 2 2+21.4403
B —p'mw 30 = 38 1572435100 129" 258 75-0 0.62319%0.1 3.50503703
R0 0 _ _Q A+24.0+1.1 +79.143.4
B’ — w7 20-75 9.4755205% 39.5  (g542%
R0 +0 0 _ +7.4+7.245.7+10.9 _ 2 (61404 A 441402
B”— KK 26.7757700 69" 13.4 3.6753704 44751702
R0 o0 770 _ +3.845.4+45+5.8 _1 5+26+0.1 _ 1 7 +L7+01
B"— KK 1317567557527 74 15753704 127576,
- - o+ 9 4+0.7+6.3+0.4+0.2 _1a+12+2 £ (215406 _Q 1+167+0.9
B —pm 1*16 247657763 0402 13755704 6.6733707 917153 08
- - A+ +1.247.940.5+7.0 _1Q+3.0+1 _ +66.5+2.8 _ +135.9+2.1
B~ —pm 4+ 28 41717769 0870 18776 14 19.87595731 21775575
R0 0 _13+12+2 _ +170.4+2.9 +66.9+3.1
B"—pn 13265714 46.72743°535 333765455
R0 0,/ _1Q+3.0+1 _ +103.3+3.4 +19.9+4.4
B” — p"n e 18276 14 SLTZ5675% 522740641
R0 _ +10.0+65.3+20,9+19.2 _ +15.1 0 4+30.7+0.9 _Q (+17.840.9
B”— wn 33.479 57555 01.4-208 69.17134 947302 10 9.67 165 0.0
R0 ! +0.1+53.0+11.6+19.2 +4.1 _ +87.5+4.8 _ +18.14+2.4
B”— wn 0.275 1 765115201 13.9735 43.0753375] 2727557755
TABLE III.  Branching ratios (in units of 107%) for As = 1 processes: the first solution (This work 1) and the second solution (This

work 2). In both solutions, we have included the chirally enhanced penguin in B — VP decay amplitudes. The first kind of
uncertainties are from uncertainties in charming penguins and gluonic form factors which are discussed in the text; the second kind of
uncertainties are from those in the CKM matrix elements. We also cite the experimental data and theoretical results given in QCDF
[10] and PQCD [46,47] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2
B~ — K 7" 6.9 +23 33 09064 4.3439 4.2+32%08 6.57 19707
B~ — K7~ 10.7 = 0.8 3.6403 131311 6.0133 8.5M4 1 9.9331 13
B~ — p°K~ 425755 2655510613 51553 6.733769 46715704
B~ — p K 8.0°13 5.87001 1011310 8.774% 9.314717 101749715
B~ — wK~ 6.7+ 0.5 3.5 05 ethet s 10.6+1%* 51535103 59133108
B~ — ¢K~ 8.30 = 0.65 457037130 HILE 7.8532 9.77457 18 8.673213
B — K7 0.0%53 0.7251 563503768 2.0%53 465367 37515503
B'— K~ mt 9.8 + 1.1 33 TRT0sTee 6.0758 8.4734118 9.5%33*12
B — p’K° 54700 4620315010778 48733 35535704 58554767
B'— p*K~ 15.3731 T4 T a 8.8743 9.87%5 14 10.2735%13
B’ — wk® 50%0.6 2.3+3+28+13+43 9.8*8¢ 4173108 49718504
B" — ¢K° 83115 AT 7.353% 91758714 8.0738 1o
B~ — K" 7 193+ 1.6 10.8F 918 11181165 22.13%938 17.9733433 18.6%43"33
B — K7 4913 3 B AR R 6.38 = 0.26 45755103 4.8%3310%
B — K*n 159 = 1.0 1075165087190 22317938 16.613037 16.5751723
BY — KOy 3.8*1.2 3.97047457 08783 3.3555%9 41752109 4.0733707
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TABLE IV. Direct CP asymmetries (in %) for As = 1 processes: the first solution (This work 1) and the second solution (This
work 2). In both solutions, we have included the chirally enhanced penguin in B — VP decay amplitudes. The first kind of
uncertainties are from uncertainties in charming penguins and gluonic form factors which are discussed in the text; the second kind of
uncertainties are from those in the CKM matrix elements. We also cite the experimental data and theoretical results given in QCDF
[10] and PQCD [46,47] to make a comparison.

Channel Exp. QCDF PQCD This work 1 This work 2

- *— 0 + +2.145.0+2.9+41.7 _3p+21 _17.8+30.3+2.2 _12.9+12.0+038
BT —K"m 4x29 8.7 56 43-34-442 3275 17.825,6%50 1297155 0%
B~ — K7 —8.5%5.7 167040803723 -1 0 0

- 0g— +11 13 g F45+6.9+3.7+627 +25 +152+0.7 +20.5+1.3
B~ — p’K 31500 13.6557 44751255 712353 92718107 16.0233%1%
B~ —p KO —12+17 0.3* 0170370318 1*1 0 0

- - + _ 7 @+2.6+5.9+2.4+39.8 +15 +182+11 +16.6+0.8
B” — ok 2%5 7-8250-36-19-380 3275 11.65037 11 12.32173701
B~ — ¢K~ 3.4+ 4.4 L6104+06+0.3+39 110 0 0

0 _, R*0.0 19 g+40+47+2.7+317 _11%7 +7.5+0.5 +4.8+0.4
B"— K 12.8255770-40-353 1175 5025303 54251205

0 _, o+ _5+ +0.6+8.2+5.1+62.5 _60+32 _112+19.0+13 _ 19 9+11.4+08
B — K" S5+ 14 21267275 58 612 6075 TL270165713 1227113 0%

0 070 297+ ]+ +L7+23+0.7+8.8 +8 6.6 FH1L6+0.8 _ 3 5+48+03
B”— p°K 2£27+8=%6 7.5251750-04-87 775 6.6295709 35245503

0 + + 3 +13+44+1.9+34.5 +24 +11.2+0.7 +13.0+0.7
B"—p'K 222723 38114557 16307 6425 71215307 962135 09

0 20 + g {+25+3.0+L7+118 _+2 +8.0+0.6 +5.2+03
B — ok 21=19 81250735 14~ 12 333 52255706 38234703
B — ¢K° 1=12 17404408703 +4d 31l 0 0

- x + +0.9+1.9+0.8+20.7 _ +0.72 9 6+54+03 1 g+34+0.1
B-—K"n 2x6 3.5209-27-08-205 24577 2.6235703 19736 01

- w1 +33 14 2+4.T+85+4.9+27.5 +1.16 +27.4+0.4 +26.7+0.2
If - {( n 3023 142705 158 146361 4.607 ;5 27795703 262539703
B — K*q 19+5 3.81071 1102438 0.57 +0.011 — L1733+ —0.7+12+01
B0 _, 0./ _Q+ _ 5 5+1.6+3.1+1.8+6.2 _ + +8.9+13 +6.2+0.9
B”— K™ 8+25 5521375175970 1.30 = 0.08 96717012 9-9743 09

decays are smaller than those in QCDF [10]. Neglecting
the small terms, the main reason is our smaller B — P and
B — V form factors: QCDF uses much larger form factors
FP~7 =028 £0.05 and Aj " =0.37 =£0.06. In the
present framework, BR(B® — p*7~) is smaller than
BR(B°— p~ ™). In the first solution, the fitted B — V
form factor Ay = 0.233 is almost equal with the B — P
form factor F = 0.206. Since the decay constant of the p
meson is much larger than that of 7, 0.209/0.131 ~ 1.5,
we expect BR(B"— p™7~) is only one half of
BR (B — p~7"). Charming penguins AY” and ALY can
slightly change the ratio: the charming penguin ALY in
BY — p* 7~ gives a destructive contribution, while AY”
in B — p~ 7t gives a constructive contribution. In the
second solution, contributions proportional to form factors
are almost equal with each other, as the B — V form factor
AB~Y =0.291 is much larger than F~F = 0.198 which
can compensate differences caused by decay constants. But
unlike in the first solution, the role of the charming penguin
totally changes: the charming penguin in B — p* 7~
gives a constructive contribution, while AY” in B° —
p~ " can give a destructive contribution. It is reasonable,
since the charming penguins AYY and AFY almost inter-
changes the phases.

Our predictions for branching ratios of B® — 7%p° are
larger than that in QCDF especially the prediction utilizing
the inputs given in Eq. (50). In this channel, two kinds of

charming penguin almost cancel with each other, since
they have similar magnitudes but different signs as given
in Egs. (50) and (54). The tree contribution proportional to
the soft form factor { is color suppressed (the Wilson

coefficient C, + € ~0.12 is small compared with that of

N(‘

B — p* 7™ C; + £~ 1.03), thus the branching fractions

of B — 77°p° in the QCDF approach and PQCD approach
are much smaller than BR(B® — p* ™). One important
feature of the SCET framework is that the hard-scattering
form factor /; is relatively large and comparable with the
soft form factor {. Besides, this term has a large Wilson
coefficient b{, since C, + NL[(I - ’Z—’;)Cl ~ 1.23 is large, it
can give larger production rates which are consistent with
the present experimental data. The agreement is very
encouraging.

Branching ratios of B— K*K are larger than those in
QCDF for the presence of charming penguins. In
B~ — K*" K% and B° — K*°K°, both penguin operators
and charming penguins can give contributions. The
difference for these two channels is that the spectator
antiquark in B~ — K*"K° is & and it is d in B®—
K*9KO. Tt does not affect the contributions from either
penguin operators or charming penguins, thus we expect
the relations BR(B™ — K* K% = BR(B? — K*9KY)
and Acp(B~ — K*7K°) = Acp(B° — K*°K?). The small
differences in branching fractions are induced by the dif-
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TABLE V. CP-averaged branching ratios ( X 107%) of B, — PV decays: the first solution (This work 1) and the second solution
(This work 2). In both solutions, we have included the chirally enhanced penguin in B — VP decay amplitudes. The first kind of
uncertainties are from uncertainties in charming penguins and gluonic form factors which are discussed in the text; the second kind of

uncertainties are from those in the CKM matrix elements. We also cite theoretical results evaluated in QCDF [10] and PQCD [48] to

make a comparison.

Modes QCDF PQCD This work 1 This work 2
B)— K"K*~ 4155503509033 6.0513517703 8.475471% 9.5533517
BY— K"K~ 555135505058 47558713100 9.8735%11 10.2435%13
B) — KK 39504510y 73555513500 79555508 9353510
BY — K*K° 4250355 56Ty 43503533580 87553718 9.4:31113
BY/BY — KTK*~ 16.5754%32 17.5739733
BY/BY — K** K~ 19.87¢8433 21.813355%
é’g — KK~ } 18.2+63+33 19.7+50+2.6
BY— K*K* “£-50-27 --42-22
B — If*oko} 16.6+62+32 18.7+49+26
Bg N K*OKO Y—49-27 1 —42-22
B — ¢ 0125320047001 001 0165080037000 0.078005001 0.09500-061
B) — 7 K™ 8735553700 07 76235505703 59703763 6.6701767
BY — 7K™ 0,250 08 006014014 0.07 58010037001 0.90507 501 LO75184560
B—p K* 24.5Tg RS 17.8558 180 76257103 10.25037539
BY — p°K° 0.61 2033 07556582036 0.082805 X 003-0:00 2.0503753 0.8120:03605
B)— K'w 0.51 X079 01710532059 0155003003 -0 01 0.905015 17 13501701
BY— K 0.27 0 08 0 T4-0.06-018 016200300001 0447037005 05470377005
BY— pn 0.17 24 3 006 0.02-0.01 00628537001 7000 0.0870.037001 0.06-0:037000
BY— p'x 0,258 08 0 08-0:05-0.05 0. 132585007001 0.003 50550000 01435317501
B — wn 001224003 0003 -0 006 ~0.00 0.04 2503 0037000 0.04730370.50 0.007500,0.001
B — wn' 002418006 -0 006 ~0 0100013 0.4475 1510137000 0.0014:055-6.000 0.2050377003
BY— ¢n 0125003 0 37017013 3621550600 059585015 09415555618
BY— ¢n' 0057001 5197008004 0. 198081813200 7350008 43533704
B)— K*'q 02650137055 003014 0175604 0 06001 L7503567 0.62501470.0
BY — K0y 0.287 0 04 030 010019 0.095003 00001 0.64503270 11 0.87203 0 0g

ferent lifetimes of B~ and B°. The analysis is similar for
the other two b — d modes: B~ — K~ K*® and B’ —
KK,

For the decays with sizable branching fractions, our
predictions on direct CP asymmetries are typically small
and most of them have the correct sign with experimental
data. Predictions in QCDF approach on these channels are
also small in magnitude, but some of them have different
signs with our results and experimental data. In the PQCD
approach, the strong phases mainly come from the (S —
P)(S + P) annihilation operators. These operators are chir-
ally enhanced and the imaginary parts are dominant. Thus
the direct CP asymmetries in the PQCD approach are
typically large in magnitude.

C. b — s transitions without % and »’

Like b — d processes, b — s decay amplitudes can also
be decomposed into three different parts according to the
CKM matrix elements. The values of the CKM matrix

elements are given by

|V, Vi|=0.81 %1073,
|V, Vi ] =39.41 X 1073, (59)
|V, Vi| = 40.66 X 1073,

Tree operators are highly CKM suppressed, but the CKM
matrix elements for the other two kinds of contributions A,
and A, are in similar size. Together with the hierarchy in
Wilson coefficients, Cy, > C5_19, charming penguins
will provide a dominant contribution. For example, the
penguin operators in the B~ — 77~ K° decay process is
proportional to ay + ryag, B~ — 7~ K** is proportional
to a4 while B~ — p~K° is proportional to a, — r,as,
where a46 = Cy6 + C55/N, and r, = 2up/my. Thus if
we only consider the emission diagrams, BR(B™ —
7 K%)>BR(B-— 7 K*%)>BR(B~—p K" holds,
since a4 ~ ag and r, ~ 1. But in the present framework,
contributions from penguin operators proportional to
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TABLE VL

PHYSICAL REVIEW D 78, 034011 (2008)
Direct CP asymmetries (in %) in the B, — PV decays: the first solution (This work 1) and the second solution (This

work 2). In both solutions, the chirally enhanced penguin has been taken into account in B — VP decay amplitudes. The first kind of
uncertainties are from uncertainties in charming penguins and gluonic form factors which are discussed in the text; the second kinds of
uncertainties are from those in the CKM matrix elements. We also cite theoretical results evaluated in QCDF [10] and PQCD [48] to

make a comparison.

Modes QCDF PQCD This work 1 This work 2
B) — K"K~ 2250580755551 —36.6233735513 —11258003 —12.3515708
B)— K"K~ QAR A Ay 553545553535 71T 9.6135%09
B) — KK 1750550503 s 0 0 0

B} — KK’ 0.2568 503501501 0 0 0
B~ n'¢ 27.2565 756733570 133553557503 0 0

B} — p'n 27,8787 83 38 —9-2%5435705 0 0

B — p'n’ 2891535 5578 258555736505 0 0

BY— wn X —16.77381 151108 0 0

B) — wn/ 7T 0 0

BY — ¢ — 84T S — 1851060 213533558 16.9713551%
B) — ¢/ —62. 2 A e 0o 785538504 4457708 78159708
B)—a K™ 0.6251 17501501 —19.055854 0% —9.9516767 —12455300
B — 7K™ A5 T e o050 —4T157858 570 22,9355 1341158793
B)—p K* —LSI0TANE 142535807 185030 108555557
B) — p°K° 24T TS 7340152 — 1205856755 —32.50550730
B}~ K'w —43.01 34T RE1308 ] —S2 15555150 2447500753 1825160717
B~ K — 103558750158 0 —3.0235183 —2.2239%5,
B) — Ky RLUPARYEME 1 B 512583510438 —25.75554038 —62.75555758
B — K"y — 586710 139 457 —SLITGET Rt —35.2180 3% —32. 115558

Vi Vi do not play the most important role:

|A,(B~ — 7~ K%)| = 0.16 X (—0.044£F — 0.036{7)]

ours, since they have more large imaginary parts from
annihilation diagrams. The QCDF results are small and
comparable with ours but with a relative minus sign. We

~ 15X 104 have to wait for the experiment data to resolve this
B ’ disagreements.
|A,(B~ — p~K°| =10.16 X (0.0004¢" + 0.004Z))|
~1X1074 D. B Decays involving 9 or 0’
|A,(B~ — 7~ K*)| = [0.217 X (=0.022¢" — 0.015%)| As we can see from Table I, there is about 3. 10 deviation
for our prediction on the branching ratio of B~ — p~ 7’
~10 X 1074, (60)

Compared with the results given in Egs. (50) and (54), we
find penguin operators are smaller than charming penguins.
According to the size of charming penguins, we expect the
relation BR(B~ — p~ K% ~ BR(B~ — 7 K*). Thisis
consistent with the experimental data.

From Table IV, we can see the direct CP asymmetries of
B — K%, BB—>K ", BB—>K ¢, and B~ —
K°¢ are zero. In these channels, tree operators do not
contribute. The weak phases for penguin operators and
charming penguins are equal to each other, which cannot
induce any direct CP violations. CP asymmetries in other
channels are not large, because the strong phases of charm-
ing penguins are either close to 0° or 180° and imaginary
parts are accordingly small. The PQCD results for most
B — K*7 and B — pK channels are much larger than

from the experimental data. Contributions from penguin
operators are suppressed by the Wilson coefficients and the
dominant contribution is from the tree operator. This kind
of contribution is either proportional to the B — 7, or B —
1, form factor. Utilizing results given in Egs. (50) and (54),
we obtain B — 7, and B — 7, form factors as follows:

FP=00 = (P + {7 + 24, +245,)
= (0.053 = 0.068)[(0.100 = 0.021)],

FE=ms = (L, + L)
= (—0.076 = 0.055)[(—0.049 =+ 0.011)],

(61)

where the results inside (outside) the square brackets are
predictions using the second (first) kind of inputs. In
Eq. (61), we can see that after taking the gluonic form
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factors into account, the FB~" and FB~" form factors are
a similar size but with different signs in both kinds of
inputs. In B~ — p™~ 7, another tree operator contributes
in which 7, is emitted. Although this contribution is color
suppressed, terms proportional to ¢} give a sizable con-
tribution. It can be estimated by using a larger effective
B — m, form factor. Recalling that physical states 7 and
n’ are mixtures of 1, and 7, as in Eq. (22), one obtains the
expressions for B — n(’) form factors:

B—n,
FB—n =

cos(8) — FB~7: sin(6),
(62)
B—n,

FB—7 = sin(@) + FZ=7 cos().

The mixing angle between 7, and 7, has been determined
as 6 = (39.3 = 1.0)° [33-35] which is very close to 45°,
thus we can obtain very small B — %' form factors and
relatively large B — m form factors. Thus the branching
fraction of B~ — p~ 7' is relatively suppressed for this
flavor structure. In QCDF and PQCD approaches, the form
factors are different: F~7 > FB=7: Thus the predicted
branching ratio of B~ — p~ 7 is comparable with
BR(B~ — p~7') in these two approaches.

As in the B®— 7%p° process, our predictions on
branching fractions of B® — p°%" and B° — wn" are
much larger than the results evaluated in the QCDF and
PQCD approaches. These channels are the so-called color-
suppressed decays, as the contributions from terms propor-
tional to ¢ and {, are small due to the small Wilson
coefficients. But in the present framework, the hard-
spectating form factors ¢; and {j, are comparable with ¢
and {,. Moreover, the Wilson coefficients for these form
factors are large. Thus branching ratios of B® — p®%") and
BY — wn" are much larger.

Similar with B— K*7 and B — pK decays, B —
K*n(n') are also induced by b — s transitions in which
charming penguins provide most important contributions.
But compared with B — K*7r and B — pK decays, there is
something new in these channels. In B — K*n(n’), there
exist three kinds of charming penguins:

AR _ 1

cc \/5

K'ng _ AVP PV
Ace = Aleg T ALl

(AZF +24%5),

(63)

Substituting the values given in Eqgs. (50) and (54), we
obtain ratios of charming penguins:

Icos(209) (AXCP + 2A¥CI;) — sm(ﬁ)(AXch + Afy)lZ
|0 (AT + 24TR) + sin(6)(AYE, + ALY

~

The branching fraction of B — K*' is about 4 times
larger than that of B® — K*0x’ for both solutions. The

main reason for the difference is that AX. ™ is very small

PHYSICAL REVIEW D 78, 034011 (2008)

due to the cancellations between A% and Ay ; the penguin

operators play the dominant role in the B — K* 7, decay
amplitudes. Our results for these channels have a better
agreement with experiments than QCDF and PQCD.

E. B, — VP decays

Since we have assumed the SU(3) symmetry for form
factors and charming penguins, branching fractions and
direct CP asymmetries of the B, decays are related to the
corresponding B decays:

BR(B?— K**K~) = BR(B' — p*K"),

_ _ (64)
BR(BY— KTK*") = BR(B* — wTK*"),

Acp(B) — K**K™) = Acp(B® — pTK™),

RO + pE—) — RO + prE— (65)
Acp(By = KTK*") = Acp(B” = w7 K™7).

These relations can also be applied to the following chan-
nels:

BRBY— K7™ )=BR(B— p*t7m),

_ _ (66)
BR(BY—>K"'p™)=BRMB - 7tp"),

Acp(B) = K ™) = Acp(B” — p*ar),

_ _ (67)
Acp(B} — K*p™) = Acp(B® — ¥ p™).

In tree-operator-dominated processes BY — p K™, we
obtain branching ratios which are much smaller than pre-
dictions in the other two approaches—because PQCD
predicts FB—K = 0.2470.020.09 and QCDF use an even
larger form factor F5~K =031+ 0.05. BR(B!—
7 K*") is consistent with results in the QCDF and
PQCD approaches as the B — K* form factors are consis-
tent. As in B decays, we also predict larger branching ratios
for color-suppressed B decays than QCDF and PQCD
which can be tested in future experiments.

Our predictions on b — s processes BY — K*K are con-
sistent with the other two approaches. But there are huge
differences in our predictions of BR (B, — ¢ n(n’)) with
those in QCDF and PQCD. In the PQCD approach, con-
tributions from gluonic components of 1 and %' in B —
1(") form factors are very small and can be neglected [60].
As shown in Ref. [48], decay amplitudes of B; — ¢, are
dynamically enhanced sizably, as the Wilson coefficients
asz — as strongly depend on the factorization scale. In
B, — ¢ n,, dominant penguin operators are either propor-
tional to a4 — 2r,a¢ or a,. The former Wilson coefficient
is very small as a4 ~ ag and 2r, ~ 1. The total decay
amplitudes of B; — ¢n, and B; — ¢n, are in similar
size but with different signs. Thus the branching ratio of
B, — ¢m predicted in the PQCD approach is relatively
large while the branching ratio of B, — ¢ 7' is small due to
cancellations between the two amplitudes [48]. In the
SCET framework, charming penguins play the most im-
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portant role: the charming penguin AYF almost cancels
with ALY, Thus the dominant contributions to B, —
¢n(n') are from the gluonic charming penguin and the
penguin operators which are proportional to V,,Vj..
Neglecting the latter term, we have

AL = cos(0)V2AYE, — sin(9)AVL, ~ (V2 — DAYE,
B—on' _
ASTOT = sin(0)V2AYE + cos(B)(AYE) ~ (V2 + DAVE.
(68)

These two equations can explain the small branching frac-
tion for B, — ¢ n together with the large one for B, —
¢n'. The QCD penguin contributions do not change the
ratios too much, but sizable differences appear in the two
solutions. The large differences in two kinds of predictions
on direct CP asymmetries also confirm this feature.

In B, decays, there are 7 decays in which the direct CP
asymmetries are zero: B, — K*°K°, B, — K*°K°, B, —
1 ¢, and B, — p°(w)n(’). As we know, in order to give a
nonvanishing direct CP violation, at least two decay am-
plitudes with different weak phases and different strong
phases are required. In the first two decays, contributions
from tree operators vanish at leading order. The nonzero
contribution is either proportional to the CKM matrix
elements V,,V;, or V, Vi and both of them are taken
real in our calculation. Thus in these two channels, there
is only one weak phase and direct CP asymmetry is O in the
present framework. The latter 5 channels are induced by
b — s transitions and one of the final state mesons is
neither open nor hidden strange. There is no contribution
from charming penguins in these modes. The direct CP
asymmetries are zero for lack of necessary strong phases.

F. Mixing-induced CP asymmetries

In this subsection, we will discuss mixing-induced CP
asymmetries which can be studied via time-dependent
measurements of decay widths. The four decay amplitudes

in B°/B% — f(f) decays are defined by
Ay = (f|H | B°), A = (f|H | B°), ©9)
A7 = (f|H | B°), Az = (fIH | B°).

Considering the width differences of the two mass eigen-
states By and B, the decay amplitudes squared at time ¢ of
the state that was a pure B° state at time ¢ = 0 can be
parameterized by

|As (01> = KFIB()I?

—I - ATt

_ e

+ Hy sinh(%) + Cycos(Ami)

- S sin(Amt)], (70)

PHYSICAL REVIEW D 78, 034011 (2008)

where Am = my —m; >0 and AI' =Ty —I', is the
difference of decay widths for the heavier and lighter B°
mass eigenstates. The time-dependent decay amplitudes
squared of another channel B® — f is obtained from the
above expression by flipping the signs of the cos(Amt) and
sin(Amr) terms. For decays to the CP-conjugate final state,
one replaces f by f.

Time-dependent decay amplitudes squared can be sim-
plified in two kinds of cases. In the B*-B° system, the small
width difference AT can be safely neglected. Thus the first
two terms cosh(%) and sinh(%) in Eq. (70) can be
reduced to 1 and O and the decay amplitudes squared
become

1A (01> = [(FIB()I?

efl“t

== (Af? + A1 + C;cos(Amr)

— Spsin(Am1)], (71D)

In the following, we use the phase convention CP|B%) =
|B°) and define the following amplitudes ratios:

A-
A-=314—{, (72)
P Ay

and ¢ and p are the mixing parameters between B” and B°.
The definitions for C and S are given by

B el 1Y G V7 el Y _, Im(Ay)
PO+ I AP H AP U TP WEN
O LY G L Y . Im(ap)
T+ I 1A + 1A 1+ A7

(73)

The system of four decay modes defines five asymmetry
parameters, Cf, Sf, Cf, S 7 together with the global charge

asymmetry related to the overall normalization:
AP+ AL = 1A — 1A

Acp = = ==
T IAP AP+ AP + 1AL

(74)

One can also use the parameters C = %(C r+Cp), S=
%(Sf + 57), AC = %(Cf —Cp),AS = %(Sf — S7). If there
is no direct CP violation, only two independent decay
amplitudes squared are left. Thus Acp =0, Cr = —Cy,
and Sy = —S§; which also implies C = 0 and S = 0. If we
recall that the CP invariance conditions at the decay am-
plitudes level are Ay = A 7 and A F= Ay, one can study the
following two parameters:

L
AP + 1A

o WAL=l
1f Mflz + |Af|2'

Sometimes, they are considered as more physically intui-

tive parameters since they characterize direct CP viola-
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TABLE VII.

PHYSICAL REVIEW D 78, 034011 (2008)

Mixing-induced CP asymmetries in B — 7~ p~ decay processes: the first solution (This work 1) and the second

solution (This work 2). In both cases, the chirally enhanced penguin has been taken into account. The first kind of uncertainties are
from uncertainties in charming penguins which are discussed in the text; the second kinds of uncertainties are from those in the CKM
matrix elements. We also cite theoretical results evaluated in the QCDF approach [10] to make a comparison.

Parameter Exp. QCDF This work 1 This work 2
Aer ~0.13= 004 000 G BE 0l 0127478 021785148
¢ 001 0.7 0005481 40040 0014114 0014340
: 0,01 +0.09 013400041002 40 ~0.11507 6 ~0.01 3% +008
Ac 037 0.08 0167506821044 01174 012/
as 0042010 —002g i un 0478 0437454
tions. In B — p*7* decays (choosing f = p*7~ and  with

f=p - 7"), we use A, which parameterizes the direct B

CP violation in decays in which the produced p meson A=1 q A(B— Jf ) (79)
does not contain the spectator quark, while A, parameter- f p A(B— f)’

izes the direct CP violation in decays in which it does. Of
course, these two parameters are not independent of the
other sets of parameters given above, and can be written as

A+7 _ _ACP + Cff + ACPACff

p _ .
1+ AC; + AcpCy7

_ ACP + iji + ACPACff

—1+ACs; +AcpCyy

(76)

-+
Ay =

Predictions on these parameters are given in Table VII.
Most of them are consistent with the data except AC and
AS.

If the final state f is a CP eigenstate, there are only two
different amplitudes since |f) = *|f) and the time-
dependent decay amplitudes squared can also be simpli-
fied. Restricting the final state f to have definite C P-parity,
the time-dependent decay width for the B — f decay is

(B (1) = f) = e "'T(B— f)
X [cosh(%) + Hy sinh(%)
— A, cos(Amt) — S, sin(Amt)]. 77)

The time-dependent decay width I'(B(r) — f) is obtained
from the above expression by flipping the signs of the
cos(Amr) and sin(Amzr) terms. In the B, system, the width
differences are small which can be safely neglected, but in
the B, system, we expect a much larger decay width
difference (AI'/T)p . This is estimated within the standard
model to have a value (AI'/T) = —0.147 = 0.060 [61],
while experimentally (AT'/I") 5 = —0.331997 [39], so that
both S, and H can be extracted from the time-dependent
decays of B; mesons. The definition of the various quan-
tities in the above equation are as follows:

~ 2Im[A] _ 2Re[A]

-, -, 78
T+ AP T+ AP 78

where 7, is +1(—1) for a CP-even (CP-odd) final state f.
g/p = e 2P for the B, system while g/p = ™% for the
B, system where € = arg[ —V,_,V, Vi V}, ]. With the con-
vention arg[V,,] = arg[V ] = 0, the parameter can be

reduced to e =arg[—V,V; ] For b— s transition-
AB—f)
A(B—f)
are almost real and thus S; ~ sin(23). These channels
provide a good way to measure sin(23). Experimentalists

often use the following parameters in b — s transitions:

induced B° decays, the ratios of decay amplitudes

Tm[4 A(B,\—’f)]

.S, = —2 p ABB,—f) ,
KCadd 1+ AP
A(B,—f) (80)
q s
— oy H, = _2Re[p A=)
7 L+[AP

while the latter parameter is only defined for the BY — B?
system. Although the K*° meson is not a CP eigenstate, its
daughter-mesons K ¢77° behave as CP eigenstates. Thus we
also give the predictions on mixing-induced CP asymme-
tries in the decays involving a K* meson and other related
decays. Results for these parameters are collected in
Tables VIII and IX, where predictions on decays with
branching ratios smaller than 10~7 are omitted.

After studying the two simplified cases, we come to the
time-dependent CP asymmetries in B — K**K~, where
the final state is not a CP eigenstate and the width differ-
ence of BY — BY cannot be neglected either. In the follow-
ing, we choose f = K*"K~ and f = K™ K*~. One needs
to consider two additional CP asymmetries:

Re(A Re(A;
=2 KW R gy
: 1+ [Af] 1+ Al
which can be redefined as H = @ and AH = —Hf;Hi .

Our predictions for these parameters are given in Table X,
but we have not considered the global charge asymmetries
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from those in the CKM matrix elements. We also quote the experimental results to make a comparison.

PHYSICAL REVIEW D 78, 034011 (2008)

TABLE VIII. Mixing-induced CP asymmetries S; in B — VP decay processes: the first solution (This work 1) and the second
solution (This work 2). In both cases, the chirally enhanced penguin has been taken into account. The first kind of uncertainties are
from uncertainties in charming penguins and gluonic form factors which are discussed in the text; the second kind of uncertainties are

Channel Exp. This work 1 This work 2
B" — p°K; 0.61*333 + 0.09 + 0.08 08550032001 0.56*0.05 7001
B’ — wK; 0.48 +0.24 0.51%003+0:03 0.80%0.0515.01
B’ — ¢Kj 0.39 £ 0.17 0.69 0.69

B — K — Kem 0.9333¢+601 0.34488°503
B — Km — Kym'm! 0.52+004+042 07903061
B~ Ky — Kyl 075248148 0647481 4%
B"— K7 — Ksn'n/ 0.762306 61 0667605 0,00
S(B” — 7°p°) 0.12 = 0.38 —0.11+3137010 —0.19+0147010
S(B° — 7'w) —0.8719 400 072193189
B~ oy 086°2370% 029743476
B~ o 07954304483 0384331412
B = wn 01253335010 —016 4
B~ oy 02310378 0270

because of the presence of AI'. These predictions will be
tested at the forthcoming LHCb experiments

G. Isospin asymmetries and U-spin asymmetries

Currently, there are many experimental methods to mea-
sure CKM angles: «, $, and 7. But in order to reduce the
uncertainties, a good way is to use SU(3) symmetry,
although this will induce the errors from SU(3) symmetry
breaking effect. Here we will present some tests on this
kind of symmetry breaking, although the flavor SU(3)
symmetry for B— P, B— V form factors and various
charming penguins are used.

In the B — 77 and B — mp system, one often uses the
following ratios [10]:

_TIB—7"p")
T TB - mtm)
B — 7tp )+ T(B"— 7 p™)

2B — 7t ™) ’
T(B— 7t p)
FB°— 7 p*)
2I (B~ — 7 pY)
IFB— 7 ph)
2B~ — 7'p7)
IF(B°— 7tp)

R,

R,

(82)

=

3

=
A~
l

-1,

Rs 1,

where the partial decay widths are CP averaged. Our
predictions are given in Table XI, where we have used
the experimental results on branching ratios to evaluate the
ratios and these values are collected as experimental re-
sults. The predictions in the QCDF approach are also

collected in this table. In B° —» 777~ and B - 77 p~,
tree operators dominate. If we only consider the tree op-
erators, R; becomes ratios of decay constants: R; =
(fp/f=)* ~ 2. Our predictions are smaller than 2 for both
solutions. In the first solution, the ratio is much smaller
which is mainly caused by charming penguin terms: ALY
gives a constructive contribution to the decay width of
B — 7t~ while AY? gives a destructive contribution
to '(B® — 7% p7). In the second solution, the deviation of
R, from 2 is not too large as the phase of AL? is almost the
same as AYY. Ry and R are larger than the predictions in
the QCDF approach and the present experimental data.
B~ — 7 p® contains two different contributions from
tree operators: color-allowed contribution with p~ emit-
ted; color-suppressed contribution with 7~ emitted. In
QCDF approach, the second contribution is small and the
first contribution is related to tree operators in B~ —
7~ p'. Neglecting the color-suppressed contribution and
contributions from penguin operators, R, is equal to zero.
In SCET, color-suppressed tree operators can give sizable
contributions as we have discussed. Thus the branching
ratio of B~ — 7~ p® is enhanced which can give a large
value for R,. The analysis is also similar for the ratio Rs.

B — K 7", B> K*p ,BY— K p*,and B —
K** 7, the branching ratios are very different from each
other due to the differing strong and weak phases entering
in the tree and penguin amplitudes. However, as shown by
Gronau [62], the two relevant products of the CKM matrix
elements entering in the expressions for the direct CP
asymmetries in these decays are equal, and, as stressed
by Lipkin [63] subsequently, the final states in these decays
are charge conjugates, and the strong interactions being
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and the two form factors £, and {j,), and the CKM matrix elements, respectively.

PHYSICAL REVIEW D 78, 034011 (2008)

TABLE IX. Mixing-induced CP asymmetries (S;) and (Hy)g in B, — PV decays. Results obtained in the PQCD approach [48]
are also collected here; the errors for these entries correspond to the uncertainties in the input hadronic quantities (charming penguins

Modes PQCD This work 1 This work 2
B — m'¢ —0.072561 2065003 0.89 360~ 0.05 0.905:6076.03
0.98 500 -0:05 600 —0.455007010 0.44 5007603
By — p'7 006~ 01001 1003067001 0.60703576:3
0.98 2501 ~6:05 600 —0.04255, 7508 0.8020367 603
BY — p'n/ —0.1670.0070 1500 0.95}60-6.02 —0.4153737018
0.95500 002602 0.3223857 506 —0.91 3557004
BY — w7 —0.022505 508 6,00 —0.627513"015 0.93067 604
Z001-006-0.00 —0.792530 506 —0.372 555500
BY — wn’ =0 1120607004 ~0 03 —0.25753 0 6 —1.005:66-6.00
0.99 506 -6:60-0.00 —0.9756550> —0.09Z533 7568
BY— ¢n —0.032503 26500 02 —0.3973137004 0.230787602
100560601600 0.905537505 0.96 75137001
BY — ¢’ 0.0025,66 005060 —0.075067 501 0.10Z563561
100300000000 100" a0 0.99" 481 "3
B~ Koo ~072 00978 013y
06 - Lo0"30te ~059-40te
B~ oKy ~0s7:4B LA 0.99° 40480 0030841
~036°g i 00410 0957017 40)
B~ Ko —063 g —o1ga 0984200
~0573l1a e 096735 41 007 474t
B K — Kot 098 4317 035731474
0.1675,69 13 0.935567°6.67
B — K0 — Ky 0077930 0949332
0974151401 030"
B — K0 — Ky 0947986732 077930
—0.22251370% 0.10Z058%0 1}
B — Ky — Ky 0940337801 07223 1ir0
00145 “os2 ity

TABLE X. Mixing-induced CP asymmetries in BY — K** K~ decay processes: the first solution (This work 1) and the second
solution (This work 2). In both predictions, we have included the chirally enhanced penguin and chosen f = K** K~ . The first kind of
uncertainties are from uncertainties in charming penguins which are discussed in the text; the second kind of uncertainties are from

those in the CKM matrix elements.

Parameter This work 1 This work 2
c 0.02+0:10+0.00 0.01*553* 300
s —0.02+0070.01 0.0255:03+560
H 0.92+002+0.02 0.917005 303
AC —0.09+ 011001 —0.117867 001
AS 0.38+0.07+004 —0.4155837003
AH 0.0170.04+0.00 0.01335880
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TABLE XI.

PHYSICAL REVIEW D 78, 034011 (2008)

Two kinds of results for the ratios R;_5 in B — 77 and B — mp decays, together with the predictions in QCDF [10]

and experimental data evaluated using the results of branching fractions. The first kind of uncertainties are from uncertainties in
charming penguins as discussed in the text; the second kind of uncertainties are from those in the CKM matrix elements.

Exp. QCDF This work 1 This work 2

+0.54 +0.31+0.04+0.15+0.05 +0.15+0.10 +0.22+0.05

R 2.697433 2.3974550.08-0.12-0.11 13275 15012 1.847575 006
+0.37 +0.40+0.53+0.12+0.03 +0.13+0.06 +0.17+0.07

Ry 221553 2.062530-0.36-0.09-0.06 L7201 50,07 15275155 0.00
+0.68 +0.18+0.82+0.03+0.02 +0.12+0.08 +0.07+0.11

Rs 1562546 1.3876,17-0.59-0.04-0.05 1.28%5 162010 1.547000 0,07
+0.80 +0.0440.15+0.45+0.23 +0.21+0.02 +0.04+0.02

Ry 0.96Z¢ 49 0427604 011-021-0.20 2.38%020-0.02 1.23%0040.02
+0.43 +0.07+0.08+0.23+0.14 +0.05+0.02 +0.08-+0.04

Rs 0.57Z533 0.2276,08"0.06-0.12-0.12 1.2176,03 003 1.0926 080,03

charge-conjugation invariant, the direct CP asymmetry in
BY — K*7~ can be related to the well-measured CP
asymmetry in the decay B — K~ 7" using U-spin sym-
metry. In this symmetry limit, we have [62,63]

ABY — 7" K*)1? — |A(BY — 7 K™F)P?
= A(By— p KPP — |AB;— p~ K%, (83)

A (B, — ptK") = —AL(BY — 7 K*)
BR(B} — 7 K"") 7(B,)
BR(B]— p'K ) 7(B,)

d

(84)

Following the suggestions in the literature, we can test
these equations and search for possible new physics effects
which would likely violate these relations. Accordingly,
one can define the following parameters:

_|AB, = 7K )? — |A(B, —» m K*1)|?
|JA(B; — p~K)I>? = |A(B; — p*K)I?
_ BR(B, = 7 K" )AE(B, — m K*")7(B,)
BR(B— K p")AI(B— K p*)7(B,)

Rg

>

(85)

 ASB,— p K

BR(B; — 7" K*") 7(By)
CAE(B,— 7 K)

BR(B;— p*K™) 1(B))’
(86)

A

_|AB,— p"K")I? — |A(B, — p  K")|?

JAB;— p KDI? = |AB; — pTK)I?

_ BR(B,— p K")AYL(B, — p~ K*)7(B,)
BR(B— K~ 7" )AY(B— K*~ p*)7(B,)

R;

. (87)

o A‘g;(éd g 7T+K*_)

_ BR(B, = p"K*) 7(B,)
A%(B,— p~K")

BR(B,— 7m"K*") 7(B,)’
(88)

2

We also consider B> 7tp~, B> K'K*", B'—
7 pt, and BY— K*'K~ which are related by
U-spin transformation and define the following ratios:

_|AB, = K*"K")|> = |AB, » K K")|?

~ JAB = pT T )P — 1AB,— p 7P

_ BR(B,— K"K*"" A& (B, — K" K*")7(B,)
BR(B— 7t p )AL (B — 7 p)7(B,)

8

>

(89)

_ AGBy— p )

BR(B, — K K*) 7(B,)
 ASL(B,— KKY)

BR(B,— p m) 7(B)’
(90)

A;

_1AB, — K*K*7)|? — |A(B, —» K" K*")|?
|A(BB; — 7t p7)I> — |A(B; — 7~ p™)I?
_ BR(B,— K K*")A%(B, — K" K*")r(B,)
BR(B— 7 p")AM(B— 7 p*)1(B,)
On

9

_ AL B~ pY)

BR(B, — K" K**) 7(B,)
AL (B, — K KT '

BR(B;— 7 p*) 1(By)’
92)

Ay

In the flavor SU(3) symmetry limit, the ratios are R = —1
and A is zero. Using the first solution for the 16 inputs, we
obtain the following values:
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Rg=—089, A, =—0.08§% 20

Ry =—099, Ay =—0.0138+0%0 (93)
Ry=—111, Ay =0.1173%6+003

Ry=—124, A, =033012+000

where the tiny uncertainties of R¢_g are omitted here. Our
predictions using the second kind of inputs are given by

Rs= —0.87, A, = —0.101003+0.02

0.05—-0.02”
R, = —0.99, A, = —0.013000+0.00 (94)
Ry = —1.10, Ay = 0.097393+001

Ry=—125 A, =033*]}+0%

Since the form factors and charming penguins are assumed
to the respective flavor SU(3) symmetry, the small devia-
tions for the ratios R and A are reasonable.

V. COMPARISONS WITH THE PQCD APPROACH

The PQCD approach is based on kr factorization, where
one keeps the intrinsic transverse momentum of quark
degrees of freedom. The intrinsic transverse momentum
can smear the end-point singularities which often appear in
collinear factorization. Resummation of double logarithms
results in the Sudakov factor which suppresses contribu-
tions from the end-point region to make the PQCD ap-
proach more self-consistent. This approach can explain
many problems to achieve great successes. Currently, ra-
diative corrections [46,64—66] and power corrections in
1/m, [67,68] in this approach are under studies. In the
PQCD approach, annihilation diagrams can be directly
calculated. Among them, the (S — P)(S + P) annihilation
penguin operators [from the Fierz transformation of (V —
A)(V + A) operators] are the most important ones.
According to the power counting in the PQCD approach,
annihilation diagrams are suppressed by Aqcp/m), but the
suppression for (S — P)(S + P) annihilation penguin op-
erators is 2r,. This factor is comparable with 1. Thus
annihilations play a very important role in the PQCD
approach. Phenomenologically, the large annihilations
can explain the correct branching ratios and direct CP
asymmetries of B — 77t 77~ and B — K~ 7+ [69], the
polarization problem of B — ¢ K™ [70], etc. In Fig. 2(a),
we draw the Feynman diagrams for this term. Comparing
with charming penguins, we can see they have the same
topologies in flavor space. So generally speaking, charm-
ing penguins in SCET as shown in Fig. 2(b) have the same
role with (S — P)(S + P) annihilation penguin operators in
PQCD. Both of them are essential to explaining the branch-
ing ratios in these two different approaches. But there are
indeed some differences in predictions on other parameters

PHYSICAL REVIEW D 78, 034011 (2008)
d(s) d(s) q

s

FIG. 2. Feynman diagrams for the (S — P)(S + P) annihilation
operators in the PQCD approach and charming penguins in
SCET.

such as direct CP asymmetries and mixing-induced CP
asymmetries.

First of all, the CKM matrix elements associated with
charming penguins and (S — P)(S + P) annihilation pen-
guin operators are different. If we consider B decays in
which a b quark annihilates, the (S — P)(S + P) annihila-
tion penguin operators are proportional to V,,V},, while
charming penguins are proportional to V., V. The differ-
ences in the CKM matrix elements will affect direct CP
asymmetries and mixing-induced CP asymmetries sizably.
For example, in B — ¢ K decay, the mixing-induced CP
asymmetries in SCET are dramatically different from pre-
dictions in the PQCD approach. In the SCET framework,
there are no contributions from tree operators to B, —
&K at tree level and penguin operators are much smaller
than charming penguins. As the CKM matrix element
V., Vip for the charming penguin is real, the parameter A
defined in Eq. (79) becomes A = —e*2/¢, where we have
neglected contributions from penguin operators. Thus in
SCET the two parameters S, and H are given by

Sy = —sin(2e) = —0.03,
H; = — cos(2e) = —1.00.

(95)

In the PQCD approach, the CKM matrix element for the
(S — P)(S + P) annihilation penguin operators is V,,V},
which gives A = —eT2€t2iB;

S; = —sin(2e +28) = —0.72,
H; = —cos(2e +28) = —0.69.

(96)

The differences in the mixing-induced CP asymmetries
between SCET and PQCD will be tested in future
experiments.

In the PQCD approach, contributions from the (S —
P)(S + P) annihilation penguin operators can be calcu-
lated using perturbation theory. These contributions are
expressed as the convolution of light-cone distribution
amplitudes and a hard kernel. We can also include SU(3)
symmetry breaking effects in the calculation in PQCD
approach. In SCET, charming penguins are from the charm
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quark loops. Since the charm quark is heavy, one cannot
factorize charming penguins (see Refs. [8—-10,71] for an-
other point of view). Thus charming penguins are non-
perturbative in nature which is similar with the final state
interactions [72,73]. In the present work based on SCET,
we have assumed SU(3) symmetries for the contributions
from charming penguins. The magnitudes and strong
phases of charming penguins cannot be calculated using
perturbation theory which was obtained by fitting the
experimental data.

The third difference is the magnitudes of charming
penguins in SCET and contributions from the (S — P) X
(S + P) annihilation penguin operators in the PQCD ap-
proach. This difference arises from the different power
counting in the two approaches. We take b — s transitions
to illustrate the difference. In the PQCD approach, the (S —
P)(S + P) annihilation penguins are enhanced to be of the
same order with penguins in emission diagrams. In SCET,
charming penguins are more important. Comparing the
values given in Egs. (50), (54), and (60), we can see
charming penguins in SCET always larger than contribu-
tions from emission penguin diagrams.

In the PQCD approach, the (§ — P)(S + P) annihilation
penguin operators are chirally enhanced and the dominant
contribution is from the imaginary part. The main strong
phases in the PQCD approach which are essential to ex-
plaining the large CP asymmetries in many channels are
also produced through these operators. But in SCET, as we
have shown in Egs. (50) and (54), strong phases of charm-
ing penguins are not too large. Accordingly, our predic-
tions on direct CP asymmetries are small compared with
predictions in the PQCD approach.

VI. CONCLUSIONS

We provide the analysis of charmless two-body B — VP
decays under the framework of soft collinear effective
theory. Besides the leading power contributions, we also
take some power corrections (chirally enhanced penguins)
into account. In the present framework, decay amplitudes
of B— PP and B — VP decay channels can be expressed
as functions of 16 nonperturbative inputs: 6 form factors
and 5 complex (10 real) charming penguins. Using the
B — PP and B — VP experimental data on branching
fractions and CP asymmetry variables, we find two kinds
of solutions in y? fit for these 16 nonperturbative inputs. A
chirally enhanced penguin could change some charming
penguins sizably, since they have the same topology with
each other. However, most other nonperturbative inputs
and predictions on branching ratios and CP asymmetries
are not changed too much. With the two sets of inputs, we
predict branching fractions and CP asymmetries.
Agreements and differences with results in QCD factoriza-
tion and perturbative QCD approach are also analyzed. Our
conclusions are as follows:

PHYSICAL REVIEW D 78, 034011 (2008)

(i) In color-allowed processes such as B — 7= p* de-
cays, tree operators provide the dominant contribu-
tions. Our predictions on branching fractions are
smaller than the ones calculated in the QCDF ap-
proach and PQCD approach. The main reason is that
both B— P and B — V form factors in SCET are
smaller. B — 790 and other color-suppressed
channels are predicted with larger branching ratios
in SCET, because the hard-scattering form factors
{7V are comparable with {7V which also have large
Wilson coefficients. The large branching ratios for
B® — 7990 are consistent with the experimental
data.

(ii) b — s decay processes such as B— 7K*, B — pK
and the corresponding B, decays are dominated by
contributions from charming penguins. Since we
have assumed flavor SU(3) symmetry for charming
penguins, branching fractions of b — s transition
decays can be estimated by analyzing the corre-
sponding charming penguin terms. Decays with
isosinglet mesons 1 and 7’ are slightly different
since there exists cancellations between different
charming penguins.

(iii) In the PQCD approach, annihilation diagrams do
not suffer from the end-point singularity problem,
which can be directly calculated. Among the three
kinds of penguin operators, the (S — P)(S + P)
operators are most important which provide the
main strong phase in the PQCD approach. In the
SCET framework, charming penguins play an im-
portant role especially in b — s transitions. The
(S — P)(S + P) annihilations have the same topol-
ogy as a charming penguin. Besides the common-
alities, there exist many differences in these two
objects including weak phases, magnitudes, strong
phases, SU(3) symmetry property, and factoriza-
tion property. These differences will mainly affect
the direct CP asymmetries and time-dependent CP
asymmetry variables.
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APPENDIX: EXPRESSIONS FOR HARD KERNELS

For explicit decay channels, the hard kernels depend on
the Lorentz structure and flavor structures. They can be
evaluated using the Wilson coefficients given in Eqgs. (16)
and (17). In this appendix, we intend to write the decay
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amplitudes in a compact form. In doing so, the following
meson matrices are required:

B~ =(1,0,0,  B"=(010), =(0,0,1),
000
MW+—MP+—(1 0 0|
000
000
MK+—MK*+—(0 0 0|
100
000
MKO—MK‘O—(O 0 0]
010
1 0 0
\/EMﬂ.O\/EMpo(O -1 0|,
0 0 0
100
\/zan\/EMw(O 1ol
000
000
M, =Myz=]0 0 0]
00 1

M, =M, =M.,

Mlgo = Mk*o = MIT;O.

MK* = M](** = M17<‘+,

(AT)
We also need the following matrices:
1 00 0 0
5u=<o 0 o), Ad:(l), As:(o).
0 0 O 0 1
(A2)

Using the meson matrices, one can write the hard ker-
nels appearing in B — MM, decays as

PHYSICAL REVIEW D 78, 034011 (2008)
T, = | BM,6,M A/ + (¢} + ¢§)BMy AT TH{6,M,]
+ e BMyM A + (¢l + ¢l)BMy A T M, ],
I B8, M\ A Ti{M,] + (¢} + ¢§)BAS Ti{6,M, ]
X Tr{M,] + ¢} BM, A/ Ti[M,]
+ (L = ¢)BAS Te[ M, ] Te[M,],
TS = ¢}BMy A Ti{M,],
¢ BAS T M, ] Ti[M,],
T, = T1(C{ - b{)’ T, = TIJ(C{ — b{),

T =Tl = b)), T, =Ti(f=b). (A3
If the emitted meson M, is a pseudoscalar, cjzf - Cj; and

cé - cé in T; are used. But for vector meson emission, we

use plus signs in the combinations.

Using meson matrices, the charming penguins respon-
sible for B — MM, decays can be determined in the same
way. If the charming penguins in B — PP decays are
considered, the master equation is

AM My

= BMyM A AZP + BM A Ti[M,JAPE,  (A4)

where the A.., term is only responsible for the isosinglet
mesons 7, and n,. In B— VP decays, the charming
penguins are

AMM — BAL M ATAYP + BM M, ASAEY

+ BM A Ti[M,]AYY, (AS)

where we take M, as a vector meson and M, as a pseudo-
scalar meson.

The master equations for hard kernels for chirally en-
hanced penguins are given by
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