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We compute the leading-log QED, the next-to-leading-log QED-QCD, and the electroweak corrections

to the charm quark contribution relevant for the rare decay Kþ ! �þ� ��. The corresponding parameter

PcðXÞ is increased by up to 2% with respect to the pure QCD estimate to PcðXÞ ¼ 0:372� 0:015 for

mcðmcÞ ¼ ð1:286� 0:013ÞGeV, �sðMZÞ ¼ 0:1176� 0:0020, and jVusj ¼ 0:2255. For the branching ratio

we find BðKþ ! �þ� ��Þ ¼ ð8:5� 0:7Þ � 10�11, where the quoted uncertainty is dominated by the

Cabibbo-Kobayashi-Maskawa elements.

DOI: 10.1103/PhysRevD.78.034006 PACS numbers: 13.20.Eb, 12.15.Hh, 12.15.Lk

I. INTRODUCTION

The rare decay Kþ ! �þ� �� is both theoretically very
clean and highly sensitive to short-distance physics and
thus plays an outstanding role among flavor-changing neu-
tral current processes both in the standard model (SM) and
its extensions [1–3]. Together with the process KL !
�0� �� it provides a critical test for the Cabibbo-
Kobayashi-Maskawa (CKM) mechanism of CP violation,
while it probes operators generated by new physics at
energy scales of several TeV [4].

In the SM, the decay Kþ ! �þ� �� proceeds through
Z-penguin and electroweak box diagrams of OðG2

FÞ which
exhibit a powerlike Glashow-Iliopoulos-Maiani mecha-
nism. This implies that nonperturbative effects are severely
suppressed and, related to this, that the low-energy effec-
tive Hamiltonian [5,6]

H eff ¼ 4GFffiffiffi
2

p �

2�sin2�W

X
l¼e;�;�

ð�cX
lðxcÞ þ �tXðxtÞÞ

� ð�sL��dLÞð ��lL�
��lLÞ (1)

involves to an excellent approximation only a single effec-
tive operator. Here GF is the Fermi constant, � the elec-
tromagnetic coupling, and �W the weak mixing angle. The
sum is over all lepton flavors, �i ¼ V�

isVid comprises the
CKM factors, and fL represents left-handed fermion fields.

The function XðxtÞ, where xt ¼ m2
t ð�tÞ=M2

W andm2
t ð�tÞ

is the top quark MS mass, describes the matching contri-
butions of internal top quarks to the operator in Eq. (1),
where the matching is carried out at the scale �t ¼ OðmtÞ.
Sample diagrams are shown in Fig. 1. The energy scales
involved are of the order of the electroweak scale or higher,
while both the QCD and QED anomalous dimensions of
the corresponding operator vanish. Hence XðxtÞ can be
calculated within fixed-order perturbation theory. The rele-
vant Z-penguin and electroweak box diagrams are known
through next-to-leading-order (NLO) in QCD [6–9]. The
inclusion of these Oð�sÞ corrections allowed to reduce the
�6% uncertainty related to the top quark matching scale
�t ¼ OðmtÞ present in the leading-order (LO) formula

down to �1%. The leading term in the large top quark
mass expansion of the electroweak two-loop corrections
typically amounts to a per mil correction for the branching

ratio if theMS definition of � and sin2�W is used, while the
uncertainty related to unknown subleading electroweak
contributions is conservatively estimated to be �2% [10].
The function XlðxcÞ, relevant only for Kþ ! �þ� ��,

depends on the charm quarkMSmass through the parame-
ter xc, conventionally defined as

xc ¼ m2
cð�cÞ
M2

W

: (2)

As now both high-energy and low-energy scales are in-
volved, namely, �W ¼ OðMWÞ and �c ¼ OðmcÞ, a com-
plete renormalization group analysis of X‘ðxcÞ is required.
In this manner, large logarithms lnð�2

c=�
2
WÞ are summed to

all orders in �s. At LO such an analysis has been per-
formed in [11]. The large scale uncertainty due to �c of
�26% in this result was reduced by a NLO [5,6] and a
subsequent next-to-next-to-leading order (NNLO) calcula-
tion [12–14] to �2:5%. While the QCD part of the calcu-
lation has reached a high level of sophistication no QED or
electroweak corrections have been included so far. We
close this gap by calculating the LO and NLO logarithmic
QED corrections as well as fixing the scheme of the input
parameters in sin2�W and � by an electroweak matching
calculation. The latter point can be exemplified by noting
that the charm quark contribution is mediated by a double
insertion of two dimension-six operators. This results in a
contribution ofOðG2

FÞ—the second power of GF resides in
xc—plus electroweak corrections. Yet the leading result of
Eq. (1) can only approximate the electroweak corrections
for a specific choice of the renormalization scheme for the
prefactor of the charm quark contribution, expressed as

�=sin2�W . While it is expected that using MS parameters
renormalized at the electroweak scale would approximate
the electroweak corrections best [15] only an explicit
calculation can provide a definite result. In this work, we
normalize all dimension-six operators to GF. Thus, we
replace the parameter xc in Eq. (2) with the unfamiliar
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definition

xc ¼
ffiffiffi
2

p sin2�W
��

GFm
2
cð�cÞ; (3)

which only at tree level equals the familiar ratio
m2

cð�cÞ=M2
W .

The hadronic matrix element of the low-energy effective
Hamiltonian can be extracted from the well-measured Kl3

decays, including isospin breaking and long-distance QED
radiative corrections [16–18]. After summation over the
three neutrino flavors the resulting branching ratio for
Kþ ! �þ� �� can be written as [19] [5,6,20]

BðKþ ! �þ� ��ð�ÞÞ ¼ 	þð1þ �EMÞ
��

Im�t

�5
XðxtÞ

�
2

þ
�
Re�c

�
ðPcðXÞ þ 
Pc;uÞ

þ Re�t

�5
XðxtÞ

�
2
�
: (4)

The parameter

PcðXÞ ¼ 1

�4

�
2

3
XeðxcÞ þ 1

3
X�ðxcÞ

�
(5)

describes the short-distance contribution of the charm
quark, where � ¼ jVusj. The charm quark contribution of
dimension-eight operators at the charm quark scale�c [21]
combined with long-distance contributions were calculated
in Ref. [20] to be


Pc;u ¼ 0:04� 0:02: (6)

The quoted error on this value can in principle be reduced
with the help of lattice QCD [22].

The remaining long-distance corrections are factored
out into the following two parameters: 	þ contains
higher-order electroweak corrections to the low-energy
matrix elements, and �EM denotes long-distance QED
corrections. A detailed analysis of these contributions to
NLO and partially NNLO in chiral perturbation theory has
been performed by Mescia and Smith in [17], who found
the numerical values 	þ ¼ ð0:5173� 0:0025Þ �
10�10ð�=0:225Þ8 and �EM ¼ �0:3%.

II. ELECTROWEAK CORRECTIONS IN THE
CHARM SECTOR

The charm quark contribution involves several different
scales and the corresponding large logarithms have to be

summed using renormalization group improved perturba-
tion theory. Keeping terms to Oð�sÞ and Oð�=�sÞ the
expansion of the parameter PcðXÞ reads

PcðXÞ ¼ 4�

�sð�cÞP
ð0Þ
c ðXÞ þ Pð1Þ

c ðXÞ þ �sð�cÞ
4�

Pð2Þ
c ðXÞ

þ 4��

�2
sð�cÞ

PðeÞ
c ðXÞ þ �

�sð�cÞP
ðesÞ
c ðXÞ: (7)

The LO term Pð0Þ
c ðXÞ, the NLO term Pð1Þ

c ðXÞ, and the

NNLO term Pð2Þ
c ðXÞ have been calculated in [11], in

[5,6], and in [14], respectively. The main goal of this paper

is to present the electroweak corrections PðeÞ
c ðXÞ and

PðesÞ
c ðXÞ.
The calculation is performed in two steps. First, at the

scale �W � MW the SM is matched to an effective theory
where the top quark, the W boson, and the Z boson are
integrated out, but the charm quark is still a dynamical
degree of freedom. Second, at the scale�c � mc the charm
quark is integrated out and the effective Hamiltonian in
Eq. (1) is obtained.
After integrating out the particles at the electroweak

scale the effective Hamiltonian containing the dimension-
six operators takes the following form:

H dim :6
eff ¼ 4GFffiffiffi

2
p

�
CWð�Þ X

q¼u;c

ðVqsQ3q þ V?
qdQ4qÞ

þ �c

X
j¼�

Cjð�ÞðQc
j �Qu

j Þ þ
1

2
CAð�ÞQA

þ 1

2
CVð�ÞQV

�
: (8)

Here we kept only operators relevant for the decay Kþ !
�þ� ��. These are the semileptonic operators

Q3q ¼ X
l¼e;�;�

ð �sL��qLÞð ��lL�
�lLÞ and

Q4q ¼ X
l¼e;�;�

ð �qL��dLÞð�lL���lLÞ;
(9)

the current-current four-quark operators

Qq
� ¼ 1

2ðð�s�L��q
�
LÞð �q�L��d�LÞ � ð �s�L��q

�
LÞð �q�L��d�LÞÞ;

(10)

where �, � are color indices, and the operators

FIG. 1. Examples of leading-order diagrams contributing to the decay Kþ ! �þ� �� in the SM.

JOACHIM BROD AND MARTIN GORBAHN PHYSICAL REVIEW D 78, 034006 (2008)

034006-2



QA ¼ X
q

X
l¼e;�;�

ð�I3qÞð �q�5��qÞð ��lL�
��lLÞ;

QV ¼ X
q

X
l¼e;�;�

ðI3q � 2Qqsin
2�WÞð �q��qÞð ��lL�

��lLÞ; (11)

which describe the quark-neutrino interaction. We follow
Ref. [14] in the definition of the evanescent operators. All
evanescent operators relevant first at the order considered
in this work are defined as

Eð1Þ
3q ¼ X

l¼e;�;�

ð �sL��1
��2

��3
qLÞð ��lL�

�1��2��3 lLÞ

� ð16� 4�ÞQ3q; (12)

i.e. the evanescent operator needed for the QED renormal-
ization of Q3q, or in an analogous way.

These operators mix via double insertions into the op-
erator given in Eq. (1). Traditionally one distinguishes the
box contribution which comprises double insertions of the
semileptonic operators Q3q and Q4q (see Fig. 2, left side)

and the penguin contribution which comprises double in-
sertions of the current-current-type operators Q� and the
operators QA and QV (Fig. 2, right side). The relevant
dimension-eight part of the effective Hamiltonian can
then be written as

H charm
eff ¼ ð2G2

F�cC
B
� ð�Þ þG2

F�cC
P
� ð�ÞÞQ�; (13)

where the operator Q� is defined as

Q� ¼ m2
c

g2s�
2�

X
l¼e;�;�

ð �sL��1
dLÞð ��lL�

�1�lLÞ; (14)

while CB
� and CP

� denote the box and penguin contribution,
respectively.

The renormalization group analysis proceeds in several
steps. The initial conditions for the renormalization group
equations (RGE), which govern the running of the Wilson
coefficients, are calculated in Sec. II A. The anomalous
dimensions are computed in Sec. II B. After integrating out
the bottom and the charm quark, the theory is matched onto
the low-energy effective Hamiltonian of Eq. (1). The rele-
vant results are collected in Sec. II C. In Sec. II D the pieces
are put together to give the final result for PcðXÞ.

We have computed all Feynman diagrams in this paper
using FORM [23] routines and independently using
MATHEMATICA. All the QCD corrections relevant to a

NNLO analysis of PcðXÞ are given in [14] and references
therein.

A. Initial conditions

The Wilson coefficients are found by matching the one
light particle irreducible Green’s functions in the full and
the effective theory at the electroweak scale �2

W �M2
W .

We use the MS scheme for both theories and remark that a
finite field redefinition for the light particles ensures the
correct normalization of the kinetic term in the effective
theory. In the box sector only CW and in the penguin sector
only C� and CA=V receive electroweak corrections at the

order considered here (see Fig. 3). We expand the Wilson
coefficients in powers of the coupling constants

Cð�Þ ¼ Cð0Þð�Þ þ �sð�Þ
4�

Cð1Þð�Þ þ �

�s

CðeÞð�Þ

þ �

4�
CðesÞð�Þ (15)

and use a similar expansion for any quantity in the follow-
ing, unless explicitly stated otherwise.
We normalize the Wilson coefficients CW , C�, and CA=V

to the muon decay constant GF [24]. In this way most of
the radiative corrections cancel, including all terms depen-
dent on mt and MH in the case of CW and C�. All our
matching calculations have been performed in the gener-
alized R
 gauge for the photon field and in the case of CA

also for the W and Z fields as a check of our results.
At the one-loop level a neutrino-photon Green’s function

is generated which contributes to CV via the equations of
motion. Yet QV does not mix into Q� and the Wilson
coefficient CV is not needed.
For the relevant electroweak corrections we find

Cð0Þ
� ð�WÞ ¼ 1; CðeÞ

� ð�WÞ ¼ 0;

CðesÞ
� ð�WÞ ¼ � 22

9
� 4

3
ln
�2

W

M2
Z

;
(16)

in agreement with Refs. [25,26],

Cð0Þ
W ð�WÞ ¼ 1; CðeÞ

W ð�WÞ ¼ 0;

CðesÞ
W ð�WÞ ¼ � 11

3
� 2 ln

�2
W

M2
Z

;
(17)

and

Cð0Þ
A ð�WÞ ¼ 1; CðeÞ

A ð�WÞ ¼ 0;

CðesÞ
A ð�WÞ ¼ 3m2

t

4s2wM
2
W

þ 11s2w � 6

4s2wc
2
w

� 3

4

M2
W � c2wM

2
H

ðM2
H �M2

WÞs4w
ln
M2

W

M2
Z

þ 3M4
H

4ðM2
H �M2

WÞðM2
W � c2wM

2
HÞ

ln
M2

H

M2
Z

: (18)FIG. 2. Leading-order diagrams for the mixing of various
dimension-six operators into Q� (see text for details).
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B. Anomalous dimensions and RGE

The mixing of dimension-six into dimension-eight op-
erators through double insertions leads in general to in-
homogeneous RGE [27]. In the box sector they are given
by

�
d

d�
CB
� ð�Þ ¼ ��C

B
� ð�Þ þ 4�B

�CWð�ÞCWð�Þ; (19)

�
d

d�
CWð�Þ ¼ �WCWð�Þ; (20)

where �W is the anomalous dimension of Q3q, �� encodes

the running of Q�, which stems solely from the running
mass and coupling constant which in our definition multi-
ply the Q� operator, and �B

� is the anomalous dimension
tensor of the mixing of the operators Q3q and Q4q into Q�.

�� is given in terms of the QCD �-function and the
anomalous dimension of the charm quark mass by

�ðkÞ
� ¼ 2ð�ðkÞ

m � �kÞ: (21)

The explicit values are

�ð0Þ
m ¼ 8; �ðeÞ

m ¼ 8

3
; �ðesÞ

m ¼ 32

9
; (22)

�0 ¼ 11� 2

3
f; �e ¼ 0; �es ¼ � 8

9

�
fu þ fd

4

�
;

(23)

where fu and fd denote the number of up- and down-type
quark flavors, and f ¼ fu þ fd.

The remaining anomalous dimensions can be calculated
from the pole parts of one- and two-loop diagrams, some of
which are shown in Figs. 4 and 5, using standard methods
[27–29]. We find the following values:

�Bð0Þ
� ¼ �8; �BðeÞ

� ¼ 0; �BðesÞ
� ¼ � 316

9
; (24)

�ð0Þ
W ¼ 0; �ðeÞ

W ¼ �4; �ðesÞ
W ¼ 4: (25)

�Bð0Þ
� is known for a long time (see [5] and references

therein), and �ðeÞ
W and �ðesÞ

W have already been calculated
in [24].
In order to solve the RGE we perform a trick [5,30], so

that we can use the RGE for single insertions also in our
case. To this end, we rewrite Eq. (20) as

�
d

d�
C2
Wð�Þ ¼ 2�T

WC
2
Wð�Þ: (26)

Then we can combine both Eqs. (19) and (20) into a linear
equation

�
d

d�
CBð�Þ ¼ �T

BCBð�Þ; (27)

where

CBð�Þ ¼ 4C2
Wð�Þ

CB
� ð�Þ

� �
and �T

B ¼ 2�W 0
�B
� ��

� �
: (28)

The RGE for the penguin sector are given by

�
d

d�
CP
� ð�Þ ¼ ��C

P
� ð�Þ þ 4

X
i¼�

�P
i;�Cið�ÞCAð�Þ; (29)

�
d

d�
C�ð�Þ ¼ �T�C�ð�Þ: (30)

The anomalous dimension tensor �P�;� governs the mixing

of the double insertion of Q� and QA into Q� (see Fig. 6),
while �� describes the self-mixing of Q� and was com-
puted in [31]. The anomalous dimensions read

�Pð0Þ
�;� ¼ 2ð1� 3Þ; �PðeÞ

�;� ¼ 0; �PðesÞ
�;� ¼ 52

3 ð1� 3Þ:
(31)

We have defined the matrix �P� as

FIG. 4. Sample two-loop diagrams contributing to the self-mixing of Q3c. Wavy lines denote photons; curly lines denote gluons.

FIG. 3. Feynman diagrams contributing to the NLO matching for CA.
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�PðkÞ
�;� ¼ �1

2�
AðkÞ
�;� �

�
1
2 � 4

3sin
2�W

�
�VðkÞ
�;� ; (32)

with the superscripts A and V denoting the contributions
stemming from double insertion of (Qq

�, Q
q
A) and (Qq

�,
Qq

V), respectively. The LO result agrees with [5,14]. The
other contributions are new.

The anomalous dimension of QA vanishes and the RGE
in the penguin sector is the linear equation

�
d

d�
CPð�Þ ¼ �T

PCPð�Þ; (33)

where

CPð�Þ ¼
4Cþð�ÞCA

4C�ð�ÞCA

CP
� ð�Þ

0
@

1
A; �T

P ¼ �T�
�Pþ;�

�P�;�

0 0 ��

0
@

1
A:
(34)

The RGE for single insertions can be solved explicitly
using the method described in [32].

C. Below �c

At �c, i.e. the scale of the charm quark mass, the charm
quark is integrated out and removed as a degree of free-
dom. All necessary matrix elements are given in [5,14]—
no new contributions arise to the orders considered here.
There are some new terms stemming from the expansion of
mcð�cÞ about mcðmcÞ in these expressions, though, and we
collect these results for convenience.

The matching in the box sector leads to the following
matrix elements:

rBð1Þ� ð�cÞ ¼ 5þ 4x�
1� x�

lnx� þ 4 ln
�2

c

m2
c

; (35)

where x� ¼ m2
�=m

2
c and mc ¼ mcð�cÞ. Neglecting the lep-

ton masses for the electron and muon, the above formula
yields

rBð1Þe;� ð�cÞ ¼ 5þ 4 ln
�2

c

m2
c

: (36)

We have defined the matrix elements for lepton flavor l by

hQB
l ð�cÞi ¼ �sð�cÞ

4�
rBð1Þl ð�cÞhQ�ið0Þ; (37)

where hQB
l ð�cÞi denotes the double insertion of the opera-

tors in the box sector. In the penguin sector we find

rPð1Þ� ð�cÞ ¼ ð1� 3Þ
�
1� ln

�2
c

m2
c

�
; (38)

where

hQP�ð�cÞi ¼ �sð�cÞ
4�

rPð1Þ� ð�cÞhQ�ið0Þ; (39)

and hQP�ð�cÞi denotes the double insertion of the operators
in the penguin sector.

D. Final analytic expression for PcðXÞ
Now all that remains to do is to combine all relevant

terms and compute the box and penguin contributions to
the function XlðxcÞ defined in Eq. (1). Here we closely
follow [14]. Let us start with the box contribution. We
expand the result as

Cl
Bð�cÞ ¼ 	c

xcðmcÞ
16

�
4�

�sð�cÞC
lð0Þ
B ð�cÞ

þ 4��

�sð�cÞ2
ClðeÞ
B ð�cÞ þ �

�sð�cÞC
lðesÞ
B ð�cÞ

�

(40)

and express the running charm quark massmcð�cÞ in terms
of initial condition mcðmcÞ,

FIG. 6. Sample diagrams for the NLO mixing of QA and Q� into Q�.

FIG. 5. Sample diagrams for the NLO mixing of Q3q and Q4q into Q�.
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xcð�cÞ ¼ 	c

�
1þ �sð�cÞ

4�

ð1Þ
c þ �

�sð�cÞ

ðeÞ
c

þ �

4�

ðesÞ
c

�
xcðmcÞ; (41)

where we defined 	c ¼ �
ð�ð0Þ

m =�0Þ
c and �c ¼

�sð�cÞ=�sðmcÞ, with the individual contributions


ð1Þ
c ¼

�
�ð1Þ
m

�0

� �ð0Þ
m �1

�2
0

�
ð1� ��1

c Þ;


ðeÞ
c ¼ �ðeÞ

m

�0

ð�c � 1Þ;


ðesÞ
c ¼

�
�ðesÞ
m

�0

� �es�
ð0Þ
m

�2
0

� �1�
ðeÞ
m

�2
0

�
ln�c

þ �ðeÞ
m

�0

�
�ð0Þ
m �1

�2
0

� �ð1Þ
m

�0

�
ð1� ��1

c Þð1� �cÞ: (42)

We find the following expansion coefficients for Cl
B:

Clð0Þ
B ð�cÞ ¼ CBð0Þ

� ð�cÞ;
ClðeÞ
B ð�cÞ ¼ CBðeÞ

� ð�cÞ þ CBð0Þ
� ð�cÞ
ðeÞ

c

þ 4Cð0Þ
W ð�cÞ2�BðeÞ

l ð�cÞ;
ClðesÞ
B ð�cÞ ¼ CBðesÞ

� ð�cÞ þ CBðeÞ
� ð�cÞ
ð1Þ

c þ CBð1Þ
� ð�cÞ
ðeÞ

c

þ CBð0Þ
� ð�cÞ
ðesÞ

c þ 4Cð0Þ
W ð�cÞ2�BðesÞ

l ð�cÞ
þ 4Cð0Þ

W ð�cÞ2�BðeÞ
l ð�cÞ
ð1Þ

c

þ 8Cð0Þ
W ð�cÞCðeÞ

W ð�cÞ�Bð1Þ
l ð�cÞ

þ 4Cð0Þ
W ð�cÞ2�Bð1Þ

l ð�cÞ
ðeÞ
c : (43)

We obtain the parameters �B
l by inserting the expansion of

mcð�cÞ into the expressions for rBl (see Sec. II C):

�Bð1Þ
� ¼ rBð1Þ� ðmcÞ þ 4

x� � 	c

�
	c ln	c � x�ð1� 	cÞ

1� x�
lnx�

�
;

�BðeÞ
� ¼ 0; �BðesÞ

� ¼ � 4	c

ðeÞ
c ½	c � x�ð1� lnx�	c

Þ�
ð	c � x�Þ2

:

(44)

The corresponding expressions for the electron and the
muon, where we can neglect the masses, are given by

�Bð1Þ
e;� ¼ rBð1Þe;� ðmcÞ�4ln	c; �BðeÞ

e;� ¼ 0; �BðesÞ
e;� ¼�4
ðeÞ

c :

(45)

The penguin contribution to the function XlðxcÞ can be
obtained in the same way. Expanding the Wilson coeffi-
cients CPð�cÞ as

CPð�cÞ ¼ 	c

xcðmcÞ
32

�
4�

�sð�cÞC
ð0Þ
P ð�cÞ

þ 4��

�sð�cÞ2
CðeÞ
P ð�cÞ þ �

�sð�cÞC
ðesÞ
P ð�cÞ

�
;

(46)

we find the following contributions:

Cð0Þ
P ð�cÞ ¼ CPð0Þ

� ð�cÞ; CðeÞ
P ð�cÞ ¼ CPðeÞ

� ð�cÞ þ CPð0Þ
� ð�cÞ
ðeÞ

c þ 4Cð0Þ
A ð�cÞ

X
i¼�

Cð0Þ
i ð�cÞ�PðeÞ

i ð�cÞ;

CðesÞ
P ð�cÞ ¼ CPðesÞ

� ð�cÞ þ CPðeÞ
� ð�cÞ
ð1Þ

c þ CPð1Þ
� ð�cÞ
ðeÞ

c þ CPð0Þ
� ð�cÞ
ðesÞ

c þ 4
X
i¼�

ð�PðesÞ
i ð�cÞ þ �PðeÞ

i ð�cÞ
ð1Þ
c

þ �Pð1Þ
i ð�cÞ
ðeÞ

c ÞCð0Þ
i ð�cÞCð0Þ

A ð�cÞ þ 4
X
i¼�

�Pð1Þ
i ð�cÞðCðeÞ

i ð�cÞCð0Þ
A ð�cÞ þ Cð0Þ

i ð�cÞCðeÞ
A ð�cÞÞ

þ 4
X
i¼�

�PðeÞ
i ð�cÞCð1Þ

i ð�cÞCð0Þ
A ð�cÞ:

(47)

Again we obtain the parameters �P
i by inserting the ex-

pansion of mcð�cÞ into the expressions for rPi :

�Pð1Þ
� ¼ rPð1Þ� ðmcÞ þ ð1� 3Þ ln	c; �PðeÞ

� ¼ 0;

�PðesÞ
� ¼ ð1� 3Þ
ðeÞ

c :
(48)

The final result for Xl is then

XlðxcÞ ¼ CPð�cÞ þ Cl
Bð�cÞ: (49)

The corresponding expressions forCPð�cÞ andCl
Bð�cÞ can

be found in Eqs. (40) and (46), respectively. Equation (5)
then yields the contribution to the branching fraction.

III. FINAL RESULTS AND NUMERICAL
DISCUSSION

Having all necessary ingredients at hand we will discuss
the numerical implications of our results, where we use the
input parameters given in Table I. Our numerical procedure
follows closely the one of Ref. [14]. In particular we use
the numerical solution of the RGE of the program RUNDEC
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[38] to compute �sð�cÞ from �sðMZÞ and neglect all terms
proportional to �es. We have checked numerically that this
is indeed justified [39].

The dependence of PcðXÞ on the parameter �c can be
seen in Fig. 7. We use central values for all relevant input
parameters of Table I and fix �b ¼ 5 GeV and �W ¼
80 GeV. The dashed line shows PcðXÞ as a function of
�c including the NNLO QCD corrections, as computed in
[14] where the parameter xc equals m2

c=M
2
W . The dash-

dotted line shows the same quantity, but using our im-
proved definition of xc; see Eq. (3). We observe that this
line is shifted by about 0.5% compared to PcðXÞ using the
conventional definition of xc. The dotted and the solid lines
show the results including LO QED and the NLO electro-
weak corrections, respectively. We see that including the
full electroweak corrections, PcðXÞ is increased by another
1.5% as compared to the pure NNLO QCD result with the
improved definition of xc. Also the cancellation of the
scheme dependence between the LO QED and the NLO
electroweak contribution is clearly visible.

The explicit analytic expression for PcðXÞ including the
complete NNLO corrections is so complicated and long
that we derive an approximate formula. Setting � ¼
0:2255 and mtðmtÞ ¼ 163:0 GeV we derive an approxi-
mate formula for PcðXÞ that summarizes the dominant
parametric and theoretical uncertainties due to mcðmcÞ,

�sðMZÞ, �c, �W , and �b. It reads

PcðXÞ ¼ 0:38049

�
mcðmcÞ
1:30 GeV

�
0:5081

�
�
�sðMZÞ
0:1176

�
1:0192

�
1þX

i;j

	ijL
i
mc
Lj
�s

�

� 0:008707

�
mcðmcÞ
1:30 GeV

�
0:5276

�
�sðMZÞ
0:1176

�
1:8970

�
�
1þX

i;j

�ijL
i
mc
Lj
�s

�
; (50)

where

Lmc
¼ ln

�
mcðmcÞ
1:30 GeV

�
; L�s

¼ ln

�
�sðMZÞ
0:1176

�
; (51)

and the sum includes the expansion coefficients 	ij and �ij
given in Table II. The above formula approximates the
central value of the full NNLO QCD result plus electro-
weak corrections with an accuracy of �0:05% in the
ranges 1:15 GeV � mcðmcÞ � 1:45 GeV, 0:114 �
�sðMZÞ � 0:122, while the scale uncertainty for varying
1:0 GeV � �c � 3:0 GeV, 40 GeV � �W � 160 GeV,
and 2:5 GeV � �b � 10:0 GeV is correct up to �2:3%
in Eq. (50). The uncertainties due tomtðmtÞ, and the differ-
ent methods of computing �sð�cÞ from �sðMZÞ, which are
not quantified above, are all below�0:2%. For � ¼ 0:2255
we find PcðXÞ ¼ 0:372� 0:015, where 42% of the error
are related to the remaining theoretical uncertainty and
58% to the uncertainties in mc and �s. In the future, one
could utilize the correlation of mc and �s in Ref. [35] to
further reduce the parametric uncertainty.
Finally, we provide an updated number for the branching

ratio:

BðKþ ! �þ� ��ð�ÞÞ ¼ ð8:51þ0:57
�0:62 � 0:20� 0:36Þ � 10�11:

(52)

The first error stems from the uncertainties in the CKM
parameters. The second error is related to the uncertainties
in mc, mt, and �s, where all three quantities contribute in
equal shares. The dependence on MH is completely negli-
gible (below one per mil). The last error quantifies the
remaining theoretical uncertainty. Here the main contribu-
tions stem from the uncertainty in 
Pc;u and Xt, where we

FIG. 7. PcðXÞ as a function of �c at NNLO QCD (dash-dotted
line), including LO QED (dotted line), and NLO electroweak
corrections (solid line). The dashed line shows PcðXÞ at NNLO
QCD where the definition xc ¼ mc=MW is used.

TABLE I. Input parameters used in our numerical analysis.

MW ð80:403� 0:029Þ GeV [33] �sðMZÞ 0:1176� 0:0020 [33]

MZ ð91:1876� 0:0021Þ GeV [33] �ðMZÞ 1/127.9 [33]

Mt ð172:6� 1:4Þ GeV [34] sin2�MS
W 0:231 22� 0:000 15 [33]

mbðmbÞ ð4:164� 0:025Þ GeV [35] GF 1:166 37� 10�5GeV�2 [33]

mcðmcÞ ð1:286� 0:013Þ GeV [35] � 0:2255� 0:0007 [36]

MH ð155� 40Þ GeV — jVcbj ð4:15� 0:09Þ � 10�2 [37]

m� ð1776:99þ0:29
�0:26Þ MeV [33] �� 0:141þ0:029

�0:017 [37]

�� 0:343� 0:016 [37]
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used an error of 2%. In detail, the contributions to the
theory error are (	þ

� : 6%, Xt: 38%, Pc: 17%,

Pc;u: 39%), respectively. All errors have been added in

quadrature.

IV. CONCLUSION

In this paper, we have calculated the Oð�Þ and Oð��sÞ
anomalous dimensions and the electroweak matching cor-
rections of the charm quark contribution relevant for the
rare decay Kþ ! �þ� ��. The parametric dependence of
the relevant parameter PcðXÞ plus its theoretical uncer-
tainty is summarized in an approximate but very accurate
formula.

PcðXÞ is increased by up to 2% as compared to the
previously known results [14]. This change is of the
same order of magnitude as the remaining scale uncertain-
ties after the NNLO QCD calculation. Together with the
recently achieved very precise determination of the had-
ronic matrix elements [17], further improvements on the
long-distance contribution of the charm quark [22], and the
complete electroweak matching corrections for the top

quark contribution [40], the theoretical prediction of the
branching ratio BðKþ ! �þ� ��Þ will reach an exceptional
degree of precision, with the uncertainties mainly due to
the CKM parameters. The latter errors will be reduced in
the coming years by the B-physics experiments.
Until now, three events of the decay Kþ ! �þ� �� have

been observed [41]. A precise measurement of the branch-
ing ratio at future experiments will provide a unique test of
the flavor sector of the SM and its extensions.
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