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We develop a formalism to evaluate the Sivers function. The approach is well suited for calculations

which use constituent quark models to describe the structure of the nucleon. A nonrelativistic reduction of

the scheme is performed and applied to the Isgur-Karl model of hadron structure. The results obtained are

consistent with a sizable Sivers effect and the signs for the u and d flavor contributions turn out to be

opposite. This pattern is in agreement with the one found analyzing, in the same model, the impact

parameter dependent generalized parton distributions. The Burkardt sum rule turns out to be fulfilled to a

large extent. We estimate the QCD evolution of our results from the momentum scale of the model to the

experimental one and obtain reasonable agreement with the available data.
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I. INTRODUCTION

The partonic structure of transversely polarized nucle-
ons is one of their less known features (for a review, see,
e.g., Ref. [1]). Nevertheless, experiments for its determi-
nation are progressing very fast and the relevant experi-
mental effort has motivated a strong theoretical activity
(for recent developments, see Ref. [2]). The present work
aims to contribute to this effort by using a successful
theoretical scenario for the calculation of the Sivers
function.

Semi-inclusive deep inelastic scattering (SIDIS), i.e. the
process Aðe; e0hÞX, with the detection in the final state of a
produced hadron h in coincidence with the scattered elec-
tron e0, is one of the proposed processes to access the
parton distributions (PDs) of transversely polarized had-
rons. For several years it has been known that SIDIS off a
transversely polarized target shows azimuthal asymme-
tries, the so-called ‘‘single spin asymmetries’’ (SSAs)
[3]. As a matter of fact, it is predicted that the number of
produced hadrons in a given direction or in the opposite
one, with respect to the reaction plane, depends on the
orientation of the transverse spin of a polarized target with
respect to the direction of the unpolarized beam. It can be
shown that the SSA in SIDIS off transverse polarized
targets is essentially due to two different physical mecha-
nisms, whose contributions can be technically distin-
guished [4–7]. One of them is the Collins mechanism,
due to parton final state interactions in the production of

a hadron by a transversely polarized quark [3], and will not
be discussed here. The other is the Sivers mechanism [8],
producing a term in the SSAwhich is given by the product
of the unpolarized fragmentation function with the Sivers
PD, describing the number density of unpolarized quarks
in a transversely polarized target. The Sivers function is a
transverse momentum dependent (TMD) PD; it is a time-
reversal odd object [1] and for this reason, for several
years, it was believed to vanish due to time reversal invari-
ance. However, this argument was invalidated by a calcu-
lation in a spectator model [9], following the observation of
the existence of leading-twist final state interactions (FSI)
[10]. The current wisdom is that a nonvanishing Sivers
function is generated by the gauge link in the definition of
TMD parton distributions [11–13], whose contribution
does not vanish in the light-cone gauge, as happens for
the standard PD functions. For the same reason it is diffi-
cult to relate the Sivers Function to the target helicity-flip,
impact parameter dependent (IPD), generalized parton
distribution (GPD) E. Although simple relations between
the two quantities are found in models [14,15], a clear
model independent formal relation is still to be proven,
as shown in Ref. [16].
Recently, the first data of SIDIS off transversely polar-

ized targets have been published, for the proton [17] and
the deuteron [18]. It has been found that, while the Sivers
effect is sizable for the proton, it becomes negligible for the
deuteron, so that apparently the neutron contribution can-
cels the proton one, showing a strong flavor dependence of
the mechanism. Experiments on transversely polarized 3He
target, aimed at extracting the neutron information, ad-
dressed in [19], are being performed at JLab [20,21]. A
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realistic calculation of nuclear effects for a proper extrac-
tion of the neutron information has also been performed
[22]. Different parametrizations of the available SIDIS
data have been published [23–25], still with large uncer-
tainties. Further analyses are in progress (see, i.e. [26]).
New data, which will reduce the uncertainties on the
extracted Sivers function and will help discriminate be-
tween different theoretical predictions, will be available
soon.

This experimental scenario motivates the formulation of
theoretical estimates. One would like to perform a calcu-
lation from first principles in QCD, however this is not yet
possible. Lacking this possibility it becomes relevant to
perform model calculations of the Sivers function. Several
estimates exist, in a quark-diquark model [9,12,27]; in the
MIT bag model, in its simplest version [28] and introduc-
ing an instanton contribution [29]; in a light-cone model
[30]; in a nuclear framework, relevant to establish the
manifestation of the Sivers function in proton-proton col-
lisions [31].

To our knowledge, no calculations of the Sivers function
have been performed in a constituent quark model (CQM),
i.e. a model described in terms of constituent quarks and
whose properties have been fixed from hadronic observ-
ables. The CQMs have a long history of successful pre-
dictions in studies of the hadronic spectrum and the low-
energy electroweak structure of hadrons. Ascribing a scale
to the model calculations [32,33] and using QCD evolution
[34,35] one can evolve the leading-twist component of the
observable calculated in this low-energy scale to the high
momentum one where DIS experiments are carried out.
Such procedure has proven successful in describing the
gross features of PDs (see, e.g., [36–38]) and GPDs (see,
e.g. [39,40]), by using different CQMs. Similar expecta-
tions motivate the present study of the Sivers function.

In here we propose a formalism to calculate the valence
quark contribution to the Sivers function from any CQM.
Thereafter, we choose the Isgur-Karl model [41] to per-
form a detailed calculation in order to describe the per-
formance of the approach. A difference in the calculation
of TMDs, with respect to calculations of PDs and GPDs, is
that the leading-twist contribution to the one-gluon-
exchange (OGE) FSI has to be evaluated. This is done
through a nonrelativistic (NR) reduction of the relevant
operator, according to the philosophy of constituent quark
models [42].

The paper is structured as follows. In the Sec. II, the
main quantities of interest are introduced. In the following
section, the formalism for the calculation of the Sivers
function in a CQM is developed. The Isgur-Karl model is
presented in Sec. IV, together with the numerical results of
the calculation and their discussion. The following section
is devoted to the QCD evolution of the model results and to
the comparison with the available data. In the last section
we draw conclusions from our study.

II. THE THEORETICAL FRAMEWORK

The Sivers function, f?Q
1T ðx; kTÞ, the quantity of interest

here, is formally defined, according to the Trento conven-
tion [43,44], for the quark of flavorQ, through the follow-
ing expression1:

�Qðx; ~kT; SÞ ¼ fQ1 ðx; kTÞ �
�ijT kTiSTj

M
f?Q
1T ðx; kTÞ

¼ 1

2

Z d��d2 ~�T
ð2�Þ3 e�iðx��Pþ� ~�T � ~kT Þ

� hP; SjÔQjP; Si; (1)

where ~ST is the transverse spin of the target hadron, the
normalization of the covariant spin vector is S2 ¼ �1,M is

the target mass and fQ1 ðx; kTÞ is the kT-dependent unpo-

larized PD. The operator ÔQ is defined as follows [12,13]:

ÔQ ¼ � Qð0; ��; ~�TÞLy
~�T
ð1; ��Þ�þL0ð1; 0Þ Qð0; 0; 0Þ;

(2)

where  Qð�Þ is the quark field and the gauge link is

L ~�T
ð1; ��Þ ¼ P exp

�
�ig

Z 1

��
Aþð��; ~�TÞd��

�
; (3)

where g is the strong coupling constant. One should notice
that this definition for the gauge link holds in covariant
(non singular) gauges, and in SIDIS processes, since the
definition of the Sivers function is process dependent. As
observed in Ref. [9] for the first time, and later confirmed
using factorization theorems in [45,46], the gauge link,
which represents the exchange of gluons, provides a scal-
ing contribution which makes the Sivers function nonvan-
ishing in the Bjorken limit.
Taking the proton polarized along the y axis one has

therefore,

f?Q
1T ðx; kTÞ ¼ � M

4kx

Z d��d2 ~�T
ð2�Þ3 e�iðx��Pþ� ~�T � ~kT ÞhÔQi;

(4)

where the following matrix element has been defined:

hÔQi ¼ fhPSy ¼ 1jÔQjPSy ¼ 1i
� hPSy ¼ �1jÔQjPSy ¼ �1ig: (5)

Considering a helicity basis for the target, the Sivers
function Eq. (4) can be written

1Here and in the following, a� ¼ ða0 � a3Þ=
ffiffiffi
2

p
and kT ¼

j ~kT j.

A. COURTOY, F. FRATINI, S. SCOPETTA, AND V. VENTO PHYSICAL REVIEW D 78, 034002 (2008)

034002-2



f?Q
1T ðx; kTÞ ¼ =

�
M

2kx

Z d��d2 ~�T
ð2�Þ3 e�iðx��Pþ� ~�T � ~kT Þ

� hPSz ¼ 1jÔQjPSz ¼ �1i
�
: (6)

This equation, finite in the limit of kx ! 0, will be used to
evaluate the Sivers function, using a CQM to describe the
proton. We will now proceed to expand the gauge link,
Eq. (3), in the coupling constant, g:

P exp

�
�ig

Z 1

��
Aþð��; ~�TÞd��

�

¼ 1� ig
Z 1

��
Aþð��; ~�TÞd�� þ . . . (7)

If the gauge link were not taken into account, it is clear
from Eqs. (2)–(6) that the matrix element Eq. (5) would be
zero and the Sivers function would vanish. For this reason,
the first term on the right-hand side of Eq. (7) does not
contribute to the Sivers function.

A few theoretical predictions have been formulated for
the Sivers function. Let us recall two of them.

The first one, based on rather general principles, is the
so-called Burkardt sum rule [47], stating that the total
average transverse momentum of the partons in a hadron,

h ~kTi, which can be defined in terms of the sum of the first
moments of the Sivers function for all the partons in the
target, has to vanish.

The second one is the conjecture according to which the
Sivers function could be related to the formalism of the
IPD GPDs [48], although, as it has been discussed in the
Introduction, simple relations between the two quantities
are found only in models [14,15] and a clear model inde-
pendent formal relation is still to be proven [16]. The IPD
GPDs are the Fourier transform of the GPDs with respect

to the transverse momentum transfer ~�T , at vanishing
skewness �. In the case of the helicity independent GPD,
HQðx; �;�2Þ, one has

HQðx; � ¼ 0; b2Þ ¼
Z d2 ~�T

ð2�Þ2 e
�i ~b� ~�THQðx; � ¼ 0;�2Þ;

(8)

and analogous definitions hold for the helicity indepen-
dent, target spin-flip GPD EQðx; �;�2Þ, and for the other

GPDs. It has been shown that these quantities have a
probabilistic interpretation, describing the location of the
quarks of flavorQ in the transverse plane and providing us
with a three-dimensional picture of the proton [48]. In
Refs. [49,50] (see also Ref. [51] for a recent review on
this subject), it has also been shown that, in a transversely
polarized proton, for example, along the y direction, the
quantity describing the distribution of the quarks of flavor
Q, with longitudinal momentum x, in the transverse plane,
independently of their helicity, is

~�Qðx; � ¼ 0; ~bÞ ¼ 1

2
HQðx; 0; b2Þ � bxSy

2M

d

db2
EQðx; 0; b2Þ;

(9)

i.e., the transverse polarization of the proton produces a
shift in the transverse location of the quarks. As explained
before, this effect in the partonic structure of transversely
polarized protons has been related, in peculiar models, in a
qualitative way, to a nonvanishing Sivers effect [49,50].

III. THE SIVERS FUNCTION IN CONSTITUENT
QUARK MODELS

The constituent quark, one of the most fruitful concepts
in 20th century physics, was proposed to explain the struc-
ture of the large number of baryons being discovered in the
1960s [52]. The constituent quark concept was incorpo-
rated into a QCD scheme by taking into account gluon
exchanges [42]. The chosen description was a potential
model in order to establish an immediate connection with
all previous work.
The constituent quark scheme has guided some of the

most successful parametrizations of parton distributions
[53]. Besides, the philosophy that has guided these parame-
trizations is precisely the one used to establish the link
between constituent models and parton distributions. More
specifically, model calculations are ascribed to a scale
determined by their partonic content [32,33]. In most
models that scale is characterized by the existence of
valence quarks only. From that low scale one uses
DGLAP evolution to describe the partonic regime [38].
The models based on constituent quarks (CQMs) have

produced beautiful results in the description of PDs and
GPDs, leading to a phenomenological understanding of
them in terms of momentum densities and wave functions
[36–40]. This success in the description of many parton
distributions makes us confident that the application of the
approach to the calculation of the Sivers function will also
serve to guide the experimental observations and help the
physical interpretation of this observable.
Let us specify in detail the scheme in which we are going

to develop our formalism for the Sivers function. We shall
assume that the nucleon at a certain low-energy scale is
made up of valence quarks only. These valence quarks are
held together by a confining interaction; in addition, there
is a residual interaction, governed by the structure of
perturbative QCD, e.g. the one gluon exchange interaction.
The strong confining interaction maintains the quarks to-
gether, while the residual one governs the splittings within
the same flavor multiplet. Any scheme with these hypoth-
eses is a constituent quark model framework.
This scheme has never to be understood in a trivial

perturbative sense. The parameters absorb much of the
nonperturbative features of the dynamics and this relation
between the parameters and some chosen observables
makes the scheme predictive. If one goes to higher order
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in the perturbative expansion, one needs to find new pa-
rameters from the chosen observables. Thereafter, the pre-
dictions do not change much with respect to the lowest
order result [54]. Certainly we are dealing with models and
not with QCD and therefore one should not expect preci-
sion. Nevertheless, the scheme has been so successful that
particles which do not fit approximately under it are called
exotics, hybrids or other peculiar names.

Using this scheme we evaluate a formula for the Sivers
function, defined according to Eq. (6), valid for any CQM.
Let us proceed to the analysis having in mind Fig. 1. To the
first nonvanishing order giving a contribution to the asym-
metry, the Sivers function for the flavor Q is obtained as
follows:

f?Q
1T ðx; kTÞ ¼ =

�
M

2kx

Z d��d2 ~�T
ð2�Þ3 e�iðx��Pþ� ~�T � ~kT ÞhÔQi

�
;

(10)

where

hÔQi ¼ hPSz ¼ 1j � Qið0; ��; ~�TÞðigÞfÔað0; ��; ~�TÞTaijg
� �þ Qjð0ÞjPSz ¼ �1i þ H:c:; (11)

where Taij ¼ �aij=2 with �
a
ij being a Gell-Mann matrix, and

Ô að0; ��; ~�TÞ ¼
Z 1

��
Aþ
a ð0; ��; ~�TÞd��

¼ eiP̂
þ���iP̂T � ~�T Ôað0Þe�iP̂þ��þiP̂T � ~�T :

(12)

In the above equations, use is made of light-cone states,2

defined as j~pi ¼ jpþ; ~pTi, with p� ¼ ðm2 þ p2
TÞ=ð2pþÞ.

The light-cone states are normalized as follows:

h~p0r0j~pri ¼ ð2�Þ32pþ�ðp0þ � pþÞ�ð ~p0
T � ~pTÞ�rr0 ;

(13)

where the label r represents a set of discrete quantum
numbers. The creation and annihilation operators of the
quark fields are normalized accordingly:

fbyl ð~pÞ; bl0 ð~p0Þg ¼ ð2�Þ32pþ�ðp0þ � pþÞ�ð ~p0
T � ~pTÞ�ll0 ;

(14)

where the set l ¼ fm; c;F g includes the helicity, color and
flavor quantum numbers of the quark, respectively.
Using the approximation of expanding Eq. (11) in terms

of free quark fields [39], one gets

f?Q
1T ðx; kTÞ ¼ =

�
M

2kx

Z d��d2 ~�T
ð2�Þ3 e�iðx��Pþ� ~�T � ~kT ÞhPrSz ¼ 1j

Z
d~k3

X
m3

bQy
m3i

ð~k3Þeikþ3 ���i ~k3T � ~�T �um3
ð ~k3ÞðigÞfÔað0; ��; ~�TÞTaijg

� �þX
m0

3

Z
d~k03b

Q
m0

3j
ð~k03Þum0

3
ð ~k03ÞjPrSz ¼ �1i þ H:c:

�
; (15)

where d~ki ¼ dkþi d ~kTi=ð2kþi ð2�Þ3Þ. Inserting now proper complete sets of intermediate free one quark states, the previous
equation becomes

f?Q
1T ðx; kTÞ ¼ =

�
M

2kx

Z d��d2 ~�T
ð2�Þ3 e�iðx��Pþ� ~�T � ~kT ÞhPrSz ¼ 1j

Z
d~k3

X
m3

bQy
m3i

ð~k3Þeikþ3 ���i ~k3T � ~�T �um3
ð ~k3ÞðigÞ

� X
ln;l1

Z
d ~kn

Z
d ~k1j~k1l1ij~knlnih~knlnjh~k1l1jfÔað0; ��; ~�TÞTaijg

X
l0n;l01

Z
d ~k0n

Z
d ~k01j~k01l01ij~k0nl0nih~k0nl0njh~k01l01j�þ

�X
m0

3

Z
d ~k03b

Q
m0

3j
ð~k03Þum0

3
ð ~k03ÞjPrSz ¼ �1i þ H:c:

�
: (16)

If there is no further interaction within the recoiling system, one has

FIG. 1. The contributions to the Sivers function in the present
approach. The graph has been drawn using JaxoDraw [62].

2Here and in the following, ~x ¼ ðxþ; x�; ~xTÞ is a four vector in light-cone coordinates, while obviously ~x ¼ ðx1; x2; x3Þ and ~xT ¼
ðx1; x2Þ.
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h~knlnj~k0nl0ni ¼ ð2�Þ32kþn �ðk0þn � kþn Þ�ð ~kn0T � ~knTÞ�ln;l0n ; (17)

hPrSz ¼ 1jfbQy
m3i

ð~k3Þj~k1l1ij~knlnig ¼ ð2�Þ32kþn �ðPþ � kþ1 � kþ3 � kþn Þ�ð ~PT � ~k1T � ~k3T � ~knTÞ
� �ðSz;r;l1;l3;lnÞhPrSz ¼ 1j~k3fm3; i;Qg; ~k1fm1; c1;F 1g; ~P� ~k3 � ~k1; lni

¼ ð2�Þ32kþn �ðPþ � kþ1 � kþ3 � kþn Þ�ð ~PT � ~k1T � ~k3T � ~knTÞ
� �ðSz;r;l1;l3;lnÞ�

y
rSz¼1ð~k3fm3; i;Qg; ~k1fm1; c1;F 1g; ~P� ~k3 � ~k1; lnÞ: (18)

In the last equation, the definition of the intrinsic proton
wave function, �, in momentum space,3 has been recov-
ered. In the same equation, the terms �ðSz;r;:::Þ are showing
that all the discrete quantum numbers of the quarks have to
be properly combined to recover those of the parent proton.
In order to obtain a workable expression for the Sivers
function given by Eq. (16), other three relations have to be
used. One is written using Eq. (12) and translational in-
variance:

h~k1l1jfÔað0; ��; ~�TÞgj~k01l01i
¼ eik

þ
1
���i ~k1T � ~�T h~k1l1jfÔað0Þgj~k01l01ie�ik0þ1 ��þi ~k

0
1T � ~�T : (19)

Another one is the identity [13]:

Ô að0Þ ¼
Z 1

0
Aþ
a ð��; 0TÞd��

¼ �
Z d4q

ð2�Þ4
i

qþ � i�
Aþ
a ðqÞ: (20)

The last one is obtained by evaluating the matrix ele-
ment of the perturbative free gluon operator appearing in
Eq. (19). Assuming, as an approximation, that this operator
is time-independent, one gets, in the Landau gauge

h~k1l1jAþ
a ðqÞj~k01l01i ¼

g

q2
Tac1c01

�um1
ð ~k1Þ�þum0

1
ð ~k01Þ�FF 0 ð2�Þ

� �ðq0Þð2�Þ32kþ1 �ðkþ1 � k0þ1 � qþÞ
� �ð ~k1T � ~k01T � ~qÞ: (21)

Substituting in Eq. (16) the identity

1

qþ � i�
� 1

qþ þ i�
¼ ið2�Þ�ðqþÞ; (22)

together with Eqs. (17)–(21), one is left with the following
expression for the Sivers function:

f?Q
1T ðx; kTÞ ¼ =

�
�ig2 M

2kx

Z
d~k1d~k3

d4q

ð2�Þ3 �ðq
þÞ�ðkþ3 þ qþ � xPþÞ�ð ~k3T þ ~qT � ~kTÞð2�Þ�ðq0Þ

� X
F 1;m1;c1;m

0
1
;c0

1
;m3;i;m

0
3
;j

�ðSz;r;m0
3
;m0

1
;ln;m3;m1;i;j;c1;c

0
1
Þ

��y
rSz¼1ð~k3fm3; i;Qg; ~k1fm1; c1;F 1g; ~P� ~k3 � ~k1; lnÞTaijTac1c01Vð ~k1; ~k3; ~qÞ

��rSz¼�1ð~k3 þ ~q; fm0
3; j;Qg; ~k1 � ~q; fm0

1; c
0
1;F 1g; ~P� ~k3 � ~k1; lnÞ

�
; (23)

with the interaction determined by

Vð ~k1; ~k3; ~qÞ ¼ 1

q2
�um3

ð ~k3Þ�þum0
3
ð ~k3 þ ~qÞ �um1

ð ~k1Þ

� �þum0
1
ð ~k1 � ~qÞ: (24)

Since the final aim is the evaluation of the Sivers func-
tion within a NR model, a NR reduction of the interaction
has to be performed. Using therefore the definitions of free

four-spinors in Eq. (24), performing a NR expansion leav-
ing out terms of second order in momentum, as it is
commonly done in nuclear physics (cf. Ref. [55]), one
gets the potential

VNRð ~k1; ~k3; ~qÞ ¼ 1

2q2
½ðV0Þm1;m

0
1
;m3;m

0
3
þ ðVSÞm1;m

0
1
;m3;m

0
3
�;
(25)

with

3In the class of models to be later used, the separation of the
center of mass and intrinsic motion is always possible.
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V0ð ~k1; ~k3; ~qÞm1;m
0
1
;m3;m

0
3
¼

�
1þ kz3

m
þ ~q � ~k3

4m2
þ kz1
m

� ~q � ~k1
4m2

þO

�
k21
m2

;
k23
m2

��
�m1;m

0
1
�m3;m

0
3

(26)

VSð ~k1; ~k3; ~qÞm1;m
0
1;m3;m

0
3
¼ �i

�
1þ kz3

m
þ ~q � ~k3

4m2

�
�m3;m

0
3

½ ~q� ð ~	1Þm1;m
0
1
�z

2m
þ i

�
1þ kz1

m
� ~q � ~k1

4m2

�
�m1;m

0
1

½ ~q� ð ~	3Þm3;m
0
3
�z

2m

þ i�m1;m
0
1

ð ~	3Þm3;m
0
3
� ð ~k3 � ~qÞ

4m2
� i

ð ~	1Þm1;m
0
1
� ð ~k1 � ~qÞ

4m2
�m3;m

0
3

þ ½ ~q� ð ~	1Þm1;m
0
1
�zð ~	3Þm3;m

0
3
� ð ~k3 � ~qÞ

8m3
þ ð ~	1Þm1;m

0
1
� ð ~k1 � ~qÞ½ ~q� ð ~	3Þm3;m

0
3
�z

8m3

þ ½ ~q� ð ~	1Þm1;m
0
1
�z½ ~q� ð ~	3Þm3;m

0
3
�z

4m2
þO

�
k21
m2

;
k23
m2

�
: (27)

A few remarks are in order. First of all, the helicity conserving part, V0, Eq. (26), of the global interaction Eq. (25), does not
contribute to the Sivers function. One should notice that, in an extreme NR limit, the Sivers function would turn out to be
identically zero. In our approach, it is precisely the interference of the small and large components in the four-spinors of the
free quark states which leads to a nonvanishing Sivers function, even from the component with l ¼ 0 of the target wave
function. Effectively, these interference terms in the interaction are the ones that, in other approaches, arise due to the wave
function (see, e.g., the MIT bag model calculation [28]).

The scheme is now completely set up and any CQM can be used to evaluate the Sivers function. We next use properly
normalized NR wave functions to transform Eq. (23) in

f?Q
1T ðx; kTÞ ¼ =

�
�ig2M

2

kx

Z
d ~k1d ~k3

d2 ~qT
ð2�Þ2 �ðk

þ
3 � xPþÞ�ð ~k3T þ ~qT � ~kTÞMQ

�
; (28)

where

MQ ¼ X
F 1;m1;c1;m

0
1
;c0

1
;m3;i;m

0
3
;j

�ðSz;r;m0
3;m

0
1;ln;m3;m1;i;j;c1;c

0
1Þ�

y
rSz¼1ð ~k3fm3; i;Qg; ~k1fm1; c1;F 1g; ~P� ~k3 � ~k1; lnÞTaijTac1c01Vð ~k1; ~k3; ~qÞ

��rSz¼�1ð ~k3 þ ~q; fm0
3; j;Qg; ~k1 � ~q; fm0

1; c
0
1;F 1g; ~P� ~k3 � ~k1; lnÞ: (29)

Each wave function�rSz describing a possible proton state can be factorized into a completely antisymmetric color wave
function 
, and a symmetric spin-flavor-momentum state �sf , as follows:

�rSz ¼ �sf;Szð ~k3fm3;Qg; ~k1fm1;F 1g; ~P� ~k3 � ~k1; fmn;F ngÞ
ði; c1; cnÞ: (30)

The matrix element of the color operator in Eq. (29) can be therefore immediately evaluated

X
c1;c

0
1;i;j


yði; c1; cnÞTaijTac1c01
ðj; c
0
1; cnÞ ¼ � 2

3
; (31)

which is the well-known result for the exchange of one gluon between quarks in a color singlet 3-quark state [56]. Besides,
as a consequence of the symmetry of the state�sf , one can assume that the interacting quark is the one labeled ‘‘3,’’ so that,
after the evaluation of the summation on the flavors F 1, M� can be written, for the u and d flavors, as follows:

MuðdÞ ¼
�
� 2

3

�
� 3 � X

m1;m
0
1
;m3;m

0
3

�y
sf;Sz¼1ð ~k3; m3; ~k1; m1; ~P� ~k3 � ~k1; mnÞ 1� �3ð3Þ

2

� VNRð ~k1; ~k3; ~qÞ�sf;Sz¼�1ð ~k3 þ ~q; m0
3;
~k1 � ~q;m0

1; ~P� ~k3 � ~k1; mnÞ: (32)
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Equation (28), with MuðdÞ given by Eq. (32), provides us
with a suitable formula to evaluate the Sivers function,
once the spin-flavor wave function of the proton in mo-
mentum space, i.e. the quantity �sf , is available in a given
constituent quark model.

IV. THE CALCULATION OF THE SIVERS
FUNCTION IN THE ISGUR-KARL MODEL

As an illustration, in this section we present the results of
our approach in the CQM of Isgur and Karl (IK) [41]. In
this model the proton wave function is obtained in a OGE
potential added to a confining harmonic oscillator (H.O.);
including contributions up to the 2@! shell, the proton state
is given by the following admixture of states

jNi ¼ aj2S1=2iS þ bj2S01=2iS þ cj2S1=2iM þ dj4D1=2iM;
(33)

where the spectroscopic notation j2Sþ1XJit, with t ¼ A,M,
S, being the symmetry type, has been used. The coeffi-
cients were determined by spectroscopic properties to be
a ¼ 0:931, b ¼ �0:274, c ¼ �0:233, d ¼ �0:067 [56].
If a ¼ 1 and b ¼ c ¼ d ¼ 0, a simple H.O. model is
recovered. The parameter �2 ¼ m! of the H.O potential
is fixed to the value 1:23 fm�2, in order to reproduce the
slope of the proton charge form factor at zero momentum
transfer [56].

The formal expressions of the wave functions appearing
in Eq. (33) in the IK model can be found in [56,57], given
in terms of the following sets of conjugated intrinsic coor-
dinates

~R ¼ 1ffiffiffi
3

p ð ~r1 þ ~r2 þ ~r3Þ $ ~K ¼ 1ffiffiffi
3

p ð ~k1 þ ~k2 þ ~k3Þ;

~� ¼ 1ffiffiffi
2

p ð ~r1 � ~r2Þ $ ~k� ¼ 1ffiffiffi
2

p ð ~k1 � ~k2Þ;

~� ¼ 1ffiffiffi
6

p ð ~r1 þ ~r2 � 2~r3Þ $ ~k� ¼ 1ffiffiffi
6

p ð ~k1 þ ~k2 � 2 ~k3Þ:

(34)

There are many good reasons to use the IK model as a
test of the developed formalism. First of all, the IK is the
typical CQM, succesful in reproducing the low-energy
properties of the nucleon, such as the spectrum and the
elastic and transition form factors at small momentum
transfer [41,56]. In particular, as was shown in Ref. [58],
in the IK model, hk2i=m2 � 0:3 and therefore one expects
small corrections from terms Oðk2=m2Þ. Besides, one of
the features of the IK model is that the OGE mechanism
[42], which reduces the degeneracy of the spectrum, is
taken into account. It is therefore natural to study our
formalism, based on OGE FSI, within the IK framework.
Concerning PDs, it has been shown that the IK model can
describe their gross features, once QCD evolution of the
proper matrix elements of the corresponding twist-2 op-
erators is performed from the scale of the model to the
experimental one [36–38]. Reasonable predictions of

GPDs have also been obtained [39], and this makes par-
ticularly interesting the evaluation of the Sivers function in
the IK model. In Sec. II, the relation between the Sivers
function and the impact parameter dependent GPDs has
been discussed. In a model where a shift of the quark
location in the transverse plane is found, a sizable Sivers
function should arise. In order to investigate whether the IK
model is suitable for the analysis of the Sivers function, the

quantity �Qðx; � ¼ 0; ~bÞ has been calculated in this model

[59], performing the Fourier transforms, Eq. (8), of GPDs
evaluated along the lines of Ref. [39]. The quantity

�Qð ~bÞ ¼
Z
dx~�Qðx; � ¼ 0; ~bÞ; (35)

FIG. 2. In the upper (lower) panel, the quantity �Qð ~bÞ,
Eq. (35), is shown for the u (d) flavor.
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representing the distribution of the quarks of flavorQ, with
any longitudinal momentum, in the transverse plane, inde-
pendently of their helicity, in a proton polarized along the
positive y direction, is shown in Fig. 2. It is clear that a
slight shift along the x direction is observed, with a differ-
ent sign for the u and d flavor. Therefore, according to the
present wisdom, a small Sivers function is expected, with
different sign for the u and d flavors [49].

After this discussion, the IK model appears as a prom-
ising framework for the evaluation of the Sivers function.
The Sivers function has been calculated according to

Eq. (28), using the proton states Eq. (33), neglecting the

small D component, and the potential Eq. (25) in MuðdÞ
given by Eq. (32).
The results of the calculation can be cast in the following

form:

f?Q¼u;d
1T ðx; kTÞ ¼ �

ffiffiffi
2

p
g2M2

kx

�
3

2

�
3=2 1

2�3=2�3

Z d2 ~qT
ð2�Þ2

k0�
jk0� � kz�j

e�ð1=�2Þ½k2
�
þð7=8Þq2T�

ffiffiffiffiffiffi
3=2

p
~q: ~k�� 1

2m

�
�
a2
qx
q2
pðQÞ
SS þ ab

qx
q2

ðpðQÞ
S0S þ pðQÞ

SS0 Þ þ ac
qx
q2

ðpðQÞ
MS þ pðQÞ

SM Þ þ acðpðQÞ
SM0 þ pðQÞ

M0SÞ þ b2
qx
q2
pðQÞ
S0S0

þ bc
qx
q2
pðQÞ
S0M þ bc

qx
q2
pðQÞ
MS0 þ bcðpðQÞ

S0M0 þ pðQÞ
M0S0 Þ þ c2

qx
q2

ðpðQÞ
MM þ pðQÞ

M0M0 Þ þ c2ðpðQÞ
MM0 þ pðQÞ

M0MÞ
�
; (36)

with k0� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2�

q
, and

~k � ¼
ffiffiffi
3

2

s
ð ~q� ~kÞ; kz� ¼

3
2m

2 þ ~k2�T � 3x2Pþ2

2
ffiffiffi
3

p
Pþx

k2� ¼ kz2� þ ~k2�T:

(37)

The expressions of the functions pðQÞ
XX are given in the

appendix.
To evaluate numerically Eq. (36), the strong coupling

constant g, and therefore �sðQ2Þ, has to be fixed. Here, the
prescription introduced in the past for calculations of PDFs
in quark models (see, i.e., Ref. [38]) will be used. It
consists in fixing the momentum scale of the model, the
so-called hadronic scale 
2

0, according to the amount of

momentum carried by the valence quarks in the model. In

the approach under scrutiny, only valence quarks contrib-
ute. Assuming that all the gluons and sea pairs in the proton
are produced perturbatively according to NLO evolution
equations, in order to have ’ 55% of the momentum
carried by the valence quarks at a scale of 0:34 GeV2, as
in typical low-energy parametrizations [53], one finds, that

2

0 ’ 0:1 GeV2 if �NLO
QCD ’ 0:24 GeV. This yields

�sð
2
0Þ=ð4�Þ ’ 0:13 [38].

For an easy presentation, the quantity which is usually
shown for the results of calculations or for data of the
Sivers function is its first moment, defined as follows:

f?ð1ÞQ
1T ðxÞ ¼

Z
d2 ~kT

k2T
2M2

f?Q
1T ðx; kTÞ: (38)

The results of the present approach for the moments
Eq. (38) are given by the dashed curves in Fig. 3 (4) for
the u (d) flavor. They are compared with a parametrization
of the HERMES data, corresponding to an experimental
scale of Q2 ¼ 2:5 GeV2 [24]4 The patterned area repre-
sents the 1-	 range of the best fit proposed in Ref. [24].
As expected from the IPD GPDs analysis, shown in

Fig. 2, a different sign for the u and d flavor is found.
Let us see now how the results of the calculation com-

pare with the Burkardt sum rule [47], which follows from
general principles and must be satisfied at any scale. If the
proton is polarized in the positive y direction, in our case,
where only valence quarks are present, the Burkardt sum
rule reads

xf⊥(1)u 1T(x)

 X
−0.04

−0.02

0

0 0.25 0.5 0.75 1

FIG. 3. The quantity f?ð1Þq
1T ðxÞ, Eq. (38), for the u flavor. The

dashed curve is the result of the present approach at the hadronic
scale 
2

0, Eq. (36). The full curve represents the evolved distri-

bution after standard NLO evolution (see text). The patterned
area represents the 1-	 range of the best fit of the HERMES data
proposed in Ref. [24].

4It has been chosen to compare the results with the parame-
terization of [24] and not with that of [23] or [25] just because, in
the first case, it is easier to reconstruct the parameterization of
the data, and their 1-sigma range has been kindly provided by the
authors of Ref. [24]. The discussion of the quality of the
agreement of the present results with data would not change
substantially if the comparison were made with the parametri-
zation of Refs. [23,25].
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X
Q¼u;d

hkQx i ¼ 0; (39)

where

hkQx i ¼ �
Z 1

0
dx

Z
d ~kT

k2x
M
f?Q
1T ðx; kTÞ: (40)

Within our scheme, at the scale of the model, it is found
hkuxi ¼ 10:85 MeV, hkdxi ¼ �11:25 MeV and, in order to
have an estimate of the quality of the agreement of our
results with the sum rule, we define the ratio

r ¼ hkdxi þ hkuxi
hkdxi � hkuxi

; (41)

obtaining r ’ 0:02, so that we can say that our calculation
fulfills the Burkardt sum rule to a precision of a few
percent.

Another prediction has been derived in the framework of
large Nc [60] and it reads, when xNc �Oð1Þ and the large
Nc predictions are supposed to be applicable:

rNC ¼ jf?ð1Þu
1T ðxÞ þ f?ð1Þd

1T ðxÞj
jf?ð1Þu

1T ðxÞ � f?ð1Þd
1T ðxÞj ’

1

Nc
: (42)

We get the closest value to the prediction above, 0.26, in a
narrow region around x ¼ 0:4.

We note that the contribution of the states j2S01=2iS and

j2S1=2iM, in spite of their small probability in the proton

state Eq. (33), turns out to be important in the evaluation of
the Sivers function.

The magnitude of the results is close to that of the data,
although they have a different shape: the maximum (mini-
mum) is predicted at larger values of x. One should anyway
realize that one step of the analysis is still missing: the
scale of the model, 
2

0, is much lower than the one of the

data, which is Q2 ¼ 2:5 GeV2. For a proper comparison,
the QCD evolution from the model scale to the experimen-

tal one would be necessary. This issue is discussed in the
next section.

V. QCD EVOLUTION OF THE MODEL
CALCULATION

The Sivers function is a TMD PDs and the evolution of
this class of functions is, to a large extent, still to be
understood. In any case, recent interesting developements
can be found in Ref. [61].
In order to have an indication of the effect of the

evolution, we perform a NLO evolution of the model
results assuming, for the moments of the Sivers function,
the ones defined in Eq. (38), the same anomalous dimen-
sions of the unpolarized PDFs. As described in the pre-
vious section, the parameters of the evolution have been
fixed in order to have a fraction ’ 0:55 of the momentum
carried by the valence quarks at 0:34 GeV2, as in typical
parametrizations of PDFs [53], starting from a scale of

2

0 ’ 0:1 GeV2 with only valence quarks. The final result

is given by the full curve in Figs. 3 and 4 for the u (d)
flavor. As it is clearly seen, the agreement with data
improves dramatically and their trend is reasonably repro-
duced at least for x � 0:2.
Of course a word of caution is in order: the performed

evolution is not really correct. In any case, an indication of
two very important things is obtained:
(i) The evolution of the model result is necessary to

estimate the quantities at the momentum scale of
experiments, as it happens for standard PDs [36–38];

(ii) after evolution, the present calculation could be
consistent with data, at least with the present ones,
still affected by large statistical and systematic
errors.

VI. CONCLUSIONS

A rather general formalism for the evaluation of the
Sivers function, to be used in any CQM, has been devel-
oped. The crucial ingredient has been the NR reduction of
the leading twist part of the OGE diagram in the final state.
It has been shown that the IK model, based also on a OGE
contribution to the Hamiltonian, is a proper framework for
the estimate of the Sivers function. The obtained results
show a sizable effect, with an opposite sign for the u and d
flavors. This is in agreement with the pattern found from an
analysis of impact parameter dependent GPDs in the IK
model.
Let us compare our approach with previous calculations.

The diquark model with scalar diquarks has no contribu-
tion for the d-quark [27] and therefore does not satisfy the
Burkardt sum rule (BSR), Eq. (39). The diquark model
with axial-vector diquarks has contributions to both u and
d-quarks and with opposite sign, but with the magnitude of
the d 10 times smaller than that of the u. The BSR is not
satisfied. The MIT bag model calculation [28] has non-

xf⊥(1)d 1T(x)

X

0

0.02

0.04

0 0.25 0.5 0.75 1

FIG. 4. The same as in Fig. 3, but for the d flavor.
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vanishing u and d-quarks contribution of opposite sign
which are proportional in magnitude. The d-quark contri-
bution is much smaller than ours and therefore does not
satisfy the BSR. The MIT bag model modified by instanton
effects [29] has u and d-quark contributions of the same
sign and therefore does not satisfy the BSR. As a summary,
we can say that our calculation, despite the naive wave
function used, is in better agreement with the data with
respect to the other approaches, and fulfills the BSR.

In order to compare with the data, one has to evolve the
model calculation to the experimental scale. Although a
consistent QCD evolution of the model results to the
experimental momentum scale is not yet possible, due to
the lack of the calculation of the corresponding anomalous
dimensions, an estimate of the evolution has been at-
tempted. It has been found that, once properly evolved,
the model results could be in reasonable agreement with
the available data.

The formalism presented here can be used with any
CQM and it will be interesting in the near future to imple-
ment other calculations with different models, performing
a correct evolution as soon as the corresponding ingre-
dients become available. The connection of the Sivers
function with IPD GPDs deserves a careful analysis and
will be discussed elsewhere.
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APPENDIX: THE SIVERS FUNCTION IN THE IK
MODEL

The functions pðQÞ
XX appearing in Eq. (36) are listed

below.

pðuÞ
SS ¼

�
A� q2

18m2

�
; pðdÞ

SS ¼
�
Bþ q2

72m2

�
; (A1)

pðuÞ
S0S ¼

1ffiffiffi
3

p
�2

�
A

�
3

2
�2 þ q2

8

�
� 5�2 q2

36m2
� q4

144m2
þ

�
A� q2

18m2

�
ðk2� � 3�2Þ

�
;

pðdÞ
S0S ¼

1ffiffiffi
3

p
�2

�
B

�
3

2
�2 þ q2

8

�
þ 5�2 q2

144m2
þ q4

576m2
þ

�
Bþ q2

72m2

�
ðk2� � 3�2Þ

�
;

(A2)

pðuÞ
SS0 ¼

1ffiffiffi
3

p
�2

�
A

�
3

2
�2 þ q2

8

�
� 5�2 q2

36m2
� q4

144m2
þ

�
A� q2

18m2

�
ðk2� � 3�2 þ 2q2 � 3 ~q � ð ~q� ~kÞÞ

� A
q2

2
þ q4

36m2
þ �2 q2

9m2

�
;

pðdÞ
SS0 ¼

1ffiffiffi
3

p
�2

�
B

�
3

2
�2 þ q2

8

�
þ 5�2 q2

144m2
þ q4

576m2
þ

�
Bþ q2

72m2

�
ðk2� � 3�2 þ 2q2 � 3 ~q � ð ~q� ~kÞÞ � B

q2

2

� �2 q2

36m2
� q4

144m2

�
;

(A3)

pðuÞ
MS ¼

1ffiffiffi
6

p
�2

�
�k2�

�
D� 5q2

72m2

�
þD

�
3

2
�2 þ q2

8

�
� 25�2 q2

144m2
� 5

q4

576m2

�
;

pðdÞ
MS ¼

2ffiffiffi
6

p
�2

�
k2�

�
Bþ q2

72m2

�
� B

�
3

2
�2 þ q2

8

�
� 5�2 q2

144m2
� q4

576m2

�
;

(A4)
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pðuÞ
SM ¼ pðuÞ

MS þ
1ffiffiffi
6

p
�2

�
�ðq2 � ffiffiffi

6
p

~q � ~k�Þ
�
D� 5q2

72m

�
þ

�
�Dq

2

2
þ 5�2 q2

36m2
þ 5

q4

144m2

��
;

pðdÞ
SM ¼ pðdÞ

MS þ
1ffiffiffi
6

p
�2

�
ðq2 � ffiffiffi

6
p

~q � ~k�Þ
�
Bþ q2

72m2

�
þ

�
B
q2

2
þ �2q2

36m
þ q4

144m2

��
;

(A5)

pðuÞ
M0S ¼ � 2

q2
ffiffiffiffiffiffi
18

p
�2

�
��2qx

kz�
4

ffiffiffi
2

p
m
� qy�

2 ð ~k� ~qÞz
8

ffiffiffi
2

p
m2

þ ~q � ~k�
2

ffiffiffi
2

p CM
0S

MSMA

þ 1

3

�
��2qx

kz�
4

ffiffiffi
2

p
m
þ qy�

2 ð ~k� ~qÞz
8

ffiffiffi
2

p
m2

þ ~q � ~k�
2

ffiffiffi
2

p CM
0S

MAMS

��
;

pðdÞ
M0S ¼ � 2

q2
ffiffiffiffiffiffi
18

p
�2

2

3

�
��2qx

kz�
4

ffiffiffi
2

p
m
þ qy�

2 ð ~k� ~qÞz
8

ffiffiffi
2

p
m2

þ ~q � ~k�
2

ffiffiffi
2

p CM
0S

MAMS

�
;

(A6)

pðuÞ
SM0 ¼ pðuÞ

M0S �
2

q2
ffiffiffiffiffiffi
18

p
�2

�
CM

0S
MSMA þ

1

3
CM

0S
MAMS

�� ffiffiffi
3

p
q2

4
� ~q � ~k�ffiffiffi

2
p

�
;

pðdÞ
SM0 ¼ pðdÞ

M0S �
2

q2
ffiffiffiffiffiffi
18

p
�2

2

3
CM

0S
MAMS

� ffiffiffi
3

p
q2

4
� ~q � ~k�ffiffiffi

2
p

�
;

(A7)

pðuÞ
S0S0 ¼

1

3�4

�
FpðuÞ

SS þG

�
A

�
3

2
�2 þ q2

8

�
� 5�2 q2

36m2
� q4

144m2

�
þH

�
�Aq

2

2
þ q4

36m2
þ �2 q

2

9m

�

� ffiffiffi
2

p �
CS

0S0ð1Þ
MA þ 1

3
CS

0S0ð1Þ
MS

�
þ

�
CS

0S0ð2Þ
MA þ 1

3
CS

0S0ð2Þ
MS

��
;

pðdÞ
S0S0 ¼

1

3�4

�
FpðdÞ

SS þG

�
B

�
3

2
�2 þ q2

8

�
þ 5�2 q2

144m2
þ q4

576m2

�
þH

�
�Bq

2

2
� q4

144m2
� �2 q2

36m

�
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