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Université de Liège, Institut de Physique, Bâtiment B5a, B4000 Liège, Belgium
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We have used the light-cone formulation of the chiral-quark soliton model to investigate the vector and

axial content of octet, decuplet, and hypothetical antidecuplet in the flavor SUð3Þ symmetry limit. We

have extended previous works by computing the 7Q contribution to vector and axial charges for the octet

and antidecuplet but stayed at the 5Q sector for the decuplet where the full computation needs much more

time. As expected, the 7Q component has a weaker impact on the quantities but still changes them by a

few percent. We give also a detailed decomposition of those charges into flavor, valence quark, sea quark,

and antiquark contributions. Many of them are of course not (yet) measured or estimated and constitute

then a theoretical estimation. Among the different interesting observations made in this work are the

explicit quadrupole deformation of decuplet baryons due to the pion field and the sum of quark spins

larger than the pentaquark one.
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I. INTRODUCTION

The chiral-quark soliton model (�QSM) has recently
been formulated on the light cone or, equivalently, in the
infinite momentum frame (IMF) [1,2]. This provides a new
approach for extracting predictions out of the model. The
light-cone formulation is attractive in many ways. For
example, light-cone wave functions are particularly well
suited to compute matrix elements of operators. One can
even choose to work in a specific framewhere the annoying
part of currents, i.e. pair creation and annihilation part,
does not contribute. On top of that, it is in principle also
easy to compute parton distributions once light-cone wave
functions are known.

The technique has already been used to study vector and
axial charges of the nucleon and �þ pentaquark width up
to the 5Q component without [2] and with [3] quark orbital
angular momentum. In this approach it has been shown that
relativistic corrections (quark angular momentum and sea
quark pairs) reduce the naive quark model value 5

3 for the

nucleon axial charge gð3ÞA down to a value close to 1.257

observed in beta decays.
The baryon structure is of capital importance for our

understanding of QCD. In this nonperturbative regime, the
theory cannot be solved and models are needed to under-
stand the physics at this scale. While a picture of the
baryon as a system of three nonrelativistic quarks seems
to explain rather well magnetic moments, masses and
meson-baryon couplings, one observes that in polarized
deep inelastic scattering processes there are other ingre-
dients. Let us mention, for example, the violation of the
Ellis-Jaffe sum rule revealing the presence of hidden flavor
in the nucleon. It has also been observed that the quarks
contribute only to �30% of the total nucleon spin leading

to what is called the ‘‘spin crisis.’’ It is clear that the
missing angular momentum can be attributed to quark
orbital momentum and gluon angular momentum.
Unfortunately, the individual contributions are not known.
Many models try to improve the so-called naive quark
model (NQM) by taking into account other degrees of
freedom and/or general features of QCD such as special
relativity and approximate chiral symmetry.
�QSM is a model based on chiral symmetry. A baryon is

considered as made of NC valence quarks living in a
relativistic mean chiral field. This mean field is a soliton
with maximal symmetry, namely, a hedgehog pion field. A
specific baryon then corresponds to a specific rotational
excitation of the solitonic field. This model can be consid-
ered as some interpolation between two a priori orthogonal
pictures: constituent quark model where baryons are made
of valence quarks exclusively and Skyrme model where
baryons are solitons of the pion field. �QSM has both
degrees of freedom. Here baryons are indeed made of
valence quarks but living in a solitonic relativistic mean
chiral field. In the limit where the pion field is weak, the
Dirac sea is weakly distorted and thus carry small energy
Esea ’ 0. The valence level is shallow Elev ’ MQ and hence

the valence quarks are nonrelativistic. This is very similar
to the constituent quark model picture. In the limit where
the pion field is large, the bound-state level is so deep that it
joins the Dirac sea. The whole nucleon mass is given by
Esea which can be expanded in derivatives of the mean
field, the first terms being close to the Skyrme model
Lagrangian.
This model has been mostly studied in the so-called

‘‘instant form,’’ i.e. with the usual parametrization of
space-time x ¼ ðt;xÞ and reproduced successfully many
experimental results [4,5]. In the instant form, the sea can
be treated as a whole but a slowly rotating soliton approxi-
mation has to be invoked. Although this approximation is*C.Lorce@ulg.ac.be
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well justified for ordinary baryons (octet and decuplet), it is
questionable for the exotic ones (antidecuplet) [2]. The
light-cone approach to �QSM is complementary. Here
we cannot treat the whole Dirac sea at once. One has to
perform an expansion of the baryon wave function in Fock
space. On the other hand, we can compute exact rotations
without referring to the large-NC limit for their evaluation.
Hence, there is a priori no direct connection between the
moment of inertia of the soliton and the overlap of indi-
vidual quark wave function. Moreover, studying models on
the light cone is always very interesting since the descrip-
tion is closer to experimental situation where baryons are
usually moving with high velocity.

In the IMF formulation of �QSM, it has been possible to
write a general expression for baryon light-cone wave
functions. By computing matrix elements of operators,
one can access the flavor and spin content of the baryons
and work explicitly with 0; 1; 2; . . . ; n additional quark-
antiquark pairs in a fully relativistic way. On top of that,
the solitonic approach allows one to treat all light baryons
in a simple and unique elegant way. Since the 5Q compo-
nent is important to understand the nucleon structure one
should by analogy care about the 7Q component in penta-
quark. On top of that, it is also an a posteriori check that
the expansion in the number of quark-antiquark pairs is
justified.

This paper is organized as follows. In Sec. II we present
in a short way the model formulated in the IMF and give
the explicit definitions of the quantities used. Then we
indicate how to compute the charges by means of matrix
elements in each Fock sector in Sec. III. After contraction
over all color, spin, isospin, and flavor indices, one is left
with scalar overlap integrals. Physical quantities are then
just specific linear combinations of those scalar overlap
integrals determined by SUð3Þ symmetry. The explicit
expressions of those integrals are presented in Sec. IV.
Since our approach is restricted to flavor SUð3Þ symmetry,
we give tables making it explicit and present the parame-
trization used in Sec. V. Our results can be found in Sec.
VI. First we give the formal combinations and then the
numerical evaluation, followed by a discussion and com-
parison with experimental knowledge.

II. �QSM ON THE LIGHT CONE

The chiral-quark soliton model (�QSM) is a model
proposed to mimic low-energy QCD. It emphasizes the
role of constituent quarks of mass M and pseudoscalar
mesons as the relevant degrees of freedom and is based
on the following effective Lagrangian:

L �QSM ¼ � ðpÞðp6 �MU�5Þ ðpÞ; (1)

where U�5 is a (flavor) SUð3Þ matrix. We used the SUð2Þ
hedgehog ansatz for the soliton field trivially embedded in
SUð3Þ,

U�5 ¼ U0 0
0 1

� �
; U0 ¼ ein

a�aPðrÞ�5 (2)

with �a the usual SUð2Þ Pauli matrices and na ¼ ra=r the
unit vector pointing in the direction of r. Note that the
hedgehog ansatz implies that a rotation in ordinary space
(na) can be compensated by a rotation in isospin space
(�a). The profile function PðrÞ is determined by topological
constraints and minimization of the energy of the system.
Within this model it has been shown [1,2] that one can

write a general expression for SUð3Þ baryon wave func-
tions:

j�Bi ¼
� YNC
color¼1

Z
ðdpÞFðpÞayðpÞ

�

� exp

�Z
ðdpÞðdp0ÞayðpÞWðp;p0Þbyðp0Þ

�
j�0i:

(3)

This expression may look somewhat complicated at first
view but is in fact really transparent. The model describes
baryons as NC quarks populating the valence level with
wave function F accompanied by a whole sea of quark-
antiquark pairs represented by the coherent exponential.
The wave function of such a quark-antiquark pair isW. For
a specific baryon, one has to rotate each quark by a
SUð3Þ-matrix R and each antiquark by Ry and project the
whole wave function on the quantum number of the spe-
cific baryon

R
dRB�

kðRÞ, where B�
kðRÞ represents the way

the baryon is transformed by SUð3Þ. The full expression [2]
for the light-cone baryon wave function contains color �,
flavor f, isospin j, and spin � indices

j�kðBÞi ¼
Z

dRB�
kðRÞ��1�2�3

�
�Y3
n¼1

Z
ðdpnÞRfnjn Fjn�nðpnÞay�nfn�nðpnÞ

�

� exp

�Z
ðdpÞðdp0Þ���0a

y
�f�ðpÞRfjWj�

j0�0 ðp;p0Þ

� Ryj0
f0 b

y�0f0�0 ðp0Þ
�
j�0i; (4)

where we have considered the physical case NC ¼ 3. The
three valence quarks are always antisymmetric in color
��1�2�3 and the additional quark-antiquark pairs are color
singlets ���0 . This wave function is supposed to provide a

lot of information about all light baryons.

A. Valence wave function

On the light cone the valence level wave function F is
given by
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Fj�levðz;p?Þ ¼
ffiffiffiffiffiffiffi
M
2�

s �
�j�hðpÞ þ ðpz1þ ip? � �?Þ��0

� �j�
0 jðpÞ
jpj

�
pz¼zM�Elev

; (5)

where j and � are isospin1 and spin indices, respectively, z
is the fraction of baryon longitudinal momentum carried by
the quark, p? is its transverse momentum, and M is the
classical soliton mass. The functions hðpÞ and jðpÞ are
Fourier transforms of the upper (L ¼ 0) hðrÞ and lower
(L ¼ 1) jðrÞ components of the spinor solution (see Fig. 1)
of the static Dirac equation in the mean field with eigene-
nergy2 Elev

 levðxÞ ¼ �jihðrÞ
�i�jkðn � �ÞikjðrÞ

� �
;

�
h0 þ hM sinP� jðM cosPþ ElevÞ ¼ 0
j0 þ 2j=r� jM sinP� hðM cosP� ElevÞ ¼ 0

;

(6)

where PðrÞ, the profile function of the soliton, is fairly
approximated by [6,7] (see Fig. 2)

PðrÞ ¼ 2 arctan

�
r20
r2

�
; r0 � 0:8

M
: (7)

B. Pair wave function

The quark-antiquark pair wave function W can be writ-
ten in terms of the Fourier transform of the chiral field with
chiral circle condition �2 þ�2 ¼ 1, U0 ¼ �þ i��5.
The chiral field is then given by

� ¼ n � � sinPðrÞ; �ðrÞ ¼ cosPðrÞ (8)

and its Fourier transform by

�ðqÞjj0 ¼
Z

d3xe�iq�xðn � �Þjj0 sinPðrÞ;

�ðqÞj
j0 ¼

Z
d3xe�iq�xðcosPðrÞ � 1Þ�j

j0 ;

(9)

where j and j0 are the isospin indices of the quark and
antiquark, respectively. The pair wave function is obtained
by considering the expansion of the quark propagator [1] in
the mean field in terms of the chiral interaction V ¼ U0 �
1. After the boost to the IMF, the pair wave function
appears as a function of the fractions of the baryon longi-
tudinal momentum carried by the quark z and antiquark z0
of the pair and their transverse momenta p?, p0

?

Wj�
j0�0 ðz;p?; z0;p0

?Þ ¼
MM
2�Z

f�j
j0 ðqÞ½Mðz0 � zÞ�3

þQ? � �?���0 þ i�j
j0 ðqÞ

� ½�Mðz0 þ zÞ1þ iQ? � �?���0 g;
(10)

where q ¼ ððpþ p0Þ?; ðzþ z0ÞMÞ is the three-momentum
of the pair as a whole transferred from the background
fields �ðqÞ and�ðqÞ. As earlier, j and j0 are isospin and �
and �0 are spin indices with the prime for the antiquark. In
order to condense the notations we used

Z ¼ M2zz0ðzþ z0Þ þ zðp02
? þM2Þ þ z0ðp2

? þM2Þ;
Q? ¼ zp0

? � z0p?: (11)

A more compact form for this wave function can be
obtained by means of the following two variables:

y ¼ z0

zþ z0
; Q? ¼ zp0

? � z0p?
zþ z0

: (12)

The pair wave function then takes the form

FIG. 1. Upper s-wave component hðrÞ (solid) and lower
p-wave component jðrÞ (dashed) of the bound-state quark level
in light baryons. Each of the three valence quarks has energy
Elev ¼ 200 MeV. Horizontal axis has units of 1=M ¼ 0:57 fm.

FIG. 2. Profile of the self-consistent chiral field PðrÞ in light
baryons. The horizontal axis unit is r0 ¼ 0:8=M ¼ 0:46 fm.

1We remind that due to the hedgehog ansatz rotations in
ordinary space are equivalent to isospin rotations. That is the
reason why j has been called isospin index even though it can be
seen as total angular momentum of the quark.

2This eigenenergy turned out to be Elev � 200 MeV when
solving the system of equations self-consistently for constituent
quark mass M ¼ 345 MeV.
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Wj�
j0�0 ðy;q;Q?Þ ¼ MM

2�

�j
j0 ðqÞ½Mð2y� 1Þ�3 þQ? � �?���0 þ i�j

j0 ðqÞ½�M1þ iQ? � �?���0

Q2
? þM2 þ yð1� yÞq2

: (13)

C. Rotational wave function

To obtain the wave function of a specific baryon with
given spin projection k, one has to rotate the soliton in
ordinary and flavor spaces and then project on quantum
numbers of this specific baryon. For example, one has to
compute the following integral to obtain the neutron rota-
tional wave function in the 3Q sector:

Tðn0Þf1f2f3k;j1j2j3
¼

Z
dRnkðRÞ�Rf1j1Rf2j2Rf3j3 ; (14)

where R is a SUð3Þ matrix and nkðRÞ� ¼
ffiffi
8

p
24 �klR

yl
2 R

3
3 rep-

resents the way that the neutron is transformed
under SUð3Þ rotations. This integral means that the
neutron state nkðRÞ� is projected onto the 3Q sector

Rf1j1R
f2
j2
Rf3j3 by means of the integration over all SUð3Þ

matrices
R
dR. By contracting this rotational wave function

Tðn0Þf1f2f3k;j1j2j3
with the nonrelativistic 3Q wave function3

�j1�1�j2�2�j3�3hðp1Þhðp2Þhðp3Þ, one finally obtains the
nonrelativistic neutron wave function

jn0if1f2f3;�1�2�3

k ¼
ffiffiffi
8

p
24
�f1f2��1�2�f32 �

�3

k hðp1Þhðp2Þhðp3Þ
þ cyclic permutations of 1; 2; 3: (15)

This expression means4 that there is a ud pair in spin-
isospin zero combination �f1f2��1�2 and that the third

quark is a down quark �
f3
2 and carries the whole spin of

the neutron ��3

k . This is in fact exactly the SUð6Þ spin-
flavor wave function for the neutron.

The rotational wave function of octet, decuplet, and
antidecuplet in the 3Q, 5Q, and 7Q sectors can all be found
in the Appendix of this paper.

III. CURRENTS, CHARGES, AND MATRIX
ELEMENTS

A typical physical observable is the matrix element of
some operator (preferably written in terms of quark
annihilation-creation operators a, b, ay, by) sandwiched
between the initial and final baryon wave functions. These
wave functions are superpositions of Fock states obtained
by expanding the coherent exponential in Eq. (3). One can
reasonably expect that the Fock states with the lowest
number of quarks will give the main contribution. If one
uses the Drell frame qþ ¼ 0 [8,9], where q is the total
momentum transfer, then the vector � �þ and axial

� �þ�5 currents can neither create nor annihilate any
quark-antiquark pair. This is a big advantage of the light-
cone formulation since one needs to compute diagonal
transitions only, i.e. 3Q into 3Q, 5Q into 5Q, . . . and not
3Q into 5Q, for example.
In the 3Q sector, since all (valence) quarks are on the

same footing, all the possible contractions of creation-
annihilation operators are equivalent. One can use a dia-
gram to represent these contractions. The contractions
without any current operator acting on a quark line corre-
spond to the normalization of the state. We choose the
simplest one where all quarks with the same label are
connected, see Fig. 3.
In the 5Q sector, all contractions are equivalent to either

the so-called ‘‘direct’’ diagram or the ‘‘exchange’’ dia-
gram, see Fig. 4. In the direct diagram, all quarks with
the same label are connected, while in the exchange one a
valence quark is exchanged with the quark of the sea pair. It
has appeared in a previous work [3] that exchange dia-
grams do not contribute much and can thus be neglected

1

2

3

1

2

3

FIG. 3. Schematic representation of the 3Q normalization.
Each quark line stands for the color, flavor, and spin contractions

��i
�0
i
�fi
f0i
��i
�0
i

R
dz0id2p0

i?�ðzi � z0iÞ�ð2Þðpi? � p0
i?Þ. The large dark

rectangles stand for the three initial (left) and final (right)
valence quarks antisymmetrized in color ��1�2�3

.

1

2

3

1

2

3

4

5

4

5

FIG. 4. Schematic representation of the 5Q direct (left) and
exchange (right) contributions to the normalization. The quark-
antiquark pairs are represented by small light rectangles and are
in color singlet ��4

�5
.

3The nonrelativistic limit here means that we neglect the lower
component j of the Dirac field.

4One has f ¼ u; d; s and � ¼"; # .
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(there is no disconnected quark loop). So we use only the
direct contributions throughout this paper.

In the 7Q sector there are five types of diagrams, see
Fig. 5. The three last diagrams involve at least an exchange
of a valence quark with a sea quark. Those are neglected in
the present work by analogy with the 5Q sector. In the

second and fourth diagrams the two pairs exchange their
quark (or antiquark) and are likely negligible. We therefore
expect that the first diagram gives the major contribution in
the 7Q sector. A mathematical argument is that contraction
over color indices favors this diagram by at least a factor 3
(there is at least one more disconnected quark loop com-
pared to the other diagrams). A physical argument would
be that this diagram represents a process where nothing
really happens and is thus expected to be dominant com-
pared to the other diagrams where quarks exchange their
roles.
The vector and axial operators act on each quark line. In

the present approach, it is easy to compute separately the
contributions coming from the valence quarks, the sea
quarks, and antiquarks, see Fig. 6. These diagrams repre-
sent some contraction of color, spin, isospin, and flavor
indices. For example, the sum of the three diagrams in the
5Q sector with the vector current acting on the quark lines
represents the following expression:

Vð5Þð1 ! 2Þ ¼ 108

2
�kl Tð1Þf1f2f3f4;j5j1j2j3j4;f5;k

Tð2Þl1l2l3l4;g5;lf1f2g3g4;l5

Z
ðdp1�5ÞFj1�1ðp1ÞFj2�2ðp2ÞFj3�3ðp3ÞWj4�4

j5�5
ðp4; p5ÞFy

l1�1
ðp1ÞFy

l2�2
ðp2Þ

� Fy
l3�3

ðp3ÞWl5�5
cl4�4

ðp4; p5Þ½��g3f3�
g4
f4
Jf5
g5�

�3
�3
��4�4

��5
�5

þ �g3f3J
g4
f4
�f5g5�

�3
�3
��4
�4
��5
�5 þ 3Jg3

f3
�g4f4�

f5
g5�

�3
�3
��4�4

��5
�5 �; (16)

where Jfg is the flavor content of the current. The axial charge is easily obtained from the vector one. One just has to replace
the averaging over baryon spin by 1

2 ð��3Þkl and the axial charge operator involves now ð� �3Þ�i
�i

instead of ��i
�i
. One then

has

Að5Þð1 ! 2Þ ¼ 108

2
ð��3Þkl Tð1Þf1f2f3f4;j5j1j2j3j4;f5;k

Tð2Þl1l2l3l4;g5;lf1f2g3g4;l5

Z
ðdp1�5ÞFj1�1ðp1ÞFj2�2ðp2ÞFj3�3ðp3ÞWj4�4

j5�5
ðp4; p5ÞFy

l1�1
ðp1Þ

� Fy
l2�2

ðp2ÞFy
l3�3

ðp3ÞWl5�5
cl4�4

ðp4; p5Þ½��g3f3�
g4
f4
Jf5
g5�

�3
�3
��4�4

ð� �3Þ�5
�5

þ �
g3
f3
Jg4
f4
�
f5
g5�

�3
�3
ð� �3Þ�4

�4
�
�5
�5

þ 3J
g3
f3
�g4f4�

f5
g5ð� �3Þ�3

�3
��4�4

�
�5
�5 �: (17)

IV. SCALAR OVERLAP INTEGRALS

The contractions in the previous section are easily performed by MATHEMATICA over all flavor ðf; gÞ, isospin ðj; lÞ, and
spin ð�; �Þ indices. One is then left with scalar integrals over longitudinal z and transverse p? momenta of the quarks. The
integrals over relative transverse momenta in the quark-antiquark pair are generally UV divergent. We have chosen to use
the Pauli-Villars regularization with massMPV ¼ 556:8 MeV (this value being chosen from the requirement that the pion
decay constant F� ¼ 93 MeV is reproduced for M ¼ 345 MeV).

For convenience we introduce the probability distribution�Iðz;q?Þ seen by a vector (I ¼ V) or an axial (I ¼ A) probe,
that three valence quarks leave the longitudinal fraction z ¼ qz=M and the transverse momentum q? to the quark-

1

2

3

1

2

3
4
5

4
5

6
7

6
7

FIG. 5. Schematic representation of the 7Q contributions to the normalization.

FIG. 6. Schematic representation of the three types of 5Q
contributions to the charges: antiquark (left), sea quark (center),
and valence quark (right) contributions.
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antiquark pair(s),

�Iðz;q?Þ ¼
Z

dz1;2;3
d2p1;2;3?
ð2�Þ6 �ðzþ z1 þ z2 þ z3 � 1Þð2�Þ2�ð2Þðq? þ p1? þ p2? þ p3?ÞDIðp1; p2; p3Þ: (18)

The function DIðp1; p2; p3Þ is given in terms of the upper and lower valence wave functions hðpÞ and jðpÞ as follows:

DVðp1; p2; p3Þ ¼ h21h
2
2h

2
3 þ 6h21h

2
2

�
h3
p3z

jp3j j3
�
þ 3h21h

2
2j

2
3 þ 12h21

�
h2
p2z

jp2j j2
��
h3
p3z

jp3j j3
�
þ 12h21

�
h2
p2z

jp2j j2
�
j23

þ 8

�
h1
p1z

jp1j j1
��
h2
p2z

jp2j j2
��
h3
p3z

jp3j j3
�
þ 3h21j

2
2j

2
3 þ 12

�
h1
p1z

jp1j j1
��
h2
p2z

jp2j j2
�
j23 þ 6

�
h1
p1z

jp1j j1
�
j22j

2
3

þ j21j
2
2j

2
3; (19)

DAðp1; p2; p3Þ ¼ h21h
2
2h

2
3 þ 6h21h

2
2

�
h3
p3z

jp3j j3
�
þ h21h

2
2

2p2
3z þ p2

3

p2
3

j23 þ 12h21

�
h2
p2z

jp2j j2
��
h3
p3z

jp3j j3
�

þ 4h21

�
h2
p2z

jp2j j2
�
2p2

3z þ p2
3

p2
3

j23 þ 8

�
h1
p1z

jp1j j1
��
h2
p2z

jp2j j2
��
h3
p3z

jp3j j3
�
þ h21j

2
2

4p2
3z � p2

3

p2
3

j23

þ 4

�
h1
p1z

jp1j j1
��
h2
p2z

jp2j j2
�
2p2

3z þ p2
3

p2
3

j23 þ 2

�
h1
p1z

jp1j j1
�
j22
4p2

3z � p2
3

p2
3

j23 þ j21j
2
2

2p2
3z � p2

3

p2
3

j23; (20)

where we have used hi � hðpiÞ and ji � jðpiÞ.
In the nonrelativistic limit, one has jðpÞ ¼ 0 and thus

DVðp1; p2; p3Þ ¼ DAðp1; p2; p3Þ as it should be. Indeed,
nonrelativistic quarks have no orbital angular momentum
and then axial and vector probes see the same valence
quark distribution. In other words, because of the absence
of quark angular momentum, a quark with helicity 	 has
spin z-projection 	1=2, respectively.

A. 3Q scalar integrals

In the 3Q sector there is no quark-antiquark pair. There
are then two integrals only, one for the vector case

�Vð0; 0Þ (21)

and one for the axial one

�Að0; 0Þ; (22)

where the null argument indicates that the whole baryon
momentum is carried by the three valence quarks. Let us
remind that in this sector, spin-flavor wave functions ob-
tained by the projection technique are equivalent to those
given by SUð6Þ symmetry. One then naturally obtains the
same results for the charges as those given by SUð6ÞNQM,
excepted that axial quantities are multiplied by the factor
�Að0; 0Þ=�Vð0; 0Þ. This is similar to the usual approach
based on the Melosh rotation [10]. In usual light-cone

models, one starts with nonrelativistic SUð6Þ wave func-
tions and then performs a Melosh rotation on the spinors to
obtain the helicity basis, particularly well suited for light-
cone treatment. This rotation introduces orbital angular
momentum somewhat artificially. The net effect of this
rotation is the introduction of a Melosh factor to the
observables compared with NQM predictions

q ¼ MVqNQM; �q ¼ MA�qNQM: (23)

We will discuss this point more intensively in a further
work.

B. 5Q scalar integrals

In the 5Q sector there is one quark-antiquark pair and
only seven integrals are needed. These integrals can be
written in the general form

KI
J ¼

M2

2�

Z d3q

ð2�Þ3 �
I

�
qz
M

;q?
�
	ðqzÞqzGJðqz;q?Þ; (24)

where GJ is a quark-antiquark probability distribution and
J ¼ ��; 33; ��; 3�. These distributions are obtained by
contracting two quark-antiquark wave functions W, see
Eq. (13), and regularized by means of the Pauli-Villars
procedure
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G��ðqz;q?Þ ¼ �2ðqÞ
Z 1

0
dy

Z d2Q?
ð2�Þ2

� Q2
? þM2

ðQ2
? þM2 þ yð1� yÞq2Þ2 � ðM ! MPVÞ

�
; (25a)

G33ðqz;q?Þ ¼ q2z
q2
G��ðqz;q?Þ; (25b)

G��ðqz;q?Þ ¼ �2ðqÞ
Z 1

0
dy

Z d2Q?
ð2�Þ2

�
Q2

? þM2ð2y� 1Þ2
ðQ2

? þM2 þ yð1� yÞq2Þ2 � ðM ! MPVÞ
�
; (25c)

G3�ðqz;q?Þ ¼ qz
jqj�ðqÞ�ðqÞ

Z 1

0
dy

Z d2Q?
ð2�Þ2

�
Q2

? þM2ð2y� 1Þ
ðQ2

? þM2 þ yð1� yÞq2Þ2 � ðM ! MPVÞ
�
; (25d)

where qz ¼ zM ¼ ðz4 þ z5ÞM and q? ¼ p4? þ p5?.
There are three integrals in the vector case

KV
��; K

V
33; K

V
�� (26)

and four in the axial one

KA
��; K

A
33; K

A
��; K

V
3�: (27)

The contribution of the sea quark or antiquark to the axial
charges is obtained when the axial current probes the sea
pair. This contribution is proportional to KV

3� which can be

understood as follows: the axial operator acting on a quark-
antiquark pair triggers a transition between the scalar �
and pseudoscalar � pair configurations as denoted by the
subscript 3�while the valence quarks remain unaffected as
denoted by the superscript V.

The contribution of valence quarks to the axial charges
is obtained when the axial current probes the valence
quark. This contribution is a linear combination of KA

��,
KA
��, and K

A
33 which can be understood as follows: the

quark-antiquark pair stays in a scalar or pseudoscalar

configuration as denoted by the subscripts ��, 33, ��
but now the probe sees the axial valence probability dis-
tribution �A as denoted by the superscript A.

C. 7Q scalar integrals

In the 7Q sector there are two quark-antiquark pairs and
20 integrals appear after contractions. These integrals can
be written in the general form

KI
J ¼

M4

ð2�Þ2
Z d3q

ð2�Þ3
d3q0

ð2�Þ3 �
I

�ðqz þ q0zÞ
M

;q? þ q0
?

�

� 	ðqzÞ	ðq0zÞqzq0zGJðqz; q0z;q?;q0
?Þ; (28)

where J ¼ ����;����2; ��33; 3333; �3�3; ����;
��33; ����;��3�; 333�;�3��;��3�. These distri-
butions are obtained by contracting four quark-antiquark
wave functions W, see Eq. (13) and regularized by means
of the Pauli-Villars procedure. They can be expressed in
terms of GJðqz;q?Þ. Here are then the distributions in the
7Q sector:

G����ðqz; q0z;q?;q0
?Þ ¼ G��ðqz;q?ÞG��ðq0z;q0

?Þ; (29a)

G����2ðqz; q0z;q?;q0
?Þ ¼

ðq � q0Þ2
q2q02 G��ðqz;q?ÞG��ðq0z;q0

?Þ; (29b)

G��33ðqz; q0z;q?;q0
?Þ ¼ G��ðqz;q?ÞG33ðq0z;q0

?Þ; (29c)

G3333ðqz; q0z;q?;q0
?Þ ¼ G33ðqz;q?ÞG33ðq0z;q0

?Þ; (29d)

G�3�3ðqz; q0z;q?;q0
?Þ ¼

qzq
0
zðq � q0Þ
q2q02 G��ðqz;q?ÞG��ðq0z;q0

?Þ; (29e)

G����ðqz; q0z;q?;q0
?Þ ¼ G��ðqz;q?ÞG��ðq0z;q0

?Þ; (29f)

G��33ðqz; q0z;q?;q0
?Þ ¼ G��ðqz;q?ÞG33ðq0z;q0

?Þ; (29g)

G����ðqz; q0z;q?;q0
?Þ ¼ G��ðqz;q?ÞG��ðq0z;q0

?Þ; (29h)

G��3�ðqz; q0z;q?;q0
?Þ ¼ G��ðqz;q?ÞG3�ðq0z;q0

?Þ; (29i)

G333�ðqz; q0z;q?;q0
?Þ ¼ G33ðqz;q?ÞG3�ðq0z;q0

?Þ; (29j)

G�3��ðqz; q0z;q?;q0
?Þ ¼

qzðq � q0Þ
q0zq2

G��ðqz;q?ÞG3�ðq0z;q0
?Þ; (29k)

G��3�ðqz; q0z;q?;q0
?Þ ¼ G��ðqz;q?ÞG3�ðq0z;q0

?Þ; (29l)

where qz ¼ zM ¼ ðz4 þ z5ÞM, q0z ¼ zM ¼ ðz6 þ z7ÞM, q? ¼ p4? þ p5?, and q0
? ¼ p6? þ p7?.
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There are eight integrals in the vector case

KV
����; K

V
����2; K

V
��33; K

V
3333; K

V
�3�3; K

V
����; K

V
��33; K

V
���� (30)

and 12 in the axial one

KA
����; K

A
����2; K

A
��33; K

A
3333; K

A
�3�3; K

A
����;K

A
��33; K

A
����; K

V
��3�;K

V
333�;K

V
�3��; K

V
��3�: (31)

The contribution of the sea quarks or antiquarks to the axial
charges is a linear combination of KV

��3�, K
V
333�, K

V
�3��,

and KV
��3�. There are more integrals than in the 5Q case

since the undisturbed quark-antiquark pair is either in a
scalar (��3�) or pseudoscalar combination
ð��3�; 333�;�3��Þ.

The contribution of valence quarks to the axial charges
is a linear combination of KA

����, K
A
����2, K

A
��33, K

A
3333,

KA
�3�3, K

A
����, K

A
��33, and K

A
����. There are more inte-

grals than in the 5Q case since the undisturbed quark-
antiquark pairs are in a purely scalar (����) or purely
pseudoscalar (����, ����2, ��33, 3333, �3�3) or
mixed combination ð����;��33Þ.

V. SYMMETRY RELATIONS AND
PARAMETRIZATION

In this work we have studied vector and axial charges in
flavor SUð3Þ symmetry. Even though this symmetry is
broken in nature, it gives quite a good estimation.
Assuming a symmetry has the advantage that all particles
belonging to the same representation of the symmetry are
on the same footing and are related through pure symmetry
transformations. This means that for flavor SUð3Þ symme-
try, it is sufficient to consider only, say, the proton to
describe the whole baryon octet. Properties of the other
members can be obtained from those of the proton pro-
vided that flavor SUð3Þ symmetry is considered.

The naive nonrelativistic quark model is based on a
larger symmetry group SUð6Þ that imbeds SUð3Þ �
SUð2Þ. In this approach, octet and decuplet baryons now
belong to the same supermultiplet. This yields relations
between different SUð3Þ multiplets and new ones within
SUð3Þ multiplets.

A. SUð3Þ relations for octet baryons
As we have seen in the previous section, valence quark

orbital angular momentum just introduces a factor to
charges and so SUð6Þ symmetry is not broken. However,
additional quark-antiquark pairs break SUð6Þ symmetry
and therefore spoil NQM relations. Since the present ap-
proach is based on flavor SUð3Þ symmetry, we naturally
recover the expected relations imposed by this symmetry.
In principle, if we can determine the individual contribu-
tions of u, d, and s flavors to proton charges (Qu

p, Q
d
p, and

Qs
p), there is no need to go through the whole calculation

once more to determine the charges of other members of

the octet. We therefore expect that, for each charge, we
need to know only three quantities.
Experimentally, we do not have a direct access to the

flavor contributions of a given baryon charge.
Nevertheless, under flavor SUð3Þ symmetry assumptions,
one can extract from data combinations ofQu

B,Q
d
B, andQ

s
B,

for a given baryon B:

Qð3Þ
B ¼ Qu

B �Qd
B ðisovectorÞ (32a)

Qð8Þ
B ¼ ðQu

B þQd
B � 2Qs

BÞ=
ffiffiffi
3

p ðoctetÞ (32b)

Qð0Þ
B ¼ Qu

B þQd
B þQs

B ðsingletÞ: (32c)

Because of flavor SUð3Þ symmetry, these charges can be

expressed as linear combinations of Qu;d;s
p for any octet

baryon B. Naturally, if one knows all axial charges of a

given baryon B, by inversion of (32), one can extractQu;d;s
B .

Except for 	0
8 and �0

8, one can also extract Qu;d;s
p , even if

B � p. One could also try to extract Qu;d;s
p from a given

axial charge, say Qð3Þ
B , of all octet baryons. This is in fact

not sufficient. To see this, we have used the projection
technique on quantum numbers shortly described in
Sec. II C. It allowed us to write the contribution of any
flavor to a charge5 of any octet baryon in terms of linear
combinations of K integrals. It was then possible to write

Qu;d;s
B for any octet baryon B in terms of Qu;d;s

p which are

our desired SUð3Þ relations. Instead of using Qu;d;s
p we

prefer to use three other quantities: �, 
, and �. The

expressions for Qu;d;s
B in terms of �, 
, and � can be found

in Table I. Note that we have also observed that these
expressions still hold separately for valence quarks, sea
quarks, and antiquarks.
The reason why we choose the set f�;
; �g is motivated

by the fact that it makes obvious the statement that we
cannot extract univocally the flavor contributions of any

octet baryon by means of chargesQðiÞ
B (i ¼ 3, 8, or 0) for all

octet baryons B. Indeed, the isovector (3) and octet (8)
combinations do not depend on � as one can directly see
from the definitions (32) and Table I. Concerning the
isosinglet combination (0), one can directly notice that it
has the same value for all members of the octet

Qð0Þ
B ¼ �þ 
þ 3�: (33)

5This has been done for vector, axial, and tensor charges.
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A few octet baryon decay constants are known experi-
mentally. It is then useful to express them in terms of our
parameters� and
 (� disappears as explained earlier), see
Table II. In the literature, one often uses another set of two
parameters to describe all these octet transitions, known as
the F&D Cabibbo parameters [11]. These parameters can
be related to our � and 
 by means of the relations

� ¼ 2F; 
 ¼ F�D: (34)

It is also interesting to consider the limit where baryons
are made of three quarks only (3Q). Using the projection
technique, this corresponds to taking � ¼ 0. In this case,
protons are only made of u and d quarks as expected and
there are only valence quarks. At the 5Q level, � � 0 and
we obtain Table I. The 7Q component does not change
anything concerning the SUð3Þ relations and we may rea-
sonably expect that it would also be the case for any
additional quark-antiquark pair. As a last remark concern-
ing octet baryons, we would like to stress that we naturally
obtain that the strange contribution in the proton is the
same as the strange contribution in the neutron

Qs
p ¼ Qs

n ¼ �: (35)

In fact, all members of a given isomultiplet (N,	,�, or
)
have the same strange contribution to the charges.

B. SUð3Þ relations for decuplet baryons
The same game has been done for decuplet baryons. For

this multiplet, we in fact observed that only two parame-

ters, say �0 and 
0, are necessary. The expressions for

Qu;d;s
B in terms of �0 and 
0 can be found in Table III.
Once more, one cannot extract the flavor contribution of

one decuplet baryon from the knowledge of a charge QðiÞ
B

with i ¼ 3, 8, or 0 for all decuplet baryons. In the 3Q limit,
we have 
0 ¼ 0 while in the presence of quark-antiquark
pairs 
0 � 0. Moreover, all the members of a given iso-
multiplet (�, �, 
, or �) have the same strange contribu-
tion to the charges. Finally, all the members of the decuplet
have the same isosinglet contribution:

Qð0Þ
B ¼ 3ð�0 þ 
0Þ: (36)

C. SUð3Þ relations for antidecuplet baryons
The antidecuplet is very similar to the decuplet. Here

also only two parameters are sufficient, say �00 and
00, and
yield the relations in Table IV.
The relations are different but the comments made for

the decuplet also apply to the antidecuplet (except that the 0
are replaced by 00) except that the 3Q limit does not exist
since pentaquarks involve at least one quark-antiquark pair.

TABLE I. SUð3Þ octet relations.
B Qu

B Qd
B Qs

B

pþ
8 �þ � 
þ � �

n08 
þ � �þ � �

	0
8

1
6 ð�þ 4
Þ þ � 1

6 ð�þ 4
Þ þ � 1
3 ð2�� 
Þ þ �

�þ
8 �þ � � 
þ �

�0
8

1
2�þ � 1

2�þ � 
þ �

��
8 � �þ � 
þ �


0
8 
þ � � �þ �


�
8 � 
þ � �þ �

TABLE II. SUð3Þ octet transition relations.

Transitions gV;A Transitions gV;A

n08 ! pþ
8 �� 
 ��

8 ! n08 �

��

8 ! �0
8 �=

ffiffiffi
2

p

�

8 ! �0
8 ð
� �Þ= ffiffiffi

2
p

��
8 ! 	0

8 ð�� 2
Þ= ffiffiffi
6

p

�

8 ! 	0
8 �ð�þ 
Þ= ffiffiffi

6
p

�0
8 ! �þ

8 ��= ffiffiffi
2

p
�0

8 ! pþ
8 �
= ffiffiffi

2
p

	0
8 ! �þ

8 ð�� 2
Þ= ffiffiffi
6

p
	0

8 ! pþ
8 ð
� 2�Þ= ffiffiffi

6
p


�
8 ! 
0

8 
 
0
8 ! �þ

8 �� 


TABLE III. SUð3Þ decuplet relations.
B Qu

B Qd
B Qs

B

�þþ
10 3�0 þ 
0 
0 
0

�þ
10 2�0 þ 
0 �0 þ 
0 
0

�0
10 �0 þ 
0 2�0 þ 
0 
0

��
10 
0 3�0 þ 
0 
0

�þ
10 2�0 þ 
0 
0 �0 þ 
0

�0
10 �0 þ 
0 �0 þ 
0 �0 þ 
0

��
10 
0 2�0 þ 
0 �0 þ 
0


0
10 �0 þ 
0 
0 2�0 þ 
0


�
10 
0 �0 þ 
0 2�0 þ 
0

��
10 
0 
0 3�0 þ 
0

TABLE IV. SUð3Þ antidecuplet relations.
B Qu

B Qd
B Qs

B

�þ
10

2�00 þ 
00 2�00 þ 
00 ��00 þ 
00

pþ
10

2�00 þ 
00 �00 þ 
00 
00

n0
10

�00 þ 
00 2�00 þ 
00 
00

�þ
10

2�00 þ 
00 
00 �00 þ 
00

�0
10

�00 þ 
00 �00 þ 
00 �00 þ 
00

��
10


00 2�00 þ 
00 �00 þ 
00


þ
10

2�00 þ 
00 ��00 þ 
00 2�00 þ 
00


0
10

�00 þ 
00 
00 2�00 þ 
00


�
10


00 �00 þ 
00 2�00 þ 
00


��
10

��00 þ 
00 2�00 þ 
00 2�00 þ 
00
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The 3Q contribution is indeed identically zero when using
the projection technique.

VI. RESULTS

In this section we present our results. In the following we
give the expressions for the octet, decuplet, and antidecu-
plet normalizations, vector and axial parameters �, 
, �,
�0, 
0, �00, 
00 in terms of the scalar overlap integrals K in
the 3Q, 5Q, and 7Q sectors. Note that we do not give the
7Q sector for decuplet baryons. While we have all ingre-
dients, the contractions involved are too complex and too
long to be computed in a reasonable amount of time. We
finally give the numerical evaluation of the scalar overlap
integrals and collect in tables all our predictions and
postdictions.

We split the contribution to the charges into valence
quark, sea quark, and antiquark contributions, i.e. we
have in the vector case

qtot ¼ qval þ qsea � �q (37)

and in the axial one

�qtot ¼ �qval þ �qsea þ ��q; (38)

where ‘‘val’’ refers to the valence quarks and ‘‘sea’’ to the
sea quarks.

The vector charges can be understood as follows: they
count the total number of quarks (qval;sea ¼ qval;seaþ þ
qval;sea�) minus the total number of antiquarks ( �q ¼ �qþ þ
�q�), irrespective of their polarization. The vector charges
�q�þq then just give the effective number of quarks of
flavor q ¼ u, d, s in the baryon.

The axial charges count the total number of constituents
with polarization parallel minus the total number of con-
stituents with polarization antiparallel to the baryon longi-
tudinal polarization, irrespective of their quark
(�qval;sea ¼ qval;seaþ � qval;sea�) or antiquark nature

(��q ¼ �qþ � �q�). The axial charges �q�þ�5q then give
the contribution of quarks of flavor q ¼ u, d, s to the total
baryon longitudinal polarization.

We would like to stress here a somewhat confusing
point. In this paper, we call ‘‘valence’’ quarks those pop-
ulating the discrete level of the spectrum (5). Our valence
contribution to charges is in fact the discrete level contri-
bution. In the literature, the valence contribution refers to

the effective contribution qv or �qv, which corresponds to
the contribution of all quarks minus the contribution of all
antiquarks. In this sense, this is the reason why one often
says that only valence quarks contribute to vector charges
qtot ¼ qv while both valence quarks and quark-antiquark
pairs contribute to the axial ones �qtot ¼ �qv þ 2� �q.
This point of view is based on the perturbative picture of
the nucleon sea. Indeed, in this picture, quark-antiquark
pairs are generated by gluon splitting leading to the equal-
ity of the sea quark and antiquark contributions. Only in
this picture can our meaning of valence quarks and the
literature one be identified. In a nonperturbative picture,
the sea quark and antiquark contributions are not forced to
be equal anymore. Consequently, we have in general
qval � qv and �qval � �qv.

A. Octet baryons

Here are the expressions for the octet baryons. They are
obtained by contracting the octet baryon wave functions
without any charge acting on the quark lines. The upper
indices 3, 5, 7 refer to the 3Q, 5Q, and 7Q Fock sectors.
The contributions to the octet normalization are

N ð3ÞðB8Þ ¼ 9�Vð0; 0Þ; (39a)

N ð5ÞðB8Þ ¼ 18

5
ð11KV

�� þ 23KV
��Þ; (39b)

N ð7ÞðB8Þ ¼ 144

5
ð15KV

���� þ 5KV
����2 þ 52KV

����

þ 54KV
����Þ: (39c)

In the 3Q sector there is no quark-antiquark pair and thus
only valence quarks contribute to the charges

�ð3Þ
V;qval

¼ 18�Vð0; 0Þ; 
ð3Þ
V;qval

¼ 9�Vð0; 0Þ;
�ð3Þ
V;qval

¼ 0;
(40)

�ð3Þ
A;qval

¼ 12�Að0; 0Þ; 
ð3Þ
A;qval

¼ �3�Að0; 0Þ;
�ð3Þ
A;qval

¼ 0:
(41)

In the 5Q sector, one has

�ð5Þ
V;qval

¼ 18

5
ð15KV

�� þ 43KV
��Þ; �ð5Þ

V;qsea
¼ 132

5
ðKV

�� þ KV
��Þ; �ð5Þ

V; �q ¼
6

5
ðKV

�� þ 13KV
��Þ; (42a)


ð5Þ
V;qval

¼ 72

25
ð12KV

�� þ 25KV
��Þ; 
ð5Þ

V;qsea
¼ 24

25
ð13KV

�� þ 22KV
��Þ; 
ð5Þ

V; �q ¼
6

25
ð31KV

�� þ 43KV
��Þ; (42b)

�ð5Þ
V;qval

¼ 36

25
ð7KV

�� þ 5KV
��Þ; �ð5Þ

V;qsea
¼ 6

25
ðKV

�� þ 49KV
��Þ; �ð5Þ

V; �q ¼
6

25
ð43KV

�� þ 79KV
��Þ; (42c)
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�ð5Þ
A;qval

¼ 6

5
ð29KA

�� þ 2KA
33 þ 91KA

��Þ; �ð5Þ
A;qsea

¼ �168

5
KA

3�; �ð5Þ
A; �q ¼

�132

5
KA

3�; (43a)


ð5Þ
A;qval

¼ �24

25
ð16KA

�� � 11KA
33 þ 26KA

��Þ; 
ð5Þ
A;qsea

¼ 408

25
KA

3�; 
ð5Þ
A; �q ¼

228

25
KA

3�; (43b)

�ð5Þ
A;qval

¼ �12

25
ð11KA

�� � 16KA
33 þ KA

��Þ; �ð5Þ
A;qsea

¼ 84

25
KA

3�; �ð5Þ
A; �q ¼

84

25
KA

3�: (43c)

In the 7Q sector, one has

�ð7Þ
V;qval

¼ 48

5
ð49KV

���� þ 38KV
����2 þ 200KV

���� þ 285KV
����Þ; (44a)

�ð7Þ
V;qsea

¼ 48

5
ð47KV

���� þ 2KV
����2 þ 144KV

���� þ 99KV
����Þ; (44b)

�ð7Þ
V; �q ¼

96

5
ð3KV

���� þ 5KV
����2 þ 16KV

���� þ 30KV
����Þ; (44c)


ð7Þ
V;qval

¼ 48

25
ð181KV

���� þ 41KV
����2 þ 626KV

���� þ 618KV
����Þ; (44d)


ð7Þ
V;qsea

¼ 96

25
ð61KV

���� þ 22KV
����2 þ 201KV

���� þ 198KV
����Þ; (44e)


ð7Þ
V; �q ¼

96

25
ð39KV

���� þ 5KV
����2 þ 124KV

���� þ 102KV
����Þ; (44f)

�ð7Þ
V;qval

¼ 48

25
ð83KV

���� � 2KV
����2 þ 238KV

���� þ 129KV
����Þ; (44g)

�ð7Þ
V;qsea

¼ 48

25
ð31KV

���� þ 32KV
����2 þ 146KV

���� þ 243KV
����Þ; (44h)

�ð7Þ
V; �q ¼

288

25
ð19KV

���� þ 5KV
����2 þ 64KV

���� þ 62KV
����Þ; (44i)

�ð7Þ
A;qval

¼ 48

5
ð33KA

���� þ 30KA
����2 � 2KA

��33 þ 4KA
�3�3 þ 134KA

���� þ 10KA
��33 þ 211KA

����Þ; (45a)

�ð7Þ
A;qsea

¼ �96

5
ð32KA

��3� � KA
�3�� þ 65KA

��3�Þ; (45b)

�ð7Þ
A; �q ¼

�96

5
ð25KA

��3� þ KA
�3�� þ 52KA

��3�Þ; (45c)


ð7Þ
A;qval

¼ �48

25
ð51KA

���� þ 45KA
����2 þ 38KA

��33 � 82KA
�3�3 þ 292KA

���� � 214KA
��33 þ 224KA

����Þ; (45d)


ð7Þ
A;qsea

¼ 192

25
ð35KA

��3� þ 2KA
�3�� þ 77KA

��3�Þ; (45e)


ð7Þ
A; �q ¼

96

25
ð47KA

��3� � KA
�3�� þ 92KA

��3�Þ; (45f)

�ð7Þ
A;qval

¼ �48

25
ð13KA

���� þ 10KA
����2 þ 24KA

��33 � 56KA
�3�3 þ 106KA

���� � 152KA
��33 þ 7KA

����Þ; (45g)

�ð7Þ
A;qsea

¼ 96

25
ð25KA

��3� � 8KA
�3�� þ 37KA

��3�Þ; (45h)

�ð7Þ
A; �q ¼

288

25
ð7KA

��3� � KA
�3�� þ 12KA

��3�Þ: (45i)
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One can easily check that the obvious sum rules for the
proton Z

dx½uðxÞ � �uðxÞ� ¼ 2; (46a)

Z
dx½dðxÞ � �dðxÞ� ¼ 1; (46b)

Z
dx½sðxÞ � �sðxÞ� ¼ 0 (46c)

are satisfied separately in each sector. They are translated
in our parametrization as follows:

�ðiÞ
V;qval

þ �ðiÞ
V;qsea

� �ðiÞ
V; �q ¼ 2N ðiÞðB8Þ; (47a)


ðiÞ
V;qval

þ 
ðiÞ
V;qsea

� 
ðiÞ
V; �q ¼ N ðiÞðB8Þ; (47b)

�ðiÞ
V;qval

þ �ðiÞ
V;qsea

� �ðiÞ
V; �q ¼ 0; (47c)

for any i ¼ 3Q; 5Q; 7Q; . . . .

B. Decuplet baryons

Here are the expressions for the decuplet baryons. They
are obtained by contracting the decuplet baryon wave
functions without any charge acting on the quark lines.

The upper indices i ¼ 3; 5 refer to the 3Q and 5Q Fock
sectors while the lower ones 3=2; 1=2 refer to the
z-component of the decuplet baryon spin.
The contributions to the decuplet normalization are

N ð3Þ
3=2ðB10Þ ¼ N ð3Þ

1=2ðB10Þ ¼ 18

5
�Vð0; 0Þ; (48a)

N ð5Þ
3=2ðB10Þ ¼ 9

5ð15KV
�� � 6KV

33 þ 17KV
��Þ; (48b)

N ð5Þ
1=2ðB10Þ ¼ 9

5ð11KV
�� þ 6KV

33 þ 17KV
��Þ: (48c)

In the 3Q sector there is no quark-antiquark pair and thus
only valence quarks contribute to the charges

�0ð3Þ
V;qval;3=2

¼ �0ð3Þ
V;qval;1=2

¼ 18

5
�Vð0; 0Þ;


0ð3Þ
V;qval;3=2

¼ 
0ð3Þ
V;qval;1=2

¼ 0;

(49)

�0ð3Þ
A;qval;3=2

¼ 3�0ð3Þ
A;qval;1=2

¼ 18

5
�Að0; 0Þ;


0ð3Þ
A;qval;3=2

¼ 3
0ð3Þ
A;qval;1=2

¼ 0:

(50)

In the 5Q sector, one has

�0ð5Þ
V;qval;3=2

¼ 9

20
ð33KV

�� � 6KV
33 þ 67KV

��Þ; �0ð5Þ
V;qval;1=2

¼ 9

20
ð29KV

�� þ 6KV
33 þ 67KV

��Þ; (51a)

�0ð5Þ
V;qsea;3=2

¼ 3

20
ð57KV

�� � 30KV
33 þ 19KV

��Þ; �0ð5Þ
V;qsea;1=2

¼ 3

20
ð37KV

�� þ 30KV
33 þ 19KV

��Þ; (51b)

�0ð5Þ
V; �q;3=2 ¼

�6

5
ð3KV

�� � 3KV
33 � 2KV

��Þ; �0ð5Þ
V; �q;1=2 ¼

�6

5
ðKV

�� þ 3KV
33 � 2KV

��Þ; (51c)


0ð5Þ
V;qval;3=2

¼ 9

20
ð27KV

�� � 18KV
33 þ KV

��Þ; 
0ð5Þ
V;qval;1=2

¼ 9

20
ð15KV

�� þ 18KV
33 þ KV

��Þ; (51d)


0ð5Þ
V;qsea;3=2

¼ 3

20
ð3KV

�� þ 6KV
33 þ 49KV

��Þ; 
0ð5Þ
V;qsea;1=2

¼ 3

20
ð7KV

�� � 6KV
33 þ 49KV

��Þ; (51e)


0ð5Þ
V; �q;3=2 ¼ 3

5ð21KV
�� � 12KV

33 þ 13KV
��Þ; 
0ð5Þ

V; �q;1=2 ¼ 3
5ð13KV

�� þ 12KV
33 þ 13KV

��Þ; (51f)

�0ð5Þ
A;qval ;3=2

¼ 9

20
ð43KA

�� � 16KA
33 þ 67KA

��Þ; �0ð5Þ
A;qval;1=2

¼ 3

20
ð23KA

�� þ 44KA
33 þ 67KA

��Þ; (52a)

�0ð5Þ
A;qsea;3=2

¼ �99

100
KA

3�; �0ð5Þ
A;qsea;1=2

¼ �33

100
KA

3�; (52b)

�0ð5Þ
A; �q;3=2 ¼

�36

5
KA

3�; �0ð5Þ
A; �q;1=2 ¼

�12

5
KA

3�; (52c)


0ð5Þ
A;qval ;3=2

¼ �9

20
ð23KA

�� � 32KA
33 � KA

��Þ; 
0ð5Þ
A;qval;1=2

¼ �3

20
ð19KA

�� � 20KA
33 � KA

��Þ; (52d)


0ð5Þ
A;qsea;3=2

¼ 63

10
KA

3�; 
0ð5Þ
A;qsea;1=2

¼ 21

10
KA

3�; (52e)


0ð5Þ
A; �q;3=2 ¼

18

5
KA

3�; 
0ð5Þ
A; �q;1=2 ¼

6

5
KA

3�: (52f)

The 7Q sector of the decuplet has not been computed due to its far greater complexity.
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One can easily check that the obvious sum rules for�þþ

Z
dx½uðxÞ � �uðxÞ� ¼ 3; (53a)

Z
dx½dðxÞ � �dðxÞ� ¼ 0; (53b)

Z
dx½sðxÞ � �sðxÞ� ¼ 0 (53c)

are satisfied separately in each sector. They are translated
in our parametrization as follows:

�0ðiÞ
V;qval;J

þ �0ðiÞ
V;qsea;J

� �0ðiÞ
V; �q;J ¼ N ðiÞ

J ðB10Þ; (54a)


0ðiÞ
V;qval;J

þ 
0ðiÞ
V;qsea;J

� 
0ðiÞ
V; �q;J ¼ 0; (54b)

for any i ¼ 3Q; 5Q; 7Q; . . . and J ¼ 3=2, 1=2.
Let us emphasize an interesting observation. If the dec-

uplet was made of three quarks only, then one would have
the following relations between spin-3=2 and 1=2 contri-
butions:

V3=2 ¼ V1=2; A3=2 ¼ 3A1=2; (55)

where V stands for any vector contribution and A for any
axial one. This picture presents the � as a spherical parti-
cle. Things change in the 5Q sector. One notices directly
that the relations are broken by a unique structure ð3KV

33 �
KV
��Þ in the vector case and ð3KA

33 � KA
��Þ in the axial one.

Going back to the definition of those integrals, this is in fact
a structure like

R
d3qfðqÞð3q2z � q2Þ. This naturally re-

minds the expression of a quadrupole

Qij ¼
Z

d3r�ðrÞð3rirj � r2�ijÞ (56)

specified to the component i ¼ j ¼ z. Remarkably the
present approach shows explicitly that the pion field is
responsible for the deviation of the � from spherical
symmetry.

C. Antidecuplet baryons

Here are the expressions for the antidecuplet baryons.
They are obtained by contracting the antidecuplet baryon
wave functions without any charge acting on the quark
lines. The upper indices 5, 7 refer to the 5Q and 7Q Fock
sectors.6

The contributions to the antidecuplet normalization are

N ð5ÞðB10Þ ¼
36

5
ðKV

�� þ KV
��Þ; (57a)

N ð7ÞðB10Þ ¼
72

5
ð9KV

���� þ KV
����2 þ 26KV

����

þ 18KV
����Þ: (57b)

In the 5Q sector, one has

�00ð5Þ
V;qval

¼ 18

5
ðKV

�� þ KV
��Þ; �00ð5Þ

V;qsea
¼ 6

5
ðKV

�� þ KV
��Þ; �00ð5Þ

V; �q ¼ �12

5
ðKV

�� þ KV
��Þ; (58a)


00ð5Þ
V;qval

¼ 18

5
ðKV

�� þ KV
��Þ; 
00ð5Þ

V;qsea
¼ 6

5
ðKV

�� þ KV
��Þ; 
00ð5Þ

V; �q ¼ 24

5
ðKV

�� þ KV
��Þ; (58b)

�00ð5Þ
A;qval

¼ �6

5
ðKA

�� � 2KA
33 � KA

��Þ; �00ð5Þ
A;qsea

¼ 12

5
KA

3�; �00ð5Þ
A; �q ¼ 24

5
KA

3�; (59a)


00ð5Þ
A;qval

¼ �6

5
ðKA

�� � 2KA
33 � KA

��Þ; 
00ð5Þ
A;qsea

¼ 12

5
KA

3�; 
00ð5Þ
A; �q ¼ �48

5
KA

3�: (59b)

In the 7Q sector, one has

�00ð7Þ
V;qval

¼ 12

5
ð22KV

���� þ 5KV
����2 þ 68KV

���� þ 51KV
����Þ; (60a)

�00ð7Þ
V;qsea

¼ 12

5
ð17KV

���� þ 2KV
����2 þ 42KV

���� þ 27KV
����Þ; (60b)

�00ð7Þ
V; �q ¼ �12

5
ð15KV

���� � KV
����2 þ 46KV

���� þ 30KV
����Þ; (60c)


00ð7Þ
V;qval

¼ 12

5
ð32KV

���� þ KV
����2 þ 88KV

���� þ 57KV
����Þ; (60d)


00ð7Þ
V;qsea

¼ 12

5
ð19KV

���� þ 2KV
����2 þ 62KV

���� þ 45KV
����Þ; (60e)


00ð7Þ
V; �q ¼ 36

5
ð17KV

���� þ KV
����2 þ 50KV

���� þ 34KV
����Þ; (60f)

6We remind that there is no 3Q component in pentaquarks.
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�00ð7Þ
A;qval

¼ 12

5
ð3KA

����2 � 2KA
��33 þ 10KA

�3�3 � 10KA
���� þ 34KA

��33 þ 19KV
����Þ; (61a)

�00ð7Þ
A;qsea

¼ 24

5
ð4KA

��3� þ KA
�3�� þ 13KA

��3�Þ; (61b)

�00ð7Þ
A; �q ¼ 12

5
ð41KA

��3� � KA
�3�� þ 80KA

��3�Þ; (61c)


00ð7Þ
A;qval

¼ 12

5
ð2KA

���� � KA
����2 � 18KA

��33 þ 26KA
�3�3 � 22KA

���� þ 50KA
��33 þ 17KV

����Þ; (61d)


00ð7Þ
A;qsea

¼ 24

5
ð10KA

��3� þ KA
�3�� þ 19KA

��3�Þ; (61e)


00ð7Þ
A; �q ¼ �36

5
ð23KA

��3� þ KA
�3�� þ 48KA

��3�Þ: (61f)

One can easily check that the obvious sum rules for�þ,Z
dx½uðxÞ � �uðxÞ� ¼ 2; (62a)

Z
dx½dðxÞ � �dðxÞ� ¼ 2; (62b)

Z
dx½sðxÞ � �sðxÞ� ¼ �1; (62c)

are satisfied separately in each sector. They are translated
in our parametrization as follows:

�00ðiÞ
V;qval

þ �00ðiÞ
V;qsea

� �00ðiÞ
V; �q ¼ N ðiÞðB10Þ; (63a)


00ðiÞ
V;qval

þ 
00ðiÞ
V;qsea

� 
00ðiÞ
V; �q ¼ 0 (63b)

for any i ¼ 3Q; 5Q; 7Q; . . . .
A very interesting question about the pentaquark is its

width. In this model it is predicted to be very small (a few
MeV) and can even be & 1 MeV [5], quite unusual for
baryons. In the present approach this can be understood by
the fact that, since there is no 3Q in the pentaquark and that
in the Drell frame only diagonal transitions in the Fock
space occur, the decay is dominated by the transition from
the pentaquark 5Q sector to the proton 5Q sector, the latter

being of course not so large. Since the pentaquark produc-
tion mechanism is not known, its width is estimated by
means of the axial decay constant �þ ! Kþn. If we
assume the approximate SUð3Þ chiral symmetry, one can
obtain the � ! KN pseudoscalar coupling from the gen-
eralized Goldberger-Treiman relation

g�KN ¼ gAð� ! KNÞðM� þMNÞ
2FK

; (64)

where we use M� ¼ 1530 MeV, MN ¼ 940 MeV, and
FK ¼ 1:2F� ¼ 112 MeV. Once this transition pseudosca-
lar constant is known, one can evaluate the�þ width from
the general expression for the 1

2
þ hyperon decay [12]:

�� ¼ 2
g2�KNjpj

8�

ðM� �MNÞ2 �m2
K

M2
�

; (65)

where jpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

� �M2
N �m2

KÞ2 � 4M2
Nm

2
K

q
=2M� ¼

254 MeV is the kaon momentum in the decay (mK ¼
495 MeV) and the factor of 2 stands for the equal proba-
bility Kþn and K0p decays.
Here are the combinations arising for this axial decay

constant in the 5Q and 7Q sectors:

Að5Þð�þ ! KþnÞ ¼ �6

5

ffiffiffi
3

5

s
ð7KA

�� � 8KA
33 þ 5KA

�� � 28KA
3�Þ; (66a)

Að7Þð�þ ! KþnÞ ¼ �48

5

ffiffiffi
3

5

s
ð7KA

���� þ 7KA
����2 þ 6KA

��33 � 14KA
�3�3 þ 40KA

���� � 38KA
��38 þ 22KA

����

� 71KA
��3� þ KA

�3�� � 140KA
��3�Þ: (66b)

D. Numerical results

In the evaluation of the scalar integrals we have used the
constituent quark mass M ¼ 345 MeV, the Pauli-Villars
massMPV ¼ 556:8 MeV for the regularization of (25) and
of (29), and the baryon massM ¼ 1207 MeV as it follows
for the ‘‘classical’’ mass in the mean field approximation

[7]. The details of the computation are the same as in [3]
where by choosing �Vð0; 0Þ ¼ 1 we had obtained in the
3Q sector

�Að0; 0Þ ¼ 0:8612 (67)

and in the 5Q sector
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KV
�� ¼ 0:036 52; KV

33 ¼ 0:019 75;

KV
�� ¼ 0:014 01; (68a)

KA
�� ¼ 0:030 03; KA

33 ¼ 0:016 28;

KA
�� ¼ 0:011 21; KA

3� ¼ 0:016 26: (68b)

Now come our results for the 7Q sector:

KV
���� ¼ 0:000 82; KV

����2 ¼ 0:000 26;

KV
��33 ¼ 0:000 39; KV

3333 ¼ 0:000 19; (69a)

KV
�3�3 ¼ 0:000 17; KV

���� ¼ 0:000 27;

KV
��33 ¼ 0:000 12; KV

���� ¼ 0:000 09; (69b)

KA
���� ¼ 0:000 66; KA

����2 ¼ 0:000 21;

KA
��33 ¼ 0:000 31; KA

3333 ¼ 0:000 15; (69c)

KA
�3�3 ¼ 0:000 13; KA

���� ¼ 0:000 21;

KA
��33 ¼ 0:000 10; KA

���� ¼ 0:000 07; (69d)

KA
��3� ¼ 0:000 31; KA

333� ¼ 0:000 14;

KA
�3�� ¼ 0:000 11; KA

��3� ¼ 0:000 10: (69e)

The model has an intrinsic cutoff which is the instanton
size �600 MeV yielding the model scale Q2

0 ¼
0:36 GeV2.

E. Discussion

Let us start the discussion with our results for the nor-
malizations. They allow us to estimate which fraction of
the proton is actually made of 3Q, 5Q, and 7Q. Since we
did not compute the 7Q sector of decuplet baryons let us
compare first the composition of octet and decuplet bary-
ons up to the 5Q sector.
From Table V, one notices that the fractions are similar

for octet and decuplet baryons. The latter have a slightly
larger 5Q component, especially those with Jz ¼ 1=2. The
fact that decuplet baryons with Jz ¼ 1=2 and Jz ¼ 3=2
have different composition is naturally related to a devia-
tion of their shape from sphericity, see previous discussion
in Sec. VIB.
From Table VI, one observes that the dominant compo-

nent in pentaquarks is smaller (� 60%) than the dominant
one in ordinary baryons (� 75%). This would indicate that
when considering a pentaquark one should care more about
higher Fock contributions than in ordinary baryons. The
additional quark-antiquark pairs seem to be important to
study exotic baryons.
Altogether, Tables V and VI indicate that roughly one-

fifth of the proton is actually made of 5Q. This result
obtained without any fitting procedure is consistent with
estimations from other approaches, see e.g. [13].

TABLE V. Comparison of octet and decuplet baryon fractions
up to the 5Q sector.

3Q � N ð3ÞðBÞ
N ð3ÞðBÞþN ð5ÞðBÞ 5Q � N ð5ÞðBÞ

N ð3ÞðBÞþN ð5ÞðBÞ

B8 77.5% 22.5%

B10;3=2 75% 25%

B10;1=2 72.5% 27.5%

TABLE VI. Comparison of octet and antidecuplet baryon fractions up to the 7Q sector.

3Q � N ð3ÞðBÞ
N ð3ÞðBÞþN ð5ÞðBÞþN ð7ÞðBÞ 5Q � N ð5ÞðBÞ

N ð3ÞðBÞþN ð5ÞðBÞþN ð7ÞðBÞ 7Q � N ð7ÞðBÞ
N ð3ÞðBÞþN ð5ÞðBÞþN ð7ÞðBÞ

B8 71.7% 20.8% 7.5%

B10 0% 60.6% 39.4%

TABLE VII. Our vector and axial content of the proton compared with NQM.

Vector u d s
�q qsea qval �q qsea qval �q qsea qval

NQM 0 0 2 0 0 1 0 0 0

3Q 0 0 2 0 0 1 0 0 0

3Qþ 5Q 0.078 0.130 1.948 0.091 0.080 1.012 0.055 0.015 0.040

3Qþ 5Qþ 7Q 0.125 0.202 1.924 0.145 0.128 1.017 0.088 0.028 0.060

Axial �u �d �s
�q qsea qval �q qsea qval �q qsea qval

NQM 0 0 4=3 0 0 �1=3 0 0 0

3Q 0 0 1.148 0 0 �0:287 0 0 0

3Qþ 5Q �0:032 �0:042 1.086 0.017 0.028 �0:275 0.005 0.005 �0:003
3Qþ 5Qþ 7Q �0:046 �0:060 1.056 0.026 0.040 �0:273 0.007 0.007 �0:006
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We now proceed with our results for baryon vector and
axial content.

1. Octet content

In Table VII, one can find the proton vector and axial
content. One can see that the sea is not SUð3Þ symmetric
(��u ¼ � �d ¼ �s ¼ ��s) as naively often assumed. As dis-
cussed earlier, this is due to the fact that we have a non-
perturbative sea of quark-antiquark pairs.

Isospin asymmetry of the sea.—On the experimental
side, three collaborations—SMC [14], HERMES [15],
and COMPASS [16]—have already measured valence
quark helicity distributions. In order to compare with our
results let us remind the relation between our (�qval) and
their definition of valence contribution (�qv):

�qv � �qval þ �qsea � ��q: (70)

Experiments favor an asymmetric light sea scenario ��u ¼
�� �d. Our results show indeed that ��u and � �d have
opposite signs but the contribution of ��u is roughly twice
the contribution of � �d. Concerning the sum ��uþ � �d it is
about 2% experimentally and is compatible with zero. The
sum we have obtained has the same order of magnitude but
has the opposite sign. The direct numerical simulation
parametrization gives ��u > 0 and � �d < 0 while the sta-
tistical model [17] suggests the opposite signs like our
results. For the valence contribution, experiments suggest
�uv þ �dv � 0:40 while we have obtained � 0:76.

Violation of the Gottfried sum rule allows one to study
also the vector content of the sea. Experiments suggest that
the �d is dominant over �u. This can physically be under-
stood by considering some simple Pauli-blocking effect.
Since there are already two valence u quarks and only one
valence d quark in the proton, the presence of the �dd pair
will be favored compared to �uu. The E866 collaboration
[18] gives �d� �u ¼ 0:118	 0:012 while we have obtained
�d� �u ¼ 0:019. We indeed confirm an excess of �d over �u
but the magnitude is 1 order of magnitude too small.

Strangeness contribution.—In Table VIII, one can find
the proton axial charges and the flavor contributions to the
proton spin compared with experimental data.

Let us first concentrate on the strangeness contribution.
We have found a nonvanishing contribution �s which then
naturally breaks the Ellis-Jaffe sum rule. However, com-

pared to phenomenological extractions [20] it has the
wrong sign and is 1 order of magnitude too small. Even
though there seems to be some discrepancies among the
extraction of �s by the different methods, the strangeness
contribution to proton spin is most likely sizable and
negative. The approach we used is based on flavor SUð3Þ
symmetry and we should, in fact, not expect to obtain good
quantitative results.
If we now have a look to the axial charges, even though

the individual flavor contribution are not satisfactory, we

reproduce fairly well gð3ÞA without any fitting to the experi-

mental axial data. This is probably due to the fact that this
isovector axial charge is based on isospin SUð2Þ symmetry

and not on flavor SUð3Þ. On the contrary, gð8ÞA and gð0ÞA
extraction are based on flavor SUð3Þ symmetry. Even
though we obtain that both quark orbital angular momen-
tum and quark-antiquark pairs reduce their value compared
with the NQM expectation, they are still far too large,
especially the isosinglet combination. Nevertheless, let us

remind that in the usual approach to �QSM, gð0ÞA is known

to be sensitive to the strange quark mass ms. It has been
shown that the latter reduces the fraction of spin carried by
quarks [21]. However, it has been recently argued that the
standard quantization scheme in chiral soliton models does
not take into account all necessary subleading contribu-
tions which are essential when one is interested in strange-
ness issues [22].
Note also that, as indicated by the 7Q component, one

can reasonably expect that adding further quark-antiquark
pairs would reduce further the axial charges but this re-
duction should be less than 1%.
Axial decay constants.—In Table IX, one can find our

results for octet axial decay constants compared with the
experimental knowledge. They are in fair agreement. This
is a nice result since, as we already mentioned, it has been
obtained without any fit to the corresponding experimental
data.
In the literature, these octet axial transitions are often

described in terms of the F&D parametrization. Under the
assumption of flavor SUð3Þ symmetry, the F&D parame-
ters can be extracted from the experimentally known axial
constants. These parameters are compared with our values
for F&D in Table X. One can see that our values are closer
to experimental values than the expectation of NQM. In
particular, F is well reproduced but D is too small.

TABLE VIII. Our flavor contributions to the proton spin and axial charges compared with NQM and experimental data.

�u �d �s gð3ÞA gð8ÞA gð0ÞA
NQM 4=3 �1=3 0 5=3 1=

ffiffiffi
3

p
1

3Q 1.148 �0:287 0 1.435 0.497 0.861

3Qþ 5Q 1.011 �0:230 0.006 1.241 0.444 0.787

3Qþ 5Qþ 7Q 0.949 �0:207 0.009 1.156 0.419 0.751

Experimental value [19] 0:83	 0:03 �0:43	 0:04 �0:10	 0:03 1:257	 0:003 0:34	 0:02 0:31	 0:07
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2. Decuplet content

In Tables XI and XII, one can find the �þþ vector and
axial content with respectively Jz ¼ 3=2, 1=2. In
Tables XIII and XIV, one can find the �þþ axial charges
with respectively Jz ¼ 3=2, 1=2.

To the best of our knowledge there is no experimental
results concerning the vector and axial properties of dec-
uplet baryons. Our results can then be considered just as
theoretical predictions, at least qualitatively. Wewould like
to emphasize a few observations:

(i) Like in the proton, quark spins alone do not add up to
the total decuplet baryon spin. The missing spin has

to be attributed to orbital angular momentum of
quarks and additional quark-antiquark pairs.

(ii) We have obtained that the polarization of the ‘‘hid-
den’’ flavors�d and�s in�þþ has the same sign as
the hidden flavor �s in the proton.

(iii) In general, for the hidden flavor contributions, we
have �qsea � ��q. The only exception is the octet
where �qsea ¼ ��q for hidden flavor is satisfied at
the 5Q level, see Eq. (43c). The 7Q contribution
however satisfies �qsea � ��q, see Eqs. (45h) and
(45i), and so the exception appears just as a mere
coincidence. The numerical values appearing in
Table VII at the 7Q level for �ssea and ��s are quite

TABLE IX. Comparison of our octet axial decay constants with NQM predictions and
experimental data.

NQM 3Q 3Qþ 5Q 3Qþ 5Qþ 7Q Experimental value [19]

ðgA=gVÞn0
8
!pþ

8
5=3 1.435 1.241 1.156 1:2695	 0:0029

ðgA=gVÞ��
8
!�0

8
2=3 0.574 0.503 0.470 � � �

ðgAÞ��
8
!	0

8

ffiffiffiffiffiffiffiffi
2=3

p
0.703 0.603 0.560 � � �

ðgA=gVÞ�0
8
!�þ

8
2=3 0.574 0.503 0.470 � � �

ðgAÞ	0
8
!�þ

8

ffiffiffiffiffiffiffiffi
2=3

p
0.703 0.603 0.560 � � �

ðgA=gVÞ
�
8
!
0

8
�1=3 �0:287 �0:236 �0:215 � � �

ðgA=gVÞ��
8
!n0

8
�1=3 �0:287 �0:236 �0:215 �0:340	 0:017

ðgA=gVÞ
�
8
!�0

8
5=3 1.435 1.241 1.156 � � �

ðgA=gVÞ
�
8
!	0

8
1=3 0.287 0.256 0.242 0:25	 0:05

ðgA=gVÞ�0
8
!pþ

8
�1=3 �0:287 �0:236 �0:215 � � �

ðgA=gVÞ	0
8
!pþ

8
1 0.861 0.749 0.699 0:718	 0:015

ðgA=gVÞ
0
8
!�þ

8
5=3 1.435 1.241 1.156 1:21	 0:05

TABLE X. Comparison of our F&D parameters with NQM predictions and SUð3Þ fits to
experimental data.

NQM 3Q 3Qþ 5Q 3Qþ 5Qþ 7Q SUð3Þ fit [23]
F 2=3 0.574 0.503 0.470 0:475	 0:004
D 1 0.861 0.739 0.686 0:793	 0:005
F=D 2=3 2=3 0.680 0.686 0:599	 0:006
3F�D 1 0.861 0.769 0.725 0:632	 0:017

TABLE XI. Our vector and axial content of the �þþ with spin projection Jz ¼ 3=2 compared
with NQM.

Vector u d s
Jz ¼ 3=2 �q qsea qval �q qsea qval �q qsea qval

NQM 0 0 3 0 0 0 0 0 0

3Q 0 0 3 0 0 0 0 0 0

3Qþ 5Q 0.072 0.193 2.879 0.089 0.029 0.060 0.089 0.029 0.060

Axial �u �d �s
Jz ¼ 3=2 �q qsea qval �q qsea qval �q qsea qval

NQM 0 0 3 0 0 0 0 0 0

3Q 0 0 2.538 0 0 0 0 0 0

3Qþ 5Q �0:061 �0:079 2.423 0.012 0.021 �0:015 0.012 0.021 �0:015
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close and the differences appear only in the fourth
decimal ��s ¼ 0:0073, �ssea ¼ 0:0075.

3. Antidecuplet content

The study of the 7Q sector has mainly been motivated by
the pentaquark. In previous works [3], we have shown that
the 5Q component of usual baryons has non-negligible and
interesting effects on the vector and axial quantities. In the
same spirit, since there is no 3Q component in penta-
quarks, it would be interesting to see what happens when
one considers the 7Q component. In Table XV, one can find
the �þ vector and axial content and in Table XVI the
antidecuplet axial charges.
The first interesting thing here is that contrarily to usual

baryons the sum of all quark spins is larger than the total
baryon spin. This means that quark spins are mainly par-
allel to the baryon spin and that their orbital angular

TABLE XII. Our vector and axial content of the �þþ with spin projection Jz ¼ 1=2 compared
with NQM.

Vector u d s
Jz ¼ 1=2 �q qsea qval �q qsea qval �q qsea qval

NQM 0 0 3 0 0 0 0 0 0

3Q 0 0 3 0 0 0 0 0 0

3Qþ 5Q 0.059 0.225 2.834 0.108 0.025 0.083 0.108 0.025 0.083

Axial �u �d �s
Jz ¼ 1=2 �q qsea qval �q qsea qval �q qsea qval

NQM 0 0 1 0 0 0 0 0 0

3Q 0 0 0.861 0 0 0 0 0 0

3Qþ 5Q �0:020 �0:026 0.813 0.004 0.007 �0:007 0.004 0.007 �0:007

TABLE XIII. Flavor contributions to the �þþ
Jz¼3=2 spin and

axial charges compared with NQM.

�u �d �s gð3ÞA gð8ÞA gð0ÞA
NQM 3 0 0 3

ffiffiffi
3

p
3

3Q 2.583 0 0 2.583 1.492 2.583

3Qþ 5Q 2.283 0.018 0.018 2.265 1.307 2.319

TABLE XIV. Flavor contributions to the �þþ
Jz¼1=2 spin and axial

charges compared with NQM.

�u �d �s gð3ÞA gð8ÞA gð0ÞA
NQM 1 0 0 1 1=

ffiffiffi
3

p
1

3Q 0.861 0 0 0.861 0.497 0.861

3Qþ 5Q 0.767 0.004 0.004 0.763 0.441 0.775

TABLE XV. Our vector and axial content of the �þ.

Vector u d s
�q qsea qval �q qsea qval �q qsea qval

5Q 0 1=2 3=2 0 1=2 3=2 1 0 0

5Qþ 7Q 0.153 0.680 1.474 0.153 0.680 1.474 1.088 0.035 0.053

Axial �u �d �s
�q qsea qval �q qsea qval �q qsea qval

5Q 0 0.322 0.136 0 0.322 0.136 0.644 0 0

5Qþ 7Q �0:020 0.276 0.113 �0:020 0.276 0.113 0.610 0.019 �0:014

TABLE XVI. Flavor contributions to the �þ spin and axial charges.

�u �d �s gð3ÞA gð8ÞA gð0ÞA
5Q 0.458 0.458 0.644 0 �0:215 1.560

5Qþ 7Q 0.369 0.369 0.615 0 �0:284 1.353
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momentum is opposite in order to compensate and form at
the end a baryon with spin 1=2.

The second interesting thing is that this 7Q component
does not change qualitatively the results given by the 5Q
sector alone. This means that a rather good estimation of
pentaquark properties can be obtained by means of the
dominant sector only.

We close this discussion by looking at the width of �þ
pentaquark, see Table XVII. The 7Q component does not
change much our previous estimation. Note however, as
one could have expected, that the width is slightly in-
creased. Indeed it has been explained in previous papers
[2,3] that the unusually small width of pentaquarks can be
understood in the present approach by the fact that the
pentaquark cannot decay into the 3Q sector of the nucleon.
Since the addition of a 7Q component reduces the overall
weight of the 3Q component in the nucleon (see Tables V
and VI) the width should increase. The existence of a
narrow pentaquark resonance within �QSM is safe and
appears naturally without any parameter fixing.

VII. CONCLUSION

The question of the nucleon structure is one of the most
intriguing in the field of strong interactions. Experiments
indicate many nontrivial effects that are related to the
nonperturbative regime of QCD. The question of identify-
ing the relevant degrees of freedom is still open and many
models have been studied to understand and accommodate
experimental results. The chiral-quark soliton model
(�QSM) is one of them and has already given lots of
successful results. Recently, this model has been formu-
lated in the infinite momentum frame (IMF) where it was
possible to write down a general expression for the wave
function of any light baryon. Using this unique tool, one
could in principle access a large amount of information
concerning the structure and the properties of the nucleon
at low energies.

In this paper, we have presented our results concerning
the octet, decuplet, and antidecuplet spin and flavor struc-
ture up to the 7Q Fock sector. The model being based on
the collective quantization of the solitonic pion field, an
expression for the spin-flavor wave function can be and has
been obtained for the 3Q, 5Q, and 7Q sectors. In previous
works it has been shown that the technique reproduces the
SUð6Þ wave functions in the 3Q sector. Remarkably the
soliton ansatz allows one to extract an exact form for
higher Fock components without free coefficients and
can serve as a basis for other quark models which aim to
include higher Fock components.

Although our approach is restricted to flavor SUð3Þ
symmetry, we have obtained a fairly good description,
especially concerning the octet axial decay constants.
Among the discrepancies let us note a too large value for
the quark spin contribution to the baryon spin which could
in principle be solved by considering the breakdown of
flavor SUð3Þ symmetry. Compared to what is suggested by
experiments, it seems that the contribution of our sea to the
axial charges is by an order of magnitude too small and has
the opposite sign. However, the adjunction of additional
quark-antiquark pairs and quark orbital angular momen-
tum brings the quantities closer to the experimental values
compared to the naive quark model predictions.
Within this approach we have also shown explicitly that

the decuplet baryons are not spherical, due to the pion field.
Indeed a quadrupole structure naturally appeared already
in the 5Q sector. We have also obtained an interesting
result concerning the pentaquark spin. Contrarily to ordi-
nary baryons, the sum of quark spins is larger than the total
pentaquark spin and thus that orbital angular momentum is
antiparallel to the total spin. This approach is particularly
interesting since one can easily distinguish between va-
lence quark, sea quark, and antiquark contributions and
therefore allows one to study explicitly the sea.
In a previous work, we have shown that the 5Q compo-

nent in ordinary baryons is important especially to explain
the spin distributions. By analogy, it was then interesting to
study the influence of the 7Q component in pentaquarks.
Qualitatively the results are not changed and thus justify a
posteriori the validity of the expansion in the number of
quark-antiquark pairs. The particular feature of penta-
quarks is their unusual small width. In the present approach
this smallness is explained by the fact that the pentaquark
cannot decay into the 3Q component of the nucleon.
Consequently, one can expect that adding higher Fock
states would decrease the 3Q component of the nucleon
and thus increase the pentaquark width. This pattern has
indeed been obtained.
The results are given without any estimate of theoretical

errors since the latter are rather difficult to evaluate at the
present stage of the study. We emphasize also that in this
work we did not fit any parameter. The sole parameters of
the model were fitted in the meson sector.
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APPENDIX A: GROUP INTEGRALS

We give in this Appendix the complete list of octet,
decuplet, and antidecuplet spin-flavor wave functions up

TABLE XVII. �þ width estimation.

gAð� ! KNÞ g�KN �� (MeV)

5Q 0.144 1.592 2.256

5Qþ 7Q 0.169 1.864 3.091
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to the 7Q sector. They are group integrals over the Haar
measure of the SUðNÞ group which is normalized to unityR
dR ¼ 1. Part of them are copied from the Appendix B of

[2].

1. Method

Here is the general method to compute integrals of
several matrices R, Ry. The result of an integration over
the invariant measure can only be invariant tensors which,
for the SUðNÞ group, are built solely from the Kronecker �
and Levi-Cività � tensors. One then constructs the sup-
posed tensor of a given rank as the most general combina-
tion of �’s and �’s satisfying the symmetry relations
following from the integral in question:

(i) Since Rfj and R
yi
h are just numbers, one can commute

them. Therefore the same permutation among f’s
and j’s (or h’s and i’s) does not change the value
of the integral, i.e. the structure of the tensor.

(ii) In the special case where there are as many R as Ry,
one can exchange them which amounts to exchange
f and j indices with respectively i and h.

One has however to be careful to use the same ‘‘type’’ of
indices in �’s and �’s, i.e. the upper (respectively lower)
indices ofRwith the lower (respectively upper) ones of Ry.
The indefinite coefficients in the combination are found by
contracting both sides with various �’s and �’s and thus by
reducing the integral to a previously derived one. We will
give below explicit examples.

2. Basic integrals and explicit examples

Since the method is recursive, let us start with the
simplest group integrals. For any SUðNÞ group, one has

Z
dRRfj ¼ 0;

Z
dRRyi

h ¼ 0;

Z
dRRfjR

yi
h ¼ 1

N
�fh�

i
j:

(A1)

The last integral is a well-known result but can be derived
by means of the method explained earlier. There are two
upper ðf; iÞ and two lower ðj; hÞ indices. In SUðNÞ the
solution of the integral can only be constructed from the
� and the � tensor withN (upper or lower) indices. There is

only one possible structure7 �fh�
i
j leaving thus only one

undetermined coefficient A. This coefficient can be deter-

mined by contracting both sides with, say, �ji . Since

RfjR
yj
h ¼ �fh [R matrices belong to SUðNÞ and are thus

unitary] one has for the left-hand side (lhs)

�ji �
Z

dRRfjR
yi
h ¼ �fh (A2)

and for the right-hand side (rhs)

�ji � A�fh�
i
j ¼ AN�fh (A3)

and one concludes that A ¼ 1=N.
Let us proceed with the integral of two R’s. Here all the

upper (lower) indices have the same type and must appear
in the same symbol. Only � has many indices in the same
position. In the case N > 2, one needs more available
indices. This means that for SUðNÞ with N > 2, one has

Z
dRRf1j1R

f2
j2
¼ 0: (A4)

For N ¼ 2, the group integral is nonvanishing since the
structure �f1f2�j1j2 is allowed. The undetermined coeffi-

cient A is obtained by contracting both sides with, say,

�j1j2 . Since �j1j2Rf1j1R
f2
j2
¼ �f1f2 [R matrices belong to

SUð2Þ and have thus detðRÞ ¼ 1], one has for the lhs

�j1j2 �
Z

dRRf1j1R
f2
j2
¼ �f1f2 (A5)

and for the rhs

�j1j2 � A�f1f2�j1j2 ¼ 2A�f1f2 (A6)

and thus one concludes that A ¼ 1=2. For SUð2Þ, one then
has

Z
dRRf1j1R

f2
j2
¼ 1

2�
f1f2�j1j2 : (A7)

The SUð3Þ analog involves the products of three R’s:

Z
dRRf1j1R

f2
j2
Rf3j3 ¼ 1

6�
f1f2f3�j1j2j3 ; (A8)

which is vanishing for N > 3 and also for N ¼ 2 since all
the three upper (and lower) indices cannot be used in �’s.
This can be easily generalized to SUðNÞ with the product
of N matrices R:

Z
dRRf1j1R

f2
j2
. . .R

fN
jN

¼ 1

N!
�f1f2...fN�j1j2...jN : (A9)

This integral is vanishing for all SUðN0Þ groups with N0
that is not a divisor of N.
Let us now consider the product of four R’s in SUð2Þ.

Since 2 is a divisor of 4 the integral is nonvanishing. The
general tensor structure is a linear combination of
�fafb�fcfd�jwjx�jyjz with a, b, c, d and w, x, y, z some

7The � tensor needs N indices of the same type and position.
The only possibility left is to introduce new indices that are
summed, e.g. �fg�hg�

ik�jk. This is however not a new structure
since the summation over the new indices can be performed
leading to the ‘‘old’’ structure �fg�hg�

ik�jk ¼ �fh�
i
j.

CÉDRIC LORCÉ PHYSICAL REVIEW D 78, 034001 (2008)

034001-20



permutation of 1,2,3,4. There are a priori nine undeter-
mined coefficients. The symmetries of the integral reduce
this number to 2. Thanks to the SUð2Þ identity

�j1j2�j3j4 þ �j1j3�j4j2 þ �j1j4�j2j3 ¼ 0; (A10)

only one undetermined coefficient is left which is obtained
by contracting both sides with, say, �j1j2 . The result is thus
for SUð2Þ:

Z
dRRf1j1R

f2
j2
Rf3j3R

f4
j4
¼ 1

6ð�f1f2�f3f4�j1j2�j3j4
þ �f1f3�f2f4�j1j3�j2j4

þ �f1f4�f2f3�j1j4�j2j3Þ: (A11)

The identity (A10) is in fact a particular case of a general
SUðNÞ identity. It is based on the fact that for SUðNÞ one
has �j1j2...jNþ1

¼ 0 and thus

�j1j2...jNXjNþ1
	 �j2j3...jNþ1

Xj1 þ �j3j4...j1Xj2 	 . . .

	 �jNþ1j1...jN�1
XjN ¼ 0; (A12)

where the þ (respectively �) sign is for N even (respec-
tively odd) and Xj any tensor with at least index j. This

identity is easy to check. Since we work in SUðNÞ, among
the N þ 1 indices at least two are equal, say jk and jl. The

only surviving terms are then �Xjk þ Xjl which give zero

since jk ¼ jl. It is very useful and greatly simplifies the
search of the general tensor structure. Since the number of
indices of both ‘‘types’’ is identical, the structure in terms
of �’s and �’s is also the same. The indices on � can be
placed in a symmetric (e.g. �f1f2�f3f4�j1j2�j3j4) and an

asymmetric manner (e.g. �f1f2�f3f4�j1j4�j2j3). By repeated

applications of (A12) the asymmetric part of the tensor can
be transformed into the symmetric part reducing thus the
number of undetermined coefficients by a factor 2. In the
search of the general tensor structure, one can then just
consider symmetric � terms only.
We give another useful identity. In SUð2Þ one has

�f1f2f3�h1h2h3 ¼ 0. Using the notation ðabcÞ � �f1ha�
f2
hb
�f3hc

this amounts to

ð123Þ � ð132Þ þ ð231Þ � ð213Þ þ ð312Þ � ð321Þ ¼ 0:

(A13)

This identity is easily generalized to any SUðNÞ group
where it is based on �f1f2...fNþ1�h1h2...hNþ1

¼ 0.

We close this section by mentioning another group in-
tegral which is useful to obtain further ones. For any
SUðNÞ group, one has

Z
dRRf1j1R

f2
j2
Ryi1
h1
Ryi2
h2

¼ 1

N2 � 1

�
�f1h1�

f2
h2

�
�i1j1�

i2
j2
� 1

N
�i2j1�

i1
j2

�
þ �f1h2�

f2
h1

�
�i2j1�

i1
j2
� 1

N
�i1j1�

i2
j2

��
: (A14)

One can easily check that by contracting it with, say, �h1f1 it reduces to (A1).

3. Notations

In order to simplify the formulas, we introduce a few notations:

½abc� � ð123ÞðabcÞ þ ð231ÞðbcaÞ þ ð312ÞðcabÞ þ ð213ÞðbacÞ þ ð132ÞðacbÞ þ ð321ÞðcbaÞ; (A15)

½abcd� � ð1234ÞðabcdÞ þ ð2341ÞðbcdaÞ þ ð3412ÞðcdabÞ þ ð4123ÞðdabcÞ þ ð2134ÞðbacdÞ þ ð1342ÞðacdbÞ
þ ð3421ÞðcdbaÞ þ ð4213ÞðdbacÞ þ ð3214ÞðcbadÞ þ ð2143ÞðbadcÞ þ ð1432ÞðadcbÞ þ ð4321ÞðdcbaÞ
þ ð4231ÞðdbcaÞ þ ð2314ÞðbcadÞ þ ð3142ÞðcadbÞ þ ð1423ÞðadbcÞ þ ð1324ÞðacbdÞ þ ð3241ÞðcbdaÞ
þ ð2413ÞðbdacÞ þ ð4132ÞðdacbÞ þ ð1243ÞðabdcÞ þ ð2431ÞðbdcaÞ þ ð4312ÞðdcabÞ þ ð3124ÞðcabdÞ; (A16)
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½abcde� � ð12345ÞðabcdeÞ þ ð23451ÞðbcdeaÞ þ ð34512ÞðcdeabÞ þ ð45123ÞðdeabcÞ þ ð51234ÞðeabcdÞ
þ ð21345ÞðbacdeÞ þ ð13452ÞðacdebÞ þ ð34521ÞðcdebaÞ þ ð45213ÞðdebacÞ þ ð52134ÞðebacdÞ
þ ð32145ÞðcbadeÞ þ ð21453ÞðbadecÞ þ ð14532ÞðadecbÞ þ ð45321ÞðdecbaÞ þ ð53214ÞðecbadÞ
þ ð42315ÞðdbcaeÞ þ ð23154ÞðbcaedÞ þ ð31542ÞðcaedbÞ þ ð15423ÞðaedbcÞ þ ð54231ÞðedbcaÞ
þ ð52341ÞðebcdaÞ þ ð23415ÞðbcdaeÞ þ ð34152ÞðcdaebÞ þ ð41523ÞðdaebcÞ þ ð15234ÞðaebcdÞ
þ ð13245ÞðacbdeÞ þ ð32451ÞðcbdeaÞ þ ð24513ÞðbdeacÞ þ ð45132ÞðdeacbÞ þ ð51324ÞðeacbdÞ
þ ð14325ÞðadcbeÞ þ ð43251ÞðdcbeaÞ þ ð32514ÞðcbeadÞ þ ð25143ÞðbeadcÞ þ ð51432ÞðeadcbÞ
þ ð15342ÞðaecdbÞ þ ð53421ÞðecdbaÞ þ ð34215ÞðcdbaeÞ þ ð42153ÞðdbaecÞ þ ð21534ÞðbaecdÞ
þ ð12435ÞðabdceÞ þ ð24351ÞðbdceaÞ þ ð43512ÞðdceabÞ þ ð35124ÞðceabdÞ þ ð51243ÞðeabdcÞ
þ ð12543ÞðabedcÞ þ ð25431ÞðbedcaÞ þ ð54312ÞðedcabÞ þ ð43125ÞðdcabeÞ þ ð31254ÞðcabedÞ
þ ð12354ÞðabcedÞ þ ð23541ÞðbcdeaÞ þ ð35412ÞðcedabÞ þ ð54123ÞðedabcÞ þ ð41235ÞðdabceÞ
þ ð54321ÞðedcbaÞ þ ð43215ÞðdcbaeÞ þ ð32154ÞðcbaedÞ þ ð21543ÞðbaedcÞ þ ð15432ÞðaedcbÞ
þ ð12453ÞðabdecÞ þ ð24531ÞðbdecaÞ þ ð45312ÞðdecabÞ þ ð53124ÞðecabdÞ þ ð31245ÞðcabdeÞ
þ ð12534ÞðabecdÞ þ ð25341ÞðbecdaÞ þ ð53412ÞðecdabÞ þ ð34125ÞðcdabeÞ þ ð41253ÞðdabecÞ
þ ð23514ÞðbceadÞ þ ð35142ÞðceadbÞ þ ð51423ÞðeadbcÞ þ ð14235ÞðadbceÞ þ ð42351ÞðdbceaÞ
þ ð23145ÞðbcadeÞ þ ð31452ÞðcadebÞ þ ð14523ÞðadebcÞ þ ð45231ÞðdebcaÞ þ ð52314ÞðebcadÞ
þ ð34251ÞðcdbeaÞ þ ð42513ÞðdbeacÞ þ ð25134ÞðbeacdÞ þ ð51342ÞðeacdbÞ þ ð13425ÞðacdbeÞ
þ ð21435ÞðbadceÞ þ ð14352ÞðadcebÞ þ ð43521ÞðdcebaÞ þ ð35214ÞðcebadÞ þ ð52143ÞðebadcÞ
þ ð21354ÞðbacedÞ þ ð13542ÞðacedbÞ þ ð35421ÞðcedbaÞ þ ð54213ÞðedbacÞ þ ð42135ÞðdbaceÞ
þ ð32541ÞðcbedaÞ þ ð25413ÞðbedacÞ þ ð54132ÞðedacbÞ þ ð41325ÞðdacbeÞ þ ð13254ÞðacbedÞ
þ ð35241ÞðcebdaÞ þ ð52413ÞðebdacÞ þ ð24135ÞðbdaceÞ þ ð41352ÞðdacebÞ þ ð13524ÞðacebdÞ
þ ð52431ÞðebdcaÞ þ ð24315ÞðbdcaeÞ þ ð43152ÞðdcaebÞ þ ð31524ÞðcaebdÞ þ ð15243ÞðaebdcÞ
þ ð42531ÞðdbecaÞ þ ð25314ÞðbecadÞ þ ð53142ÞðecabdÞ þ ð31425ÞðcabdeÞ þ ð14253ÞðabdecÞ
þ ð32415ÞðcbdaeÞ þ ð24153ÞðbdaecÞ þ ð41532ÞðdaecbÞ þ ð15324ÞðaecbdÞ þ ð53241ÞðecbdaÞ; (A17)

where

ðabcÞðdefÞ � �f1ha�
f2
hb
�f3hc�

id
j1
�iej2�

if
j3
; (A18a)

ðabcdÞðefghÞ � �f1ha�
f2
hb
�f3hc�

f4
hd
�iej1�

if
j2
�
ig
j3
�ihj4 ; (A18b)

ðabcdeÞðfghijÞ � �f1ha�
f2
hb
�f3hc�

f4
hd
�f5he�

if
j1
�
ig
j2
�ihj3�

ii
j4
�
ij
j5
:

(A18c)

Other structures are simplified as follows:

½xyz; lmn� � ½lmn�
where ðabcÞðdefÞ � �fxfa�

fy
fb
�
fz
fc
�
jd
jx
�jejy�

jf
jz
;

(A19)

fabg � �faf8�
fb
f10
ð5�j8ja�

j10
jb

� �
j8
jb
�
j10
ja
Þ

þ �faf10�
fb
f8
ð5�j10ja �j8jb � �j10jb �

j8
ja
Þ; (A20)

fabcdeg � �h1fað�fbfch2�fdfeh3 þ �fbfch3�fdfeh2Þ
þ �h2fað�fbfch3�fdfeh1 þ �fbfch1�fdfeh3Þ
þ �

h3
fa
ð�fbfch1�fdfeh2 þ �fbfch2�fdfeh1Þ; (A21)

fabc; deg � �fafbfc�jajbjc½�fdf5�
fe
f7
ð4�j5jd�j7je � �j5je�

j7
jd
Þ

þ �
fd
f7
�fef5ð4�

j7
jd
�
j5
je
� �j7je�

j5
jd
Þ�; (A22)
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fabcdefg � �fafbfc�fdfeff�jajbjc�jdjejf þ �fafbfd�fcfeff�jajbjd�jcjejf þ �fafbfe�fcfdff�jajbje�jcjdjf

þ �fafbff�fcfdfe�jajbjf�jcjdje þ �fafcfd�fbfeff�jajcjd�jbjejf þ �fafcfe�fbfdff�jajcje�jbjdjf

þ �fafcff�fbfdfe�jajcjf�jbjdje þ �fafdfe�fbfcff�jajdje�jbjcjf þ �fafdff�fbfcfe�jajdjf�jbjcje

þ �fafeff�fbfcfd�jajejf�jbjcjd ; (A23)

fabc; defg � �fafbfc�jajbjcf7½def; 579� � 2ð½def; 597� þ ½def; 975� þ ½def; 759�Þ þ ð½def; 795� þ ½def; 957�Þg:
(A24)

4. Group integrals and projections onto Fock states

Spin-flavor wave functions are constructed from the
projection of Fock states onto rotational wave functions.
Rotational wave functions can be found in Ref. [3]. The 3Q
state involves three quarks that are rotated by three R
matrices. The 5Q state involves four quarks and one anti-
quark that are rotated by four R and one Ry matrices. So a
general nQ state involves ðnþ 3Þ=2 quarks and ðn� 3Þ=2
antiquarks that are rotated by ðnþ 3Þ=2 R and ðn� 3Þ=2
Ry matrices.

a. Projections of the 3Q state

The first integral corresponds to the projection of the 3Q
state onto the octet quantum numbers for the SUð3Þ group,
Z

dRRf1j1R
f2
j2
Rf3j3 ðRf4j4Ryj5

f5
Þ

¼ 1

24
ð�f1f5�

j5
j1
�f2f3f4�j2j3j4 þ �f2f5�

j5
j2
�f1f3f4�j1j3j4

þ �
f3
f5
�
j5
j3
�f1f2f4�j1j2j4 þ �f4f5�

j5
j4
�f1f2f3�j1j2j3Þ: (A25)

This integral is zero for any other SUðNÞ group.
The second integral corresponds to the projection of the

3Q state onto the decuplet quantum numbers for any
SUðNÞ group,Z

dRRf1j1R
f2
j2
R
f3
j3
Ryi1
h1
Ryi2
h2
R
yi3
h3

¼ 1

NðN2 � 1ÞðN2 � 4Þ fðN
2 � 2Þ½123�

� Nð½213� þ ½132� þ ½321�Þ þ 2ð½231� þ ½312�Þg:
(A26)

There is no problem in the case N ¼ 2 thanks to (A13)Z
dRRf1j1R

f2
j2
R
f3
j3
Ryi1
h1
Ryi2
h2
R
yi3
h3

¼ 1

24
f3½123� � ð½231� þ ½312�Þg: (A27)

The third integral corresponds to the projection of the
antidecuplet onto the 3Q state for the SUð3Þ group,

Z
dRRf1j1R

f2
j2
Rf3j3R

f4
j4
Rf5j5R

f6
j6
¼ 1

72
f123456g: (A28)

This integral is also nonvanishing in only two other cases
N ¼ 2 and N ¼ 6. The (conjugated) rotational wave func-
tion of the antidecuplet is

A
�fh1h2h3g
k ðRÞ ¼ 1

3ðRh13 Rh23 Rh3k þ Rh23 R
h3
3 R

h1
k þ R

h3
3 R

h1
3 R

h2
k Þ:

(A29)

Because of the antisymmetric structure of (A28), one can
see that the projection of the antidecuplet on the 3Q sector
is vanishing and thus that pentaquarks cannot be made of
three quarks only.

b. Projections of the 5Q state

The first integral corresponds to the projection of the 5Q
state onto the octet quantum numbers for the SUð3Þ group,Z

dRRf1j1R
f2
j2
Rf3j3 ðRf4j4Ryj5

f5
ÞðRf6j6Ryj7

f7
Þ

¼ 1

360
½f123; 46g þ f124; 36g þ f126; 34g

þ f134; 26g þ f136; 24g þ f146; 23g þ f346; 12g
þ f246; 13g þ f236; 14g þ f234; 16g�: (A30)

This integral is zero for any other SUðNÞ group.
The second integral corresponds to the projection of the

5Q state onto the decuplet quantum numbers for any
SUðNÞ group,Z

dRRf1j1R
f2
j2
Rf3j3R

f4
j4
Ryi1
h1
Ryi2
h2
Ryi3
h3
Ryi4
h4

¼ 1

N2ðN2 � 1ÞðN2 � 4ÞðN2 � 9Þ fðN
4 � 8N2 þ 6Þ

� ½1234� � NðN2 � 4Þð½2134� þ ½3214� þ ½1432�
þ ½1324� þ ½1243� þ ½4231�Þ þ ðN2 þ 6Þð½3412�
þ ½2143� þ ½4321�Þ � 5Nð½2341� þ ½4123� þ ½3421�
þ ½4312� þ ½3142� þ ½2413�Þ þ ð2N2 � 3Þð½1342�
þ ½4213� þ ½3241� þ ½2314� þ ½3124� þ ½4132�
þ ½2431� þ ½1423�Þg: (A31)
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No problem arises either in the case N ¼ 3,

Z
dRRf1j1R

f2
j2
R
f3
j3
Rf4j4R

yi1
h1
Ryi2
h2
R
yi3
h3
Ryi4
h4

¼ 1

2160
f48½1234� � 11ð½2134� þ ½3214� þ ½1432� þ ½1324� þ ½1243� þ ½4231�Þ

� 6ð½3412� þ ½2143� þ ½4321�Þ þ 7ð½2341� þ ½4123� þ ½3421� þ ½4312�
þ ½3142� þ ½2413�Þg; (A32)

or in the case N ¼ 2 thanks to the generalization of (A13),

Z
dRRf1j1R

f2
j2
R
f3
j3
Rf4j4R

yi1
h1
Ryi2
h2
R
yi3
h3
Ryi4
h4

¼ 1

240
f8½1234� � 3ð½2341� þ ½4123� þ ½3421� þ ½4312� þ ½3142� þ ½2413�Þ

þ 4ð½3412� þ ½2143� þ ½4321�Þg: (A33)

The third integral corresponds to the projection of the 5Q state onto the antidecuplet quantum numbers for the SUð3Þ
group,

Z
dRRf1j1R

f2
j2
R
f3
j3
Rf4j4R

f5
j5
R
f6
j6
ðRf7j7R

yj8
f8

Þ ¼ 1

360
½�f1f8�

j8
j1
f234567g þ �f2f8�

j8
j2
f134567g þ �

f3
f8
�
j8
j3
f124567g þ �f4f8�

j8
j4
f123567g

þ �
f5
f8
�
j8
j5
f123467g þ �

f6
f8
�
j8
j6
f123457g þ �f7f8�

j8
j7
f123456g�: (A34)

This integral is also nonvanishing in only two other cases N ¼ 2 and N ¼ 6. The (conjugated) rotational wave function of
the antidecuplet (A29) is symmetric with respect to three flavor indices h1, h2, h3. The projection of the 5Q state is thus
reduced to

Z
dRRf1j1R

f2
j2
Rf3j3 ðRf4j4Ryj5

f5
ÞA�fh1h2h3g

k ðRÞ ¼ 1

1080
ff51234gð�j5k �j1j23�j3j43 þ �j53 �j1j2k�j3j43 þ �j53 �j1j23�j3j4kÞ

þ f52341gð�j5k �j2j33�j4j13 þ �j53 �j2j3k�j4j13 þ �j53 �j2j33�j4j1kÞ
þ f51324gð�j5k �j1j33�j2j43 þ �

j5
3 �j1j3k�j2j43 þ �

j5
3 �j1j33�j2j4kÞg: (A35)

c. Projections of the 7Q state

The first integral corresponds to the projection of the 7Q state onto the octet quantum numbers for the SUð3Þ group,

Z
dRRf1j1R

f2
j2
R
f3
j3
ðRf4j4R

yj5
f5

ÞðRf6j6Ryj7
f7

ÞðRf8j8R
yj9
f9

Þ ¼ 1

2160
ðf123; 468g þ f124; 368g þ f126; 348g þ f128; 346g þ f134; 268g

þ f136; 248g þ f138; 246g þ f146; 238g þ f148; 236g þ f168; 234g
þ f468; 123g þ f368; 124g þ f348; 126g þ f346; 128g þ f268; 134g
þ f248; 136g þ f246; 138g þ f238; 146g þ f236; 148g þ f234; 168gÞ:

(A36)

This integral is zero for any other SUðNÞ group.
The second integral corresponds to the projection of the 7Q state onto the decuplet quantum numbers for any SUðNÞ

group,
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Z
dRRf1j1R

f2
j2
R
f3
j3
Rf4j4R

f5
j5
Ryi1
h1
Ryi2
h2
R
yi3
h3
Ryi4
h4
R
yi5
h5

¼ 1

N2ðN2 � 1ÞðN2 � 4ÞðN2 � 9ÞðN2 � 16Þ fNðN
4 � 20N2 þ 78Þ½12345� � ðN4 � 14N2 þ 24Þð½21345� þ ½52341�

þ ½12354� þ ½12435� þ ½13245� þ ½14325� þ ½32145� þ ½15342� þ ½42315� þ ½12543�Þ � 2ðN2 þ 12Þð½34521�
þ ½34152� þ ½35412� þ ½43512� þ ½24513� þ ½54123� þ ½35124� þ ½45132� þ ½45213� þ ½41523� þ ½21534�
þ ½54231� þ ½31254� þ ½51432� þ ½53214� þ ½25431� þ ½43251� þ ½21453� þ ½53421� þ ½23154�Þ
þ 2NðN2 � 9Þð½12453� þ ½23145� þ ½42351� þ ½15324� þ ½15243� þ ½32415� þ ½24315� þ ½14352� þ ½14235�
þ ½51342� þ ½52314� þ ½13425� þ ½25341� þ ½52143� þ ½42135� þ ½41325� þ ½13542� þ ½32541� þ ½12534�
þ ½31245�Þ þ NðN2 � 2Þð½54321� þ ½32154� þ ½15432� þ ½43215� þ ½21543� þ ½45312� þ ½42513� þ ½14523�
þ ½34125� þ ½35142� þ ½21354� þ ½52431� þ ½13254� þ ½21435� þ ½53241�Þ þ 14Nð½23451� þ ½31452�
þ ½53412� þ ½23514� þ ½24531� þ ½34251� þ ½41253� þ ½51423� þ ½53124� þ ½25134� þ ½45231� þ ½51234�
þ ½25413� þ ½43521� þ ½24153� þ ½35421� þ ½43152� þ ½41532� þ ½54213� þ ½31524� þ ½54132� þ ½35214�
þ ½45123� þ ½34512�Þ � ð5N2 � 24Þð½13452� þ ½23415� þ ½23541� þ ½24351� þ ½32451� þ ½41352� þ ½52413�
þ ½13524� þ ½24135� þ ½35241� þ ½53142� þ ½25314� þ ½42531� þ ½14253� þ ½31425� þ ½15234� þ ½41235�
þ ½51243� þ ½51324� þ ½52134� þ ½15423� þ ½43125� þ ½25143� þ ½45321� þ ½42153�
þ ½14532� þ ½34215� þ ½31542� þ ½54312� þ ½32514�Þg: (A37)

No problem arises in the case N ¼ 4,

Z
dRRf1j1R

f2
j2
R
f3
j3
Rf4j4R

f5
j5
Ryi1
h1
Ryi2
h2
R
yi3
h3
Ryi4
h4
R
yi5
h5

¼ 1

80640
f179½12345� � 52ð½21345� þ ½52341� þ ½12354� þ ½12435� þ ½13245� þ ½14325� þ ½32145� þ ½15342�

þ ½42315� þ ½12543�Þ þ 12ð½34521� þ ½34152� þ ½35412� þ ½43512� þ ½24513� þ ½54123� þ ½35124� þ ½45132�
þ ½45213� þ ½41523� þ ½21534� þ ½54231� þ ½31254� þ ½51432� þ ½53214� þ ½25431� þ ½43251� þ ½21453�
þ ½53421� þ ½23154�Þ þ 19ð½12453� þ ½23145� þ ½42351� þ ½15324� þ ½15243� þ ½32415� þ ½24315� þ ½14352�
þ ½14235� þ ½51342� þ ½52314� þ ½13425� þ ½25341� þ ½52143� þ ½42135� þ ½41325� þ ½13542� þ ½32541�
þ ½12534� þ ½31245�Þ þ 3ð½54321� þ ½32154� þ ½15432� þ ½43215� þ ½21543� þ ½45312� þ ½42513� þ ½14523�
þ ½34125� þ ½35142� þ ½21354� þ ½52431� þ ½13254� þ ½21435� þ ½53241�Þ � 13ð½23451� þ ½31452� þ ½53412�
þ ½23514� þ ½24531� þ ½34251� þ ½41253� þ ½51423� þ ½53124� þ ½25134� þ ½45231� þ ½51234� þ ½25413�
þ ½43521� þ ½24153� þ ½35421� þ ½43152� þ ½41532� þ ½54213� þ ½31524� þ ½54132� þ ½35214� þ ½45123�
þ ½34512�Þg; (A38)

in the case N ¼ 3,
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Z
dRRf1j1R

f2
j2
R
f3
j3
Rf4j4R

f5
j5
Ryi1
h1
Ryi2
h2
R
yi3
h3
Ryi4
h4
R
yi5
h5

¼ 1

15120
f151½12345� � 38ð½21345� þ ½52341� þ ½12354� þ ½12435� þ ½13245� þ ½14325� þ ½32145� þ ½15342�

þ ½42315� þ ½12543�Þ � 2ð½34521� þ ½34152� þ ½35412� þ ½43512� þ ½24513� þ ½54123� þ ½35124� þ ½45132�
þ ½45213� þ ½41523� þ ½21534� þ ½54231� þ ½31254� þ ½51432� þ ½53214� þ ½25431� þ ½43251� þ ½21453�
þ ½53421� þ ½23154�Þ þ 10ð½12453� þ ½23145� þ ½42351� þ ½15324� þ ½15243� þ ½32415� þ ½24315� þ ½14352�
þ ½14235� þ ½51342� þ ½52314� þ ½13425� þ ½25341� þ ½52143� þ ½42135� þ ½41325� þ ½13542� þ ½32541�
þ ½12534� þ ½31245�Þ þ 5ð½54321� þ ½32154� þ ½15432� þ ½43215� þ ½21543� þ ½45312� þ ½42513� þ ½14523�
þ ½34125� þ ½35142� þ ½21354� þ ½52431� þ ½13254� þ ½21435� þ ½53241�Þg; (A39)

or in the case N ¼ 2 thanks to the generalization of (A13),

Z
dRRf1j1R

f2
j2
Rf3j3R

f4
j4
Rf5j5R

yi1
h1
Ryi2
h2
Ryi3
h3
Ryi4
h4
Ryi5
h5

¼ 1

1440
f57½12345� � 11ð½21345� þ ½52341� þ ½12354� þ ½12435� þ ½13245� þ ½14325� þ ½32145� þ ½15342�

þ ½42315� þ ½12543�Þ þ 2ð½12453� þ ½23145� þ ½42351� þ ½15324� þ ½15243� þ ½32415� þ ½24315� þ ½14352�
þ ½14235� þ ½51342� þ ½52314� þ ½13425� þ ½25341� þ ½52143� þ ½42135� þ ½41325� þ ½13542� þ ½32541�
þ ½12534� þ ½31245�Þ þ ð½54321� þ ½32154� þ ½15432� þ ½43215� þ ½21543� þ ½45312� þ ½42513� þ ½14523�
þ ½34125� þ ½35142� þ ½21354� þ ½52431� þ ½13254� þ ½21435� þ ½53241�Þg: (A40)

The third integral corresponds to the projection of the 7Q state onto the antidecuplet quantum numbers for the SUð3Þ
group,

Z
dRRf1j1R

f2
j2
Rf3j3R

f4
j4
Rf5j5R

f6
j6
ðRf7j7Ryj8

f8
ÞðRf9j9Ryj10

f10
Þ

¼ 1

8640
½f123456gf79g þ f123457gf69g þ f123467gf59g þ f123567gf49g þ f124567gf39g þ f134567gf29g þ f234567gf19g

þ f123459gf67g þ f123469gf57g þ f123569gf47g þ f124569gf37g þ f134569gf27g þ f234569gf17g þ f123479gf56g
þ f123579gf46g þ f124579gf36g þ f134579gf26g þ f234579gf16g þ f123679gf45g þ f124679gf35g þ f134679gf25g
þ f234679gf15g þ f125679gf34g þ f135679gf24g þ f235679gf14g þ f145679gf23g þ f245679gf13g þ f345679gf12g�:

(A41)

This integral is also nonvanishing in only two other cases N ¼ 2 and N ¼ 6. The (conjugated) rotational wave function of
the antidecuplet (A29) is symmetric with respect to three flavor indices h1, h2, h3. The projection onto the 7Q state is thus
reduced to
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Z
dRRf1j1R

f2
j2
R
f3
j3
ðRf4j4R

yj5
f5

ÞðRyf6
j6
Ryj7
f7

ÞA�fh1h2h3g
k ðRÞ

¼ 1

25920
f½�f1f5f72346gð5�

j5
j1
�j7k � �j7j1�

j5
k Þ þ �f1f7f52346gð5�

j7
j1
�
j5
k � �

j5
j1
�j7k Þ� þ ½�f1f5f72436gð5�

j5
j1
�j7k � �j7j1�

j5
k Þ

þ �f1f7f52436gð5�
j7
j1
�j5k � �j5j1�

j7
k Þ� þ ½�f1f5f72634gð5�

j5
j1
�j7k � �j7j1�

j5
k Þ þ �f1f7f52634gð5�

j7
j1
�j5k � �j5j1�

j7
k Þ�

þ ½�f2f5f71346gð5�
j5
j2
�j7k � �j7j2�

j5
k Þ þ �f2f7f51346gð5�

j7
j2
�
j5
k � �

j5
j2
�j7k Þ� þ ½�f2f5f71436gð5�

j5
j2
�j7k � �j7j2�

j5
k Þ

þ �f2f7f51436gð5�
j7
j2
�j5k � �j5j2�

j7
k Þ� þ ½�f2f5f71634gð5�

j5
j2
�j7k � �j7j2�

j5
k Þ þ �f2f7f51634gð5�

j7
j2
�j5k � �j5j2�

j7
k Þ�

þ ½�f3f5f71246gð5�
j5
j3
�j7k � �j7j3�

j5
k Þ þ �f3f7f51246gð5�

j7
j3
�j5k � �j5j3�

j7
k Þ� þ ½�f3f5f71426gð5�

j5
j3
�j7k � �j7j3�

j5
k Þ

þ �
f3
f7
f51426gð5�j7j3�

j5
k � �

j5
j3
�j7k Þ� þ ½�f3f5f71624gð5�

j5
j3
�j7k � �j7j3�

j5
k Þ þ �

f3
f7
f51624gð5�j7j3�

j5
k � �

j5
j3
�j7k Þ�

þ ½�f4f5f71236gð5�
j5
j4
�j7k � �j7j4�

j5
k Þ þ �f4f7f51236gð5�

j7
j4
�j5k � �j5j4�

j7
k Þ� þ ½�f4f5f71326gð5�

j5
j4
�j7k � �j7j4�

j5
k Þ

þ �f4f7f51326gð5�
j7
j4
�j5k � �j5j4�

j7
k Þ� þ ½�f4f5f71623gð5�

j5
j4
�j7k � �j7j4�

j5
k Þ þ �f4f7f51623gð5�

j7
j4
�j5k � �j5j4�

j7
k Þ�

þ ½�f6f5f71234gð5�
j5
j6
�j7k � �j7j6�

j5
k Þ þ �

f6
f7
f51234gð5�j7j6�

j5
k � �

j5
j6
�j7k Þ� þ ½�f6f5f71324gð5�

j5
j6
�j7k � �j7j6�

j5
k Þ

þ �f6f7f51324gð5�
j7
j6
�j5k � �j5j6�

j7
k Þ� þ ½�f6f5f71423gð5�

j5
j6
�j7k � �j7j6�

j5
k Þ þ �f6f7f51423gð5�

j7
j6
�j5k � �j5j6�

j7
k Þ�g: (A42)
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