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In this paper we explore the effect of nonunitary neutrino mixing on neutrino oscillation probabilities

both in vacuum and matter. In particular, we consider the �� ! �� channel and, using a neutrino factory

as the source for ��’s, discuss the constraints that can be obtained on the moduli and phases of the

parameters characterizing the violation of unitarity. We point out how the new CP violation phases present

in the case where the nonunitary mixings give rise to spurious ‘‘degenerate’’ solutions in the parameter

space. We also discuss how the true solutions can be extricated by combining measurements at several

baselines.

DOI: 10.1103/PhysRevD.78.033012 PACS numbers: 14.60.St, 13.15.+g, 14.60.Pq

I. INTRODUCTION

There is a phenomenal increase in our knowledge of
neutrino properties in the past few years coming from
neutrino oscillation data from solar, atmospheric, accelera-
tor and reactor neutrino experiments. For three neutrino
flavors, there are nine parameters characterizing the light
neutrino mass matrix: the three masses, three mixing an-
gles and three CP phases. Neutrino oscillation data deter-
mine the best-fit values and the 3� ranges of the mass
squared differences and mixing angles as [1]

(i) Combined analysis of solar and KamLAND reactor
neutrino data gives the best-fit values and 3�
ranges of mass and mixing parameters as �m2

21 �
m2

2 �m2
1 ¼ 7:9þ1:0

�0:8 � 10�5 eV2 and sin2�12 ¼
0:31þ0:09

�0:08. The solar data imply �m2
21 > 0.

(ii) Global analysis of atmospheric neutrino data from
SuperKamiokande and data from accelerator ex-
periments K2K and MINOS gives j �m2

31 j�
jm2

3 �m2
1j ¼ 2:5þ0:7

�0:6 � 10�3 eV2 and sin2�23 ¼
0:5þ0:38

�0:16.

(iii) The value of the third leptonic mixing angle �13 is
not yet known and at present it is bounded to be
sin2�13 < 0:05, leaving open the possibility of very
small or zero value for this.

This tremendous progress has initiated the precision era of
neutrino physics, and experiments are planned and pro-
posed to further increase the precision of the known neu-
trino parameters and to pin down the value of the mixing

angle �13 and determine the sign of �m2
31 (sign½�m2

31�).1

A nonzero value of �13 is intimately related to the pos-
sibility of observation of the CP phase in the lepton sector.
A large value of �13 would also enable one to determine the
sign½�m2

31� through observation of large matter effects for

neutrinos propagating through Earth [2–5]. If �13 is rela-
tively large, sin22�13 * 0:01, then the answers to these
questions may be obtained from superbeam [6,7] and fu-
ture atmospheric neutrino experiments [3,4,8–12]. How-
ever, if nature selects �13 to be smaller than this, then one
has to go to either�-beam or neutrino factory experiments.
The R&D for both are actively pursued [13,14]. Future
facilities also have the potential to discover new physics
[15–20].
The best-fit values of masses and mixing angles quoted

above are obtained assuming the neutrino mixing matrix
[Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix] to
be unitary. However, for models with heavy fermionic
fields, the deviation of the leptonic mixing matrix from
unitarity is a generic feature [21–23]. A typical example
is the type-I seesaw mechanism [24–30] which provides
a natural framework of generating small neutrino masses.
This requires introduction of one or more heavy right-
handed singlet neutrino field(s). Although the full mixing
matrix at the high scale is expected to be unitary in these
cases, the mixing matrix relevant for low energy phenome-
nology is not unitary as the production of the heavy parti-
cles are kinematically forbidden. However, the violation
from unitarity in the canonical type-I seesaw mechanism
is found to be very small if the mass scale of the heavy
neutrinos are of the order of the grand unified theory scale
�1016 GeV and the heavy neutrinos decouple and do not
influence the physics at low scale. However, nonminimal
seesaw models have been constructed with heavy neutrinos
of mass Oð1Þ TeV, invoking symmetry arguments to sup-
press the seesaw term [31–34]. Such models can give rise
to significant light-heavy mixing and deviation from uni-
tarity. The TeV scale seesawmodels are interesting as these
can have signatures in the LHC in the near future [35–37].
Also successful leptogenesis can be generated if the heavy
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1Usually �m2

31 > 0 and m2
3 ’ �m2

31 � m2
2 ’ �m2

21 � m2
1 is

referred to as normal hierarchy (NH), and �m2
31 < 0 and m2

2 ’j�m2
31j þ �m2

21 >m2
1 ’ j�m2

31j � m2
3 as inverted hierarchy

(IH). The three neutrinos can also be quasidegenerate with m2
3 ’

m2
2 ’ m2

1 � m2
0 � j�m2

31j in which there is no hierarchy.
However, one can still ask what the sign of �m2

31 is.
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Majorana neutrinos are quasidegenerate [38–40]. There are
also models with heavy neutral (gauge singlets) which can
give large light-heavy mixings [41–43]. In the R-parity
violating supersymmetric models, neutrinos can also mix
with neutralinos [44]. The mixing between Kaluza-Klein
modes of right-handed neutrinos in bulk space and active
neutrinos can also induce the nonunitary PMNS matrix
[45]. Since deviation from unitarity is due to the physics
at the high scale, a measurement of these at the low scale
can serve as a window to the physics at high energy. Hence
it is important to probe if the future precision neutrino
experiments can give any indication toward the nonunitary
nature of the neutrino mixing matrix. In this paper we
address this question.

The nonunitary nature of the neutrino mixing matrix due
to mixing with fields heavier thanMZ=2 can manifest itself
in tree level processes like � ! ��, Z ! ���, W ! l� or
in flavor violating rare charged lepton decays like� ! e�,
� ! ��, etc., which proceed via one-loop processes and
hence can be constrained from low energy electroweak
data [21,22,42,43,46–51]. Nonunitarity of neutrino mixing
matrices can also affect the neutrino oscillation probabil-
ities [52–58]. In this paper, we concentrate on the effect of
nonunitarity on neutrino oscillation probabilities and the
possibility of probing this in neutrino factories. We show
that the effect of nonunitarity can be more pronounced in
the appearance channel than in the survival channel. In
particular, we look into the effect of deviation from non-
unitarity in the �� � �� channel since the present con-
straint on the nonunitarity parameter in this channel is
much weaker than the constraint on the �e � �� channel.
We consider �� detectors like the OPERA [59] or ICARUS
[60] detectors for CERN to Gran Sasso �� ! ��

oscillation search program and discuss the possibility of
constraining the moduli and phases parametrizing the uni-
tarity violation. These phases characterizing the nonunitar-
ity constitute a new source for CP violation which can be
present even in the limit of �13 ! 0. We also discuss the
matter effects in the presence of nonunitarity and show that
for a nonunitary mixing matrix, matter effect can manifest
itself even in the limit of the third leptonic mixing angle
�13 ! 0 and in the one mass scale dominance limit of
�m2

21=�m
2
31 ! 0. There is some overlap of our work

with Ref. [57], in which, also, unitarity violation was con-
strained using the �� ! �� channel. However, we consider

the possibility of combining several baselines, reducing the
degeneracy of parameter space. To distinguish the nonun-
itarity signature with that from nonstandard interactions,
the combination of the baselines is useful. When two
or more observations suggest the same parameter region
for scenarios with a nonunitary lepton mixing matrix, there
can be stronger implications to determine the origin of the
signal beyond the standard oscillation scenario.

The plan of the paper is as follows. In the next section we
discuss the parametrization that we use for nonunitary

mixing matrices and present the current constraints on
unitarity violation. In Sec. III, assuming the mixing matrix
to be nonunitary, we give simplified expressions for the
oscillation probabilities in vacuum and matter. In Sec. IV
we discuss the degeneracies in the oscillation probabilities.
In Sec. V we give our numerical results on the allowed
regions of the parameter space in the model with the
nonunitary PMNS matrix. We conclude in Sec. VI.

II. NONUNITARY MIXING MATRICES AND
CURRENT CONSTRAINTS

Since nonunitarity of mixing matrices is a generic fea-
ture of theories with heavy states which mix with the light
neutrinos, we consider a picture that the mixing with one
heavy state dominates the nonunitary effect to obtain sim-
ple analytic expressions for probability. In this case the full
4� 4 mixing matrix is unitary but the 3� 3 submatrix for
light neutrinos is nonunitary. A 4� 4 unitary matrix can be
parametrized by 6 angles �12;13;14;23;24;34 and three phases

	13;24;34. If the neutrinos are Majorana in nature, then three

additional phases can be present. We parametrize the 4� 4
unitary matrix in the usual way in terms of the rotation
matrices Rij

U ¼ ~R34
~R24R14R23

~R13R12P; (1)

where the Rij represent rotations in ij generation space, for

instance:

~R34 ¼

1 0 0 0

0 1 0 0

0 0 c34 s34e
�i	34

0 0 �s34e
i	34 c34

0
BBBBB@

1
CCCCCA or

R14 ¼

c14 0 0 s14

0 1 0 0

0 0 1 0

�s14 0 0 c14

0
BBBBB@

1
CCCCCA;

(2)

with the usual notation sij ¼ sin�ij and cij ¼ cos�ij.

The symbol tilde means the mixing matrix including the
CP phase. The diagonal matrix P contains the three
Majorana phases, which we denote as 
, � and �:

P ¼ diagð1; e�i
=2; e�ið�=2�	13Þ; e�ið�=2�	34ÞÞ: (3)

Since the Majorana phases are not important for oscillation
studies, henceforth we will omit the matrix P.
Assuming the mixing of the fourth heavy state to be

small, the above equation can be expanded in terms of
small parameters �e, �� and �� characterizing the 14, 24

and 34 rotations, respectively.2 With this simplification
Eq. (1) can be expressed as

2We use cos�ij ¼ cos�ji ’ 1� �2
=2 and sin�ij ¼ � sin�ji ’
�
, where 
 is the corresponding index, e, � or �.

SRUBABATI GOSWAMI AND TOSHIHIKO OTA PHYSICAL REVIEW D 78, 033012 (2008)

033012-2



U ¼
�e

W e�i	24��
e�i	34��

Us1 Us2 Us3 1� 1
2ð�2e þ �2� þ �2�Þ

0
BBB@

1
CCCA; (4)

where W is the 3� 3 nonunitary mixing matrix. This can
be written as

W ¼

Ue1ð1� �2e=2Þ Ue2ð1� �2e=2Þ Ue3ð1� �2e=2Þ
U�1ð1� �2�=2Þ U�2ð1� �2�=2Þ U�3ð1� �2�=2Þ
�e�i	24���eUe1 �e�i	24���eUe2 �e�i	24���eUe3

U�1ð1� �2�=2Þ U�2ð1� �2�=2Þ U�3ð1� �2�=2Þ
�e�i	34�e��Ue1 �e�i	34�e��Ue2 �e�i	34�e��Ue3

�ei�����U�1 �ei�����U�2 �ei�����U�3

0
BBBBBBBB@

1
CCCCCCCCA
; (5)

where � ¼ 	24 � 	34, Usk ¼ ��eUek � ei	24��U�k �
ei	34��U�k, and the 3� 3 matrix U
i with 
 ¼ e, �, �
and i ¼ 1, 2, 3 is defined and parameterized as the usual
unitary PMNS matrix for three generations.

Bounds on the moduli of the unitarity violation pa-
rameters can come from electroweak processes and from
neutrino oscillations. The bounds obtained from present
neutrino oscillation experiments are weaker than those
obtained from electroweak decays [22]. Constraint onP3

i¼1 W
iW
�
�i comes from rare decays of charged leptons

l
 ! l�� [21,22,38,39,42,43], whereas
P

3
i¼1 jW
ij2 can be

constrained from processes like W ! l�, Z ! � ��.
Constraints on the diagonal elements of the nonunitary
matrix can also come from tests for lepton universality
[21,22,42,43]. At present there is strict constraint on light-
heavy mixing in the e�� sector coming from nonobser-
vation of the decay � ! e�. For nonunitarity induced
through heavy right-handed neutrinos the bound quoted
in Refs. [38,39] is

��������
X3
i¼1

WeiW
�
�i

��������� �e�� & 1:2� 10�4: (6)

The bound on the �� � sector is much weaker:

��������
X3
i¼1

W�iW
�
�i

��������� ���� & 2� 10�2: (7)

The �
’s are also constrained by electroweak measure-
ments individually as [36,51]

�2e < 0:012; �2� < 0:0096; �2� < 0:016: (8)

Although we parametrize our nonunitary mixing matrix as-
suming one heavy state to dominate for the sake of sim-
plicity, it is possible to generalize this discussion to more
complicated mixing structures between the three light and
more than one heavy states. In this case the entries appear-
ing in the fourth row and column of the matrix U appear-
ing in Eq. (4) will be replaced by matrices [61]. However,
the main part of our discussion will not change. We will

touch on this point at the beginning of Sec. III A, showing
the general expression of the oscillation probability.

III. CALCULATION OF
OSCILLATION PROBABILITIES

A. Oscillation probability in vacuum

The most general expression of survival/oscillation
probability for �
 ! �� in vacuum without assuming uni-

tarity of mixing matrices is [53]

P�
!��
¼ 1

N
N�

�
���������

Xlight
i¼1

W�iW
�

i

��������
2�4

Xlight
i<j

Rij

�sin

2
ðm2

j �m2
i ÞL

4E

� 2
Xlight
i<j

Iij
� sin
ðm2

j �m2
i ÞL

2E

�
; (9)

where N
 ¼ Plight
i¼1 jW
ij2, Rij


� ¼ Re½W�iW
�

iW

�
�jW
j�,

Iij
� ¼ Im½W�iW
�

iW

�
�jW
j�, and the sum of the mass ei-

genstate index is taken over the states concerned with the
neutrino propagation (which is mentioned as ‘‘light’’ here).
Although we consider a 4� 4 mixing matrix (for the three
light mass eigenstates and one heavy one) in the previous
section and in the rest of the paper, the above expression for
probability can be applied to the more general case where
W is the part of the larger unitary matrix rather than 4� 4.
If we concentrate on baselines and energies such that

the one mass scale dominance approximation can be em-
ployed, then the terms containing �m2

21L=ð4EÞ can be
neglected and the expression simplifies to

P�
!��
¼ 1

N
N�

���������
X3
i¼1

W�iW
�

i

��������
2�4½R13


�

þ R23

��sin2

�m2
31L

4E
� 2½I13
� þ I23
��

� sin
�m2

31L

2E

�
: (10)
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In the standard oscillation framework, the last term does
not exist. This has a different energy and baseline depen-
dence from the standard oscillation term shown as the sec-
ond term. This can be a characteristic signature of new
physics in oscillation.

Now we simplify our discussion to the model with one
heavy state. As mentioned in the previous section, there is
already strong constraint on the combination of the pa-
rameters �e��. Therefore we assume �e ¼ 0 throughout

this article. With this assumption, the deviation of unitarity
can occur in the �� ! ��, �� ! �� and �� ! �� chan-

nel.3 In the limit of �13 ! 0 and �m2
21=�m

2
31 ! 0, the

survival probability P��!��
can be expressed as

P��!��
¼ 1� sin22�23sin

2 �m
2
31L

4E
þOð�3Þ: (11)

From this equation, we see that the second order of the
nonunitary effects in each term cancels out with the nor-
malization factor 1=N2

�. In the �� ! �� channel also the
nonunitary effect comes as a small correction to the stan-
dard oscillation term and the standard oscillation term
dominates. On the other hand, the oscillation probability
for �� ! �� is approximated as

P��!�� ¼ f�2��2� þOð�5Þg þ sin2�23fsin2�23
þ 2���� cos2�23 cos�þOð�3Þgsin2 �m

2
31L

4E

þ f���� sin� sin2�23 þOð�3Þg sin�m
2
31L

2E

þOðs13Þ þOð�m2
21=�m

2
31Þ: (12)

The term with sin� takes a different energy dependence
from the standard oscillation term. Therefore, we can ex-
pect that this can be distinguished from the standard oscil-
lation signals. The term ofOð�2Þ in the standard oscillation
term [sin2�m2

31L=ð4EÞ term] cannot be important because

it is always smaller enough than the standard contribu-
tion sin22�23. Assuming L ¼ 130 km, E ¼ 50 GeV, and
���� ¼ 10�2, the order of each term is calculated to be

standard oscillation term : sin2
�m2

31L

4E
� 6:8� 10�5;

(13)

sin� term: ���� sin
�m2

31L

2E
� 1:7� 10�4; (14)

zero-distance term : �2��
2
� ¼ 10�4; (15)

and the three terms in Eq. (12) are thus of the same order of
magnitude and this channel provides a better option for
probing violation of unitarity.
The noteworthy feature of the above equation is the

zero-distance term �2��
2
�. Consequently for a near detector

one gets,

Pnear
��!��

¼ �2��
2
�: (16)

It is actually very small. However, there are two positive
aspects: (i) a huge number of neutrinos comes into the near
detector and (ii) the background for this process, i.e., the
standard oscillation events, is highly suppressed.
We have not shown the �13 and �m2

21 dependent terms
explicitly in the analytic expressions. These can be found
in Ref. [62]. We note that the presence of these terms does
not change our discussion. The terms characterizing the
nonunitary effect take a quite different energy dependence
from the terms containing �13 and �m2

21. The latter terms
are more suppressed in the high energy limit with which we
deal in this study. Nevertheless in the numerical calcula-
tions we have included nonzero values of �13 and �m2

21.

B. Oscillation probability in matter

When we introduce the nonunitary PMNS matrix,
neutrinos obtain additional matter effect mediated by neu-
tral current interactions [54–56].4 For nonunitary mixing,
the �� ! �� oscillation probability in matter of constant

den-
sity in the simplifying approximation of �13 ! 0 and
�m2

21=�m
2
31 ! 0 can be expressed as

P��!��
¼ sin2�23ðsin2�23 þ 2���� cos2�23 cos�Þsin2 �m

2
31L

4E
þ ���� sin� sin2�23 sin

�m2
31L

2E

� ����

�
aNCL

2E

�
sin32�23 cos� sin

�m2
31L

2E
� 4����

�
aNC
�m2

31

�
sin2�23cos

22�23 cos�sin2
�m2

31L

4E

� 2

�
aNC
�m2

31

�
sin22�23 cos2�23ð�2� � �2�Þsin2 �m

2
31L

4E
þ

�
aNCL

4E

�
sin2�23 cos2�23ð�2� � �2�Þ sin�m

2
31L

2E

þOð�3Þ þOðs13Þ þOð�m2
21=�m

2
31Þ; (17)

where aNC is the matter effect mediated by neutral current interaction. This is consistent with the result shown in Ref. [56]

3Alternatively one can study the violation of unitarity in both the �e ! �� channel and �� ! �� channel [57].
4The nonstandard matter effect mediated by neutral current interactions was also discussed in Ref. [63].
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though the procedures used are somewhat different. Since
�23 ’ �=4, we can omit the terms which are proportional
to cos2�23, and finally, it is reduced to

P��!�� ¼ sin22�23sin
2 �m

2
31L

4E

þ ���� sin2�23 sin� sin
�m2

31L

2E

� ����

�
aNCL

2E

�
sin32�23 cos� sin

�m2
31L

2E
: (18)

This formula can nicely explain the numerical result which
will be shown in the following sections. We have an addi-
tional term in comparison with Eq. (12), which depends on
cos� differing from the vacuum term. This is the key
feature to resolve the degeneracies which will be explained
in the next section. The details of the derivation are de-
scribed in Appendix A.

IV. DEGENERACIES

From the expression Eq. (12) for the oscillation proba-
bility P��!��

in vacuum, we see that this is invariant under

the following transformations:
(1) �23 (octant) degeneracy: P��!��ð�23Þ ¼

P��!��
ð�=2� �23Þ,

(2) sign½�m2
31�-� degeneracy: P��!��

ð�m2
31>0;�Þ¼

P��!��
ð�m2

31<0;��Þ,
(3) �-ð���Þ degeneracy: P��!��

ð�Þ¼P��!��
ð��

�Þ,
(4) ð����Þ-� degeneracy: P��!��

ðð����Þ; �Þ ¼
P��!��

ðð����Þ0; �0Þ.
Here, the values of oscillation parameters which are not
explicitly shown are taken to be the same on both the sides
of the equations. These can give rise to degeneracies in the
ð����Þ-� plane even in the limit �13 ! 0. Below we dis-

cuss these degeneracies. If �13 is nonzero, then additional
degeneracies due to 	CP can also be there. But this will not
give rise to any additional degenerate solutions in the
ð����Þ-� plane. The ð����Þ-� degeneracy is similar to

the �13-	CP intrinsic degeneracy and the sign½�m2
31�-�

degeneracy is same as the sign½�m2
31�-	CP degeneracy

often discussed in the context of the golden channel
measurements [64]. However, the �-ð���Þ degeneracy
comes due to the nonunitary effect and has no analog with
degeneracies occurring due to the CP phase 	CP. Note that
in addition to the degeneracies ���� and � occur in a

correlated fashion in the oscillation probability shown in
Eq. (12). The correlation is similar to that between �13 and
	CP in standard neutrino oscillation probabilities in the
sense that they are the absolute values and their phases
(for the CP-violating effect in oscillations, see, e.g.,
Ref. [64]). Hence the uncertainty in determination of one
of these parameters can affect that of the other even for the

same hierarchy. When we assume the maximal mix-
ing for �23, the �23 octant degeneracy is not present.
The expression Eq. (18) breaks some of the degenera-

cies. Because of the presence of the cos� term, induced by
matter effect, sign½�m2

31�-� and �-ð���Þ degeneracies
can be resolved if we can see this term. To do so, we have
to go to the long baseline because the term is simply
proportional to the baseline length. However, in the long
baseline region, the standard oscillation term can be order
one, and the tiny nonunitary effect could be easily absorbed
by the standard oscillation term. The significance of the
nonunitary matter effect should be checked numerically.
The ð����Þ-� correlation is present in the oscillation

probability in matter as well.
We can illustrate the occurrence of degeneracies due to

the invariances listed above by using the equiprobability
plots [65]. Here, the standard oscillation parameters are
fixed as

sin2�12 ¼ 0:31; sin22�13 ¼ 10�2; 	CP ¼ 0;

j�m2
31j ¼ 2:5� 10�3 ½eV2�;

�m2
21 ¼ 7:9� 10�5 ½eV2�; (19)

and �23 and the sign of the atmospheric mass square
difference will be given later. For the nonunitary parame-
ters, we adopt

ð����Þtrue ¼ 10�2; �true ¼ �=4 (20)

as the reference values throughout this paper.5 The above
value of ð����Þ is allowed from the current bound and

within the reach of future collider experiments [37]. The
large light-heavy mixing is preferred from the successful
leptogenesis in the models with the right-handed neutrinos
with TeV scale masses. The equiprobability curves shown
in the following mean that the condition

P��!��
ðð����Þfit; �fitÞ ¼ P��!��

ðð����Þtrue; �trueÞ (21)

is fulfilled on each curve.
The left panel in Fig. 1 is for the �23 degeneracy. The

plot is done for E ¼ 50 GeV, and the baseline is taken to
be 130 km with 2:7 g=cm3 as the matter density although
matter effect is not relevant in this setup. In this plot we
draw equiprobability contours in the ð����Þ-� plane for

two values of �23,

sin 2�23 ¼ f0:64; 0:36g: (22)

Here we assume the NH mass spectrum. The plot shows
that the curve with sin2�23 ¼ 0:64 (thin solid) completely

5More precisely, we take �true� ¼ �true� ¼ 0:1 in our numerical
calculations. This allocation does not affect the results since the
leading contribution of the nonunitarity always appears as the
combination ����.
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coincides with that of sin2�23 ¼ 0:36 (thick dashed gray),
and these two cannot be distinguished. However, this de-
generacy does not give rise to any additional regions in the
ð����Þ-� parameter plane because this degeneracy is not

due to the nonunitary parameters; i.e., the degenerate
solutions take the same values of ð����Þ and � on both

sides of Eq. (21),

P��!��
ð�23; ð����Þ; �Þ ¼ P��!��

ð�=2� �23; ð����Þ; �Þ:
(23)

The middle panel in Fig. 1 is for the degeneracy on the
sign ½�m2

31�-�. The solid curve is similar to the curves in

the left panel. Here, the standard oscillation parameters are
again taken to be the values in Eq. (19) but sin2�23 is
assumed to be 0.5, and the NH is adopted on both sides
of Eq. (21). In the calculation of the dashed (blue) curve,
the true probability with NH is fitted by the probability
with the IH mass spectrum. Therefore, the condition which
is satisfied on the dashed curve is written as

P��!��ðð����Þfit; �fit; IHÞ ¼ P��!��
ðð����Þtrue; �true;NHÞ:

(24)

Although the dashed curve does not pass through the true
value point which is shown as the black dot in the plot, the
true oscillation probability can also be reproduced on it.
The shape of the dashed curve is the reflection of the solid
curve at the � ¼ 0 point.

The right panel in Fig. 1 illustrates the �-ð���Þ
degeneracy and the ð����Þ-� quasidegeneracy. On each

curve, the condition

P��!��
ðð����Þfit; �fit; EÞ ¼ P��!��

ðð����Þtrue; �true; EÞ
(25)

is satisfied, where the values of the standard oscillation
parameters are again taken as shown in Eq. (19), and the
maximal mixing for �23 and the NH are assumed on both
sides of Eq. (25). We plot the curves of three cases with the

following neutrino energies:

E ¼ f10; 30; 50g ½GeV�: (26)

For a fixed energy all the points on the curve give the same
probability reflecting the ð����Þ-� degeneracy. However,

if one considers other illustrative values of energies and
draws the corresponding equiprobability curves passing
through the true value point, then in a large region of
parameter space, the equiprobability curves trace different
paths. Consequently in these regions the ð����Þ-� degen-

eracy can be removed by adding the spectral information.
However, the figure also shows that the three curves cross
at two points: one is the true value point (shown as the
black dot), and the other is the fake solution which is
referred to above as the �-ð���Þ degeneracy for each
curve. We can also find that at the region between the true
solution and the fake solution, all three curves take a quite
similar path indicating that in this region the different
probabilities for different energies have very little depen-
dence on parameters. This means that it is hard to resolve
the solutions at this region even with spectral information
and hence we mention this as the quasidegeneracy. We can
draw a plot similar to Fig. 1 with IH as the true hierarchy.
In Fig. 2 we plot the equiprobability plot for a neutrino

of energy 50 GeVand L ¼ 3000 km. The true hierarchy is
assumed to be NH and the true value point is again shown
as a black dot in the figure. The dashed line shows the plot
for the IH fit, on which the true oscillation probability can
be reproduced. There are two points at which the NH and
IH probabilities cross each other. The conditions for ob-
taining these points can be worked out from the expression
Eq. (18). In general the condition for degeneracy on these
curves can be written as

P��!��
ðð����Þ; �;NHÞ ¼ P��!��

ðð����Þ0; �0; IHÞ: (27)

At the point where the NH and IH curves cross, the ����
and � are the same for both NH and IH. This gives

-

FIG. 1 (color online). Equiprobability plots for �23 degeneracy (left), for the sign of �m2
31 degeneracy ( center), and for �-ð���Þ

degeneracy and ����-� correlation (right). The neutrino energy is taken to be 50 GeV and the source-detector distance is 130 km.
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tan� ¼ aNCL

2E
: (28)

For L ¼ 3000 km and E ¼ 50 GeV, the above gives � 	
140
 and �þ 140
 as obtained in the figure.

V. NUMERICAL RESULTS: ALLOWED REGION
ON THE ð����Þ-� PLANE

In this section we present the results of our numeri-
cal analysis. We first present the allowed regions in the
ð����Þ-� plane for an OPERA-like detector at a distance

of 130 km from a neutrino factory source and describe how
the degeneracies are realized. This experimental setup has
already been examined in Ref. [57]. However, we will pay
attention to the degeneracy of the solutions. Later, we will
see that how these degenerate solutions are resolved, in-
cluding information on matter effect.

In Fig. 3, we plot the 
2 function which is defined as6


2ðð����Þfit; �fitÞ ¼ min
�fit

Xbin
i

jNið�true; ð����Þtrue; �trueÞ

� Nið�fit; ð����Þfit; �fitÞj2=Vi; (29)

whereNi is the neutrino event number in the ith energy bin,
� represents the standard oscillation parameters and Vi is
the variance which is appropriately defined to include the
statistical and systematic errors. Here we adopt the values
shown in Eq. (19) for the standard oscillation parameters.
Since it is not possible to resolve the �23 degeneracy in this
experiment (in the �� ! �� channel), we take the refer-
ence true values for �23 as the maximal. The true mass
hierarchy is assumed to be NH. The parameters for the
nonunitary nature are taken as shown in Eq. (20). The left
panel in Fig. 3 shows the allowed region in the ð����Þ-�
plane. As discussed earlier, since the probability in this
case is a function of sin22�23, the �23 octant degeneracy
does not give rise to any additional regions in the ð����Þ-�
plane and the solutions for true �23 and wrong �23 occur in
the same place. Here the two solutions (two crescent
regions) correspond to two choices for the sign of �m2

31

in the fit event. The figure also shows that for each hier-
archy there is the �-ð���Þ degeneracy. The spurious
solution corresponding to ð����Þ-� degeneracy is removed

by using the spectrum information. There is a weak nega-
tive correlation between ���� and � for each allowed

zone. We next discuss how one can eliminate the degener-
ate solutions in the ð����Þ-� plane by combining the

experiments at various baselines. The remaining degener-
acies are the sign½�m2

31�-� degeneracy, the �-ð���Þ
degeneracy and the ð����Þ-� quasidegeneracy. The right

plot of Fig. 3 shows the combined results of an OPERA-
like detector at 130 km baseline and a 0.1 kt liquid argon
(LAr) type near detector which is located at L ¼ 2 km.7

The probability at the near detector depends on ���� only.

Thus combining with this experiment helps to narrow
down the allowed region but the degeneracies still exist.
The correlation between � and ���� is now almost

vanishing.
In the left panel of Fig. 4 we plot the allowed regions for

the combination of a neutrino factory and a 100 kt LAr type
far detector which is located at L ¼ 3000 km. A compari-
son of this figure with the equiprobability plot in Fig. 2
reveals that the middle region of both the panels in Fig. 4
corresponds to the IH fit. As discussed in the previous
section the main contribution of matter effect depends on
cos� which is different from the case in vacuum.
Therefore, the �-ð���Þ degeneracy as well as
sign½�m2

31�-� degeneracy can be removed by this matter

term. This is reflected in the figure. However, the proba-
bilities for NH and IH can still be equal when the condition
Eq. (27) is satisfied. This gives rise to the middle region in
Fig. 4. There is a positive correlation in this case between
���� and � for each allowed region. The result combining

the near detector is shown as the right panel in Fig. 4. This
helps to reduce the uncertainty in the ����, and since� is a

10 3 10 2 10 1
0

180

90

360

270

NH fit

IH fit

E 50 GeV
L 3000 km

FIG. 2 (color online). Equiprobability plot for E ¼ 50 GeV
and L ¼ 3000 km. The solid line denotes the NH fit and the
dashed line denotes the IH fit. The true value of ð����Þ and � is

marked by the black dot. The standard oscillation parameters are
taken to be the values shown in Eq. (19) and �23 is assumed to be
maximal.

6In the actual implementation, we adopt the Poisson distribu-
tion, add the appropriately defined priors and marginalize also
over the systematic parameters, following GLOBES software
[66,67].

7A 0.1 kt LAr detector as a near detector has been discussed in
Ref. [68].
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variable correlated with ����, the uncertainty on � is also

reduced. Therefore, the allowed regions for each hierarchy
become much narrower as compared to the left panel. The
allowed regions now are almost parallel to the � axis. The
inclusion of the 3000 km removes the �-ð���Þ degen-
eracy of Fig. 3 for each hierarchy. In addition, in such a
long baseline experiment, it would be possible to obtain
information on the sign½�m2

31� from the other channels like

�e ! ��. Including it, we could remove the wrong hier-

archy solution and solve the all degeneracies.

VI. CONCLUSIONS

The nonunitary mixing matrix is a generic feature for
theories with mixing between neutrinos and heavy states
and provides a window to probe physics at a high scale. In
this paper we have studied the possibility of probing the
nonunitarity of the neutrino mixing matrix at neutrino
factories. We considered the �� ! �� channel and detec-

tors at a distance of 2 km, 130 km and 3000 km from the

source. We show that for the �� ! �� channel at 130 km,

there can be degenerate solutions even for �13 ¼ 0 in the
ð����Þ-� plane where � and ���� are the phase and

moduli of the unitarity violation parameter. The degenerate
solutions in the ð����Þ-� plane are due to

(i) ð�m2
31 > 0; �Þ ! ð�m2

31 < 0;��Þ
(ii) � ! ���
(iii) ð����;�Þ ! ðð����Þ0; �0Þ

For a detector at a distance of 130 km from a neutrino
factory source the last degeneracy can be removed using
spectral information and no additional disconnected solu-
tion will appear. By adding an experiment at 2 km the
correlation between � and ���� can be reduced and the

allowed ranges narrow down. For the 3000 km experiment
the matter effects are relevant and this removes the first
and second degeneracy listed above. However, although
the hierarchy degeneracy listed above gets removed, there
can still be the degeneracy where probabilities for NH and
IH give same values. If we consider only the 3000 km
experiment, then there is a greater correlation between

10 3 10 2 10 1
0

50

100

150

200

250

300

350

LAr 100 kt, L 3000 km

1σ
2σ
3σ

GLOBES

10 3 10 2 10 1
0

50

100

150

200

250

300

350

LAr 100 kt, L 3000 km LAr near

1σ
2σ
3σ

GLOBES

FIG. 4 (color online). Same as Fig. 3 but we assume a 100 kt LAr detector at L ¼ 3000 km in the left panel. In the right panel, the
same near detector as Fig. 3 is added.

10 3 10 2 10 1
0

50

100

150

200

250

300

350

OPERA like 5.0 kt, L 130 km

1σ
2σ
3σ

GLOBES

10 3 10 2 10 1
0

50

100

150

200

250

300

350

OPERA like 5.0 kt L 130 km LAr near

1σ
2σ
3σ

GLOBES

FIG. 3 (color online). Allowed regions in the ð����Þ-� plane for an OPERA-like detector at a distance of 130 km from a neutrino
factory source (left), and for the same setup but with a 0.1 kt liquid argon near detector (right).
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����-� and the allowed regions are larger as compared to

the 130 km experiment. However, addition of the 2 km
experiment to this reduces this correlation and the allowed
regions become narrower. Although we have concentrated
on the �� ! �� channel in this study, if we combine the

other channels like �e ! ��, we can obtain information on

the hierarchy and then the allowed regions further reduce
in size.
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APPENDIX A: ANALYTIC FORMULAS

In this section, we derive the expression of �� ! ��

oscillation probability in matter of constant density under
some simplifying assumptions. If the neutrino mixing ma-
trix is nonunitary, then although we can get the canonical
form of the kinetic energy in the mass basis in terms of
the flavor states, the kinetic term is not diagonal. Therefore
it is more appropriate here to consider the neutrino propa-
gation equation in the mass basis. The neutrino propaga-
tion Hamiltonian in matter can be generally represented in
the vacuum mass eigenbasis as follows:

Hij ¼ 1

2E

8>>>><
>>>>:

0
�m2

21

�m2
31

0
@

1
Aþ aCC

jWe1j2 W�
e1We2 W�

e1We2

W�
e2W1e jWe2j2 W�

e2We3

W�
e3W1e W�

e3We2 jWe3j2

0
B@

1
CA

þ aNC

P
�¼e;�;�

jW�1j2 P
�¼e;�;�

W�
�1W�2

P
�¼e;�;�

W�
�1W�3P

�¼e;�;�
W�

�2W�1

P
�¼e;�;�

jW�2j2 P
�¼e;�;�

W�
�2W�3P

�¼e;�;�
W�

�3W�1

P
�¼e;�;�

W�
�3W2�

P
�¼e;�;�

jW�3j2

0
BBBBB@

1
CCCCCA

9>>>>=
>>>>;
; (A1)

where aCC � 2
ffiffiffi
2

p
EGFne, aNC � � ffiffiffi

2
p

EGFnN ¼ �aCC=2
are the charged and neutral current potentials, respec-
tively. We obtain simplified analytic expressions for the
probability by solving the above equations in the limit
�13 ! 0, �m2

21=�m
2
31 ! 0. In this limit the propagation

Hamiltonian in the vacuum mass eigenbasis is

Hij ¼ ðH0Þij þ ðH����Þij þ ðH�2�
Þij þ ðH�2�

Þij; (A2)

where

ðH0Þij ¼ 1

2E

8><
>:

0
0

�m2
31

0
@

1
Aþ aCC

c212 c12s12 0
c12s12 s212 0
0 0 0

0
B@

1
CA
9>=
>;; (A3)

ðH����Þij ¼ �aNC
2E

����

2c23s23s
2
12c� �2c23s23c12s12c� s12ðc223e�i� � s223e

i�Þ
�2c23s23c12s12c� 2c23s23c

2
12c� �c12ðc223e�i� � s223e

i�Þ
s12ðc223ei� � s223e

�i�Þ �c12ðc223ei� � s223e
�i�Þ �2c23s23c�

0
B@

1
CA; (A4)

ðH�2�
Þij ¼ �aNC

2E
�2�

s212c
2
23 �s12c12c

2
23 �s12s23c23

�s12c12c
2
23 c212c

2
23 c12s23c23

�s12s23c23 c12s23c23 s223

0
B@

1
CA; (A5)

ðH�2�
Þij ¼ �aNC

2E
�2�

s212s
2
23 �s12c12s

2
23 s12s23c23

�s12c12s
2
23 c212s

2
23 �c12s23c23

s12s23c23 �c12s23c23 c223

0
B@

1
CA; (A6)

up to the second order of the epsilon parameters. In writing the above a part proportional to the unit matrix is omit-
ted as it contributes to the overall phase. The Hamiltonian is separated into two parts—(i) the zeroth order part H0 which
includes �m2

31 and aCC and (ii) perturbations H���� , H�2�
and H�2�

, induced by the nonunitarity. Note that the nonunitarity
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effects appear always at the second order (or higher than
that) of the �
 parameters.

Treating H���� , H�2�
and H�2�

as perturbations, the am-

plitude of the neutrino oscillation from a vacuum mass
eigenstate �i to the other vacuummass eigenstate �j can be

written as

Sji ¼ ðS0Þji þ ðS����Þji þ ðS�2�Þji;þðS�2�Þji; (A7)

where S0 is the zeroth order part, and S���� , S�2� and S�2�
correspond to the amplitudes with perturbations of H���� ,

H�2�
and H�2�

, respectively, which are calculated to be

ðS0Þji ¼ ðe�iH0LÞji; (A8)

ðS����Þji ¼ ðe�iH0LÞjkð�iÞ
Z L

0
dxðeþiH0xÞklðH����Þlm

� ðe�iH0xÞmi; (A9)

ðS�2�Þji ¼ ðe�iH0LÞjkð�iÞ
Z L

0
dxðeþiH0xÞklðH�2�

Þlm
�ðe�iH0xÞmi; (10)

ðS�2�Þji ¼ ðe�iH0LÞjkð�iÞ
Z L

0
dxðeþiH0xÞklðH�2�

Þlmðe�iH0xÞmi:

(A11)

Note that these amplitudes describe the transition between
two vacuum mass eigenstates, �i and �j, and a transition

between flavor states can be obtained by sandwiching these
by the flavor states8 which are described as [21,56,69]

j�
i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlight
j¼1 jW
jj2

q Xlight
i¼1

W�

ij�ii: (A12)

The oscillation probability between the two flavor states �


and �� is derived as

P�
!��
¼

�������������
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlight

l¼1 jW�lj2
q W�jðS0 þ S���� þ S�2� þ S�2�Þji

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlight
k¼1 jW
kj2

q ðWyÞi

�������������

2

¼ 1

N
N�

½jðS0Þ�
j2 þ 2Re½ðS�0Þ�
ðS����Þ�
�

þ 2Re½ðS�0Þ�
ðS�2�Þ�
�
þ 2Re½ðS�0Þ�
ðS�2�Þ�
�� þOð�4Þ; (A13)

up to the first order perturbations. In the following, we will
calculate each oscillation amplitude.
Diagonalizing the zeroth order Hamiltonian H0, we

obtain the mass squared eigenvalues and the mixing matrix
ðV0Þi~j which connects the vacuum mass eigenbasis �i with

the mass eigenbasis in matter �~j, and in the limit which we

adopt here, they take the following simple forms

ðH0Þ~k ¼ diagðaCC; 0;�m2
31Þ ¼ ðVy

0 Þ~kjðH0ÞjiðV0Þi~k; (A14)

where

ðV0Þi~j ¼
c12 �s12
s12 c12

1

0
@

1
A: (A15)

Therefore, the zeroth order amplitude in the vacuum mass
eigenbasis becomes

ðS0Þji ¼ ðV0Þj~k
e�iðaCCL=2EÞ

1
e�ið�m2

31
L=2EÞ

0
B@

1
CAðVy

0 Þ~ki;

(A16)

and that for the transition between two flavor states is

ðS0Þ�
 ¼ W�jðS0ÞjiðWyÞi
: (A17)

The oscillation probability at the zeroth order becomes

P0th
��!��

¼ sin2�23ðsin2�23

þ 2���� cos2�23 cos�Þsin2 �m
2
31L

4E

þ ���� sin� sin2�23 sin
�m2

31L

2E
þOð�3Þ;

(A18)

which is the same as the formula in the vacuum case.
Next, let us turn to the perturbation terms. The first one

is the amplitude of S���� . According to Eq. (A9), we can

calculate it as

8We underscore that, strictly speaking, this method has to be
followed as it is not correct to write the neutrino propagation in
the flavor basis because the flavor states do not form a complete
set for the propagation Hamiltonian.
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ðS����Þji ¼ ����

�
i
aNC
2E

�
ðV0Þj~l

0 0 0
0 �s2�23c�L A 2E

i�m2
31

ð1� e�ið�m2
31
L=2EÞÞ

0 A� 2E
i�m2

31

ð1� e�ið�m2
31
L=2EÞÞ s2�23c�Le

�ið�m2
31
L=2EÞ

0
BB@

1
CCAðVy

0 Þ~ki; (A19)

where the parameter A is defined as

A � ðc223e�i� � s223e
i�Þ; (A20)

and s2�23 � sin2�23. The amplitude for the �� ! �� tran-
sition is reduced to

ðS����Þ�� ¼ ����

�
i
aNCL

4E
s22�23c�ð1þ e�ið�m2

31
L=2EÞÞ

þ aNC
�m2

31

ðei� � s22�23c�Þð1� e�ið�m2
31
L=2EÞÞ

�

þOð�3Þ: (A21)

The contribution to the oscillation probability is calculated

to be

2Re½ðS�0Þ��ðS����Þ���

¼ �����

�
aNCL

2E

�
s32�23c� sin

�m2
31L

2E

� 4����

�
aNC
�m2

31

�
s2�23c

2
2�23c�sin

2 �m
2
31L

4E
; (A22)

up to the second order of the � parameters. The contribu-
tions from S�2� and S�2� can also be calculated in the same
way, which is

2Re½ðS�0Þ��ðS�2�Þ��� þ 2Re½ðS�0Þ��ðS�2�Þ��� ¼
�
aNCL

4E

�
s22�23c2�23ð�2� � �2�Þ sin�m

2
31L

2E
� 2

�
aNC
�m2

31

�
s22�23c2�23ð�2�

� �2�Þsin2 �m
2
31L

4E
: (A23)

From Eqs. (A18), (A22), and (A23), the oscillation probability for �� ! �� in matter can be expressed as

P��!��
¼ sin2�23ðsin2�23 þ 2���� cos2�23 cos�Þsin2 �m

2
31L

4E
þ ���� sin� sin2�23 sin

�m2
31L

2E

� ����

�
aNCL

2E

�
sin32�23 cos� sin

�m2
31L

2E
� 4����

�
aNC
�m2

31

�
sin2�23cos

22�23 cos�sin2
�m2

31L

4E

� 2

�
aNC
�m2

31

�
sin22�23 cos2�23ð�2� � �2�Þsin2 �m

2
31L

4E
þ

�
aNCL

4E

�
sin2�23 cos2�23ð�2� � �2�Þ sin�m

2
31L

2E

þOð�3Þ þOðs13Þ þOð�m2
21=�m

2
31Þ: (A24)

Since �23 ’ �=4, we can omit the terms which are propor-
tional to cos2�23, and finally, it reduces to

P��!��
¼ sin22�23sin

2 �m
2
31L

4E

þ ���� sin2�23 sin� sin
�m2

31L

2E

� ����

�
aNCL

2E

�
sin32�23 cos� sin

�m2
31L

2E
:

(A25)

APPENDIX B: EXPERIMENTAL SETUPS IN
NUMERICAL CALCULATIONS

The numerical work is performed using GLOBES soft-
ware [66,67] which is modified for our purpose. We con-
sider a neutrino factory as the source for ��’s based on

NUFACT2 from Ref. [6]. The number of the decay muon is

assumed to be 1:06� 1021 per year and four years of
running is being considered. Here, we concentrate on one
polarity of the muon (��). The stored muon is accelerated
to 50 GeV.
We perform a binned 
2 analysis with an energy window

from 1 to 50 GeVand the width of each bin as 1 GeV. The
signal event rate in the ith energy bin is calculated as

N
signal
i ¼

Z Eiþ�E=2

Ei��E=2
dE0 Z dE�

d�ðE�Þ
dE�

P��!��ðE�Þ�CCðE�Þ

� RðE�; E
0Þ�eff ; (B1)

where d�=dE� is the beam flux,�CC is the charged current
cross section, �eff is the detection efficiency and R is the
energy smearing function which is assumed to be the
Gaussian distribution,
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RðE�; E
0Þ ¼ 1

�ðE�Þ
ffiffiffiffiffiffiffi
2�

p e�ððE��E0Þ2=2�2ðE�ÞÞ; (B2)

with � � 0:15E�. E� is the neutrino beam energy and E0
is the reconstructed energy. The errors for the event nor-
malization �norm and so called tilt-error �cal are given in
the following subsections. We consider three experimen-
tal setups.

1. NuFACT beamþOPERA-like detector
with L ¼ 130 km

We consider an OPERA-like detector at a distance of
L ¼ 130 km from a neutrino factory beam, which was ex-
amined in Ref. [57]. The detector mass is assumed to be
5.0 kt. The matter profile is assumed to be constant with the
density 2:7 g=cm3 although the matter effect itself is not
significant in this setup.

For the signal detection efficiency, the errors and the
backgrounds, we follow the glb file OPERA.glb. Since this
glb file is designed for the CERN Neutrinos to Gran Sasso
beam source, the numbers should be modified for the

neutrino factory beam source. Here, we use the numbers
shown in Table I.

2. NuFACT beamþ LAr near detector

In this setup we consider a 0.1 kt liquid argon detector at
2 km away from the beam source, which has been dis-
cussed in Ref. [68]. Here we follow the glb file ICARUS.glb
but modify the background estimation (see Table II).

3. NuFACT beamþ large LAr far detector

In order to solve the �-ð���Þ degeneracy and the
ð����Þ-� quasidegeneracy, it is effective to observe the

matter effect coming from the nonunitary effect. To get the
matter effect, we need a long baseline. Here, we set L ¼
3000 km and adopt 3:3 g=cm3 as the matter den-
sity. However, in such a long baseline setup, we need a
huge detector to collect enough event rates. We assume
a 100 kt LAr detector whose rules are taken from
ICARUS.glb, which is modified in the same manner as the

LAr near detector setup.
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[45] A. Gouvêa, G. F. Giudice, A. Strumia, and K. Tobe, Nucl.
Phys. B623, 395 (2002).

[46] J. G. Korner, A. Pilaftsis, and K. Schilcher, Phys. Lett. B
300, 381 (1993).

[47] J. Bernabeu, J. G. Korner, A. Pilaftsis, and K. Schilcher,
Phys. Rev. Lett. 71, 2695 (1993).

[48] C. P. Burgess, S. Godfrey, H. Konig, D. London, and I.
Maksymyk, Phys. Rev. D 49, 6115 (1994).

[49] G. Bhattacharya, P. Kalyniak, and I. Melo, Phys. Rev. D
51, 3569 (1995).

[50] A. Ilakovac and A. Pilaftsis, Nucl. Phys. B437, 491
(1995).

[51] S. Bergmann and A. Kagan, Nucl. Phys. B538, 368
(1999).

[52] S.M. Bilenky and C. Giunti, Phys. Lett. B 300, 137
(1993).

[53] M. Czakon, J. Gluza, and M. Zralek, Acta Phys. Pol. B 32,
3735 (2001).

[54] F. del Aguila and M. Zralek, Acta Phys. Pol. B 33, 2585
(2002).

[55] B. Bekman, J. Gluza, J. Holeczek, J. Syska, and M. Zralek,
Phys. Rev. D 66, 093004 (2002).

[56] J. Holeczek, J. Kisiel, J. Syska, and M. Zralek, Eur. Phys.
J. C 52, 905 (2007).

[57] E. Fernandez-Martinez, M. B. Gavela, J. Lopez-Pavon,
and O. Yasuda, Phys. Lett. B 649, 427 (2007).

[58] Z-z Xing, Phys. Lett. B 660, 515 (2008).
[59] R. Acquafredda et al. (OPERA Collaboration), New J.

Phys. 8, 303 (2006).
[60] C. Vignoli, D. Barni, J.M. Disdier, D. Rampoldi, and G.

Passardi (ICARUS Collaboration), in Advances in Cryo-
genic Engineering, AIP Conf. Proc. No. 823 (AIP, New
York, 2006), p. 1643.

[61] A. Dighe and S. Ray, Phys. Rev. D 76, 113001 (2007).
[62] E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson,

and T. Schwetz, J. High Energy Phys. 04 (2004) 078.
[63] M. Honda, N. Okamura, and T. Takeuchi, arXiv:hep-ph/

0603268.
[64] H. Nunokawa, S. Parke, and J.W. F. Valle, Prog. Part.

Nucl. Phys. 60, 338 (2008).
[65] D. Autiero et al., Eur. Phys. J. C 33, 243 (2004).
[66] P. Huber, M. Lindner, and W. Winter, Comput. Phys.

Commun. 167, 195 (2005).
[67] P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter,

Comput. Phys. Commun. 177, 432 (2007).
[68] A. Badertscher, talk at NuFACT 06.
[69] C. Giunti, arXiv:hep-ph/0409230.

TESTING NONUNITARITY OF NEUTRINO MIXING . . . PHYSICAL REVIEW D 78, 033012 (2008)

033012-13


