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We have calculated the leading-twist next-to-leading order (NLO), i.e., Oð�sÞ, correction to the light-

cone sum rules prediction for the electromagnetic form factors of the nucleon. We have used the Ioffe

nucleon interpolation current and worked in MN ¼ 0 approximation, with MN being the mass of the

nucleon. In this approximation, only the Pauli form factor F2 receives a correction and the calculated

correction is quite sizable (ca. 60%). The numerical results for the proton form factors show the improved

agreement with the experimental data. We also discuss the problems encountered when going away from

MN ¼ 0 approximation at NLO, as well as gauge invariance of the perturbative results. This work presents

the first step towards the NLO accuracy in the light-cone sum rules for baryon form factors.
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I. INTRODUCTION

Exclusive processes offer challenging ground for quan-
tum chromodynamics (QCD) and, especially the ones in-
volving hadron form factors, provide us with valuable
insight in the internal structure of composite particles.
The simplest probe is the photon and thus obtained elec-
tromagnetic form factors characterize hadron’s spatial
charge and current distributions.

The framework for analyzing exclusive processes at
large-momentum transfer within the context of perturba-
tive QCD (pQCD) has been developed in the late 1970s [1–
9]. It was demonstrated, to all orders in perturbation theory,
that exclusive amplitudes involving large-momentum
transfer, i.e., so-called hard-scattering amplitudes, factor-
ize into a convolution of a process-independent and per-
turbatively incalculable soft part, i.e., distribution
amplitude (one for each hadron involved in the amplitude),
with a process-dependent and perturbatively calculable
elementary hard-scattering amplitude. In the leading-twist
approximation of the standard hard-scattering approach,
the hadron is regarded as consisting only of valence Fock
states, and transverse quark momenta are neglected (col-
linear approximation) as well as quark masses. In this
picture each hard gluon exchange brings a factor of
�s=�, while higher-twist effects are suppressed by 1=Q2,
with Q2 being the characteristic large scale of the process
(i.e., in the case of electromagnetic form factors that is the
virtuality of the photon). Although this pQCD approach
undoubtedly represents an adequate and efficient tool for
analyzing exclusive processes at very large-momentum
transfer, its applicability at experimentally accessible mo-
mentum transfers has been long debated and attracted
much attention. Even in a moderate energy region (a few
GeV) soft contributions (resulting from the competing, so-
called Feynman mechanism) can still be substantial,
although the estimation of their size is model dependent.

Recently, the concept of generalized parton distributions
(GPDs) [10–12] has been introduced to describe the soft
part in various exclusive processes (such as deeply virtual
Compton scattering, deeply virtual electroproduction of
mesons, . . .) and make a connection between inclusive
and exclusive processes and corresponding characteristic
quantities such as parton distribution functions (PDFs) and
form factors. Although more general, that approach (for
details, see reviews [13,14]) is basically similar to the
previously described pure pQCD approach, only at, for
example, leading twist the hard-scattering part does not
involve all Fock state partons but instead one uses the so-
called ‘‘hand-bag’’ picture.
The QCD sum rule approach [15,16] applied to the pion

form factor supports the conclusion that the soft contribu-
tions are dominant at moderate momentum transfers up to
Q2 � 2–3 GeV2 [17,18]. The application of the method at
higher Q2 faces the problem of an ill-behaved series in
Q2=M2

B, where M2
B is the Borel parameter. Moreover, for

nucleon form factors the QCD sum rule approach only
works in the region of small momentum transfers Q2 <
1 GeV2 [19,20]. One can find in the literature many ap-
proaches and attempts to circumvent these problems.
The light-cone sum rule (LCSR) approach [21,22],

adopted also in this work, can be regarded as a successful
technique which combines sum rule principles with the
pure perturbative QCD approach advocated earlier. The
domain of validity extends above a few GeV2. In the
LCSR approach the ‘‘soft’’ contributions to the form fac-
tors are calculated in terms of the same distribution ampli-
tudes (DAs) that enter the pQCD calculation and there is no
double counting. Hence, although LCSRs do involve a
certain model dependence, the important advantage of
this approach lies in the fact that it is fully consistent
with pQCD. In the past years it has been widely applied
to mesons; see [23,24] for reviews. Moreover, in
Refs. [25,26] the LCSR approach was introduced for the
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description of nucleon DAs and nucleon form factors, and
further analysis follows in Refs. [27–30]. The weak decay
�b ! pl�l was considered in [31] and the N�� transition
form factor was worked out in [32].

As explained in detail in, for example, Ref. [28], the
basic object of the LCSR approach to, say, nucleon form
factors, is a correlation function expressed in terms of the
matrix element of the time ordered product of the current
of interest (in our case, electromagnetic current) and a
suitable nucleon interpolation current. The matrix element
is taken not between the vacuum states but between the
vacuum and the nucleon state jNðPÞi, which represents the
second nucleon in the process. When both the virtuality of
the photon q2 ¼ �Q2 and the momentum flowing through
the nucleon interpolation current vertex P02 ¼ ðP� qÞ2
are large and negative, one can use the operator product
expansion on the light cone, i.e., one employs pQCD to
evaluate the Wilson coefficients, while the matrix elements
of the relevant composite operators correspond to the
appropriate moments of the nucleon DAs. This procedure
is quite analogous to the determination of the hard-
scattering amplitudes in the pure pQCD approach dis-
cussed above. Furthermore, in order to access the nucleon
form factors, one then makes use of the dispersion relation
in P02 and defines the nucleon form factor contribution
through the so-called interval of duality or continuum
threshold s0. The usual application of Borel transformation
further facilitates the calculation.

There are some important features of this approach to be
stressed. The leading-order (LO) contribution to the form
factor is a purely soft contribution which is represented as a
sum of terms ordered by twist1 of the operators, i.e.,
nucleon DAs. Moreover, in contrast to the pQCD hard-
scattering approach, the contributions of higher-twist DAs
are not suppressed by Q2 but by powers of P02, i.e., by
powers of the Borel parameter M2

B � 1–2 GeV2. Thus

their role is more pronounced. Furthermore, the LCSR
expansion contains terms generating also the asymptotic
pQCD contributions. For the pion form factor the hard-
scattering contributions appear at order �s, and in
Refs. [33,34] it was explicitly demonstrated that they are
correctly reproduced. For the nucleon form factors they
appear at order �2

s .
Let us now turn to the next-to-leading (NLO) contribu-

tions. It is well known that, unlike in QED, the leading-
order predictions in pQCD do not have such predictive
power, and that higher-order corrections are important.
Still, although the LO predictions within the hard-
scattering approach (as well as the GPD based approach)
have been obtained for many exclusive processes, only a
few processes have been analyzed at the NLO—see the
detailed account in, for example, Ref. [35], and addition-

ally Refs. [36–38]. Similarly, as was stressed in, for ex-
ample, [26], the LO LCSRs may not be sufficiently
accurate. The radiative gluon corrections to LCSRs were
calculated for a number of processes involving mesons,
i.e., pion form factor [33], pion transition form factor [39],
the decayB ! �e� [40,41], B to� ðK;�Þ form factor [42–
45], and B to light-vector meson ð�;!;K�; �Þ form factors
[46,47]. The radiative corrections to nucleon form factors
have not been evaluated either in the hard-scattering pic-
ture nor in the LCSR approach.
In this work we took a task of calculating the NLO

corrections to LCSRs for nucleon form factors. We follow
closely Ref. [28] and extend the formalism to NLO calcu-
lation. Even at LO the LCSR formalism for baryons is
considerably more cumbersome than for mesons. As we
shall show, at NLO this is even more pronounced. For
example, while for mesons at next-to-leading twist, i.e.,
twist-3, the use of asymptotic DAs along with the
Windzura-Wilczek approximation ensured the cancellation
of the collinear singularities without explicitly knowing
evolution kernels (see, for example, [45]), the nature of
nucleon form factor calculation, nucleon DAs and corre-
sponding asymptotic forms is quite different and does not
enable similar simple cancellations. Actually, as we shall
show, at the moment, only the approximation MN ¼ 0,
with MN being the nucleon mass, allows fully consistent
NLO calculation. Hence, in this work we calculate NLO
corrections to leading twist, that is twist-3 in the nucleon
case, in MN ¼ 0 approximation, and outline the problems
encountered when going away from this approximation.
We furthermore analyze the numerical importance of such
NLO corrections applying them to the assessment of pro-
ton form factors.
The paper is organized as follows. In Sec. II we give

necessary definitions, introduce LCSR formalism, and ex-
plain the preliminaries. The general LO formulas and de-
tailed calculation of twist-3 and twist-4 contributions to the
correlation function are presented in Sec. III. The gauge
invariance of these LO results is also discussed. The cal-
culation of the NLO corrections to the correlation function
is explained in detail in Sec. IV. Section V is devoted to
developing needed LCSRs, and numerical results are pre-
sented and discussed in Sec. VI. We summarize and con-
clude in Sec. VII. There are five appendixes devoted to
some more technical details or summary of analytical
results. In Appendix A the Feynman rules derived for the
leading-twist calculation and employed in LO and NLO
calculations are listed. The discussion of �5 ambiguity
relevant for our NLO calculation is given in Appendix B.
Appendix C is devoted to the summary of the analytical
NLO results used in numerical calculations. The imaginary
parts of selected functions needed in evaluating LCSRs are
derived in Appendix D, while the selected LO twist-3 and
twist-4 contributions and corresponding LCSRs are rean-
alyzed and listed in Appendix E.

1In this work under twist we assume light-cone and not
geometric twist.
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II. DEFINITIONS AND PRELIMINARIES

A. Nucleon electromagnetic form factors

The nucleon electromagnetic form factors are defined
through the matrix element of the electromagnetic current
by

hNðP0Þjjem� ð0ÞjNðPÞi ¼ �NðP0Þ
�
��F1ðQ2Þ

� i
	��q

�

2MN

F2ðQ2Þ
�
NðPÞ; (2.1)

where F1 and F2 are Dirac and Pauli electromagnetic form
factors, respectively. Here, P0 ¼ P� q is the outgoing
nucleon momentum, while P and q are incoming nucleon
and photon momenta, respectively. Furthermore, q2 ¼
�Q2 with Q2 � 0 (for the spacelike regime we are inter-
ested in, while the sign changes in the timelike region), and
for on-shell nucleons P2 ¼ P02 ¼ M2

N .
The Sachs form factors, i.e., electric and magnetic form

factors GE and GM, are related to F1 and F2 by

GEðQ2Þ ¼ F1ðQ2Þ � Q2

4M2
N

F2ðQ2Þ;

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ:
(2.2)

At Q2 ¼ 0 they are normalized to proton and neutron
electric charges and anomalous magnetic moments:

Gp
Eð0Þ ¼ Fp

1 ð0Þ ¼ 1; Gn
Eð0Þ ¼ Fn

1ð0Þ ¼ 0; (2.3)

and

Gp
Mð0Þ ¼ �p ¼ 2:79; Fp

2 ð0Þ ¼ 
p ¼ 1:79;

Gn
Mð0Þ ¼ �n ¼ �1:91; Fn

2 ð0Þ ¼ 
n ¼ �1:91;
(2.4)

respectively.

B. Correlation function

Correlation function, the basic object used in the LCSR
approach (see Fig. 1 for a schematic representation), is
defined by

T�ðP; qÞ ¼ i
Z

d4xeiqxh0jT½�ð0Þj�ðxÞ�jNðPÞi; (2.5)

with P and q being the nucleon and photon momentum,
respectively. Here j� is the electromagnetic current

j�ðxÞ ¼ eu �uðxÞ��uðxÞ þ ed �dðxÞ��dðxÞ; (2.6)

and in this work we choose the interpolating nucleon
current of the form

�ðxÞ ¼ "abc½uaðxÞ�1u
bðxÞ��2d

cðxÞ; (2.7)

where a, b, and c are color indices. Here the generic
expression (2.7) actually corresponds to the proton current,
while the neutron current is obtained by replacing u $
�d. Specially, for the Ioffe current [48]

�1 ¼ C��; �2 ¼ �5�
�; (2.8)

with C being the charge conjugation matrix. Other choices
for �ðxÞ were discussed in, for example, Ref. [28], and the
Ioffe current was singled out as a most promising candidate
for reliable sum rules.

C. Nucleon matrix element of the three-quark operator

Nucleon distribution amplitudes refer to nucleon-to-
vacuum matrix elements of nonlocal operators built of
quark and gluon fields at lightlike separations, x2 ¼ 0.
We are interested in the three-quark matrix element

4h0j"abcua0� ða1xÞ½a1x; a0x�a0aub0� ða2xÞ½a2x; a0x�b0bdc0� ða3xÞ
� ½a3x; a0x�c0cjNðP; �Þi; (2.9)

where

½x; y� ¼ P exp

�
ig
Z 1

0
dtðx� yÞ�A�ðtx� ð1� tÞyÞ

�
(2.10)

is a gauge factor which we will suppress in the following,
while �, �, and � are Dirac indices and P2 ¼ M2

N withMN

being the mass of the nucleon, i.e., proton mass for the
three-quark matrix element considered above. The neutron
case proceeds equivalently (u $ d). Actually, in this work
all results are expressed in terms of proton quantities but
the neutron case is easy to derive from these (in the end
results, it comes back basically to the replacement eu $
ed).
For the general Lorentz decomposition we introduce a

convenient shorthand notation [49]

4h0j"abcua�ða1xÞub�ða2xÞdc�ða3xÞjNðP; �Þi
¼X

i

F ðiÞðfakg; P � xÞXðiÞ
��Y

ðiÞ
� ; (2.11)

where F ðiÞ 2 fS1;S2;P 1;P 2;V 1; . . . ;V 6;A1; . . . ;A6;

T 1; . . . ;T 8g are invariant functions of P � x, while XðiÞ
��

P

P’

q

0

x

FIG. 1 (color online). Schematic structure of the light-cone
sum rule for nucleon form factors (Ref. [28]). The corresponding
correlator function is given in (2.5), and P0 ¼ P� q.
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and YðiÞ
� are Dirac structures which can be read from

Ref. [28].

The structures YðiÞ
� contain nucleon spinor N� and we

note that

ðXðiÞÞT ¼
�
XðiÞ for F ðiÞ 2 fV j;T jg;
�XðiÞ for F ðiÞ 2 fSj;P j;Ajg: (2.12)

The functions F ðiÞ are not of a definite twist and they
satisfy

F ðiÞða1P �x;a2P �x;a3P �xÞ

¼
�
F ðiÞða2P �x;a1P �x;a3P �xÞ forF ðiÞ 2 fV j;T jg;
�F ðiÞða2P �x;a1P �x;a3P �xÞ forF ðiÞ 2 fSj;P j;Ajg:

(2.13)

Additional,Oðx2Þ terms can be added to (2.11) but will not
be explicitly considered here (see Ref. [28] instead).

1. Light-cone kinematics

For the twist classification it is convenient to go to the
infinite momentum frame and introduce a lightlike vector
z� by the condition

q � z ¼ 0; z2 ¼ 0; (2.14)

as well as the second lightlike vector

p� ¼ P� � 1

2
z�

M2
N

P � z ; p2 ¼ 0; (2.15)

so that P ! p if the nucleon mass can be neglected,MN !
0. The projector onto the directions orthogonal to p and z is
given by

g?�� ¼ g�� � 1

pz
ðp�z� þ p�z�Þ: (2.16)

In turn, a? denotes the generic component of a� orthogo-

nal to z and p, and thus the photon momentum can be
written as

q� ¼ q?� þ z�
P � q
P � z ; (2.17)

where the use has been made of p � q ¼ P � q and p � z ¼
P � z.

Assume for a moment that the nucleon moves in the
positive ez direction, then pþ and z� are the only non-
vanishing components of p and z, respectively. The infinite
momentum frame can be visualized as the limit pþ �Q !
1 with fixed P � z ¼ p � z� 1, where Q is the large scale
in the process. Expanding the matrix element in powers of
1=pþ introduces the power counting inQ. In this language,
the twist counts the suppression in powers of pþ.

Similarly, the nucleon spinor N�ðP; �Þ has to be decom-

posed in ‘‘large’’ and ‘‘small’’ components as

N�ðP; �Þ ¼ ð�þ þ��ÞN�ðP; �Þ
¼ Nþ

� ðP; �Þ þ N�
� ðP; �Þ; (2.18)

where we introduce two projection operators

�þ ¼ p6 z6
2p � z ; �� ¼ z6 p6

2p � z (2.19)

that project onto the ‘‘plus’’ and ‘‘minus’’ components of
the spinor. Using the explicit expressions forNðPÞ it is easy
to see that�þN¼Nþ� ffiffiffiffiffiffiffi

pþp
while��N¼N��1=

ffiffiffiffiffiffiffi
pþp

.

2. Twist decomposition

The twist decomposition of the nucleon-to-vacuum ma-
trix element can be written in a form

4h0j"abcua�ða1xÞub�ða2xÞdc�ða3xÞjNðP; �Þi
¼X

i

FðiÞðfakg; P � xÞWðiÞ
��V

ðiÞ
� ; (2.20)

where FðiÞ 2 fS1; S2; P1; P2; V1; . . . ; V6; A1; . . . ; A6; T1;
. . . ; T8g now represent nucleon DAs and functions of defi-
nite twist:

twist-3: V1; A1; T1;
twist-4: S1; P1; V2; V3; A2; A3; T2; T3; T7;
twist-5: S2; P2; V4; V5; A4; A5; T4; T5; T8;
twist-6: V6; A6; T6:

(2.21)

The Dirac structures WðiÞ
�� and VðiÞ

� can be read from

Ref. [28], and VðiÞ
� contain the Nþ

� or N�
� projections of

the nucleon spinor.

The functions F ðiÞ and FðiÞ are related by [28]

S1 ¼ S1 2P � xS2 ¼ S1 � S2

P 1 ¼ P1 2P � xP 2 ¼ P2 � P1

V 1 ¼ V1 2P � xV 2 ¼ V1 � V2 � V3

2V 3 ¼ V3 � � �
� � �

A1 ¼ A1 2P � xA2 ¼ �A1 þ A2 � A3

2A3 ¼ A3 � � �
� � �

T 1 ¼ T1 2P � xT 2 ¼ T1 þ T2 � 2T3

� � �

(2.22)

and each DA FðiÞ 2 Vj, Aj, Tj, Sj, and Pj can be repre-

sented as

FðiÞðfakg; P � xÞ ¼
Z

Dxe
�iP�xP

j

xjaj

FðfxigÞ; (2.23)

where the functions FðiÞðxiÞ depend on the dimensionless
variables xi, 0< xi < 1,

P
ixi ¼ 1 which correspond to the
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longitudinal momentum fractions carried by the quarks
inside the nucleon. The integration measure is defined asZ

Dx ¼
Z 1

0
dx1dx2dx3ðx1 þ x2 þ x3 � 1Þ: (2.24)

Analogously to (2.13), the functions FðiÞðfxkgÞ pose the
following symmetry properties:

FðiÞðx1; x2; x3Þ ¼
�
FðiÞðx2; x1; x3Þ for FðiÞ 2 fVj; Tjg;
�FðiÞðx2; x1; x3Þ for FðiÞ 2 fSj; Pj; Ajg:

(2.25)

According to (2.22), the functions F ðiÞ can be written in
terms of nucleon DAs FðiÞ as

F ðiÞðfakg; P � xÞ ¼ 1

ð2P � xÞn fðF
ðiÞðfakg; P � xÞÞ;

n 2 f0; 1; 2g; (2.26)

where f is a linear combination of FðiÞ. In addition, from
(2.11) and Ref. [28] one can read off the dependence of

Dirac structures XðiÞ and YðiÞ on x coordinates:

XðiÞYðiÞ � 1 or x
 or x
x�: (2.27)

Taking into account (2.26) and (2.27) the terms from (2.11)
can be classified according to

n ¼ 0 and XðiÞYðiÞ � 1: S1;P 1;V 1;V 3;A1;A3;T 1;T 3;
n ¼ 1 and XðiÞYðiÞ � x
: S2;P 2;V 2;V 4;V 5;A2;A4;A5;T 2;T 4;T 5;T 7;
n ¼ 2 and XðiÞYðiÞ � x
x�: V 6;A6;T 6;T 8:

(2.28)

After F ðiÞ functions are replaced by FðiÞ and the Fourier transform (2.23) is employed, one ends up with a corresponding
three types of integrals which in LO take the form:

1:
Z

d4x
Z d4kin

ð2�Þ4 e
iðqþkinÞ�x

Z
Due

�iP�xP
j

ujaj½FðiÞðfukgÞ � � ��;

2:
Z

d4x
Z d4kin

ð2�Þ4 e
iðqþkinÞ�x

Z
Due

�iP�xP
j

ujaj x

ð2P � xÞ ½F

ðiÞðfukgÞ � � ��;

3:
Z

d4x
Z d4kin

ð2�Þ4 e
iðqþkinÞx

Z
Due

�iP�xP
j

ujaj x
x�

ð2P � xÞ2 ½F
ðiÞðfukgÞ � � ��;

(2.29)

with kin being the momentum of the quark propagator.
Similar but slightly more complicated integrals appear at
NLO.

The first integral in (2.29), corresponding to the first case
in (2.28), simplifies trivially to

Z d4kin
ð2�Þ4

Z
Duð2�Þ4ð4Þ

�
qþ kin � P

X
j

ujaj

�

�½FðiÞðfukgÞ � � ��
¼
Z

Du½FðiÞðfukgÞ � � ��kin¼P
P
j

ujaj�q: (2.30)

It is convenient to introduce the notation

Aðu1;u2; u3Þ 	 Bðu1; u2; u3Þ
¼
Z

DuAðu1; u2; u3ÞBðu1; u2; u3Þ; (2.31)

and thus such a contribution to the correlation function
(2.5) can be expressed, both at LO and higher orders, by a
convolution

T� ¼ X
i

MðiÞ
� ðfukgÞ 	 FðiÞðfukgÞ: (2.32)

In order to evaluate the other two integrals from (2.29)
one employs

Z
d4xx
e

iðqþkin�P
P
j

ujajÞ�x

¼ �i
@

@k
in

�
ð2�Þ4ð4Þ

�
qþ kin � P

X
j

ujaj

��
;

Z
d4xx
x�e

iðqþkin�P
P
j

ujajÞ�x

¼ @

@k
in

@

@k�in

�
ð2�Þ4ð4Þ

�
qþ kin � P

X
j

ujaj

��
; (2.33)

as well as partial integration, but we leave out further
details. [Employing partial integration in the second and
third terms of (2.29) one gets

Z
Due

�iPx
P
j

ujaj

FðiÞðfukgÞ 1

ð2P � xÞ
! i

2
ðal � anÞ

Z 1

0
dul

Z ul

1
dvl

Z 1�vl

0
dum

� e�iP�xðulðal�anÞþumðam�anÞþanÞ

� FðiÞðfvl; um; 1� vl � umgÞ;

all possible l; m; n 2 f1; 2; 3g permutations for which al �
am � 0 and
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Z
Due

�iPx
P
j

ujaj

FðiÞðfukgÞ 1

ð2P � xÞ2

! � 1

4
ðal � anÞ

Z 1

0
dul

Z ul

1
dvl

Z vl

0
dwl

Z 1�wl

0
dum

� e�iP�xðulðal�anÞþumðam�anÞþanÞ

� FðiÞðfwl; um; 1� wl � umgÞ;
all possible l; m; n 2 f1; 2; 3g permutations for which al �
am � 0. Note that the surface terms that should vanish in
Borel transformation have already been neglected.]

D. Derivation of LCSR

Equating the correlation function (2.5) results in several
invariant functions that can be separated by the appropriate
projections. Lorentz structures that are most useful for
writing the LCSRs are usually those containing the maxi-
mum power of the large momentum pþ � p � z. Hence, for
the Ioffe current, we define the invariant functions A and
B by

z��þT� ¼ ðp � zÞfMNAþ q6 ?BgNþðPÞ; (2.34)

where A and B depend on the Lorentz invariants Q2 ¼
�q2 and P02 ¼ ðP� qÞ2.

1. Correlation function versus form factors

Next we relate the correlation function (2.5) to nucleon
form factors. The correlation function can be written as

T�ðP; qÞ ¼ 1

M2
N � P02

X
s

h0j�ð0ÞjNðP0; sÞi

� hNðP0; sÞjjem� ð0ÞjNðPÞi þ � � � ; (2.35)

where the leading term is the nucleon contribution and the
dots stand for higher resonances.

Inserting (2.1) and the matrix element of the Ioffe cur-
rent

h0j�ð0ÞjNðPÞi ¼ �1MNNðPÞ; (2.36)

using
P

sNðPÞ �NðPÞ ¼ P6 þMN , and taking the projection
suitable for our calculation, one obtains

�þz�T� ¼ �1

M2
N � P02 f2ðP � zÞMNF1ðQ2ÞNþðPÞ

þ ðP � zÞF2ðQ2Þq6 ?NþðPÞg þ � � � : (2.37)

Now, by comparing (2.34) and (2.37) one gets

2�1

M2
N � P02 F1ðQ2Þ þ � � � ¼ AðQ2; P02Þ;
�1

M2
N � P02 F2ðQ2Þ þ � � � ¼ BðQ2; P02Þ:

(2.38)

2. Light-cone sum rules

We can calculate A and B perturbatively in terms of
quarks and gluons.
Furthermore (see, for example, Ref. [24]) we can for-

mally write a dispersion relation2

A ðQ2; P02Þ ¼ 1

�

Z 1

0
ds

ImAðQ2; sÞ
s� P02 ;

BðQ2; P02Þ ¼ 1

�

Z 1

0
ds

ImBðQ2; sÞ
s� P02 :

(2.39)

Now, by making use of the quark-hadron duality (anal-
ogously to, for example, Ref. [50]) the effects of higher
resonances cancel between the left- and right-hand sides of
(2.38) and one ends up with the sum rules

2�1

M2
N � P02 F1ðQ2Þ ¼ 1

�

Z s0

0
ds

ImAðQ2; sÞ
s� P02 ;

�1

M2
N � P02 F2ðQ2Þ ¼ 1

�

Z s0

0
ds

ImBðQ2; sÞ
s� P02 ;

(2.40)

where s0 is a convenient mass cutoff, which in our case
corresponds to the continuum threshold taken at the Roper
resonance, s0 � ð1:5 GeVÞ2 [28], and which eliminates
contributions other than nucleon (continuum subtraction).
In practice, one can imagine performing a power expan-

sion of expression (2.40) in the variable P02. To improve the
convergence of this expansion one then employs the Borel
transformation

BX!M2
B
½FðXÞ� ¼ lim

n!1
ð�XÞn
�ðnÞ

�
dn

dXn FðXÞ
�
jXj¼nM2

B;X!1
;

(2.41)

and of particular use in further calculation is a Borel trans-
formation (see, for example, [24,51])

BX!M2
B
½1=ðx� XÞ� ¼ e�x=M2

B=M2
B: (2.42)

Hence, taking a Borel transformation of the left- and
right-hand sides of Eqs. (2.40) in variables X ¼ P02, one
ends up with the sum rules

F1ðQ2Þ ¼ 1

2�1�

Z s0

0
dseð�sþM2

NÞ=M2
B ImAðQ2; sÞ;

F2ðQ2Þ ¼ 1

�1�

Z s0

0
dseð�sþM2

NÞ=M2
B ImBðQ2; sÞ:

(2.43)

For the Borel massMB which can be viewed as a matching

2Here we use a nonsubtracted dispersion relation for which the
condition

lim
s!1

A
B

ðQ2; sÞ ¼ 0

has to be satisfied.
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scale of hadronic and partonic parts of the calculation, we,
as in Ref. [28], take M2

B ¼ 2 GeV2.
We note here that in this draft we adopt the derivation of

the sum rules based on the dispersion relations (2.39) and
Borel transformation (2.42) which then lead to (2.43). After
calculating the needed imaginary parts and performing the
necessary integrals it can be shown that this approach is
equivalent to the one employed in Ref. [28] but perhaps
more suitable for NLO calculations.

The imaginary parts of the functions of interest are listed
in Appendix D.

E. MN dependence

Because of calculational difficulties at NLO, it is con-
venient to perform an expansion in mass MN, i.e., sche-
matically, the contributions to the correlation function can

be presented by

AþMNBþ CM2
N þ � � �

aþ bM2
N

¼ A

a
þMN

B

a
þOðM2

NÞ:
(2.44)

The first term corresponds to taking MN ¼ 0, while the
first two terms correspond to taking M2

N ¼ 0 while retain-
ingMN proportional terms in the calculation. In calculating
the NLO contribution we will try to investigate these two
cases. In loop calculations additional lnðM2

NÞ terms appear,
and thus in the M2

N ¼ 0 approximation collinear
singularities.
The MN dependence of the general Lorentz decomposi-

tion of the nucleon matrix element (2.11) can be summa-
rized as

M0
N-proportional X

ðiÞYðiÞ: V 1;A1;T 1;
M1

N-proportional X
ðiÞYðiÞ: S1;P 1;V 2;V 3;A2;A3;T 2;T 3;T 4;

M2
N-proportional X

ðiÞYðiÞ: S2;P 2;V 4;V 5;A4;A5;T 5;T 6;T 7;
M3

N-proportional X
ðiÞYðiÞ: V 6;A6;T 8:

(2.45)

Obviously for MN ¼ 0 only the terms proportional to F ðiÞ 2 fV 1;A1;T 1g will contribute to T�. But for MN � 0 the
contributions proportional to F ðiÞ 2 fV 1;A1;T 1g will contain also Mn

N-proportional (n � 0) terms.

III. LO CONTRIBUTIONS

As a preparation and necessary ingredient of the NLO calculation, in this section we discuss in detail LO contributions to
correlator function T� (2.5). We present the complete twist-3 and twist-4 results and devote the last part of the section to the

analysis and discussion of gauge invariance.

A. General structure and properties of LO contributions

Using general Lorentz decomposition of the nucleon matrix element of the three-quark operator given in Eq. (2.11) and
interpolating the nucleon current of the form (2.7), one obtains the general form of the LO contribution to the correlation
function (2.5)

TLO
� ¼� 1

4

Z
d4xeiq�x

Z d4kin
ð2�Þ4 e

ikin�x
X
i

�
euF ðiÞðP � x;0;0ÞTr

�
XðiÞ�1

k6 in þmu

k2in �m2
u

��

�
�2Y

ðiÞ
�

þ euF ðiÞð0; P � x;0ÞTr
�
ðXðiÞÞT�1

k6 in þmu

k2in �m2
u

��

�
�2Y

ðiÞ
� þ edF ðiÞð0;0; P � xÞTr½ðXðiÞÞT�1��2

k6 in þmd

k2in �m2
d

��Y
ðiÞ
�

�
; (3.1)

and in the following we neglect quark masses mu ¼ md ¼
0. Taking into account the form of XðiÞ it is easy to see that
only the terms proportional toF ðiÞ 2 fV j;Ajg contribute
if the Ioffe current, i.e., �1 ¼ C�� and �2 ¼ �5�

�, is taken
for interpolating the nucleon current. Namely, the matrices
XðiÞ (see Ref. [28]) proportional to F ðiÞ 2 fV j;Ajg and
F ðiÞ 2 fSj;P j;T jg consist of odd and even numbers of �
matrices, respectively, and hence the traces from (3.1)
vanish in the latter case.

The contribution corresponding to the first case of (2.28)
takes the form

TLO
� ¼ � 1

4

X
i

Z
DuNðiÞFðiÞðfukgÞ

�
�
eu Tr

�
XðiÞ�1

u1P6 � q6
ðu1P� qÞ2 ��

�
�2Y

ðiÞ
�

þ eu Tr

�
ðXðiÞÞT�1

u2P6 � q6
ðu2P� qÞ2 ��

�
�2Y

ðiÞ
�

þ ed Tr½ðXðiÞÞT�1��2

u3P6 � q6
ðu3P� qÞ2 ��Y

ðiÞ
�

�
; (3.2)
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and using (2.32) we can write

TLO
� ¼ X

i

MLO;ðiÞðfukgÞ 	 FðiÞðfukgÞ; (3.3)

where from comparison with (3.2) the definition of

MLO;ðiÞðfukgÞ is obvious. As explained in Sec. II C 2, for
the other two cases listed in (2.28) slightly more involved
formulas appear.

For Ioffe current (2.8), there are two twist-3 contribu-

tions (FðiÞ 2 fV1; A1g) calculable by (3.2) with NðiÞ ¼ 1,
and steaming from

F ðiÞ XðiÞ
�� YðiÞ

� ;

V 1 ¼ V1 ðP6 CÞ�� ð�5NÞ�;
A1 ¼ A1 ðP6 �5CÞ�� N�:

(3.4)

Furthermore, when using the Ioffe current, there are the

two twist-4 contributions (FðiÞ 2 fV3; A3g) calculable using
(3.2) with NðiÞ ¼ 1=2, and two twist-4 contributions

(FðiÞ 2 fV2; A2g) corresponding to the more involved sec-
ond case of (2.28). These contributions stem from

F ðiÞ XðiÞ
�� YðiÞ

� ;

V 3 ¼ 1=2V3 MNð�
CÞ�� ð�
�5NÞ�;
A3 ¼ 1=2A3 MNð�
�5CÞ�� ð�
NÞ�;

V 2 ¼ 1=ð2P � xÞðV1 � V2 � V3Þ MNðP6 CÞ�� ðx6 �5NÞ�;
A2 ¼ 1=ð2P � xÞð�A1 þ A2 � A3Þ MNðP6 �5CÞ�� ðx6 NÞ�:

(3.5)

Our main interests in this work are LO and NLO con-
tributions to twist-3 contributions and the generalization to
other first case contributions. Hence, we do not discuss in
detail the calculation of second and third case LO contri-
butions from (2.28), nor higher-twist contributions, but
rather refer to [28] and references therein.

In order to simplify a higher-order calculation it is
convenient to extract the Feynman rules and perform the
calculation in momentum space. The three terms contrib-
uting to (3.1) correspond actually to three Feynman dia-
grams presented in Fig. 2.

The Feynman rules for the contributions corresponding
to the first case of (2.28) are listed in Appendix A. Using
these rules it is trivial to write down the contributions
corresponding to the LO diagrams in Fig. 2. As it should,
these contributions agree with corresponding terms in
Eq. (3.2) and

TLO
� ¼ X

i

ðTA;ðiÞ
� þ TB;ðiÞ

� þ TC;ðiÞ
� Þ: (3.6)

Taking into account (2.12) it is easy to see that

M B;ðiÞ
� ðu1;u2;u3Þ¼

�
MA;ðiÞ

� ðu2;u1;u3Þ forFðiÞ2fV1;V3g;
�MA;ðiÞ

� ðu2;u1;u3Þ forFðiÞ2fA1;A3g:
(3.7)

It is also obvious that3 MC;A1ðfukgÞ ¼ MC;A3ðfukgÞ ¼ 0.
Hence for the first case of (2.28) one can write

M LO;ðiÞðfukgÞ¼�1

4
NðiÞ

�
euTr

��
u1P6 �q6

ðu1P�qÞ2


 u2P6 �q6
ðu2P�qÞ2

�
��X

ðiÞðC��Þ
�
�5�

�YðiÞ
�

þedTr½XðiÞðC��Þ��5�
� u3P6 �q6
ðu3P�qÞ2��Y

ðiÞ
�

�
;

(3.8)

where the þ sign in the first term corresponds to FðiÞ 2
fV1; V3g and the � sign to FðiÞ 2 fA1; A3g. Finally, note
that, since we are interested in NLO calculation in which
dimensional regularization will be employed, one has to
use D ¼ 4� 2� dimensions also at LO.

B. Twist-3 results

In Table I we present the LO twist-3 contributions to
diagrams displayed in Fig. 2. The complete LO contribu-

P P-q

q

u1 P

u2 P

u3 P

A B

(1) (2)

(3)

(4)

C

FIG. 2. LO diagrams contributing to the correlation function
(2.5). On diagram B the nomenclature for the NLO diagrams is
sketched.

3This result is expected since A1 and A3 are antisymmetric in
u1 $ u2, while MC;ðiÞ [Mð5ÞC;ðiÞ] contribution is obviously
‘‘blind,’’ i.e., symmetric, to u1 $ u2 exchange since the photon
couples to the d quark (which carries the momentum fraction
u3—see Fig. 2). This property no longer holds at NLO at which
the gluon can couple to u quarks (see Fig. 3).
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tions to amplitudes MLO;ðiÞ
� are given by

M LO;ðiÞ
� ðu1; u2; u3Þ ¼ MA;ðiÞ

� ðu1; u2; u3Þ
þMB;ðiÞ

� ðu1; u2; u3Þ
þMC;ðiÞ

� ðu1; u2; u3Þ
¼ MA;ðiÞ

� ðu1; u2; u3Þ

MA;ðiÞ

� ðu2; u1; u3Þ
þMC;ðiÞ

� ðu1; u2; u3Þ; (3.9)

where the þ sign in the second line corresponds to V1

contributions and the � sign to A1 contributions. The
correlation function is given by (3.3) and taking into ac-
count the DA symmetry properties (2.25), one obtains

ðMA;ðiÞ
� ðu1; u2; u3Þ 
MA;ðiÞ

� ðu2; u1; u3ÞÞ 	 FðiÞðu1; u2; u3Þ
¼ 2MA;ðiÞ

� ðu1; u2; u3Þ 	 FðiÞðu1; u2; u3Þ; (3.10)

but it is advantageous for NLO calculation to leave full u1
and u2 dependence of the amplitude M.
Our LO as well as NLO results for T� can be presented

in terms of six invariant functions which multiply the
Lorentz structures P�MN , P� q6 , q�MN, q�q6 , ��, and

��q6 MN . Thus it is advantageous for future calculations

to present the results in a form

M X;ðiÞ
� ðfukgÞ ¼ CX;ðiÞ

P�MN
ðfukgÞP�MN þ CX;ðiÞ

P�q6 ðfukgÞP�q6
þ CX;ðiÞ

q�MN
ðfukgÞq�MN þ CX;ðiÞ

q�q6 ðfukgÞq�q6
þ CX;ðiÞ

��
ðfukgÞ�� þ CX;ðiÞ

��q6 MN
ðfukgÞ��q6 MN:

(3.11)

The corresponding LO twist-3 coefficients are given in
Table II.
Finally, we present the results for the invariant functions

A andB defined in (2.34). Multiplying T� with z��þ the

invariant functionsA andB are projected. It is easy to see
that these correspond to the invariant functions multiplying
P�MN and P�q6 , and thus

TABLE I. LO twist-3 contributions corresponding to the dia-

grams of Fig. 2. The contributions MB;ðiÞ
� can be obtained using

(3.7).

MA;V1
�

eu
Q2þ2u1P�q�u2

1
M2

N

½P�ð2u1MN � q6 Þ � q�MN

þ��ðP � q� u1M
2
NÞ�

MA;A1
�

eu
Q2þ2u1P�q�u2

1
M2

N

½P�q6 � q�MN � ��P � qþ ��q6 MN�

MC;V1
�

ed
Q2þ2u3P�q�u2

3
M2

N

½2P�q6 � 2q�MN

þ��ð�2P � qþ u3M
2
NÞ þ ��q6 MN�

MC;A1
� 0

A11 A34

A22 A12

A23 A24

A13 A14

FIG. 3. Typical NLO diagrams. The contributions of ‘‘self-
energy‘‘ diagrams A33 and A44 are equal to the contribution
of diagram A11. Diagrams Bij and Cij are similar to the ones
presented above, while the nomenclature is sketched in Fig. 2.

TABLE II. LO coefficients (3.11) corresponding to V1 and A1

DAs.

CLO;V1
P�MN

ð 2u1eu
Q2þ2u1P�q�u2

1
M2

N

þ ðu1 $ u2ÞÞ
CLO;V1
P�q6 ð �eu

Q2þ2u1P�q�u2
1
M2

N

þ ðu1 $ u2ÞÞ þ 2ed
Q2þ2u3P�q�u2

3
M2

N

CLO;V1
q�MN

ð �eu
Q2þ2u1P�q�u2

1
M2

N

þ ðu1 $ u2ÞÞ þ �2ed
Q2þ2u3P�q�u2

3
M2

N

CLO;V1
q�q6 0

CLO;V1
��

ð euðP�q�u1M
2
N Þ

Q2þ2u1P�q�u2
1
M2

N

þ ðu1 $ u2ÞÞ þ edð�2P�qþu3M
2
N Þ

Q2þ2u3P�q�u2
3
M2

N

CLO;V1
��q6 MN

ed
Q2þ2u3P�q�u2

3
M2

N

CLO;A1
P�MN

0

CLO;A1
P�q6 ð eu

Q2þ2u1P�q�u2
1
M2

N

� ðu1 $ u2ÞÞ
CLO;A1
q�MN

ð �eu
Q2þ2u1P�q�u2

1
M2

N

� ðu1 $ u2ÞÞ
CLO;A1
q�q6 0

CLO;A1
��

ð �P�qeu
Q2þ2u1P�q�u2

1
M2

N

� ðu1 $ u2ÞÞ
CLO;A1
��q6 MN

ð eu
Q2þ2u1P�q�u2

1
M2

N

� ðu1 $ u2ÞÞ
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A twist 3ðQ2; ðP� qÞ2Þ ¼ CLO;V1
P�MN

ðfukgÞ 	 V1ðfukgÞ
þ CLO;A1

P�MN
ðfukgÞ 	 A1ðfukgÞ;

(3.12)

B twist 3ðQ2; ðP� qÞ2Þ ¼ CLO;V1
P�q6 ðfukgÞ 	 V1ðfukgÞ

þ CLO;A1
P�q6 ðfukgÞ 	 A1ðfukgÞ:

(3.13)

The results presented here are in agreement with the results
from [28].

C. Twist-4 results

The twist-4 contributions corresponding to V3 and A3 are
obtained analogously to the twist-3 results discussed in the
preceding section. The LO coefficients corresponding to
(3.11) are given in Table III. Note the dependence on � ¼
ð4�DÞ=2.

Furthermore, without going into much detail, we present
also the contributions corresponding to V 2, A2—see
(3.5). We therefore introduce the shorthand notation

V123 ¼ V1 � V2 � V3; A123 ¼ �A1 þ A2 � A3:

(3.14)

Furthermore, as in [28], we use the definition

~FðulÞ�
Z ul

1
dvl

Z 1�vl

0
dumFðfvl;um;1�vl�umgÞ: (3.15)

Here F is the nucleon DA or the combination of nucleon
DAs that depends on three valence quark momentum frac-

tions, and the integration over one momentum fraction has
already been performed using ð1� vl � um � ukÞ. Note
that in this notation, which closely follows Ref. [28], ~FðulÞ
is not a simple function of ul and that the form of the
function itself depends on ul ¼ u1, u2, or u3, i.e., whether
ul corresponds to the momentum fraction of the first
u quark, second u quark, or d quark. [Hence, the shorthand
expression (3.15) encompasses three functions:

~Fðu1Þ �
Z u1

1
dv1

Z 1�v1

0
du2Fðv1; u2; 1� v1 � u2Þ

¼
Z u1

1
dv1

Z 1�v1

0
du3Fðv1; 1� v1 � u3; u3Þ;

~Fðu2Þ �
Z u2

1
dv2

Z 1�v2

0
du1Fðu1; v2; 1� u1 � v2Þ

¼
Z u2

1
dv2

Z 1�v2

0
du3Fð1� v2 � u3; v2; u3Þ;

~Fðu3Þ �
Z u3

1
dv3

Z 1�v3

0
du1Fðu1; 1� u1 � v3; v3Þ

¼
Z u3

1
dv3

Z 1�v3

0
du2Fð1� u2 � v3; u2; v3Þ:

Strictly speaking, it would be better if different names were
introduced for these three functions instead of using the
argument to determine the form of the function. But for

TABLE III. LO coefficients (3.11) corresponding to V3 and A3

DAs.

CLO;V3
P�MN

ð �ð3��Þu1eu
Q2þ2u1P�q�u2

1
M2

N

þ ðu1 $ u2ÞÞ þ �2ð1��Þu3ed
Q2þ2u3P�q�u2

3
M2

N

CLO;V3
P�q6 0

CLO;V3
q�MN

ð ð3��Þeu
Q2þ2u1P�q�u2

1
M2

N

þ ðu1 $ u2ÞÞ þ 2ð1��Þed
Q2þ2u3P�q�u2

3
M2

N

CLO;V3
q�q6 0

CLO;V3
��

ð u1M
2
Neu

Q2þ2u1P�q�u2
1
M2

N

þ ðu1 $ u2ÞÞ þ ��u3M
2
Ned

Q2þ2u3P�q�u2
3
M2

N

CLO;V3
��q6 MN

ð �eu
Q2þ2u1P�q�u2

1
M2

N

þ ðu1 $ u2ÞÞ þ �ed
Q2þ2u3P�q�u2

3
M2

N

CLO;A3
P�MN

ð u1ð1��Þeu
Q2þ2u1P�q�u2

1
M2

N

� ðu1 $ u2ÞÞ
CLO;A3
P�q6 0

CLO;A3
q�MN

ð �ð1��Þeu
Q2þ2u1P�q�u2

1
M2

N

� ðu1 $ u2ÞÞ
CLO;A3
q�q6 0

CLO;A3
��

ð �ð1��Þu1M2
Neu

Q2þ2u1P�q�u2
1
M2

N

� ðu1 $ u2ÞÞ
CLO;A3
��q6 MN

ð ð1��Þeu
Q2þ2u1P�q�u2

1
M2

N

� ðu1 $ u2ÞÞ

TABLE IV. LO coefficients analogous to (3.11) and corre-
sponding to ~V123ðuiÞ and ~A123ðuiÞ (3.14) and (3.15):R
1
0 duiC

LO;F123��� ðuiÞ ~F123ðuiÞ for ui 2 fu1; u2; u3g.
fCLO;V123

P�MN
ðuiÞg feuðð2��ÞQ2þ2ð1��Þu1P�q�ð1��ÞM2

Nu
2
1
Þ

ðQ2þ2u1P�q�u2
1
M2

N Þ2 ;

ðu1 $ u2Þ;� edð�2�Q2þ4ð1��Þu3P�qþ2ð��1Þu2
3
M2

N Þ
ðQ2þ2u3P�q�u2

3
M2

N Þ2 g
fCLO;V123

P�q6 ðuiÞg f euu1M
2
N

ðQ2þ2u1P�q�u2
1
M2

N Þ2 ; ðu1 $ u2Þ; 2edu3M
2
N

ðQ2þ2u3P�q�u2
3
M2

N Þ2g

fCLO;V123

q�MN
ðuiÞg f euð2P�q�u1M

2
N Þ

ðQ2þ2u1P�q�u2
1
M2

N Þ2 ; ðu1 $ u2Þ; edð4P�q�2u3M
2
N Þ

ðQ2þ2u3P�q�u2
3
M2

N Þ2g

fCLO;V123

q�q6 ðuiÞg f �euM
2
N

ðQ2þ2u1P�q�u2
1
M2

N Þ2
; ðu1 $ u2Þ; �2edM

2
N

ðQ2þ2u3P�q�u2
3
M2

N Þ2
g

fCLO;V123
��

ðuiÞg f �euM
2
N ðQ2þu1P�qÞ

ðQ2þ2u1P�q�u2
1
M2

N Þ2 ; ðu1 $ u2Þ; �ed�M
2
N

Q2þ2u3P�q�u2
3
M2

N

g

fCLO;V123

��q6 MN
ðuiÞg f euð�P�qþu1M

2
N Þ

ðQ2þ2u1P�q�u2
1
M2

N Þ2
; ðu1 $ u2Þ; 0g

fCLO;A123

P�MN
ðuiÞg feuð��Q2þ2ð1��Þu1P�q�ð1��Þu2

1
M2

N Þ
ðQ2þ2u1P�q�u2

1
M2

N Þ2 ;�ðu1 $ u2Þ; 0g

fCLO;A123

P�q6 ðuiÞg f �euu1M
2
N

ðQ2þ2u1P�q�u2
1
M2

N Þ2
;�ðu1 $ u2Þ; 0g

fCLO;A123

q�MN
ðuiÞg f euð�2P�qþu1M

2
N Þ

ðQ2þ2u1P�q�u2
1
M2

N Þ2 ;�ðu1 $ u2Þ; 0g

fCLO;A123

q�q6 ðuiÞg f euM
2
N

ðQ2þ2u1P�q�u2
1
M2

N Þ2
;�ðu1 $ u2Þ; 0g

fCLO;A123
��

ðuiÞg f�euM
2
N ð��Q2þð1�2�Þu1P�q�ð1��Þu2

1
M2

N Þ
ðQ2þ2u1P�q�u2

1
M2

N Þ2 ;�ðu1 $ u2Þ; 0g
fCLO;A123

��q6 MN
ðuiÞg f euðP�q�u1M

2
N Þ

ðQ2þ2u1P�q�u2
1
M2

N Þ2 ;�ðu1 $ u2Þ; 0g
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historical reasons and simplicity of the notation we adopt
this notation hoping that it will not lead to too much
confusion.] Note that ~Fðu1Þ ¼ 
 ~Fðu2Þ for Fðu1; u2; u3Þ ¼

Fðu2; u1; u3Þ, respectively.

The function ~FðuiÞ depends on only one momentum
fraction and enters the expression analogous to (2.32),
but that expression contains the integration with amplitude
MðuiÞ only over one remaining momentum fraction ui.
This property holds in LO (where the dependence on u1,
u2, and u3 is clearly separated) while in NLO the expres-
sions will be more involved. For tabulated LO contribu-
tions see Table IV. The contributions to functionsA andB
are given by (E3) and (E8).

D. Gauge invariance

Because of the presence of the nucleon interpolation
current, the condition of gauge invariance takes, for the
correlator function (2.5), the form

q�T
� ¼ Q�h0j�ð0ÞjNðPÞi; (3.16)

with Q� ¼ 1 for the proton interpolation current and full

electromagnetic current (2.6), while when one considers
eu- and ed-proportional parts of the electromagnetic cur-
rent separately Q� ¼ 2eu ¼ 4=3 and Q� ¼ ed ¼ �1=3,

respectively (in the neutron case, as usual, eu $ ed).
Furthermore for the Ioffe current we have

h0j�ð0ÞjNðPÞi ¼ �1MNNðPÞ: (3.17)

In the preceding sections we have presented the com-
plete LO twist-3 and twist-4 contributions to the correlator
function, i.e., in contrast to Ref. [28], not just the terms
corresponding to the functions of interest A and B. This
enables us to check the gauge invariance. By making use of
the results given in Tables II, III, and IVone can easily see
that for M2

N � 0 the gauge invariance does not hold, i.e.,

that (3.16) is not satisfied, for separate F ðiÞ-proportional
terms nor for separate twists.

Let us consider the expansion inMN given as outlined in
Sec. II E.

In the MN ¼ 0 approximation, taking into account
(3.17), the gauge condition (3.16) takes the simple form

q�T
� ¼ 0: (3.18)

In this approximation only twist-3 contributions propor-
tional to V1 and A1 exist. As can be easily seen from LO
results listed in Table II, these contributions are separately
gauge invariant as well as eu and ed parts separately. The
same condition applies and holds for NLO4 and higher-
order contributions.

Furthermore, we have checked the gauge invariance of
the LO results in the M2

N ¼ 0 but MN � 0 approximation

to which V1, V3, V2, A1, A3, and A2 DAs contribute. This
approximation corresponds to the first two terms in
Eq. (2.44). Using the LO results given in Tables II, III,
and IV and taking M2

N ¼ 0, one can show that

q�T
� ¼ Q��1MNNðPÞ (3.19)

is satisfied when the sum of all contributing terms is taken
into account (i.e., both twist-3 and twist-4 contributions)
and the asymptotic forms of twist-3 DAs5 are used. There
are no, at least at this order of expansion inMN , conditions
on twist-4 DAs.
Hence, gauge invariance can be satisfied order by order

in the expansion in MN (2.44) with possibly some addi-
tional conditions on the form of DAs. For the check of
higher-order terms in MN one should calculate the com-
plete LO higher-twist contributions to the correlation
function.

IV. NLO CONTRIBUTIONS

We are finally ready to address in this section the NLO
contributions to the correlator function T� (2.5). We will

present the results obtained in MN ¼ 0 approximation
[corresponding to the first term in (2.44)], discuss the
problems encountered inMN � 0 butM2

N ¼ 0 approxima-
tion [corresponding to the first two terms in (2.44)], and
outline the obstacles present in the general M2

N � 0
calculation.

A. Topological structure

Three LO diagrams displayed in Fig. 2 lead to 30 NLO
diagrams. The nomenclature we use can be deduced from
Fig. 2 (diagram B): at NLO the gluon is attached in all
possible ways. Typical NLO diagrams are presented in
Fig. 3.
The contributions of Bij diagrams one can obtain from

the contribution of Aij diagrams by u1 $ u2 exchange
analogous to (3.7). The similar relation connects diagrams
C24 and C23, as well as, C14 and C13. Taking all this into
account, there are eight more complicated diagrams to
calculate ðA12; A23; A24; A13; A14; C12; C24; C14Þ and
the rest are either proportional to LO ðX11; X33; X44;
X22; X34Þ or obtainable from the above-mentioned
symmetries.
Our calculation is performed in Feynman gauge. The

color factors were calculated using usual SUðNC ¼
3Þ-algebra relations. In the first group of diagrams where
the gluon couples to the same quark line the color factor is
CF ¼ ðN2

C � 1Þ=ð2NCÞ ¼ 4=3, while in the second group

the gluon connects two different lines of color factors equal
to ð�CBÞ ¼ �ðNC þ 1Þð2NCÞ ¼ �2=3. As mentioned in

4We will use this condition of gauge invariance to check the
NLO results and resolve the �5 ambiguity.

5If one, as natural, demands gauge invariance of eu and ed
terms separately then Vd

1 ¼ 1=3 and Au
1 ¼ 0 is enforced, while

for the sum of eu and ed terms Au
1 ¼ 0 is sufficient.
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Appendix A, since we are describing a nucleon as a color
singlet state of three quarks ("abc), the NC ¼ 3 choice is
enforced.

B. Using dimensional regularization and resolving �5

ambiguity

In the following NLO calculation we take

P2 ¼ M2
N ¼ 0 (4.1)

and consider diagrams with massless on-shell external
legs. Hence, apart from UV divergences the IR divergences
of a collinear type appear (there are no ‘‘true’’ IR diver-
gences). Both divergences are regularized using dimen-
sional regularization in

D ¼ 4� 2�

dimensions.
We introduce the abbreviations

�UVð�Þ ¼ �ð�Þ�ð1� �Þ�ð1� �Þ
�ð1� 2�Þ ð4�Þ�

¼ 1

�
� �þ lnð4�Þ þOð�Þ; (4.2a)

�IRð�Þ ¼ �ð1þ �Þ�ð��Þ�ð1� �Þ
�ð1� 2�Þ ð4�Þ�

¼ 1

��
þ �� lnð4�Þ þOð�Þ: (4.2b)

The first � function on the right-hand side of Eqs. (4.2)
originates from the loop momentum integration, while the
integration over Feynman parameters produces �s col-
lected in a fraction. Consequently, the singularity con-
tained in �ð�Þ appearing in (4.2a) is of UV origin, while
the singularity contained in �ð��Þ appearing in (4.2b) is of
IR, i.e., collinear, origin.6 From �ðzÞ�ð1� zÞ ¼ �= sin�z
one can see that to all orders in �

�UVð�Þ ¼ ��IRð�Þ: (4.3)

Nevertheless, we find it useful to keep track of the origin of
the UV and collinear singularities (for details, see also
Refs. [52,53]).

In dimensional regularization the ‘‘trivial’’ self-energy
diagrams ðX11; X33; X44Þ as well as a trivial 3-point in-
tegral (X34) vanish if one allows that UVand IR divergen-
ces cancel. However, as mentioned above, we adopt here
an approach of consistent tracking of UV and collinear
singularities, and their separate removal by renormaliza-
tion and factorization, respectively.

Additionally, when calculating the contributions to T�

corresponding to Ai distribution amplitudes we encounter

�5 ambiguity—see Appendix B for details. In these cases
the general Lorentz decomposition (2.11) and the choice of
nucleon interpolating current (2.7) lead to the appearance
of the traces with one �5 matrix. At NLO these traces
contain contracting � matrices and, as such, trace
�5 ambiguity. Moreover, after the trace operation is per-
formed one is left with one or more Levi-Cività tensors
which get contracted with additional � matrices. Hence,
the ambiguity related to the use of Chisholm identity is also
present.
We choose to use the naive-�5 scheme [54]. We could

choose to use the HV scheme [55,56] but then we would
have to know or somehow calculate the terms which re-
move ‘‘spurious’’ anomalies violating Ward identities.
Moreover we would have to use the HV scheme also for
the calculation of otherwise nonproblematic contributions
corresponding to Vi.
We remember that the choice of general decomposition

(2.11) is not unique and that using Fierz transformations
one could get the representation in which there is no trace
and as such no �5 ambiguity (no trace ambiguity and no
appearance of a Levi-Cività tensor). Hence, the intermedi-
ate appearance of the problems with �5 are caused by our
choice of the Lorentz decomposition of the nucleon matrix
element and by the choice of the interpolating current. One
can, for example, use the Lorentz decomposition of the

form XðiÞ
��Y

ðiÞ
� (see Appendix A in Ref. [25] for useful

relations) which when used with (2.7) does not lead to
the appearance of the trace. But the price to pay when
using this decomposition is much larger expressions, �
proportional terms at LO even for V1 and A1, etc.
Nevertheless, that possibility led us to the correct way to

handle contractions using Chisholm identity: ‘‘follow’’ the
fermion line (as usual, that means to go opposite the
fermion line) and always perform the contraction of the
Levi-Cività with the ‘‘last’’ � matrix (with an open index)
on the d line. The generalized recipe follows that one
should write also the traces as a part of an expression
obtained following the fermion lines—remember that the
essence of trace ambiguity is losing the cyclicity of the
trace—see Appendix B.
When calculating NLO contributions in MN ¼ 0 ap-

proximation, we have used the gauge invariance (3.16) as
a check and a help to resolve �5 ambiguity. After adopting
this simple recipe—to write all parts of the expression
following the fermion lines: opposite the d line, along
the u line (C � � �C�1 present—see Appendix A), opposite
the u line, and to perform all evaluations obeying that
order—we obtain the gauge invariant NLO results as one
should.

C. Twist-3 and MN ¼ 0

Let us first investigate the approximation in which we
neglect the nucleon mass completely and take consistently
throughout the calculation MN ¼ 0. As can be seen from

6The UV divergent integrals are finite in D< 4 dimensions,
while IR ones are finite in D> 4 dimensions. Since we regular-
ize both in D ¼ 4� 2� dimensions, �ð�Þ represents a signature
of UV divergence, and �ð��Þ of the IR one.
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(2.45), the general Lorentz decomposition of the nucleon
matrix element of the three-quark operator (2.11) has for
MN ¼ 0 only three terms: the ones proportional to V 1,
A1, and T 1. The tensor contributions vanish for our
choice of interpolating nucleon current, and we are left
with two contributions convoluted with V1 and A1:

T�jMN¼0 ¼ MV1
� ðu1; u2; u3Þ 	 V1ðu1; u2; u3Þ

þMA1
� ðu1; u2; u3Þ 	 A1ðu1; u2; u3Þ: (4.4)

As explained in, for example, Ref. [25], since V1 and A1

have different symmetry properties [see (2.25)], they can
be combined together to define a single independent twist-
3 nucleon distribution amplitude:

�3ðx1; x2; x3Þ ¼ V1ðx1; x2; x3Þ � A1ðx1; x2; x3Þ: (4.5)

Now, by taking into account that the convolution of sym-
metric and antisymmetric functions gives 0, as well as
relation (4.5) and symmetry properties (2.25), one can
write (4.4) as

T�jMN¼0 ¼ 1
2ðMV1

� ðu1; u2; u3Þ þMV1
� ðu2; u1; u3ÞÞ

	 V1ðu1; u2; u3Þ þ 1
2ðMA1

� ðu1; u2; u3Þ
�MA1

� ðu2; u1; u3ÞÞ 	 A1ðu1; u2; u3Þ
¼ 1

2ðMV1
� ðu1; u2; u3Þ þMV1

� ðu2; u1; u3Þ
�MA1

� ðu1; u2; u3Þ þMA1
� ðu1; u2; u3ÞÞ

	�3ðu1; u2; u3Þ
¼ M�

�ðu1; u2; u3Þ 	�3ðu1; u2; u3Þ: (4.6)

From (4.6) the definition of M�
� is obvious.

1. Renormalization and factorization of collinear
singularities: �3

We start here with the explanation of the renormalization
procedure for (4.6) in which T� is given in terms of

convolution of only two functions M�
�ðu1; u2; u3Þ and

�3ðu1; u2; u3Þ. We follow closely Ref. [52].
The amplitude M�

�ðu1; u2; u3Þ is of the general form

M ¼ Zcurr

�
MLO þ �s

4�
MNLO þ � � �

�
; (4.7a)

where

M LO ¼ a0 þ �a1 þOð�2Þ; (4.7b)

MNLO ¼ f�UVð�Þ½bUV0 þ �bUV1 þOð�2Þ�

þ �IRð�Þ½bIR0 þ �bIR1 þOð�2Þ�g
�
�2

Q2

�
�
; (4.7c)

and MLO and MNLO are calculated from LO and NLO
diagrams from Figs. 2 and 3, respectively.

The bare coupling constant �s can be defined in terms of
the running coupling constant �sð�2

RÞ as7

�s ¼ �sð�2
RÞ
�
1� �sð�2

RÞ
4�

�0

1

�

��
�2

R

�2

�
�½��UVð�Þ��1;

(4.8)

and to the order we are calculating this essentially means
that the bare coupling is replaced by the renormalized one
and no singularities are removed as yet.
The expansion of the amplitude M takes the form

M ¼ Zcurr

�
MLO þ �sð�2

RÞ
4�

M̂NLO þ � � �
�
; (4.9a)

where

M LO ¼ a0 þ �a1 þOð�2Þ; (4.9b)

M̂NLO ¼
�
1

�

�
bUV0 þ �bUV1 þOð�2Þ

�

þ 1

��
½bIR0 þ �bIR1 þOð�2Þ�

��
�2

R

Q2

�
�
: (4.9c)

In our case the coefficients of the 1=� poles of UVorigin,
i.e., bUV0 , are removed by renormalization of the nucleon

interpolating current (Ioffe current in this calculation). For
that purpose Zcurr has been introduced and it is of the form

Zcurr ¼ 1� �sð�2
R;1Þ

Cð1Þ
curr

�
þOð�2

sÞ; (4.10)

where �2
R;1 is a scale at which the nucleon interpolation

current is renormalized. The change of the scale of the
renormalization constant is given by

�sð�2Þ ¼
�
�2

R

�2

�
�
�sð�2

RÞ½1þOð�sÞ�: (4.11)

Hence, M takes the form

M ¼ MLO þ �sð�2
RÞ

4�
M̂NLO þ � � � ; (4.12a)

where

M LO ¼ a0 þ �a1 þOð�2Þ; (4.12b)

and

M̂NLO ¼
�
1

�

��
bUV0 � Cð1Þ

curra0

�
Q2

�2
R;1

�
�
�

þ �

�
bUV1 � Cð1Þ

curra1

�
Q2

�2
R;1

�
�
�
þOð�2Þ

�

þ 1

��
½bIR0 þ �bIR1 þOð�2Þ�

��
�2

R

Q2

�
�
: (4.12c)

7In this as in the rest of the presentation we prefer to retain all
terms in the expansion over �.
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For

bUV0 � Cð1Þ
curra0 ¼ 0 (4.13)

the 1=� poles of UVorigin vanish, and as only a signature

of their existence the logarithms Cð1Þ
curra0 lnð�2

R;1=Q
2Þ will

remain in the end result. Notice that we have shown here
that in principle the coupling constant renormalization and
the renormalization of the current can be performed at
different scales, �2

R and �2
R;1. Generally, we write the

amplitude M as an expansion in �sð�2
RÞ and independent

of �2
R. The truncation of this series in actual calculation

will introduce the dependence of the results on �2
R (fre-

quently discussed in the literature).
The remaining collinear singularities get canceled by the

renormalization constant of the nucleon distribution am-
plitude. Namely,

T�jMN¼0 ¼ M�
�ðu1; u2; u3Þ 	�3ðu1; u2; u3Þ

¼ M�
�ðu1; u2; u3Þ

	 Z�ðu1; u2; u3; x1; x2; x3;�2
FÞ

	�3ðx1; x2; x3;�2
FÞ

¼ M�
�ðx1; x2; x3;�2

FÞ 	�3ðx1; x2; x3;�2
FÞ:
(4.14)

The renormalization constant Z� is of the form

Z�ðfukg; fxkg;�2
FÞ ¼ ðu1 � x1Þðu2 � x2Þ

� �sð�2
FÞ

Vð1Þ
� ðfukg; fxkgÞ

��
þOð�2

sÞ;
(4.15)

where Vð1Þ
� is a leading term of the kernel of the evolution

equation for the twist-3 DA:

�2 @

@�2
�3ðfukg;�2Þ ¼ V�ðfukg; fxkg;�2Þ 	�3ðfxkg;�2Þ;

(4.16)

and

V�ðfukg; fxkg;�2Þ ¼ �sð�2Þ
4�

Vð1Þ
� ðfukg; fxkgÞ þOð�sÞ:

(4.17)

The kernel Vð1Þ
� was given in Ref. [7] and confirmed, for

example, by the calculation of anomalous dimensions in
Ref. [57]. Here we present it in a convenient form

Vð1Þ
� ðfukg; fxkgÞ ¼ � 3

2
CFðu1 � x1Þðu2 � x2Þ

þ CF

�
ðu3 � x3Þ

�
u1
x1

1

x1 � u1
�ðx1 � u1Þ

þ u2
x2

1

x2 � u2
�ðx2 � u2Þ

�
þ 3 $ 1

3 $ 2

 !�
þ

þ 2CB

�
ðu3 � x3Þ

�
u1
x1

�ðx1 � u1Þ

þ u2
x2

�ðx2 � u2Þ
�

h1 �h2

u1 þ u2
þ 3 $ 1

3 $ 2

 !�
;

(4.18)

where hi ¼ � �hi is a helicity of quark i, while

fFðfukg; fxkgÞgþ ¼ Fðfukg; fxkgÞ � ðu1 � x1Þðu2 � x2Þ
�
Z

DzFðfzkg; fxkgÞ: (4.19)

We stress that one should take CF ¼ 2CB ¼ 4=3.
Furthermore, in (4.18) one has to take

h1 �h2
¼ 1; h2 �h3

¼ 1; h1 �h3
¼ 0; (4.20)

i.e., the helicities of the quarks correspond to

u"ð#Þu#ð"Þd"ð#Þ; (4.21)

which is in agreement with Appendix C from Ref. [28].
For the finite amplitude M one then gets

M ðfxkg;�2
FÞ ¼

�
MLOðfxkgÞ

þ �sð�2
RÞ

4�
MNLOðfxkg;�2

F;�
2
R;1Þ þ � � �

�
;

(4.22a)

where

M LOðfxkgÞ ¼ a0 þ �a1 þOð�2Þ; (4.22b)

MNLOðfxkg;�2
F;�

2
R;1Þ

¼
�
1

�

��
bUV0 � Cð1Þ

curra0

�
Q2

�2
R;1

�
�
�

þ �

�
bUV1 � Cð1Þ

curra1

�
Q2

�2
R;1

�
�
�
þOð�2Þ

�

þ 1

��

��
bIR0 � a0 	 Vð1Þ

�
Q2

�2
F

�
�
�

þ �

�
bIR1 � a1 	 Vð1Þ

�
Q2

�2
F

�
�
�
þOð�2Þ

���
�2

R

Q2

�
�
;

(4.22c)

where �F is a (usual) factorization scale and the collinear
singularities cancel for
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bIR0 � a0 	 Vð1Þ ¼ 0: (4.23)

With all singularities canceled, we can now take the
limit � ! 0 and finally obtain

M ðfxkg;�2
FÞ ¼

�
MLOðfxkgÞ

þ �sð�2
RÞ

4�
MNLOðfxkg;�2

F;�
2
R;1Þ þ � � �

�
;

(4.24a)

with

M LOðfxkgÞ ¼ a0; (4.24b)

MNLOðfxkg;�2
F;�

2
R;1Þ ¼ ðbUV1 � Cð1Þ

curra1Þ
� ðbIR1 � a1 	 Vð1ÞÞ
þ Cð1Þ

curra0 lnð�2
R;1=Q

2Þ
� a0 	 Vð1Þ lnð�2

F=Q
2Þ: (4.24c)

For the Ioffe current

Cð1Þ
curr ¼ Cð1Þ

Ioffe ¼ 2: (4.25)

Furthermore, one can check in Table I that for our twist-3
results there are no � proportional LO contributions (in
contrast to, for example, twist-4 contributions) and a1 ¼ 0.
Taking this into account along with the conditions for
canceling UV (4.13) and collinear singularities (4.23),
simplifies the NLO result (4.24c) to

MNLOðfxkg;�2
F;�

2
R;1Þ ¼ bUV1 � bIR1 þ bUV0 lnð�2

R;1=Q
2Þ

� bIR0 lnð�2
F=Q

2Þ: (4.26)

2. Renormalization and factorization of collinear
singularities: V1 and A1

Although (4.6) and the analysis given in the preceding
section are sufficient for obtaining twist-3 results, we now
turn to the renormalization procedure for T� expressed in

terms of V1 and A1. i.e., as in (4.4):

T�jMN¼0 ¼ MV1
� ðu1; u2; u3Þ 	 V1ðu1; u2; u3Þ

þMA1
� ðu1; u2; u3Þ 	 A1ðu1; u2; u3Þ:

The crucial difference in comparison to the preceding
section is that T� is no longer expressed as just one con-

volution but rather as a sum of convolutions. As we shall
see, there is a mixing between these terms. The procedure
is similar to the one used in Ref. [58] and, although the
finite results are the same as the ones in the preceding
section, the experience that we gain in this section should
be very useful for the MN � 0 case.
It is instructive to write (4.4) in a matrix form:

T�jMN¼0 ¼ ðMV1
� ðu1; u2; u3Þ;MA1

� ðu1; u2; u3ÞÞ

	 V1ðu1; u2; u3Þ
A1ðu1; u2; u3Þ

� �
: (4.27)

Both MV1
� and MA1

� can be expanded as in (4.7) and the

UV renormalization of these expressions proceeds the
same way as explained in the previous section. One ends
up with the UV-finite expressions of the form (4.12):

MV1
� ðfukgÞ ¼ MLO;V1

� ðfukgÞ þ �sð�2
RÞ

4�
M̂NLO;V1

� ðfukgÞ
þ � � � ;

MA1
� ðfukgÞ ¼ MLO;A1

� ðfukgÞ þ �sð�2
RÞ

4�
M̂NLO;A1

� ðfukgÞ
þ � � � ; (4.28)

and the conditions (4.13) have to be satisfied, i.e.,

bUV;V10 � Cð1Þ
curraV10 ¼ 0; bUV;A10 � Cð1Þ

curraA10 ¼ 0:

(4.29)

In order to cancel remaining collinear singularities one
has to know the evolution kernels, i.e., renormalization
constants, for V1 and A1 distribution amplitudes. One can
probably derive it by additional one-loop calculation, or, as
we will do here, make use of our knowledge of V�.
Knowing the symmetry properties of V1 and A1 distribu-
tion amplitudes, we write V� as

V�ðfukg; fxkg;�2Þ ¼ VV1;V1ðfukg; fxkg;�2Þ þ VV1;A1ðfukg; fxkg;�2Þ þ VA1;V1ðfukg; fxkg;�2Þ þ VA1;A1ðfukg; fxkg;�2Þ;
(4.30a)

where
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VV1;V1ðfukg; fxkg;�2Þ ¼ 1
4ðV�ðu1; u2; u3; x1; x2; x3;�2Þ þ V�ðu1; u2; u3; x2; x1; x3;�2Þ þ V�ðu2; u1; u3; x1; x2; x3;�2Þ
þ V�ðu2; u1; u3; x2; x1; x3;�2ÞÞ;

VV1;A1ðfukg; fxkg;�2Þ ¼ 1
4ðV�ðu1; u2; u3; x1; x2; x3;�2Þ � V�ðu1; u2; u3; x2; x1; x3;�2Þ þ V�ðu2; u1; u3; x1; x2; x3;�2Þ
� V�ðu2; u1; u3; x2; x1; x3;�2ÞÞ;

VA1;V1ðfukg; fxkg;�2Þ ¼ 1
4ðV�ðu1; u2; u3; x1; x2; x3;�2Þ þ V�ðu1; u2; u3; x2; x1; x3;�2Þ � V�ðu2; u1; u3; x1; x2; x3;�2Þ
� V�ðu2; u1; u3; x2; x1; x3;�2ÞÞ;

VA1;A1ðfukg; fxkg;�2Þ ¼ 1
4ðV�ðu1; u2; u3; x1; x2; x3;�2Þ � V�ðu1; u2; u3; x2; x1; x3;�2Þ � V�ðu2; u1; u3; x1; x2; x3;�2Þ
þ V�ðu2; u1; u3; x2; x1; x3;�2ÞÞ: (4.30b)

Obviously,

VV1;V1ðfukg; fxkg;�2Þ j symmetric in u1 $ u2 and symmetric in x1 $ x2;

VV1;A1ðfukg; fxkg;�2Þ j symmetric in u1 $ u2 and antisymmetric in x1 $ x2;

VA1;V1ðfukg; fxkg;�2Þ j antisymmetric in u1 $ u2 and symmetric in x1 $ x2;

VA1;A1ðfukg; fxkg;�2Þ j antisymmetric in u1 $ u2 and antisymmetric in x1 $ x2:

(4.31)

We can now substitute (4.5) and (4.30a) in the evolution equation (4.16) and taking into account the symmetry properties
with respect to xk one gets

�2 @

@�2
½V1 � A1�ðfukg;�2Þ ¼ ½VV1;V1 þ VV1;A1 þ VA1;V1 þ VA1;A1�ðfukg; fxkg;�2Þ 	 ½V1 � A1�ðfxkg;�2Þ

¼ ½VV1;V1 þ VA1;V1�ðfukg; fxkg;�2Þ 	 V1ðfxkg;�2Þ
� ½VV1;A1 þ VA1;A1�ðfukg; fxkg;�2Þ 	 A1ðfxkg;�2Þ: (4.32)

Furthermore, the symmetry properties with respect to uk
allow us to write the evolution equation in a matrix form as

�2 @

@�2

V1

A1

 !
ðfukg;�2Þ¼ VV1;V1 �VV1;A1

�VA1;V1 VA1;A1

 !
ðfukg;fxkg;�2Þ

	 V1

A1

 !
ðfxkg;�2Þ: (4.33)

The DAs V1 and A1 obviously mix under renormaliza-
tion and we can write

V1

A1

� �
ðfukgÞ ¼ Zðfukg; fxkg;�2Þ 	 V1

A1

� �
ðfxkg;�2Þ;

(4.34)

where

Z ðfukg; fxkg;�2Þ ¼ 1� �sð�2Þ
4�

1

��
Vð1Þðfukg; fxkgÞ;

(4.35)

and

V ð1Þðfukg; fxkgÞ ¼ Vð1Þ
V1;V1 �Vð1Þ

V1;A1

�Vð1Þ
A1;V1 Vð1Þ

A1;A1

 !
ðfukg; fxkgÞ:

(4.36)

By substituting (4.34) in (4.27), we get

T�jMN¼0 ¼ ðMV1
� ;MA1

� ÞðfukgÞ 	 Zðfukg; fxkg;�2Þ

	 V1

A1

� �
ðfxkg;�2Þ

¼ ðMV1
� ;MA1

� Þðfxkg; �2Þ 	 V1

A1

� �
ðfxkg;�2Þ:

(4.37)

The condition for canceling collinear singularities (4.23)
now takes the more involved form

bIR;V10 � aV10 	 Vð1Þ
V1;V1 þ aA10 	 Vð1Þ

A1;V1 ¼ 0;

bIR;A10 þ aV10 	 Vð1Þ
V1;A1 � aA10 	 Vð1Þ

A1;A1 ¼ 0:
(4.38)

Finally, we take the � ! 0 limit and obtain

MV1
� ðfxkg;�2

FÞ ¼
�
MLO;V1

� ðfxkgÞ þ �sð�2
RÞ

4�

�MNLO;V1
� ðfxkg;�2

F;�
2
R;1Þ þ � � �

�
;

MA1
� ðfxkg;�2

FÞ ¼
�
MLO;A1

� ðfxkgÞ þ �sð�2
RÞ

4�

�MNLO;A1
� ðfxkg;�2

F;�
2
R;1Þ þ � � �

�
;

(4.39)
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with

M LO;V1
� ðfxkgÞ ¼ aV10 ; MLO;A1

� ðfxkgÞ ¼ aA10 : (4.40)

In our calculation aV11 ¼ aA11 ¼ 0 and taking this into

account along with the conditions of cancellation of UV
(4.29) and collinear singularities (4.38), one finally gets

M NLO;V1
� ðfxkg;�2

F;�
2
R;1Þ ¼ bUV;V11 � bIR;V11

þ bUV;V10 lnð�2
R;1=Q

2Þ
� bIR;V10 lnð�2

F=Q
2Þ;

MNLO;A1
� ðfxkg;�2

F;�
2
R;1Þ ¼ bUV;A11 � bIR;A11

þ bUV;A10 lnð�2
R;1=Q

2Þ
� bIR;A10 lnð�2

F=Q
2Þ;

(4.41)

and when one uses the actual values for bis one can see the
agreement with (4.26).

3. Results

The cancellation of singularities for the MN ¼ 0 case
has been checked and shown for two equivalent represen-
tations: one corresponding to�3 and the other correspond-
ing to V1 and A1 DAs. In the latter case the mixing appears.

In Appendix C we list our finite NLO results contribut-
ing to the function of interestB. The functionA cannot be
accessed in MN ¼ 0 approximation—see (2.34). For com-
pleteness sake we list both the results corresponding to V1

and A1 distribution amplitudes, as well as to�3. The latter
results are shorter and actually used in further numerical
calculation.

D. Away from MN ¼ 0 approximation

Next we consider the approximation MN � 0 while
M2

N ¼ 0, i.e., the approximation corresponding to the first
two terms of the expansion (2.44).
We have calculated the NLO contributions correspond-

ing to V1 and A1. The UV singularities get canceled as in
the previous section. In contrast, the collinear singularities
cannot be canceled considering only the contributions

corresponding to V1 and A1. For example, both CLO;V1
P�MN

and CLO;A1
P�MN

parts proportional to ed are 0, while NLO

counterparts are different from 0 and contain collinear
singularities. Obviously, mixing between V1 and A1 alone
cannot cancel these terms even if we knew the new kernels
�VV1;V1, �VV1;A1 etc., corresponding to the MN � 0 case.

Hence, it follows that the mixing with twist-4 DAs V3,
A3, and even maybe V2 and A2, should be taken into
account in this M2

N ¼ 0 but MN � 0 approximation. This
is similar to the observation from Sec. III D that the gauge
invariant results are obtained not twist by twist but order by
order inMN . The problem which we then encounter is that
we do not know these corresponding new kernels and they
play a role not only in canceling the singularities but also
changing the finite parts (a1, i.e., � proportional LO parts,
are not 0 for V3 and A3 terms).
For example, for mixing just between V1, A1, V3, and A3

we encounter the unknown kernel of the form

�VV1;V1
�VV1;A1

�VV1;V3
�VV1;A3

�VA1;V1
�VA1;A1

�VA1;V3
�VA1;A3

�VV3;V1
�VV3;A1

�VV3;V3
�VV3;A3

�VA3;V1
�VA3;A1

�VA3;V3
�VA3;A3

0
BBB@

1
CCCA: (4.42)

By substituting the conditions for cancellation of UV
and collinear singularities, for the finite NLO contributions
one gets

MNLO;V1
� ðfxkg;�2

FÞ¼bUV;V11 �bIR;V11 þbUV;V10 lnð�2
R;1=Q

2Þ�bIR;V10 lnð�2
F=Q

2ÞþðaV31 	 �Vð1Þ
V3;V1þaA31 	 �Vð1Þ

A3;V1Þ;
MNLO;A1

� ðfxkg;�2
FÞ¼bUV;A11 �bIR;A11 þbUV;A10 lnð�2

R;1=Q
2Þ�bIR;A10 lnð�2

F=Q
2ÞþðaV31 	 �Vð1Þ

V3;A1þaA31 	 �Vð1Þ
A3;A1Þ;

MNLO;V3
� ðfxkg;�2

FÞ¼bUV;V31 �bIR;V31 þbUV;V30 lnð�2
R;1=Q

2Þ�bIR;V30 lnð�2
F=Q

2ÞþðaV31 	 �Vð1Þ
V3;V3þaA31 	 �Vð1Þ

A3;V3Þ�Cð1Þ
curraV31 ;

MNLO;A3
� ðfxkg;�2

FÞ¼bUV;A31 �bIR;A31 þbUV;A30 lnð�2
R;1=Q

2Þ�bIR;A30 lnð�2
F=Q

2ÞþðaV31 	 �Vð1Þ
V3;A3þaA31 	 �Vð1Þ

A3;A3Þ�Cð1Þ
curraA31 :

(4.43)

But we do not know �Vð1Þ
V3;X and �Vð1Þ

A3;X and hence we do not
know how to calculate the finite terms

aV31 	 �Vð1Þ
V3;X þ aA31 	 �Vð1Þ

A3;X: (4.44)

1. Open problems in higher-twist calculations

If we take M2
N � 0, there are no collinear divergences

whose cancellation we should take care of. But there are

additional open problems one should solve before attack-
ing higher-order higher-twist calculations.
For example, there is an open problem in the calculation

of the NLO contributions to the second and third cases
defined in (2.28). Let us for a moment go back to coor-
dinate space. When calculating NLO contributions one
encounters the matrix elements of the form

h0j"abcua�ðxÞub�ðz2Þdc�ð0ÞjNðP; �Þi; (4.45)
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and

h0j"abcua�ðxÞub�ðz2Þdc�ðz1ÞjNðP; �Þi; (4.46)

where z1 and z2 come from the gluon coordinates. In
contrast at LO only matrix elements of the form

h0j"abcua�ðxÞub�ð0Þdc�ð0ÞjNðP; �Þi (4.47)

appear. For the first case of (2.28) these additional coor-
dinates, not apparently proportional either to the
x coordinate (photon coordinate) nor to 0, do not pose a
problem but in the second (and third) case it does not seem
to be clear how to identify the ak coefficients and x in
(2.11).

These and similar problems are postponed for future
investigations.

V. LIGHT-CONE SUM RULES

A. LCSR for MN ¼ 0 case

In the MN ¼ 0 approximation we cannot assess the
function A and thus the form factor F1. The form factor
F2ðQ2Þ is given in terms of BðQ2; P02Þ by the sum rule
(2.43)

F2ðQ2Þ ¼ 1

�1�

Z s0

0
dse�s=M2

B ImBMN¼0ðQ2; sÞ: (5.1)

The function B calculated for the MN ¼ 0 case and to
NLO is given in Appendix C. Note that the convenient
dimensionless quantity

W ¼ P02 þQ2

Q2
(5.2)

has been introduced and that the function B has been
expressed through this new variable, BðQ2; P02Þ !
B0ðQ2; WÞ. For simplicity sake, the same name for the
function B has been retained. Thus in Eq. (5.1) the change
of variables s ! w ¼ ðsþQ2Þ=Q2 has to be performed.

Furthermore, note that i� terms (�> 0 and � � )
originating from the Feynman rules for quark and gluon
propagators were explicitly kept in resulting logarithm
terms throughout perturbative calculation. The analogous
terms in denominators can be easily recovered resulting in
W ! W þ i�. Hence, as it turns out, in our calculation the
sign in front of W and i� is the same both in the denom-
inators and the logarithm terms.8 The imaginary part can
now be determined using the expressions listed in
Appendix D.
Let us see this in more detail. As can be seen from

Appendix C, the function BMN¼0 can be expressed in a

form of convolution

BMN¼0ðQ2; WÞ ¼ 1

Q2

X
i

TB;FðiÞ;MN¼0ðfxkg; W;�2
F=Q

2Þ

	 FðiÞðfxkg;�2
FÞ (5.3)

with FðiÞ denoting, as before, nucleon DAs [FðiÞ 2
fV1; A1g, or FðiÞ ¼ �3 when the sum has only one term—
see Eqs. (C1) and (C2)].
The imaginary parts of TB;FðiÞ;MN¼0ðfxkg; W;�2

F=Q
2Þ de-

termine the imaginary parts of BMN¼0ðQ2; WÞ.
Furthermore, the hard-scattering part
TB;FðiÞ;MN¼0ðfxkg; W;�2

F=Q
2Þ can be conveniently ex-

pressed as a sum of the terms of the general form

gðfxkg; WÞfðfxkg;�2
F=Q

2; �2
R;1=Q

2; �2
RÞ; (5.4)

where only g functions possess poles leading to imaginary
parts. The imaginary part is then determined from the
imaginary part of the function gðfxkg; WÞ and, when from
four integrations present in (5.1) two are performed, one
obtains the following rule for separate terms contributing
to TB and leading to separate terms contributing to F2:

F2ðQ2Þ: 1

�1�

Z
Dx

Z ðs0þQ2Þ=Q2

1
dwe�ðw�1ÞQ2=M2

B Im½gðfxkg; wÞ� fðfxkg;�2
F=Q

2; �2
R;1=Q

2; �2
RÞFðiÞðfxkg;�2

FÞ

! 1

�1

Z 1

Q2=ðQ2þs0Þ
dxi

Z 1�xi

0
dxj e

�ð1�xiÞQ2=ðxiM2
BÞ ~gðfxi; xj; 1� xi � xjg; Q2; s0;M

2
BÞ

� fðfxi; xj; 1� xi � xjg;�2
F=Q

2; �2
R;1=Q

2; �2
RÞFðiÞðfxi; xj; 1� xi � xjg;�2

FÞ: (5.5)

The selected g functions [see Eq. (C8)] that appear in our
LO and NLO calculations of B are listed in Table V along
with corresponding ~g functions which contribute to F2 as
shown in (5.5). This table along with Eq. (5.5) thus pro-
vides us with necessary substitution rules for the calcula-
tion of F2 from perturbatively calculated results for B
summarized in Appendix C.

The resulting nucleon form factor F2 calculated to NLO
takes the form

8In practice, one often suppresses i� terms during calculation
and recovers them when the analytical continuation is needed.
This approach can in some cases (when more complicated
functions appear) be nontrivial and can even lead to mistakes.
Actually, it is much simpler just to keep track of i� terms from
Feynman diagrams to resulting higher-order expressions. In our
work we adopt that approach.
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F2ðQ2; s0;M
2
B;�

2
F;�

2
R;�

2
R;1Þ

¼ FLO
2 ðQ2; s0;M

2
B;�

2
FÞ

þ FNLO
2 ðQ2; s0;M

2
B;�

2
F;�

2
R;�

2
R;1Þ; (5.6)

where

FNLO
2 ðQ2; s0;M

2
B;�

2
F;�

2
R;�

2
R;1Þ

¼ �sð�2
RÞ

�

�
FNLO;fin
2 ðQ2; s0;M

2
B;�

2
FÞ

þ FNLO;UV
2 ðQ2; s0;M

2
B;�

2
FÞ ln

�2
R;1

Q2

þ FNLO;IR
2 ðQ2; s0;M

2
B;�

2
FÞ ln

�2
F

Q2

�
; (5.7)

where, as defined before, Q2 is the virtuality of the photon
probe, �2

R is the coupling constant renormalization scale,
�2

R;1 is the renormalization scale at which the renormal-

ization of the nucleon interpolation current has been per-
formed (often taken the same as �2

R but in principle an
independent scale), �2

F is the factorization scale at which
the collinear singularities corresponding to the nucleon DA
factorize, s0 is the scale corresponding to the continuum
subtraction in LCSRs, and M2

B is a Borel mass, which can
be regarded as a matching scale of hadronic and partonic
parts of the calculation.

B. Nucleon DAs

We refer to Appendix B of Ref. [28] for a detailed
account of nucleon distribution amplitudes and list here
only the selected expressions.

For the MN ¼ 0 case only the twist-3 DAs are relevant:

V1ðfxkg; �2Þ ¼ 120x1x2x3½�0
3ð�2Þ þ�þ

3 ð�2Þð1� 3x3Þ�;
A1ðfxkg; �2Þ ¼ 120x1x2x3ðx2 � x1Þ��

3 ð�2Þ; (5.8)

or, equivalently9

�3ðfxkg; �2Þ ¼ V1ðfxkg; �2Þ � A1ðfxkg; �2Þ
¼ 120x1x2x3½�0

3ð�2Þ þ�þ
3 ð�2Þð1� 3x3Þ

���
3 ð�2Þðx2 � x1Þ�: (5.9)

Here

�0
3 ¼ fN; �þ

3 ¼ 7

2
fNð1� 3Vd

1 Þ; ��
3 ¼ 21

2
fNA

u
1 :

(5.10)

The normalization obtained using QCD sum rules
amounts to [28]

fNð�2
0 ¼ 1 GeV2Þ ¼ ð5:0
 0:5Þ � 10�3 GeV2: (5.11)

Actually the normalization of twist-3, -4, and -5 DAs is
determined by three dimensionful parameters fN , �1, and
�2 that are well known from the QCD sum rule literature
and correspond to nucleon couplings to the existing three
different three-quark local operators. The numerical values
of the other two normalization constants, obtained by QCD
sum rules [28], are

�1ð�2
0 ¼ 1 GeV2Þ ¼ �ð2:7
 0:9Þ � 10�2 GeV2;

(5.12)

and �2ð�2
0 ¼ 1 GeV2Þ ¼ ð5:4
 1:9Þ � 10�2 GeV2. For

the evolution of these parameters we refer to, for example,
[25].
The shape of the twist-3 DAs, i.e., the deviation from the

asymptotic form, is determined by dimensionless parame-
ters Vd

1 and Au
1 , while three more parameters (fd1 , f

u
1 , and

fd2) appear in twist-4 and at higher twists. The values of

these parameters and thus the shape of DAs are controver-
sial. The older prediction from QCD sum rules, which is
sometimes referred to as the Chernyak-Zhitnitsky–like
(CZ-like) model [59] amounts to

Vd
1 ¼ 0:23
 0:03; Au

1 ¼ 0:38
 0:15; (5.13)

while fd1 ¼ 0:40
 0:05, fu1 ¼ 0:07
 0:05, and fd2 ¼
0:22
 0:05. In Eq. (42) of Ref. [28] the following values
(we refer to them as BLW parameters) were introduced:

Vd
1 ¼ 0:30; Au

1 ¼ 0:13; (5.14)

while fd1 ¼ 0:33, fu1 ¼ 0:09, and fd2 ¼ 0:25. Finally, for
the asymptotic DAs

Vd
1 ¼ 1=3; Au

1 ¼ 0; (5.15)

and fd1 ¼ 3=10, fu1 ¼ 1=10, and fd2 ¼ 4=15. Thus, for
asymptotic twist-3 DAs

�0
3 ¼ fN; �þ

3 ¼ ��
3 ¼ 0; (5.16)

leading to

�3ðfxkg; �2Þ ¼ V1ðfxkg; �2Þ ¼ 120x1x2x3fNð�2Þ: (5.17)

VI. NUMERICAL RESULTS

In order to obtain numerical predictions for the proton
form factor F2 calculated at twist-3 to NLO order (5.6), we
use the results (C18)–(C21), twist-3 DA �3 defined in
Sec. VB, Eq. (5.5), and Table V. The additional necessary
numerical values listed in preceding sections and taken
from Ref. [28], are

s0 ¼ ð1:5 GeVÞ2; M2
B ¼ 2 GeV2; (6.1)

and

�1ð�2
0 ¼ 1 GeV2Þ ¼ �2:7� 10�2 GeV2: (6.2)

9As explained in, for example, Ref. [25], V1 and A1 have
different symmetry properties and they can be combined to-
gether to define a single independent twist-3 nucleon distribution
amplitude �3.
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We will check the sensitivity of the results on the variation
of M2

B. Alternatively, one can use the modified value of �1

calculated using the expression [Eq. B10 from Ref. [25] ]
where E3 is corrected by a factor ð1þ 71=12�s=�Þ from
Eq. (24) in Ref. [60]

�corr
1 ð1� 10 GeV2Þ ¼ ðð�3:4Þ � ð�3:2ÞÞ � 10�2 GeV2:

(6.3)

The one-loop expression for �s reads

�sð�2Þ ¼ 4�

�0 ln�
2=�2

; (6.4)

where �0 ¼ 11� 2=3nf, with nf ¼ 3 being the number of

flavors. For � we take the value � ¼ 0:2 GeV. In this
work we do not take into account the DA evolution, i.e.,
we neglect the evolution (see, for example, [25]) of fNð�2Þ
and of �1ð�2Þ. One takes these effects as small, especially
since in the biggest part of the numerical analysis we fix the
relevant scale to 2 GeV2.

The LO twist-3 and twist-4 results calculated for MN �
0 are presented in Appendix E, while the higher-twist
results and x2 corrections we take from Ref. [28]. The
parameters for the DAs are given in Sec. VB, while for
the exact form of the higher-twist DAs we again refer to
Ref. [28].

It is convenient to normalize the results for F2 andGM to
dipole form factor, i.e., GM=ð�pGDÞ where

GD ¼ 1

ð1þQ2=0:71 GeV2Þ2 : (6.5)

A. MN ¼ 0 case: F2 at twist-3 to NLO order

In Fig. 4(a) we present the relative size of the NLO
correction (5.7) taken at �2

R ¼ �2
F ¼ �2

R;1 ¼ Q2 com-

pared to the LO prediction, i.e., the ratio FNLO
2 =FLO

2 in

dependence on Q2 and calculated for the asymptotic twist-
3 DA (5.17). Note that for that choice of scales only the

FNLO;fin
2 part from (5.7) contributes. In Fig. 4(b) the com-

plete NLO prediction F2 (5.6) normalized to �pGD is

displayed. In Fig. 4 we test the sensitivity of the results
on the choice ofM2

B by displaying the results for the default
choice (6.1), as well as for M2

B ¼ 1 GeV2.
From Fig. 4(a) one can see that, for the asymptotic DA

and �2
R ¼ �2

F ¼ �2
R;1 ¼ Q2 the ratio FNLO

2 =FLO
2 , and thus

the NLO correction in comparison to the LO prediction is
quite large, being 60%–70% for 1<Q2 < 10 GeV2, and it
increases with Q2. By decreasing M2

B to 1 GeV2 the ratio
drops at higher Q2 only slightly, i.e., to 65%.
The sensitivity of the LO (dot-dashed and dashed lines)

and NLO (solid and long-dashed lines) predictions for F2

TABLE V. Table of the substitution rules corresponding to Eq. (5.5) for gn functions (n ¼ 0; . . . ; 12) defined in Eq. (C8). [Note: As
expected, the case xj ¼ 0 corresponds to the expressions involving just xi.]

gnðxi; xj;WÞ ~gnðxi; xj; Q2; s0;M
2
BÞ

1
ðxiW�1þi�Þ � 1

xi

� lnð1�xiW�i�Þ
ð1�xiW�i�Þ � 1

xi
lnðxi s0þQ2

Q2 � 1Þ þ 1
xi

Rxiðs0þQ2Þ=Q2

1 dt 1
ð1�tÞ ½expðð1�tÞQ2

xiM
2
B

Þ � 1�
� ln2ð1�xiW�i�Þ

ð1�xiW�i�Þ � 1
xi
½ln2ðxi s0þQ2

Q2 � 1Þ � �2

3 � þ 2
xi

Rxiðs0þQ2Þ=Q2

1 dt lnðt�1Þ
ð1�tÞ ½expðð1�tÞQ2

xiM
2
B

Þ � 1�
lnð1�xiW�i�Þ

ðWþi�Þ �Rxiðs0þQ2Þ=Q2

1 dt 1t expðð1�tÞQ2

xiM
2
B

Þ
lnð1�xiW�i�Þ

ðWþi�Þ2 �xi
Rxiðs0þQ2Þ=Q2

1 dt 1
t2
expðð1�tÞQ2

xiM
2
B

Þ
ln2ð1�xiW�i�Þ

ðWþi�Þ �2
Rxiðs0þQ2Þ=Q2

1 dt lnðt�1Þ
t expðð1�tÞQ2

xiM
2
B

Þ
ln2ð1�xiW�i�Þ

ðWþi�Þ2 �2xi
Rxiðs0þQ2Þ=Q2

1 dt lnðt�1Þ
t2

expðð1�tÞQ2

xiM
2
B

Þ

� lnð1�ðxiþxjÞW�i�Þ
ð1�xiW�i�Þ � 1

xi
½lnðxi s0þQ2

Q2 � 1Þ þ lnðxiþxj
xi

Þ� þ 1
xi

Rxiðs0þQ2Þ=Q2

xi=ðxiþxjÞ dt 1
ð1�tÞ ½expðð1�tÞQ2

xiM
2
B

Þ � 1�
� ln2ð1�ðxiþxjÞW�i�Þ

ð1�xiW�i�Þ � 1
xi
½ðlnðxi s0þQ2

Q2 � 1Þ þ lnðxjþxi
xi

ÞÞ2 � �2

3 � �2ð1� ðxjÞÞ þ 2Li2ð xj

ðxiþxjÞð1�xi
s0þQ2

Q2 Þ
Þ�

þ 2
xi

Rxiðs0þQ2Þ=Q2

xi=ðxiþxjÞ dt
lnðtð1þxj

xi
Þ�1Þ

ð1�tÞ ½expðð1�tÞQ2

xiM
2
B

Þ � 1�
lnð1�ðxiþxjÞW�i�Þ

ðWþi�Þ �Rxiðs0þQ2Þ=Q2

xi=ðxiþxjÞ dt 1t expðð1�tÞQ2

xiM
2
B

Þ
lnð1�ðxiþxjÞW�i�Þ

ðWþi�Þ2 �xi
Rxiðs0þQ2Þ=Q2

xi=ðxiþxjÞ dt 1
t2
expðð1�tÞQ2

xiM
2
B

Þ
ln2ð1�ðxiþxjÞW�i�Þ

ðWþi�Þ �2
Rxiðs0þQ2Þ=Q2

xi=ðxiþxjÞ dt
lnðtð1þxj

xi
Þ�1Þ

t expðð1�tÞQ2

xiM
2
B

Þ
ln2ð1�ðxiþxjÞW�i�Þ

ðWþi�Þ2 �2xi
Rxiðs0þQ2Þ=Q2

xi=ðxiþxjÞ dt
lnðtð1þxj

xi
Þ�1Þ

t2
expðð1�tÞQ2

xiM
2
B

Þ
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onM2
B is illustrated in Fig. 4(b). One can see that this effect

is large (comparable to the change from LO to NLO).
In the following we adopt the default choice (6.1) em-

ployed in Ref. [28].
In Fig. 5 the change of scales �2

R, �
2
F, and �2

R;1 is

investigated. As can be seen by comparing Figs. 4(a) and
5(a), by taking �2

F ¼ �2
R;1 ¼ M2

B and retaining �2
R ¼ Q2,

the ratio of the NLO correction to the LO prediction is
lowered to 69%–44% for 1<Q2 < 10 GeV2 and it de-

creases with Q2. Thus, one can see that the FNLO;IR
2 and

FNLO;UV
2 terms from Eq. (5.7) decrease the size of the NLO

correction. By changing �2
R to M2

B the ratio gets bigger
since then there is no suppression due to the running of the
�s. From Fig. 5(b) one can see that the change of scales
does not influence much the value of the complete F2 NLO
prediction. In further calculation, if not specified differ-
ently, we, following [33], take �2

R ¼ �2
F ¼ �2

R;1 ¼ M2
B.

Finally, in Fig. 6 we investigate the size of the NLO
correction and of the complete NLO prediction in depen-
dence on the choice of DA (5.9). We employ the asymp-
totic (5.15) DA (solid line), BLW (5.14) DA (dash-dotted

line), and the CZ-like DA (5.13) (dashed line). In Fig. 6(b)
the LO predictions are denoted by thin lines and NLO
predictions by thick lines. From Fig. 6(a) one can see
that for 1<Q2 < 10 GeV2 the ratio of NLO corrections
to LO predictions amounts to 57%–62% for the asymptotic
DA, 61%–76% for the BLW DA, and 66%–86% for the
CZ-like DA. Both LO predictions and NLO corrections are
larger for the two DAs whose forms differ from the asymp-
totic one.
In conclusion, we state that the NLO corrections to F2

calculated at twist-3 taking MN ¼ 0 are large, with
FNLO
2 =FLO

2 amounting to ca. 60%, but varying for different

DAs and depending on the choice of renormalization and
factorization scales. The sensitivity of both LO and NLO
corrections on the choice of MB is large and in the follow-
ing we take the value (6.1) from Ref. [28]. In contrast to the
dependence of FNLO

2 =FLO
2 , the dependence of the complete

NLO prediction of F2 on the choice of renormalization and
factorization scales is small and, if not stated otherwise, we
take in the following �2

R ¼ �2
F ¼ �2

R;1 ¼ M2
B. The results

for different DAs differ significantly.

FIG. 4 (color online). NLO calculation of the twist-3 contribution to the proton form factor F2 obtained for MN ¼ 0 (5.6) and (5.7),
using asymptotic DA (5.17) and �2

R ¼ �2
F ¼ �2

R;1 ¼ Q2: (a) The ratio FNLO;fin
2 =FLO

2 (i.e., the ratio of the NLO correction to the LO

prediction) evaluated for the default choice (6.1) M2
B ¼ 2 GeV2 (solid line), and for the test choice M2

B ¼ 1 GeV2 (dashed line).
(b) The twist-3 prediction to F2 normalized to �pGD: NLO (thick solid line) and LO (thick dot-dashed line) for M2

B ¼ 2 GeV2, NLO

(thin long-dashed line) and LO (thin short-dashed line) for M2
B ¼ 1 GeV2.

FIG. 5 (color online). NLO calculation of the twist-3 contribution to the proton form factor F2 obtained for MN ¼ 0 (5.6) and (5.7)
and using asymptotic DA (5.17): (a) The ratio FNLO

2 =FLO
2 (i.e., the ratio of the NLO correction calculated at the LO prediction)

calculated using �2
F ¼ �2

R;1 ¼ M2
B, while �2

R ¼ Q2 (solid line), and �2
R ¼ M2

B (dashed line). (b) The twist-3 prediction to F2

normalized to �pGD: NLO for �2
R ¼ Q2 and �2

F ¼ �2
R;1 ¼ Q2 (thin long-dashed line), NLO for �2

R ¼ Q2 and �2
F ¼ �2

R;1 ¼ M2
B

(thick solid line), NLO for �2
R ¼ M2

B and �2
F ¼ �2

R;1 ¼ M2
B (thin short-dashed line), and LO (thick dot-dashed line).
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B. Various contributions to F1 and F2

In the preceding section we have discussed the size of
the NLO corrections to F2 calculated at twist-3 and taking
MN ¼ 0, and we have compared it to the corresponding LO
predictions. In this section we want to analyze how large
are these corrections in comparison to other contributions:
mass effects, higher twists, and x2 corrections calculated at
LO. These effects are calculated on the basis of
Appendix E and Ref. [28].

1. F2

The effect of including M2
N terms in the LO twist-3

contribution to F2 corresponds to the change of the LO
contribution obtained using the asymptotic DA for
ð�3Þ–23% when 1  Q2  10 GeV2. The change in-
creases with Q2 and one obtains similar numbers for all
three DAs.

Let us now discuss higher-twist effects starting with
twist-4. We note that for M2

N ¼ 0 the twist-4 contribution

to F2 is 0 [the whole contribution (E11) and (E12) is

proportional to M2
N]. The ratio of LO twist-4 and twist-3

contributions to F2 is in the range ð�5Þ to ð�35Þ% for
asymptotic DAs, 2 to ð�0:7Þ% for BLW DAs, and 13
to 24% for CZ-like DAs, when 1  Q2  10 GeV2.
This behavior is obviously very different for different
DAs. In the case of the asymptotic DAs and the CZ-like
DAs the absolute value of the ratio grows with Q2, while
for BLW the ratio decreases, changes sign, and then the
absolute value increases. The role of the LO twist-4 con-
tributions is thus small in the case of the results obtained
using the BLW DAs, and more pronounced in the case of
the other two investigated DAs (the BLW results seem to
fall in some kind of minima). We have noticed the large
sensitivity of these results on the choice of the parameters
fd1 and Au

1 .

Finally, we summarize our findings about the size of
various contributions to F2 in Tables VI and VII. One can
see that twist-3 contributions are dominant and positive.
The x2 contributions are negative and the ratio of
x2 contributions and LO twist-3 contributions does not
change much for various DAs. The twist-5 contributions

FIG. 6 (color online). NLO calculation of the twist-3 contribution to the proton form factor F2 obtained for MN ¼ 0 (5.6) and (5.7)
using �2

R ¼ �2
F ¼ �2

R;1 ¼ M2
B. The displayed results correspond to asymptotic DAs (solid line), BLW DAs (dash-dotted line), and

CZ-like DAs (dashed line). (a) The ratio FNLO
2 =FLO

2 , i.e., the ratio of the NLO correction to the LO prediction. (b) The twist-3

prediction to F2 normalized to �pGD. Thick lines: NLO prediction. Thin lines: LO prediction.

TABLE VI. The size of various contributions to the proton form factor F2 (normalized to the LO twist-3 contribution calculated for
M2

N � 0) in the range 1  Q2  10 GeV2.

DAs FLO;tw-3
2

j
M2
N
¼0

FLO;tw-3
2

FLO;tw-4
2

FLO;tw-3
2

FLO;tw-5
2

FLO;tw-3
2

FLO;x2 corr
2

FLO;tw-3
2

Asy. 103%–81% ð�5Þ%–ð�35Þ% 34%–91% ð�35Þ%–ð�43Þ%
BLW 98%–81% 2%–ð�0:7Þ% 14%–21% ð�33Þ%–ð�28Þ%
CZ-like 92%–81% 13%–24% ð�13Þ%–ð�29Þ% ð�31Þ%–ð�18Þ%

TABLE VII. The size of the NLO twist-3 corrections to the proton form factor F2 (normalized to the LO twist-3 contribution
calculated for M2

N � 0) in the range 1  Q2  10 GeV2 and for three choices of scales: (a) �2
R ¼ �2

F ¼ �2
R;1 ¼ Q2, (b) �2

R ¼ Q2,

�2
F ¼ �2

R;1 ¼ M2
B, and (c) �2

R ¼ �2
F ¼ �2

R;1 ¼ M2
B.

DAs FNLO;tw-3
2

j
M2
N
¼0;aÞ

FLO;tw-3
2

FNLO;tw-3
2

j
M2
N
¼0;bÞ

FLO;tw-3
2

FNLO;tw-3
2

j
M2
N
¼0;cÞ

FLO;tw-3
2

Asy. 62%–57% 71%–36% 58%–51%

BLW 62%–68% 72%–44% 59%–62%

CZ-like 63%–76% 74%–49% 61%–69%
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are more pronounced than twist-4 contributions and for
both the ratio to twist-3 contribution is very sensitive to the
shape of DAs. The twist-3 NLO corrections are positive
and ca. 60%.

Hence, the twist-3 NLO corrections are indeed sizable
and important.

2. F1

In the next section we will proceed to the comparison of
our results to the experimental data and for that we need the
F1 contribution as well (we have at our disposal the ex-
perimental data for GM and GE). Here we thus analyze the
LO contributions to F1.

The effect of including M2
N terms in the LO twist-3

contribution to F1 corresponds to the change of the LO
contribution obtained using the asymptotic DA for 6%–
24% when 1  Q2  10 GeV2. The change decreases and
then increases with Q2 (minimum at Q2 � 2 GeV2) and
one obtains similar numbers for all three DAs. But in the
case of F1, the twist-3 contribution is negative and small in
comparison with the twist-4 contribution.

In contrast to F2, the twist-4 contribution to F1 is not
proportional toM2

N (see Appendix E). The effect of includ-
ing M2

N terms in LO twist-4 to F2 corresponds to the
change of the contribution obtained using the asymptotic
DAs for 12%–30% when 1  Q2  10 GeV2. The num-
bers are similar for both asymptotic and BLW DAs, but
smaller and negative for CZ-like DAs. The ratio of twist-3
and twist-4 LO contributions to F1 is ð�19Þ–ð�7Þ% for the
asymptotic DAs, ð�25Þ–ð�12Þ% for the BLW DAs, and

ð�46Þ–ð�105Þ% for the CZ-like DAs. Hence, apart from
the results for CZ-like DAs at higher Q2, the twist-4
contribution is larger than the twist-3 contribution.
Finally, to summarize our findings about the size of

various contributions to F1 in Table VIII, we state that
the twist-4 contributions are dominant and positive.

C. Comparison to experimental data

Finally, let us compare our findings to experimental data.
In Figs. 7–9 we display the results for GM=ð�pGDÞ,

�pGE=GM, and
ffiffiffiffiffiffi
Q2

p
F2=ð
pF1Þ obtained using the asymp-

totic DAs (solid line), the BLWDAs (dash-dotted line), and
the CZ-like DAs (dashed line). The DA parameters are
given in Sec. VB.
For comparison, in Figs. 7(a), 8(a), and 9(a) we present

the LO predictions obtained on the basis of the results from
Ref. [28], where the higher-twist contributions (up to twist-
6) and x2 correction were included and the value of �1 (6.2)
was used. The NLO predictions, i.e., the LO predictions
obtained on the basis of the results from Ref. [28]
plus NLO corrections for twist-3 (MN ¼ 0 case) calculated
in this work [with s0 andMB as from Eq. (6.1), while�2

R ¼
�2

F ¼ �2
R;1 ¼ M2

B], are displayed in Figs. 7(b), 8(b), and 9

(b). Here we investigate also the change of the results
with the choice of �1. The NLO results obtained using
the default value of �1 (6.2) are, as in Figs. 7(a), 8(a), and 9
(a), denoted by thin lines, while thick lines denote the
NLO results obtained employing the corrected value of
�1 (6.3).

FIG. 7 (color online). LCSR prediction for the proton form factor GM normalized to �pGD. The displayed results correspond to
asymptotic DAs (solid line), BLWDAs (dash-dotted line), and CZ-like DAs (dashed line)—see Sec. VB for the DA parameters. (a) LO
prediction on the basis of the results from Ref. [28] [i.e., the higher-twist contributions (up to twist-6) and x2 correction included].
(b) LO prediction on the basis of the results from Ref. [28] plus the NLO correction for twist-3 (MN ¼ 0 case) calculated in this work
(choice of scales as in Fig. 6). Thin lines: the default value of �1 (6.2). Thick lines: the corrected value of �1 (6.3). Experimental data
obtained using Rosenbluth separation: m SLAC 1994 [61], j SLAC 1994 [62], r JLab 2004 [63], w JLab 2005 [64].

TABLE VIII. The size of various contributions to the proton form factor F1 (normalized to the LO twist-4 contribution calculated for
M2

N � 0) in the range 1  Q2  10 GeV2.

DAs FNLO;tw-3
1

FNLO;tw-4
1

FNLO;tw-5
1

FNLO;tw-4
1

FNLO;tw-6
1

FNLO;tw-4
1

FLO;x2 corr
1

FNLO;tw-4
1

Asy. ð�19Þ%–ð�7Þ% ð�4Þ%–ð�5Þ% 3%–2% 5%–2%

BLW ð�25Þ%–ð�12Þ% ð�2Þ% 3%–2% 6%–3%

CZ-like ð�46Þ%–ð�105Þ% 5%–37% 5%–14% 10%–22%
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In Fig. 7 we display the LCSR prediction for GM nor-
malized to �pGD. The displayed experimental data were

obtained using the Rosenbluth separation: m SLAC 1994
[61], j SLAC 1994 [62], r JLab 2004 [63], w JLab 2005
[64]. The LO results 7(a) favor the asymptotic and BLW
DAs. The inclusion of NLO corrections [compare the thin
lines in Figs. 7(a) and 7(b)] raises the predictions. The
change of �1 to the corrected value (6.3) lowers the NLO
results (thick lines) slightly. The NLO results seem to
overshoot the data at lower Q2, while at higher Q2 again
the asymptotic and BLW results seem to be closer to the
data than the results obtained using the CZ-like DAs.

In Fig. 8 we present the LCSR prediction for�pGE=GM.

We use the experimental data obtained using the
Rosenbluth separation [j SLAC 1994 [62], r JLab 2004
[63], w JLab 2005 [64], m SLAC 1970 (small) [65], and
Bonn 1971 (big) [66] data revised in [67] ] as well as more
reliable experimental data obtained via polarization trans-
fer [4 JLab 2001 [68],h JLab 1999 [69] ]. The LO results
displayed in Fig. 8(a) show that while the results obtained

using the CZ-like DAs are quite low and well beyond the
data, and the results obtained the asymptotic DAs are on
the high edge of the data, the BLW results seem to be in
better agreement with the data, but one cannot really make
conclusive statements. The inclusion of NLO corrections
[compare the thin lines in Figs. 8(a) and 8(b)] lowers the
predictions significantly, while the change of �1 to the
corrected value (6.3) raises the NLO results (thick lines)
slightly. Note that the results obtained using the CZ-like
DAs are ruled out and left out. One can see now the NLO
results, especially the results obtained using the corrected
value for �1, are in quite good agreement with the data. The
results obtained using the asymptotic DAs seem to describe
well the experimental data obtained using the Rosenbluth
separation, while the NLO results obtained using the BLW
DAs seem to follow the slope of the preferred experimental
data obtained via polarization transfer.
In Fig. 9 we present the LCSR prediction forffiffiffiffiffiffi
Q2

p
F2=ð
pF1Þ. We display the experimental data obtained

using the Rosenbluth separation [j SLAC 1994 [62],

FIG. 8 (color online). LCSR prediction for the proton form factors ratio �pGE=GM. The displayed results correspond to asymptotic
DAs (solid lines), and BLW DAs (dash-dotted lines)—see Sec. VB for the DA parameters. (a) LO prediction on the basis of the results
from Ref. [28] (i.e., the higher-twist contributions up to twist-6 and x2 correction included). (b) LO prediction on the basis of the
results from Ref. [28] plus NLO correction (to F2) for twist-3 (MN ¼ 0 case) calculated in this work (choice of scales as in Fig. 6).
Thin lines: the default value of �1 (6.2). Thick lines: the corrected value of �1 (6.3). Experimental data obtained using the Rosenbluth
separation: j SLAC 1994 [62], r JLab 2004 [63], w JLab 2005 [64], m SLAC 1970 (small) [65], and Bonn 1971 (big) [66] data
revised in [67]. Experimental data obtained via polarization transfer: 4 JLab 2001 [68], h JLab 1999 [69].

FIG. 9 (color online). LCSR prediction for the proton form factors ratio
ffiffiffiffiffiffi
Q2

p
F2=ð
pF1Þ. The displayed results correspond to

asymptotic DAs (solid line), and BLW DAs (dash-dotted line)—see Sec. VB for the DA parameters. (a) LO prediction on the basis of
the results from Ref. [28] (i.e., the higher-twist contributions up to twist-6 and x2 correction included). (b) LO prediction on the basis
of the results from Ref. [28] plus NLO correction (to F2) for twist-3 (MN ¼ 0 case) calculated in this work (choice of scales as in
Fig. 6). Thin lines: the default value of �1 (6.2). Thick lines: the corrected value of �1 (6.3). Experimental data obtained using the
Rosenbluth separation: j SLAC 1994 [62], m SLAC 1994 [61]. Experimental data obtained via polarization transfer: 4 and h as in
Ref. [28], Fig. 15 (M. Jones, private communication).

K. PASSEK-KUMERIČKI AND G. PETERS PHYSICAL REVIEW D 78, 033009 (2008)

033009-24



m SLAC 1994 [61] ] and preferred experimental data
obtained via polarization transfer [4 and h as in
Ref. [28], Fig. 15 (M. Jones, private communication)].
The LO results are displayed in Fig. 9(a) and while the
results obtained using the asymptotic DAs are on the lower
edge of the data, the BLW results seem to fall close to the
data (at least for lower Q2). The inclusion of NLO correc-
tions [compare thin lines in Figs. 9(a) and 9(b)] raises the
predictions significantly, while the change of �1 to the
corrected value (6.3) lowers the NLO results (thick lines)
slightly. As in the case of the�GE=GM results displayed in
Fig. 8, one can see that the NLO results, especially the
results obtained using the corrected value for �1, are in
good agreement with the data. Again, the results obtained
using the asymptotic DAs seem to describe well the ex-
perimental data obtained using the Rosenbluth separation,
while the NLO results obtained using the BLW DAs seem
to follow the slope of the experimental data obtained via
polarization transfer.

In conclusion, the inclusion of NLO corrections calcu-
lated at twist-3 for MN ¼ 0 introduces significant changes
in the LCSR predictions for GM=ð�pGDÞ, �pGE=GM, andffiffiffiffiffiffi
Q2

p
F2=ð
pF1Þ. It seems that NLO corrections, as well as

the use of the corrected value for �1 (6.3) bring the pre-

dictions for�pGE=GM and
ffiffiffiffiffiffi
Q2

p
F2=ð
pF1Þ in better agree-

ment with the experimental data. For these quantities, the
results obtained using the asymptotic DAs seem to describe
well the experimental data obtained using the Rosenbluth
separation, while the NLO results obtained using the BLW
DAs seem to follow the slope of the experimental data
obtained via polarization transfer.

VII. SUMMARYAND CONCLUSIONS

In this work the first attempt has been made to assess the
size of NLO corrections to nucleon form factors.

In the LCSR approach dealing with nucleons is much
more demanding than dealing with mesons, even at LO.
For one, the number of contributing terms is rather large,
the expressions are more involved, and the presence of
three, instead of two, partons with corresponding momenta
makes the calculation more complicated. All this is present
at NLO also, with additional difficulties of one-loop cal-
culation and a larger number of contributing Feynman
diagrams.

In order to calculate the NLO corrections, we have
started with the simple M2

N ¼ 0 (but MN � 0) approxima-
tion, i.e., the approximation corresponding to the first two
terms in the expansion in nucleon mass (2.44). In that
approximation only the leading-twist, twist-3, and next-
to-leading twist, twist-4, contributions appear. But to our
surprise it turned out that the collinear divergences appear-
ing in one-loop calculation do not cancel on the level of
separate twist and that actually mixing appears which,
without knowing the corresponding kernels, disables us
in determing the finite contributions (see Sec. IVD).

Hence, we have strengthened our approximation and
considered MN ¼ 0 approximation [corresponding to the
first term in (2.44)] in which only twist-3 contributes and
the evolution kernels are known. We have shown the ex-
plicit cancellation of collinear, as well as, UV singularities
(see Sec. IVC). The finite twist-3 NLO contributions to the
correlation function are thus obtained in MN ¼ 0 approxi-
mation and relevant invariant functions are listed in
Appendix C.
We note that the observation of mixing of twist-3 and

twist-4 NLO contributions is in nature similar to the ob-
servation given in Sec. III D where the gauge invariant
results are obtained not twist by twist but order by order
in MN . The gauge condition is for the MN ¼ 0 case sat-
isfied both in LO and NLO order. ForM2

N ¼ 0 andMN � 0
we have shown to LO that the gauge condition is satisfied
only when the sum of all contributing terms is taken into
account, i.e., both twist-3 and twist-4 contributions. The
additional condition is that the asymptotic forms of twist-3
DAs are used (no conditions, at least at this order, on twist-
4 DAs). Hence, gauge invariance can be satisfied order by
order in the expansion in MN (2.44) with possibly some
additional conditions on the form of DAs.
To repeat, by switching on the nucleon mass, which is of

course necessary in order to determine higher twists, we
are at M2

N ¼ 0 and MN � 0 stuck with mixing of the

contributions corresponding to different twists. This ‘‘mix-
ing’’ can be seen even at LO through the check of gauge
invariance with respect to photon. If we takeM2

N � 0, there
are no collinear divergences whose cancellation we should
take care of and no apparent mixing. But the NLO ex-
pressions are more involved and there are additional open
problems one should solve before attacking higher-order
higher-twist calculations. For example, there is an open
technical problem elaborated in Sec. IVD and connected to
the calculation of the NLO contributions to the second and
third cases defined in (2.28). The calculation of NLO
corrections for theMN � 0 case and thus NLO corrections
to higher twists we postpone for another time.
In Sec. VI we have presented and analyzed our numeri-

cal results based on the calculation of NLO corrections in
the MN ¼ 0 approximation, i.e., twist-3 NLO corrections
in that approximation. Using the Ioffe current in this
approximation we are able to calculate only the corrections
to the F2 nucleon form factor. To make a full analysis and
estimate the importance of NLO corrections, we have also
included the LO results obtained beyond this approxima-
tion, i.e., leading-twist and higher-twist results obtained in
Ref. [28]. We have considered here just the proton case.
For F1 twist-4 LO contributions are dominant and posi-

tive, and there are no NLO corrections in the MN ¼ 0
approximation. When one considers the size of various
contributions to F2, one realizes that twist-3 LO contribu-
tions are dominant and positive. The twist-5 LO contribu-
tions are more pronounced than twist-4 LO contributions
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and for both the ratio to twist-3 LO contribution is very
sensitive to the shape of DAs. The x2 contributions are
negative and the ratio of x2 contributions and LO twist-3
contributions does not change much for various DAs. The
twist-3 NLO corrections are positive and ca. 60%. The
NLO corrections to F2 calculated at twist-3 taking MN ¼
0 are thus large. They vary for different DAs and depend on
the choice of renormalization and factorization scales. In
contrast to the dependence of FNLO

2 =FLO
2 , the dependence

of the complete NLO prediction of F2 on the choice of
renormalization and factorization scales is small.

The inclusion of NLO corrections calculated at twist-3
for MN ¼ 0 introduces significant changes in the LCSR
predictions for GM=ð�pGDÞ, �pGE=GM, andffiffiffiffiffiffi
Q2

p
F2=ð
pF1Þ. It seems that NLO corrections, as well

as the use of the corrected value for �1 (6.3), bring the

predictions for �pGE=GM and
ffiffiffiffiffiffi
Q2

p
F2=ð
pF1Þ in better

agreement with the experimental data. For these quantities,
the results obtained using the asymptotic DAs seem to
describe well the experimental data obtained using the
Rosenbluth separation, while the NLO results obtained
using the BLW DAs seem to follow the slope of the
preferred experimental data obtained via polarization
transfer.

Further analysis and inclusion of NLO corrections at
higher twists is needed to draw some more conclusive
results.
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APPENDIX A: FEYNMAN RULES

In calculating ð�iT�Þ where T� is a correlator function

(2.5) we use the standard Feynman rules for quark and
gluon propagators and vertices, as well as for the quark-
photon vertex. For loop integrals one has to introduce the
usual integration over loop momenta.10

The vertex corresponding to the interpolating nucleon
current given by (2.8) reads

u quarkð�; aÞ–u quarkð�; bÞ–d quarkð�; cÞ–Ioffe current:

ðC��Þ��ð�5�
�Þ�"abc; (A1)

where all quark lines are going in the vertex and the order
of u, u, and d quarks with corresponding Lorentz ð�;�; �Þ
and color ða; b; cÞ indices is counterclockwise.
Furthermore, ðC��ÞT ¼ C��, i.e., ðC��Þ�� ¼ ðC��Þ��.
The (incoming) nucleon ‘‘projector’’ corresponding to

(2.11) and the first case of (2.28) is given by

u quarkðu1P;�; aÞ–u quarkðu2P;�; bÞ–d quarkðu3P; �; cÞ:
1

4

Z
DuFðiÞðu1; u2; u3ÞXðiÞ

��Y
ðiÞ
�
"abc

6
; (A2)

where all quark lines are outgoing from the nucleon blob

and the order is clockwise. The trivial identity XðiÞ
�� ¼

ðXðiÞÞT�� together with (2.12) is useful in some cases.

The typical contribution obtained using the general
Lorentz decomposition (2.11) and Ioffe current (2.8), i.e.,
Feynman rules (A1) and (A2), respectively, has two parts.
For the d� d quark line, by going, following the standard
rule, in the opposite direction of the fermion line, one
obtains the product of � matrices with the nucleon spinor.
The u� u lines close the trace and obviously, in writing it
down, one goes opposite to the direction of the one quark
line and along the other one. The latter case corresponds to
ð��1��2 . . .��n

ÞT (where ��1 . . .��n
is the order of �

matrices opposite to the direction of the fermion line)
and one then makes use of

ð��1��2 . . .��n
ÞT ¼ ð�1ÞnC��n . . .��1

C�1; (A3)

i.e., when going in the direction of the fermion line one
puts the � matrices on the line between C and C�1.
Finally, let us mention that the usual relations for

SUðNCÞ algebra should be employed in calculating the
color factors. Since we are dealing here with nucleon
described by three quarks we are actually already assuming
NC ¼ 3 and only this choice leads to gauge invariant
results. Obviously,

"abc"abc ¼ 6: (A4)

APPENDIX B: �5 AMBIGUITY IN DIMENSIONAL
REGULARIZATION

When using dimensional regularization, one runs into
trouble with quantities that have the well-defined proper-
ties only in D ¼ 4 space-time dimensions, that is, with the
Levi-Cività tensor ����
, which is a genuine 4-

dimensional object, and consequently with the pseudosca-
lar �5 Dirac matrix. Let us mention that the appearance and
mixing with evanescent operators [70] as well as the
definition of Fierz transformation in D dimensions are

10We use dimensional regularization in D ¼ 4� 2� dimen-
sions and for integral measure we choose �2�

R
dDlð2�ÞD—see,

for example,Appendix C in Ref. [52] for some comments on this
choice, i.e., on the introduction of scale�2 in Feynman integrals.
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also connected to this problem. We shall handle it similarly
to Ref. [52] with some additional finesse concerning
Chisholm identity (see Sec. IVB). Below we explain the
general features of the ambiguities that we encounter in our
calculation. In order to resolve these one should generally
use some other input such as the knowledge of the quantity
that does not suffer from ambiguities, the condition of
cancellation of singularities, the condition of preservation
of gauge invariance, Ward identities, etc.

1. General remarks—trace ambiguity

The generalization of the �5 matrix in D dimensions
represents a problem, since it is not possible to simulta-
neously retain its anticommuting and trace properties. In
practice, the ambiguity arises when evaluating a trace
containing a �5 and pairs of contracted � matrices and/or
pairs of Dirac slashed loop momenta. To deal with a �5

matrix, several possible schemes have been proposed in the
literature.

In the so-called naive-�5 scheme [54], the anticommu-
tation property of �5 is retained, while the cyclicity of the
trace is abandoned. The traces obtained by cyclic permu-
tation of the matrices differ by D� 4. Consequently, if the
trace is multiplied by a pole inD� 4, there appears a finite
ambiguity in the result. An alternative scheme has been
proposed in the original paper on the dimensional regulari-
zation by ’t Hooft and Veltman [55], and further system-
atized by Breitenlohner andMaison [56]. In this scheme, to
which we refer to as the HV scheme, the anticommutativity
of �5 is abandoned. In contrast to the naive-�5 scheme, this
scheme is claimed to be mathematically consistent but still
not without drawbacks. Namely, this prescription for �5

violates the Ward identities and introduces ‘‘spurious’’
anomalies which violate chiral symmetry. To restore the
Ward identities, finite counterterms should be added order
by order in perturbation theory [71]. In this scheme, the
cyclicity of the trace is retained.

If a trace contains an even number of �5 matrices, then
the property �2

5 ¼ 1 can be used to eliminate �5’s from the

trace, and the Ward identities are preserved if the naive-�5

scheme is used [54] (the cyclicity of the trace is restored
and the corresponding results are unambiguous). On the
other hand, in the HV scheme the spurious anomalies can
occur owing to the nonanticommuting property of �5. As
for the traces containing an odd number of �5 matrices, we
are left with the above-mentioned ambiguities in the
results.

For details, we refer to Appendix A in Ref. [52].

2. General remarks—Chisholm identity

Additionally, the Chisholm identity that we need in our
calculation

��"����¼ ið�������g����þg�����g����Þ (B1)

is strictly speaking valid only in D ¼ 4 dimensions. The

modification for the HV scheme can be found in the
literature (see, for example, the Tracer [72] manual) but
we have not been able to find any recipe for the naive-�5

scheme.
Our analysis of the problem has shown that when apply-

ing the Chisholm identity on expressions of the form

���
�
�"���� (B2)

different results appear in dependence of whether one first
contracts the Levi-Cività tensor with the � matrix on the
left or the right side of the noncontracted matrix (�
 in this
case). The difference is again, as expected, proportional to
D� 4. For example,

�����
�
���"���� (B3a)

has two sets of results:

ð��"����Þ���
�
��� ¼ ��ð��"����Þ�
�

���

¼ �iðD� 4ÞðD� 2ÞðD� 1Þ�
�5;

(B3b)

while

�����
ð��"����Þ�� ¼ �����
�
�ð��"����Þ

¼ iðD� 4ÞðD� 2ÞðD� 1Þ�
�5:

(B3c)

So, when using the Chisholm identity in its form as inD ¼
4 dimensions (which should be in agreement with the
‘‘philosophy’’ of the naive-�5 scheme) we again, as in
the case of trace ambiguity, encounter the ambiguity pro-
portional toD� 4, which, when multiplied by pole inD�
4, possibly leads to finite ambiguity of the results.

APPENDIX C: NLO RESULTS FOR MN ¼ 0 CASE

1. Formalism and notation

In theMN ¼ 0 case we cannot asses theA contribution
from Eq. (2.34), while the corresponding B contribution
we list in this section.
The B function can be written as a convolution in terms

of V1 and A1 nucleon DAs

BMN¼0ðQ2;P02Þ¼TB;V1;MN¼0ðfxkg;Q2;P02;�2
FÞ	V1ðfxkg;�2

FÞ
þTB;A1;MN¼0ðfxkg;Q2;P02;�2

FÞ
	A1ðfxkg;�2

FÞ; (C1)

or in terms of twist-3 nucleon DA �3 ¼ V1 � A1

BMN¼0ðQ2; P02Þ ¼ TB;�;MN¼0ðfxkg; Q2; P02;�2
FÞ

	�3ðfxkg;�2
FÞ: (C2)

Here q ¼ �Q2 is a photon virtuality and P0 ¼ P� q,
while P is an incoming nucleon momentum. The factori-
zation scale is denoted by �2

F, and by fxkg the quark
momentum fractions x1, x2, and x3 are denoted. Note that
x1 and x2 denote the momentum fractions of u quarks,
while x3 corresponds to the momentum fraction of the
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d quark. A stated in Eq. (2.25), V1 is symmetric and A1

antisymmetric under x1 $ x2 exchange.
It is convenient to introduce a dimensionless quantity

W ¼ P02 þQ2

Q2
; (C3)

and we will from now on express11 theB function usingW
instead of P02.

Generally, we write

BMN¼0ðQ2; WÞ ¼ 1

Q2

X
i

TB;FðiÞ;MN¼0ðfxkg; W;�2
F=Q

2Þ

	 FðiÞðfxkg;�2
FÞ (C4)

with FðiÞ denoting nucleon DAs and TB;FðiÞ;MN¼0 the corre-

sponding ‘‘hard-scattering’’ part. The nucleon DAs are
intrinsically nonperturbative quantities but their evolution
to scale �2

F can be calculated perturbatively. Nevertheless,
we take into account only the LO evolution or neglect the
evolution completely. The hard-scattering part is calcu-
lated perturbatively and in this work the calculation to
NLO is performed. Hence, following Sec. IVC [see
Eqs. (4.24), (4.26), (4.39), and (4.41)] we can write the
expansion of TB;FðiÞ;MN¼0 as

TB;FðiÞ;MN¼0ðfxkg;W;�2
F=Q

2Þ

¼
�
TLO
B;FðiÞ;MN¼0

ðfxkg;WÞþ�sð�2
RÞ

4�

�TNLO
B;FðiÞ;MN¼0

ðfxkg;W;�2
F=Q

2;�2
R;1=Q

2Þþ���
�
; (C5)

where

TNLO
B;FðiÞ;MN¼0

ðfxkg; W;�2
F=Q

2; �2
R;1=Q

2Þ
¼ TNLO;fin

B;FðiÞ;MN¼0
ðfxkg; WÞ

þ TNLO;UV

B;FðiÞ;MN¼0
ðfxkg; WÞ lnð�2

R;1=Q
2Þ

þ TNLO;IR

B;FðiÞ;MN¼0
ðfxkg; WÞ lnð�2

F=Q
2Þ; (C6)

and �2
R and �2

R;1 scales denote the coupling constant and

Ioffe current renormalization scales (which are in practice
often taken as the same, and even the same to the factori-
zation scale �2

F, but are in principle independent).
Note that the all order result for TB;FðiÞ;MN¼0 would not

depend on the choice of the renormalization scale, but the
truncation of the series to any finite order (in or case NLO)
introduces the residual dependence. This dependence
would be stabilized by the inclusion of higher orders (�n

s ,
n � 2). One is left also with the residual dependence of B
on the factorization scale (see Ref. [73] for details on that
point).

In the following we summarize the LO and NLO results
for TB;FðiÞ;MN¼0. These are proportional either to eu or ed
being u- and d-quark charges (depending on where the
photon coupled), respectively. Remember that we are dis-
playing here the proton case, while for the neutron eu and
ed have to be exchanged. Hence, we burden our notation
with one more index

T���
B;FðiÞ;MN¼0

ð� � �Þ ¼ T
���;ed
B;FðiÞ;MN¼0

ð� � �Þ þ T���;eu
B;FðiÞ;MN¼0

ð� � �Þ:
(C7)

In order to simplify the expressions and write them in a
formmost suitable for further calculation, we introduce the
following functions:

g0ðxi;WÞ ¼ 1

ðxiW � 1þ i�Þ ;

g1ðxi;WÞ ¼ � lnð1� xiW � i�Þ
ð1� xiW � i�Þ ;

g2ðxi;WÞ ¼ � ln2ð1� xiW � i�Þ
ð1� xiW � i�Þ ;

g3ðxi;WÞ ¼ lnð1� xiW � i�Þ
ðW þ i�Þ ;

g4ðxi;WÞ ¼ lnð1� xiW � i�Þ
ðW þ i�Þ2 ;

g5ðxi;WÞ ¼ ln2ð1� xiW � i�Þ
ðW þ i�Þ ;

g6ðxi;WÞ ¼ ln2ð1� xiW � i�Þ
ðW þ i�Þ2 ;

g7ðxi; xj;WÞ ¼ � lnð1� ðxi þ xjÞW � i�Þ
ð1� xiW � i�Þ ;

g8ðxi; xj;WÞ ¼ � ln2ð1� ðxi þ xjÞW � i�Þ
ð1� xiW � i�Þ ;

g9ðxi; xj;WÞ ¼ lnð1� ðxi þ xjÞW � i�Þ
ðW þ i�Þ ;

g10ðxi; xj;WÞ ¼ lnð1� ðxi þ xjÞW � i�Þ
ðW þ i�Þ2 ;

g11ðxi; xj;WÞ ¼ ln2ð1� ðxi þ xjÞW � i�Þ
ðW þ i�Þ ;

g12ðxi; xj;WÞ ¼ ln2ð1� ðxi þ xjÞW � i�Þ
ðW þ i�Þ2 :

(C8)

Note that we have kept i� terms (�> 0 and� � ) coming
from the Feynman diagram calculation (quark and gluon
propagators), which will enable the correct determination
of imaginary parts necessary for LCSR in Sec. V.

11Although, the functional dependence on W is different from
the one on P02 we retain the same nomenclature, i.e., from now
on we use B0ðQ2; WÞ � BðQ2;WÞ.
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2. Complete list of results

In previously introduced notation the LO contributions
to TB;V1;MN¼0 and TB;A1;MN¼0 read

T
LO;ed
B;V1;MN¼0ðfxkg; WÞ ¼ �2edg0ðx3;WÞ;

TLO;ed
B;A1;MN¼0ðfxkg; WÞ ¼ 0;

(C9)

and

TLO;eu
B;V1;MN¼0ðfxkg; WÞ ¼ eu½g0ðx1; WÞ þ g0ðx2; WÞ�;

TLO;eu
B;A1;MN¼0ðfxkg; WÞ ¼ eu½�g0ðx1; WÞ þ g0ðx2; WÞ�:

(C10)

Furthermore, the NLO contributions proportional to

lnð�2
R;1=Q

2Þ take also the simple form12

TNLO;UV;ed
B;V1;MN¼0ðfxkg; WÞ ¼ �4edg0ðx3; WÞ;

TNLO;UV;ed
B;A1;MN¼0ðfxkg; WÞ ¼ 0;

(C11)

and

TNLO;UV;eu
B;V1;MN¼0ðfxkg; WÞ ¼ 2eu½g0ðx1; WÞ þ g0ðx2; WÞ�;

TNLO;UV;eu
B;A1;MN¼0ðfxkg; WÞ ¼ 2eu½�g0ðx1; WÞ þ g0ðx2;WÞ�:

(C12)

Next we turn to NLO contributions proportional to
lnð�2

F=Q
2Þ which originate from the factorization of col-

linear divergences13 and read

T
NLO;IR;ed
B;V1;MN¼0ðfxkg; WÞ ¼ 4

3
ed

�
6g0ðx3; WÞ þ 8g1ðx3; WÞ � 4x1x2 � x1x3 � x2x3

x1x2x3
g3ðx3; WÞ þ x1 þ x2

x1x2x3
g4ðx3; WÞ

� 2g7ðx3; x1; WÞ � 2g7ðx3; x2; WÞ � 1

x1
g9ðx3; x1; WÞ � 1

x2
g9ðx3; x2; WÞ

� 1

x1ðx1 þ x3Þg10ðx3; x1; WÞ � 1

x2ðx2 þ x3Þg10ðx3; x2;WÞ
�
;

TNLO;IR;ed
B;A1;MN¼0ðfxkg; WÞ ¼ 4

3
ed

�
x1 � x2
x1x2

g3ðx3; WÞ � x1 � x2
x1x2x3

g4ðx3; WÞ þ 1

x1
g9ðx3; x1; WÞ � 1

x2
g9ðx3; x2; WÞ

� 1

x1ðx1 þ x3Þg10ðx3; x1; WÞ þ 1

x2ðx2 þ x3Þg10ðx3; x2;WÞ
�
; (C13)

and

TNLO;IR;eu
B;V1;MN¼0ðfxkg; WÞ ¼ � 4

3
eu

�
3g0ðx1; WÞ þ 3g0ðx2;WÞ þ 4g1ðx1;WÞ þ 4g1ðx2;WÞ þ x1 � 2x3

x1x3
g3ðx1; WÞ

þ x2 � 2x3
x2x3

g3ðx2; WÞ þ 1

x1x2
g4ðx1; WÞ þ 1

x1x2
g4ðx2;WÞ � g7ðx1; x2; WÞ � g7ðx2; x1; WÞ

� g7ðx1; x3; WÞ � g7ðx2; x3; WÞ � 1

x3
g9ðx1; x3; WÞ � 1

x3
g9ðx2; x3; WÞ � 1

x1x2
g10ðx1; x2; WÞ

�
;

TNLO;IR;eu
B;A1;MN¼0ðfxkg; WÞ ¼ � 4

3
eu

�
�3g0ðx1; WÞ þ 3g0ðx2; WÞ � 4g1ðx1; WÞ þ 4g1ðx2; WÞ � x1 � 2x3

x1x3
g3ðx1;WÞ

þ x2 � 2x3
x2x3

g3ðx2; WÞ � 1

x1x2
g4ðx1; WÞ þ 1

x1x2
g4ðx2;WÞ þ g7ðx1; x2; WÞ � g7ðx2; x1; WÞ

þ g7ðx1; x3; WÞ � g7ðx2; x3; WÞ þ 1

x3
g9ðx1; x3; WÞ � 1

x3
g9ðx2; x3; WÞ

þ x1 � x2
x1x2ðx1 þ x2Þg10ðx1; x2; WÞ

�
: (C14)

Finally we give the lengthy expressions for ‘‘finite’’ NLO contributions

13For the details we again refer to Sec. IVC.

12They are as expected proportional to LO and Ioffe current renormalization factor 2—as renormalization of UV divergences
demanded (see Sec. IVC).
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T
NLO;fin;ed
B;V1;MN¼0ðfxkg; WÞ ¼ 2

3
ed

�
18g0ðx3; WÞ þ 12g1ðx3; WÞ � 8g2ðx3; WÞ � 12

x3
g3ðx3; WÞ þ 5ðx1 þ x2Þ

x1x2x3
g4ðx3; WÞ

þ 4x1x2 � x2x3 � x1x3
x1x2x3

g5ðx3; WÞ � x1 þ x2
x1x2x3

g6ðx3; WÞ � 3g7ðx3; x1; WÞ � 3g7ðx3; x2; WÞ

þ 2g8ðx3; x1; WÞ þ 2g8ðx3; x2;WÞ � 5

x1ðx1 þ x3Þg10ðx1; x3; WÞ � 5

x2ðx2 þ x3Þg10ðx2; x3; WÞ

þ 1

x1
g11ðx1; x3; WÞ þ 1

x2
g11ðx2; x3; WÞ þ 1

x1ðx1 þ x3Þ g12ðx1; x3; WÞ þ 1

x2ðx2 þ x3Þg12ðx2; x3; WÞ
�
;

(C15a)

T
NLO;fin;ed
B;A1;MN¼0ðfxkg; WÞ ¼ 2

3
ed

�
� 5ðx1 � x2Þ

x1x2x3
g4ðx3; WÞ þ x2 � x1

x1x2
g5ðx3; WÞ þ x1 � x2

x1x2x3
g6ðx3; WÞ � 3g7ðx3; x1; WÞ

þ 3g7ðx3; x2; WÞ � 5

x1ðx1 þ x3Þg10ðx1; x3; WÞ þ 5

x2ðx2 þ x3Þg10ðx2; x3; WÞ � 1

x1
g11ðx1; x3; WÞ

þ 1

x2
g11ðx2; x3; WÞ þ 1

x1ðx1 þ x3Þ g12ðx1; x3; WÞ � 1

x2ðx2 þ x3Þg12ðx2; x3; WÞ
�
; (C15b)

and

TNLO;fin;eu
B;V1;MN¼0ðfxkg;WÞ¼ 2

3
eu

�
�19

2
g0ðx1;WÞ�19

2
g0ðx2;WÞ�6g1ðx1;WÞ�6g1ðx2;WÞþ4g2ðx1;WÞ

þ4g2ðx2;WÞþ2x1x2þ6x2x3�3x1x3
x1x2x3

g3ðx1;WÞþ2x1x2þ6x1x3�3x2x3
x1x2x3

g3ðx2;WÞ

� 4

x1x2
g4ðx1;WÞ� 4

x1x2
g4ðx2;WÞþx1�2x3

x1x3
g5ðx1;WÞþx2�2x3

x2x3
g5ðx2;WÞþ 1

x1x2
g6ðx1;WÞ

þ 1

x1x2
g6ðx2;WÞþ3g7ðx1;x2;WÞþ3g7ðx2;x1;WÞ�g8ðx1;x2;WÞ�g8ðx2;x1;WÞ�g8ðx1;x3;WÞ

�g8ðx2;x3;WÞþ3ðx1þx2Þ
x1x2

g9ðx1;x2;WÞ� 2

x3
g9ðx1;x3;WÞ� 2

x3
g9ðx2;x3;WÞþ 4

x1x2
g10ðx1;x2;WÞ

� 1

x3
g11ðx1;x3;WÞ� 1

x3
g11ðx2;x3;WÞ� 1

x1x2
g12ðx1;x2;WÞ

�
; (C16a)

TNLO;fin;eu
B;A1;MN¼0ðfxkg;WÞ¼ 2

3
eu

�
23

2
g0ðx1;WÞ�23

2
g0ðx2;WÞþ6g1ðx1;WÞ�6g1ðx2;WÞ�4g2ðx1;WÞþ4g2ðx2;WÞ

þ4x1x2�6x2x3�7x1x3
x1x2x3

g3ðx1;WÞþ�4x1x2þ6x1x3þ7x2x3
x1x2x3

g3ðx2;WÞ�2ðx2�5x3Þ
x1x2x3

g4ðx1;WÞ

þ2ðx1�5x3Þ
x1x2x3

g4ðx2;WÞþ2x3�x1
x1x3

g5ðx1;WÞþx2�2x3
x2x3

g5ðx2;WÞ� 1

x1x2
g6ðx1;WÞþ 1

x1x2
g6ðx2;WÞ

�3g7ðx1;x2;WÞþ3g7ðx2;x1;WÞþg8ðx1;x2;WÞ�g8ðx2;x1;WÞþg8ðx1;x3;WÞ�g8ðx2;x3;WÞ
þ7ðx1�x2Þ

x1x2
g9ðx1;x2;WÞ� 4

x3
g9ðx1;x3;WÞþ 4

x3
g9ðx2;x3;WÞ� 10ðx1�x2Þ

x1x2ðx1þx2Þg10ðx1;x2;WÞ

þ 2

x3ðx1þx3Þg10ðx1;x3;WÞ� 2

x3ðx2þx3Þg10ðx2;x3;WÞþ 1

x3
g11ðx1;x3;WÞ� 1

x3
g11ðx2;x3;WÞ

þ x1�x2
x1x2ðx1þx2Þg12ðx1;x2;WÞ

�
: (C16b)

The contributions to TB;�;MN¼0 which, as can be seen, due to symmetry properties of contributions TB;V1;MN¼0 and

TB;A1;MN¼0,
14 correspond exactly to

14The former is symmetric under x1 $ x2 exchange and the latter antisymmetric, analogous to symmetry properties of V1 and A1.
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TB;�;MN¼0 ¼ TB;V1;MN¼0 � TB;A1;MN¼0: (C17)

3. Summary for proton case

Finally in this section we list the expressions that we
actually use in our numerical calculations of the proton
form factors [see Eqs. (C2)–(C8) for corresponding defi-
nitions]. We have already made use of eu ¼ 2=3 and ed ¼
�1=3.

For MN ¼ 0 the twist-3 LO contribution reads

TLO
B;�;MN¼0ðfxkg; WÞ ¼ 4

3g0ðx1; WÞ þ 2
3g0ðx3; WÞ: (C18)

The NLO contribution proportional to lnð�2
R;1=Q

2Þ is

given by

TNLO;UV
B;�;MN¼0ðfxkg; WÞ ¼ 4½23g0ðx1; WÞ þ 1

3g0ðx3;WÞ�:
(C19)

The NLO contribution proportional to lnð�2
F=Q

2Þ reads

TNLO;IR
B;�;MN¼0ðfxkg; WÞ ¼ 4

�
� 4

3
g0ðx1;WÞ � 2

3
g0ðx3; WÞ � 16

9
g1ðx1; WÞ � 8

9
g1ðx3; WÞ þ 4ð2x3 � x1Þ

9x1x3
g3ðx1;WÞ

þ 2ð2x1 � x3Þ
9x1x3

g3ðx3;WÞ � 4

9x1x2
g4ðx1; WÞ � 2

9x2x3
g4ðx3; WÞ þ 4

9
g7ðx1; x2; WÞ þ 4

9
g7ðx1; x3;WÞ

þ 2

9
g7ðx3; x1; WÞ þ 2

9
g7ðx3; x2; WÞ þ 2ð2x1 þ x3Þ

9x1x3
g9ðx1; x3; WÞ þ 4

9x2ðx1 þ x2Þg10ðx1; x2; WÞ

þ 2

9x2ðx2 þ x3Þg10ðx2; x3; WÞ
�
: (C20)

The finite NLO contribution reads

TNLO;fin
B;�;MN¼0ðfxkg; WÞ ¼ 4

�
� 7

3
g0ðx1;WÞ þ 2

9
g0ðx2; WÞ � g0ðx3; WÞ � 4

3
g1ðx1; WÞ � 2

3
g1ðx3; WÞ þ 8

9
g2ðx1;WÞ

þ 4

9
g2ðx3; WÞ þ 2

9

�
6

x1
þ 2

x2
� 1

x3

�
g3ðx1; WÞ þ 2

9

�
3

x3
� 5

x1

�
g3ðx2;WÞ þ 2

3x3
g3ðx3; WÞ

þ 2ðx2 � 7x3Þ
9x1x2x3

g4ðx1;WÞ � 2ðx1 � 3x3Þ
9x1x2x3

g4ðx2; WÞ � 5

9x2x3
g4ðx3; WÞ þ 2ðx1 � 2x3Þ

9x1x3
g5ðx1; WÞ

þ ðx3 � 2x1Þ
9x1x3

g5ðx3; WÞ þ 2

9x1x2
g6ðx1; WÞ þ 1

9x2x3
g6ðx3; WÞ þ 2

3
g7ðx1; x2; WÞ þ 1

3
g7ðx3; x2; WÞ

� 2

9
g8ðx1; x2; WÞ � 2

9
g8ðx1; x3; WÞ � 1

9
g8ðx3; x1;WÞ � 1

9
g8ðx3; x2; WÞ þ 2

9

�
5

x1
� 2

x2

�
g9ðx1; x2; WÞ

þ 2

9x3
g9ðx1; x3; WÞ � 2

3x3
g9ðx2; x3;WÞ þ ð14x1 � 6x2Þ

9x1x2ðx1 þ x2Þg10ðx1; x2; WÞ

� 2

9x3ðx1 þ x3Þg10ðx1; x3; WÞ þ ð2x2 þ 5x3Þ
9x2x3ðx2 þ x3Þg10ðx2; x3; WÞ � ð2x1 þ x3Þ

9x1x3
g11ðx1; x3; WÞ

� 2

9x2ðx1 þ x2Þg12ðx1; x2; WÞ � 1

9x2ðx2 þ x3Þg12ðx2; x3;WÞ
�
: (C21)

APPENDIX D: IMAGINARY PARTS OF SELECTED
FUNCTIONS

In this section we list the imaginary parts of selected
functions that appear in our calculation.

We start with the well-known result for the logarithmic
function

lnðx� x0 
 i�Þ ¼ lnðjx� x0jÞ 
 i��ðx0 � xÞ: (D1)

Here x, x0, and � are real, and �> 0, � � . All other
results that we list can be derived from (D1).

It follows trivially that

ln 2ðx� x0 
 i�Þ ¼ ½ln2ðjx� x0jÞ � �2�ðx0 � xÞ�

 2i� lnðjx� x0jÞ�ðx0 � xÞ;

(D2)

and higher exponents lnnðx� x0 
 i�Þ, n > 2 can be ob-
tained similarly.
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The other well-known result

1

x� x0 
 i�
¼ P

1

x� x0
� i�ðx� x0Þ

¼ 1

x� x0
½�ðx� x0Þ þ�ðx0 � xÞ�

� i�ðx� x0Þ (D3)

can be obtained by taking a derivative of Eq. (D1) with
respect to x:

1

x� x0 
 i�
¼ d

dx
lnðx� x0 
 i�Þ:

Furthermore, since

1

ðx� x0 
 i�Þn ¼ ð�1Þn�1

ðn� 1Þ!
dn�1

dxn�1

1

x� x0 
 i�
;

it is easy to see that for n � 2

1

ðx� x0 
 i�Þn ¼
1

ðx� x0Þn ½�ðx� x0Þ þ�ðx0 � xÞ�

� i�
ð�1Þn�1

ðn� 1Þ! 
ðn�1Þðx� x0Þ: (D4)

Finally, by making use of

lnðX 
 i�Þ
X 
 i�

¼ 1

2

d

dX
ln2ðX
 i�Þ

ln2ðX
 i�Þ
X 
 i�

¼ 1

3

d

dX
ln3ðX 
 i�Þ;

where X ¼ x� x0 or X ¼ x0 � x, we get

1

�
Im

lnðx� x0 
 i�Þ
x� x0 
 i�

¼ 

�
�ðx0 � xÞ
x� x0

� ðx� x0Þ lnðx0 � xÞ
�
¼ 


��
�ðx0 � xÞ
x� x0

�
þ
� ðx� x0Þ lnðja� x0jÞ

�
; (D5a)

1

�
Im

lnðx0 � x
 i�Þ
x0 � x
 i�

¼ 

�
�ðx� x0Þ
x0 � x

� ðx� x0Þ lnðx� x0Þ
�
¼ 


��
�ðx� x0Þ
x0 � x

�
þ
� ðx� x0Þ lnðjx0 � bjÞ

�
; (D5b)

and

1

�
Im

ln2ðx� x0 
 i�Þ
x� x0 
 i�

¼ 

�
�ðx0 � xÞ 2 lnðx0 � xÞ

x� x0
þ ðx� x0Þ

�
�2

3
� ln2ðx0 � xÞ

��

¼ 

��
�ðx0 � xÞ 2 lnðx0 � xÞ

x� x0

�
þ
þ ðx� x0Þ

�
�2

3
� ln2ðjx0 � ajÞ

��
; (D6a)

1

�
Im

ln2ðx0 � x
 i�Þ
x0 � x
 i�

¼ 

�
�ðx� x0Þ 2 lnðx� x0Þ

x0 � x
þ ðx� x0Þ

�
�2

3
� ln2ðx� x0Þ

��

¼ 

��
�ðx� x0Þ 2 lnðx� x0Þ

x0 � x

�
þ
þ ðx� x0Þ

�
�2

3
� ln2ðjx0 � bjÞ

��
: (D6b)

Note that the right-hand sides of the first lines in (D5) and
(D6) consist of two terms which separately ‘‘blow up’’ for
x ! x0. The sums are finite and in the following lines,
using the usual f gþ prescription

fFðx; x0Þgþ ¼ Fðx; x0Þ � ðx� x0Þ
Z b

a
dzFðz; x0Þ; (D7)

we express them as a manifestly finite sum of two terms. It
is easy to see that�
�ðx0 � xÞ
x� x0

�
þ
¼ �ðx0 � xÞ

x� x0
� ðx0 � xÞ lnðx0 � x0Þ

þ ðx� x0Þ lnðja� x0jÞ;�
�ðx� x0Þ
x0 � x

�
þ
¼ �ðx� x0Þ

x0 � x
� ðx� x0Þ lnðx0 � x0Þ

þ ðx� x0Þ lnðjx0 � bjÞ; (D8)

and similarly for f�ðx� x0Þ 2 lnðx�x0Þ
x0�x gþ and f�ðx0 � xÞ�

2 lnðx0�xÞ
x�x0

gþ. Note that in this section we take x as an

integration variable of the next step of the calculation
and the variable with respect to which the f gþ prescription
has been defined.15

APPENDIX E: LO RESULTS AND LCSRS FOR
MN � 0 CASE

In this section we present LO twist-3 and twist-4 con-
tributions to A and B functions (2.34) based on results

listed in Tables II, III, and IV (CLO;FðiÞ
P�MN

and CLO;FðiÞ
P�q6 coef-

ficients, respectively) which were calculated for MN � 0.
Furthermore, using (2.43) we determine the LCSR contri-
butions to form factors F1ðQ2Þ and F2ðQ2Þ.

15Some similar results but not for the general f gþ prescription
(a ¼ 0) can be found in Appendix A of Ref. [39]. Note the typo
in Ref. [39]: the � function is not written inside the
f gþ prescription.
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Analogously to Eq. (C8), we define

g0ðxi;W;M2
N=Q

2Þ ¼ 1

ðxiW � 1� M2
N

Q2 xið1� xiÞ þ i�Þ
:

(E1)

Note that g0ðxi;WÞ introduced in (C8) corresponds to
g0ðxi;W; 0Þ, i.e., in other words, in (E1) we introduce the
generalization to M2

N � 0. In this calculation we will also
encounter

g20ðxi;W;M2
N=Q

2Þ ¼ 1

ðxiW � 1� M2
N

Q2 xið1� xiÞ þ i�Þ2
:

(E2)

The twist-3 contributions and the twist-4 contributions
corresponding to nucleon DAs V3 and A3 can be expressed
in the form of a convolution:

ALOðQ2; W;M2
N;�

2
FÞ ¼

1

Q2

X
i

TLO
A;FðiÞ ðfxkg; W;M2

N=Q
2Þ

	 FðiÞðfxkg;�2
FÞ;

BLOðQ2; W;M2
N;�

2
FÞ ¼

1

Q2

X
i

TLO
B;FðiÞ ðfxkg; W;M2

N=Q
2Þ

	 FðiÞðfxkg;�2
FÞ; (E3)

where FðiÞ 2 fV1; A1; V3; A3g.
The coefficients CLO;FðiÞ

P�MN
from Table II determine the

hard-scattering twist-3 contributions to the A function

TLO
A;V1

ðfxkg; W;M2
N=Q

2Þ ¼ �2eu½x1g0ðx1; W;M2
N=Q

2Þ
þ x2g0ðx2; W;M2

N=Q
2Þ�;

TLO
A;A1

ðfxkg; W;M2
N=Q

2Þ ¼ 0; (E4)

while the coefficients CLO;FðiÞ
P�q6 determine the hard-scattering

twist-3 contributions to the B function:

TLO
B;V1

ðfxkg; W;M2
N=Q

2Þ ¼ eu½g0ðx1; W;M2
N=Q

2Þ
þ g0ðx2; W;M2

N=Q
2Þ�

� 2edg0ðx3;M2
N=Q

2;WÞ;
TLO
B;A1

ðfxkg; W;M2
N=Q

2Þ ¼ eu½�g0ðx1; W;M2
N=Q

2Þ
þ g0ðx2; W;M2

N=Q
2Þ�: (E5)

Similarly from Table III, the hard-scattering twist-4 con-
tributions to the A function are given by

TLO
A;V3

ðfxkg;W;M2
N=Q

2Þ ¼ 3eu½x1g0ðx1; W;M2
N=Q

2Þ
þ x2g0ðx2;W;M2

N=Q
2Þ�

þ 2edx3g0ðx3; W;M2
N=Q

2Þ;
TLO
A;A3

ðfxkg;W;M2
N=Q

2Þ ¼ eu½�x1g0ðx1; W;M2
N=Q

2Þ
þ x2g0ðx2;W;M2

N=Q
2Þ�; (E6)

while the contributions to the B function read

TLO
B;V3

ðfxkg; W;M2
N=Q

2Þ ¼ 0;

TLO
B;A3

ðfxkg; W;M2
N=Q

2Þ ¼ 0:
(E7)

The contributions listed in Table IV contribute to func-
tions A and B according to

ALOðQ2; W;MN;�
2
FÞ

¼ 1

Q2

X
i

X3
k¼1

Z 1

0
dxkT

LO

A;FðiÞ
123

ðxk;W;M2
N=Q

2Þ ~FðiÞ
123ðxkÞ;

BLOðQ2; W;MN;�
2
FÞ

¼ 1

Q2

X
i

X3
k¼1

Z 1

0
dxkT

LO

B;FðiÞ
123

ðxk;W;M2
N=Q

2Þ ~FðiÞ
123ðxkÞ;

(E8)

where ~FðiÞ
123 2 f ~VðiÞ

123;
~AðiÞ
123g—see corresponding definitions

(3.15) and (3.16).
The hard-scattering contributions to A then read

TLO
A;V123

ðx1;W;M2
N=Q

2Þ ¼ eu½g20ðx1; W;M2
N=Q

2Þ
� g0ðx1; W;M2

N=Q
2Þ�;

TLO
A;V123

ðx2; W;M2
N=Q

2Þ ¼ eu½g20ðx2; W;M2
N=Q

2Þ
� g0ðx2; W;M2

N=Q
2Þ�;

TLO
A;V123

ðx3; W;M2
N=Q

2Þ ¼ 2ed½g20ðx3; W;M2
N=Q

2Þ
þ g0ðx3; W;M2

N=Q
2Þ�;

(E9)

and

TLO
A;A123

ðx1; W;M2
N=Q

2Þ ¼ �eu½g20ðx1; W;M2
N=Q

2Þ
þ g0ðx1; W;M2

N=Q
2Þ�;

TLO
A;A123

ðx2; W;M2
N=Q

2Þ ¼ eu½g20ðx2; W;M2
N=Q

2Þ
þ g0ðx2; W;M2

N=Q
2Þ�;

TLO
A;A123

ðx3; W;M2
N=Q

2Þ ¼ 0: (E10)

The hard-scattering contributions to B are given by
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TLO
B;V123

ðx1; W;M2
N=Q

2Þ ¼ eu
M2

N

Q2
x1g

2
0ðx1; W;M2

N=Q
2Þ;

TLO
B;V123

ðx2; W;M2
N=Q

2Þ ¼ eu
M2

N

Q2
x2g

2
0ðx2; W;M2

N=Q
2Þ;

TLO
B;V123

ðx3; W;M2
N=Q

2Þ ¼ 2ed
M2

N

Q2
x3g

2
0ðx3; W;M2

N=Q
2Þ;

(E11)

and

TLO
B;A123

ðx1; W;M2
N=Q

2Þ ¼ �eu
M2

N

Q2
x1g

2
0ðx1; W;M2

N=Q
2Þ;

TLO
B;A123

ðx2; W;M2
N=Q

2Þ ¼ eu
M2

N

Q2
x2g

2
0ðx2; W;M2

N=Q
2Þ;

TLO
B;A123

ðx3; W;M2
N=Q

2Þ ¼ 0: (E12)

ForMN ¼ 0 there are no contributions toA since in the
decomposition of the correlation function (2.34) A is
multiplied by MN . Moreover, in the limit MN ! 0 only
the twist-3 contributions to B, given in (E5), ‘‘survive’’
and take the form (C9) and (C10). By taking MN � 0 but
M2

N ¼ 0 [corresponds to the first two terms in the expan-
sion (2.44)], one is left with the same twist-3 contribution
to B [(E5) with M2

N ¼ 0, i.e., (C9) and (C10)] and twist-3

and twist-4 contributions toA: (E4), (E6), (E9), and (E10)
taken withM2

N ¼ 0. Note that in comparison to twist-3, the
twist-4 contributions to B are suppressed by the M2

N=Q
2

factor [see (E7), (E11), and (E12)]. This is not the case for
A [see (E4), (E6), (E9), and (E10)] where there is no such
additional suppression factor between twist-3 and twist-4
contributions. ForM2

N � 0 the higher twists also contribute
(twist-5, . . .), which we do not consider here but just refer
to the results presented in, for example, Ref. [28]
(Appendix A). From these results one can see that both
twist-4 and twist-5 contributions to B are suppressed by
M2

N=Q
2 in comparison to twist-3. ForA, twist-5 and twist-

6 contributions are suppressed byM2
N=Q

2 in comparison to
twist-3 and twist-4 contributions (remember that there is an
additional factor MN in front of A).
According to Eq. (2.43) and analogously to (5.5), we can

now formulate the ‘‘rules’’ for separate terms contributing
to TLO

A and TLO
B leading to separate terms contributing to F1

and F2, respectively. The contributions (E4)–(E7) can be
conveniently expressed as a sum of the terms of the general
form

g0ðfxkg; W;M2
N=Q

2ÞfðfxkgÞ; (E13)

and they then contribute as

2F
LO;fV1;A1;V3;A3g
1 ðQ2;�2

FÞ
FLO;fV1;A1;V3;A3g
2 ðQ2;�2

FÞ

0
@

1
A: 1

�1�

Z
Dx

Z ðs0þQ2Þ=Q2

1
dwe�ðw�1ÞQ2=M2

BþM2
N=M

2
B Im½g0ðfxkg;w;M2

N=Q
2Þ�fðfxkgÞFðiÞðfxkg;�2

FÞ

! 1

�1

Z 1

x0

dxi
Z 1�xi

0
dxje

�ð1�xiÞQ2=ðxiM2
BÞþxiM

2
N=M

2
B

�
� 1

xi

�
fðfxi;xj;1� xi� xjgÞFðiÞðfxi;xj;1� xi� xjg;�2

FÞ: (E14)

Here FðiÞ 2 fV1; A1; V3; A3g and

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ s0 �M2

NÞ2 þ 4M2
NQ

2
q

� ðQ2 þ s0 �M2
NÞ

2M2
N

: (E15)

Note that limM2
N!0x0 ¼ Q2=ðQ2 þ s0Þ, i.e., one recovers the lower limit from Eq. (5.5).

The contributions (E9)–(E12) consist of the terms of the form

g0ðxi;W;M2
N=Q

2ÞfðxiÞ and g20ðxi;W;M2
N=Q

2ÞfðxiÞ: (E16)

Analogously to (E14), the former contribute as

2F
LO;fV123;A123g
1 ðQ2;�2

FÞ
FLO;fV123;A123g
2 ðQ2;�2

FÞ

0
@

1
A: 1

�1�

Z 1

0
dxk

Z ðs0þQ2Þ=Q2

1
dwe�ðw�1ÞQ2=M2

BþM2
N=M

2
B Im½g0ðxk; w;M2

N=Q
2Þ�fðxkÞ ~FðiÞ

123ðxk;�2
FÞ

! 1

�1

Z 1

x0

dxke
�ð1�xkÞQ2=ðxkM2

BÞþxkM
2
N=M

2
B

�
� 1

xk

�
fðxkÞ ~FðiÞ

123ðxk;�2
FÞ: (E17)

The terms with g20 take a slightly more complicated form
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2FLO;fV123;A123g
1 ðQ2;�2

FÞ
FLO;fV123;A123g
2 ðQ2;�2

FÞ

0
@

1
A: 1

�1�

Z 1

0
dxk

Z ðs0þQ2Þ=Q2

1
dwe�ðw�1ÞQ2=M2

BþM2
N=M

2
B Im½g20ðxk; w;M2

N=Q
2Þ�fðxkÞ ~FðiÞ

123ðxk;�2
FÞ

! 1

�1

�
e�ðs0�M2

NÞ=M2
B

Q2

Q2 þ x20M
2
N

fðx0Þ ~FðiÞ
123ðxk ¼ x0;�

2
FÞ

þ Q2

M2
B

Z 1

x0

dxke
�ð1�xkÞQ2=ðxkM2

BÞþxkM
2
N=M

2
B

�
1

x2k

�
fðxkÞ ~FðiÞ

123ðxk;�2
FÞ
�
; (E18)

where ~FðiÞ
123 2 f ~VðiÞ

123;
~AðiÞ
123g.

We note that these results are in agreement with the somewhat differently derived expressions from Ref. [28],
[Eqs. (A.15)–(A.18), [28] ]. We refer to that paper for higher-twist contributions.
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