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We present the Bjorken integral extracted from Jefferson Lab experiment EG1b for 0:05<Q2 <

2:92 GeV2. The integral is fit to extract the twist-4 element fp�n
2 which appears to be relatively large and

negative. Systematic studies of this higher twist analysis establish its legitimacy atQ2 around 1 GeV2. We

also performed an isospin decomposition of the generalized forward spin polarizability �0. Although its

isovector part provides a reliable test of the calculation techniques of chiral perturbation theory, our data

disagree with the calculations.
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I. INTRODUCTION

The Bjorken sum rule [1] relates an integral over the spin
distributions of quarks inside the nucleon to its axial
charge. This relation has been essential for understanding
the nucleon spin structure and establishing, via its Q2

dependence, that quantum chromodynamics (QCD) de-
scribes the strong force when spin is included. The
Bjorken integral has been measured in polarized deep
inelastic lepton scattering (DIS) at SLAC, CERN and
DESY [2–7] and at moderate four-momentum transfer
squared Q2 at Jefferson Lab (JLab) [8], see e.g. Ref. [9]
for a review. The variable Q2 is inversely related to the
space-time scale at which the nucleon is probed. In the
perturbative QCD (pQCD) domain (high Q2) the sum rule
reads [10]
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where gp1 and g
n
1 are the spin-dependent proton and neutron

structure functions, gA is the nucleon axial charge that
controls the strength of neutron �-decay, �sðQ2Þ is the
strong coupling strength, and x ¼ Q2=2M�, with � the
energy transfer and M the nucleon mass. The bracket
term (�2, known as the leading twist term) is mildly
dependent on Q2 due to pQCD soft gluon radiation. The

other term contains nonperturbative power corrections
(higher twists). These are quark and gluon correlations
that need to be understood to describe the nucleon structure
away from the large Q2 limit. The Q2-dependence of
�2iðQ2Þ is calculable in principle from pQCD. In practice,
this has been done for �2 and �4 only [11]. We stress that,
as is almost always the case with pQCD, although the Q2

dependences are known, the absolute values of �2 and �4

are unknown and need to be measured or computed by
nonperturbative means. Besides its contribution to estab-
lishing pQCD (at high Q2), the Bjorken sum rule can be
used to extract higher twists, to check lattice QCD calcu-
lations (at moderate Q2), and to test effective theories of
the strong force (at low Q2). In addition, Bjorken sum data
and phenomenological models at lower Q2 can be de-
scribed with a nearly constant ‘‘effective strong coupling’’
�s;g1 [12,13]. The lack of Q2 dependence of �s;g1 opens

new avenues for nonperturbative QCD calculations using
the AdS/CFT correspondence [14].
The elastic contribution to the Bjorken sum is usually

not included because the generalized Bjorken sum rule is
derived at large Q2 where such contribution is negligible.
Furthermore, the Bjorken sum rule naturally connects to
the Gerasimov-Drell-Hearn (GDH) sum rule [15] in which
the elastic is inexistent. Consequently, when presenting the
experimental measurement of the Bjorken sum, the elastic
contribution will not be included. We refer to Ref. [16] for
a discussion on whether to include or not the elastic con-
tribution to the GDH sum rule. However, for higher twist
analysis, all reactions should be included for a meaningful
higher twist extraction [16–18]. Therefore, in the part of
the paper discussing higher twist extraction, the elastic
contribution to the Bjorken sum will be added.
In this paper, new data from the JLab CLAS EG1b

experiment [19–21] taken on polarized proton and deu-
teron targets are used to extract the Bjorken integral over
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an extended Q2 range: 0:05<Q2 < 2:92 GeV2 compared
to the previous JLab range: 0:15<Q2 < 1:5 GeV2 [8].

The extension down to Q2 ¼ 0:05 GeV2 allows us to
compare to chiral perturbation theory (�PT) calculations
in a domain where the chiral approximation should be
valid. The moderateQ2 range had been precisely measured
[8]. The new data set, of equivalent precision, provides a
useful check. In particular, it verifies the neutron results,
which come mostly from 3He in Ref. [8] and from the
deuteron in this paper. At larger Q2 ( * 1 GeV2, where
Eq. (1) holds), higher twists can now be studied with a
statistical precision typically improved by a factor of 2.
Previous work [8] has shown the necessity of precise Q2

mapping at moderate Q2 ( * 1 GeV2) because of the
surprisingly small size of the overall higher twist effect.
One might be tempted to lower the Q2 values at which the
analysis is done [see Eq. (1)] but this is not reliable due to
the fast 1=Q2i�2 rise of twist i contributions at low Q2 and
to the increasing uncertainty of the evolution of the twist-2
parts. The main contributor at low Q2 to this uncertainty is
the strong coupling constant �sðQ2Þ.

The Bjorken integral is advantageous compared to the
individual moments �p

1 and �n
1 because of simplifications

arising from its nonsinglet (p� n) nature: at moderate Q2

lattice QCD calculations are easier and more reliable be-
cause disconnected diagrams, which cannot be easily com-
puted on the lattice, cancel out. At higher Q2, the (p� n)
simplification provides a sum rule (the Bjorken sum rule)
based on more solid grounds than the sum rules for indi-
vidual nucleons (the Ellis Jaffe sum rules [22] that neces-
sitate additional assumptions). At low Q2, the (p� n)
subtraction cancels the�1232 resonance contribution which
makes the �PT calculations significantly more reliable
[23]. By a similar argument, the transverse-longitudinal
polarizability �LT [9], a higher moment of spin structure
functions, also provides a reliable test of �PT computa-
tions. [In that case, the �1232 contribution is suppressed at
low Q2 because the N-� transition is mostly transverse,
making the longitudinal-transverse (LT) interference term
very small.] Nevertheless, calculations based on �PT and
data for �LT on the neutron [24] strongly disagree. This
calls for more low Q2 studies, especially the yet unmeas-
ured �p

LT [25]. The data discussed in this paper were taken
with a longitudinally polarized target and hence cannot be
used to extract �p

LT. However, the generalized forward spin
polarizability �0 can be obtained and, just like the Bjorken
integral, its isovector part �p

0 � �n
0 offers the same advan-

tages as �LT for checking the calculation techniques of
�PT. We will also report on these results.

II. BJORKEN SUM EXTRACTION AND
COMPARISON WITH CHIRAL PERTURBATION

CALCULATIONS

The measurements of structure functions gp1 and gd1 are
described in Refs. [19–21]. The data cover an invariant

mass range up to W ¼ 3 GeV for 0:054 � Q2 �
2:92 GeV2. Since experimental moments are integrated
over a finite W range, the data have to be supplemented
by models for large W. We used the model described in
Ref. [19] down to x ¼ 0:001. This part is known from DIS
experiments. The rest is determined using a Regge parame-
trization [8] which was compared to that of Bass and
Brisudova [26] and found consistent with it. A parameteri-
zation was also used to estimate the contributions between
pion threshold (1.08 GeV) and 1.15 GeV [19].
The Bjorken integral is obtained from �p

1 and �d
1 assum-

ing:

�p�n
1 ¼ 2�p

1 � �d
1=ð1� 1:5!dÞ;

with the deuteron D-state probability !d ¼ 0:05� 0:01
[27]. The data are given in Table I (a more detailed table is
given in [28]) and shown in Fig. 1. The elastic contribution
(x ¼ 1) is excluded. Data from SLAC E143 [3], HERMES
[7], JLab CLAS EG1a (proton and deuteron), and JLab
Hall A E94010 (neutron from 3He) combined with CLAS
EG1a (proton) [8] are also shown for comparison.
There is excellent agreement between the Bjorken inte-

gral with the neutron extracted from the deuteron (filled
circles and open squares) and from 3He (open circles). The
neutron spin structure functions extracted from the deu-
teron and from 3He agree at moderate and large Q2.
However, for Q2 below a few tenths of a GeV2, nuclear
effects beyond those accounted for in the convolution

TABLE I. The measured (�p�n
1;meas) and total (�p�n

1;tot ) Bjorken
integrals for different Q2 points (in GeV2). The experimental
systematic uncertainty 	syst

meas is given in the 3rd column. Total
systematics uncertainty, including the low and large-x extrapo-
lations, (	syst) and statistical uncertainty (	stat) on �p�n

1;tot are

given in the 5th and 6th columns.

Q2 �p�n
1;meas 	

syst
meas �p�n

1;tot 	syst 	stat

0.054 0.0028 0.0105 0.0110 0.0119 0.0078

0.078 �0:0085 0.0112 0.0019 0.0134 0.0076

0.101 0.0076 0.0105 0.0206 0.0134 0.0114

0.132 0.0129 0.0124 0.0296 0.0158 0.0089

0.188 0.0209 0.0181 0.0464 0.0223 0.0073

0.268 0.0155 0.0152 0.0541 0.0218 0.0048

0.382 0.0197 0.0139 0.0750 0.0229 0.0038

0.496 0.0184 0.0110 0.0907 0.0225 0.0045

0.592 0.0318 0.0143 0.1027 0.0228 0.0052

0.707 0.0513 0.0174 0.0945 0.0201 0.0151

0.844 0.0507 0.0157 0.1021 0.0193 0.0174

1.01 0.0656 0.0152 0.1236 0.0200 0.0156

1.20 0.0628 0.0161 0.1307 0.0192 0.0145

1.44 0.0718 0.0141 0.1522 0.0186 0.0089

1.71 0.0695 0.0129 0.1605 0.0182 0.0069

2.05 0.0616 0.0118 0.1678 0.0177 0.0056

2.44 0.0458 0.0098 0.1666 0.0167 0.0045

2.92 0.0483 0.0079 0.1789 0.0106 0.0035
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method employed to extract the neutron [29] may become
large [30]. Therefore, at low Q2 one needs both the deu-
teron and 3He data to ensure a reliable neutron extraction.
Nuclear effects in the deuteron are weaker, but there is an
unsuppressed contribution from the proton. On the other
hand, 3He is more tightly bound, but the polarized proton
contribution is largely suppressed. Consequently, the un-
certainty due to nuclear effects is mostly of different origin
in the deuteron and 3He, which makes the two nuclei
complementary. The agreement between the deuteron
and 3He results is also encouraging for the interpretation
of the low Q2 3He and the deuteron data (Q2 >
0:015 GeV2) that will be available shortly, respectively,
from Jefferson Lab’s Hall A [31] and B [32]. The data also
agree well with the SLAC and HERMES experiments and
with the two phenomenological models shown in Fig. 1.
The model of Burkert and Ioffe [33] (continuous black
curve) is a meson-dominance-based extrapolation of DIS
data supplemented by a parametrization of the resonance
contribution. The other model (Soffer-Teryaev [34],
dashed red curve) uses the smoothness of g1 þ g2 with
Q2 to extrapolate DIS data at lower Q2.

At moderate Q2, we observe a strong variation of the
Bjorken integral, in contrast to the high Q2 region.

Together with our data at the lowest Q2 points, the kine-
matic constraint �1 ! 0 when Q2 ! 0 suggests a small
Q2-dependence of �p�n

1 at low Q2 as well. This would
agree with the fact that the �1 slope at Q

2 ’ 0 is given by
the generalized GDH sum rule which predict a small
Q2-dependence.
At low Q2 the data are consistent up to Q2 ’ 0:2 GeV2

with the �PT calculations of Bernard et al. [35] and up to
Q2 ’ 0:35 GeV2 for those of Ji et al. done in the heavy
baryon approximation [36]. The range of validity of the
�PT calculations seems larger than of individual nucleons
[9], [21] possibly because the �1232 resonance is sup-
pressed in the Bjorken integral [23]. This result, however,
is not trivial: Good agreement was expected between �LT

and �PT results since the �1232 is strongly suppressed at
low Q2 for �LT. However, its measurement for the neutron
[24] disagrees strongly with �PT calculations.
To quantitatively compare with �PT calculations, we fit

our results up to a maximum Q2 ranging from 0.30 to
0:50 GeV2 (fits on lower Q2 ranges are imprecise, and
higher Q2 data may lie out of the region of validity for
�PT). We included the data from Ref. [8] in the fit. Our fit
form is

�p�n
1 ¼ 
2

n � 
2
p

8M
Q2 þ aQ4 þ bQ6 (2)

in which 
 is the anomalous moment of the nucleon and a
and b are fit parameters. The first term in Eq. (2) stems
from the Gerasimov-Drell-Hearn sum rule [9]. We find
a ¼ 0:80� 0:07ðstatÞ � 0:23ðsystÞ and b ¼ �1:13�
0:16ðstatÞ � 0:39ðsystÞ with �2=dof ¼ 1:50. The Q4 term
agrees well with the results from Ji et al. (a ¼ 0:74) but not
with those of Bernard et al. (a ¼ 2:4). The fit underscores
the importance of the Q6 term (not calculated yet in �PT).
This was also noticed for �p

1 and �d
1 [21].

At high Q2, the leading twist pQCD calculation is given
by the bracket term of Eq. (1) and is represented by the
gray band in Fig. 1. It agrees reasonably well with the data.
This implies that the total higher twist contribution is
relatively small even down to Q2 � 1 GeV2 where one
would expect higher twist contributions to be significant.
Higher twists, which measure parton correlations, are

weighted by 1=Qðt�2Þ (with t being the twist number) and
are related to the confinement mechanisms and to scatter-
ing off coherent quarks. Because of these reasons, it was
initially expected that higher twists would play an impor-
tant role at Q2 & 1 GeV2. Higher twists can be positive or
negative but there is no fundamental reason to expect a
well-tuned cancellation of different terms in the higher
twist series that would make the overall higher twist con-
tribution small. However, this seems to be the case experi-
mentally, at least aroundQ2 � 1 GeV2. One of the aims of
the higher twist analysis reported here is to establish
whether higher twists are intrinsically small, or whether
the terms in the higher twist series conspire to cancel.

Q2(GeV 2)

Γ 1
p-

n
EG1b
JLab Hall A E94010/CLAS EG1a
CLAS EG1a
HERMES
E143 E155
pQCD leading twist

Burkert-Ioffe
Soffer-Teryaev
(2004)

0

0.05

0.1

0.15

0.2

10-1 1

FIG. 1 (color online). The Bjorken integral �p�n
1 ðQ2Þ. The

solid blue circles give the results from this work with the
horizontal band giving the systematic uncertainties. Other sym-
bols show the data from experiments E143 [3] (open diamonds),
E155 [5] (open star), HERMES [7] (open triangles), and JLab [8]
(open circles and open squares). For those, the error bars
represent the quadratic sum of the statistic and systematic
uncertainties. The gray band represents the leading-twist
NNLO pQCD calculation. The curves correspond to �PT cal-
culations ([35,36]) and phenomenological models ([33,34]).
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III. HIGHER TWIST ANALYSIS

The first higher twist correction term in Eq. (1) is [11]:

�p�n
4 ¼ M2

9
ðap�n

2 þ 4dp�n
2 þ 4fp�n

2 Þ; (3)

where a2 and d2 are known. They are given by moments of
the leading twist part of g1 and the twists 2 and 3 parts of
g2: a2 ¼

R
1
0 dxðx2g1Þ and d2 ¼

R
1
0 dxx

2ð2g1 þ 3g2Þ. The
twist-4 term that we wish to extract is fp�n

2 .

To perform a higher twist analysis, the elastic contribu-
tion (x ¼ 1) to �p�n

1 is added. The moment �p�n
1 which

includes the elastic contribution estimated from form fac-
tor parameterizations [37] is shown in Fig. 2. In Eq. (1), �s

is computed up to next to leading order. A fit of polarized
quark distributions [38] yields ap�n

2 ¼ 0:031� 0:010 at

Q2 ¼ 1 GeV2, whereas dp�n
2 ¼ �0:007� 0:010 is ob-

tained from Ref. [5,39] evolved to 1 GeV2. The EG1b
data on �p�n

1 , together with the world’s data, can then be

fit to extract fp�n
2 using Eqs. (1) and (3). To account for

twists greater than rank 4, we include a coefficient
�p�n

6 =Q4. For consistency, former data on �p�n
1 were

reanalyzed using the same model as used in this paper to
extrapolate to low x. For both JLab data sets (Ref. [8] and
the present data), the point-to-point correlated uncertain-
ties have been separated from the uncorrelated ones. The
latter are added in quadrature to the statistical uncertain-

ties. The correlated systematics are propagated indepen-
dently, as is the uncertainty arising from �s. The result
of the fit done in the Q2 range from 0.66 to 10:0 GeV2

is fp�n
2 ðQ2 ¼ 1 GeV2Þ ¼ �0:101� 0:027�0:063

0:071 with

�6=M
4 ¼ 0:084� 0:011�0:022

0:026 . The first uncertainty is

the quadratic sum of the statistical and the point-to-point
uncorrelated uncertainties. The second one is the point-to-
point correlated uncertainty. Comparing the values of
fp�n
2 , ap�n

2 , and dp�n
2 at Q2 ¼ 1 GeV2, we see that

�p�n
4 � 0:4fp�n

2 GeV2. The result for fp�n
2 is plotted in

Fig. 3 (square) along with the result from Ref. [8] (triangle)
and theoretical predictions (In addition to f2 and �6, the
third fit parameter mentioned in Figs. 2 and 3 is ga, which
was free to vary within its experimental uncertainty). As
discussed in the introduction, only theQ2 dependence of f2
is known from pQCD. The absolute value can be computed
solely from nonperturbative means and is difficult to obtain
with Lattice QCD. For these reasons, only phenomenologi-
cal models are available for comparison with our results.
At Q2 ¼ 1 GeV2, the leading twist term �p�n

2 and
higher twist terms �p�n

4 and �p�n
6 are of similar sizes

but with alternating signs and with �p�n
4 and �p�n

6 mostly

canceling each other.
To study the systematics associated with this higher

twist analysis and to check the legitimacy of our procedure
at low Q2, we conducted several tests:
(i) We repeated the fit for several Q2 ranges;
(ii) We reiterated this work adding a �p�n

8 =Q6 term to

study the convergence of the twist series (the result-
ing fp�n

2 is shown in Fig. 3 by the solid circle);

(iii) We investigated the dependence on the low x
extrapolation using different Regge-based
parameterizations;

(iv) We extensively studied the stability of the fit for
different choices of number of parameters and of
Q2 ranges by using different models that reproduce
the data reasonably well. We used ranges from
0:47<Q2 < 10 to 3<Q2 < 10 GeV2 and we fit
with functional forms with highest term from
�6=Q

4 to �12=Q
10.

Q2(GeV 2)

Γ 1
p-

n

JLab CLAS EG1b
JLab Hall A E94010/CLAS EG1a
JLab CLAS EG1a
HERMES
E143
E155
SMC

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

1 10

FIG. 2 (color online). World data on the Bjorken integral,
including the elastic contribution. The error bars represent the
quadratic sum of the statistic and point-to-point uncorrelated
systematic uncertainties for the JLab data, and the quadratic sum
of the statistic and full systematic uncertainties for the rest of the
data. The continuous line is our three parameter fit in the Q2

range from 0.66 to 10 GeV2.

FIG. 3 (color online). fp�n
2 ðQ2 ¼ 1 GeV2Þ for the fits per-

formed over the 0:66<Q2 < 10 GeV2 range for this study
and Ref. [8] (JLab A/B). Calculations [40,42,43,50,51] are
shown by the bands. Sum rule (1) refers to Ref [50] and (2) to
Ref [40].
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All observations supports the validity of our extractions.
See Ref. [28] for details.

IV. COLOR POLARIZABILITIES

Combination of higher twist coefficients can be inter-
preted in terms of color polarizabilities, which describe the
response of the color magnetic and electric fields to the
spin of the nucleon. The color electric and magnetic polar-
izabilities [40,41] are �E ¼ 2

3 ð2d2 þ f2Þ and �B ¼ 1
3 �

ð4d2 � f2Þ. Using the value of fp�n
2 extracted from the

fit with Q2
min ¼ 0:66, we obtain �p�n

E ¼ �0:077� 0:050
and �p�n

B ¼ 0:024� 0:028. The point-to-point correlated
and uncorrelated uncertainties on f2 were added in quad-
rature. Our higher twist analysis yields jfp�n

2 j � jdp�n
2 j (a

feature predicted by models [42,43]). Consequently
�p�n
E ’ 2

3 f
p�n
2 and �p�n

B ’ � 1
3 f

p�n
2 .

V. ELECTROMAGNETIC POLARIZABILITY

We now turn to the generalized forward spin polariz-
ability �0. Spin polarizabilities characterize the coherent
response of the nucleon to photons. They are defined using
low-energy theorems in the form of a series expansion in
the photon energy. The first term of the series comes from
the spatial distribution of charge and current (form factors)
while the second term results from the deformation of these
distributions induced by the photon (polarizabilities).
Hence, polarizabilities are as important as form factors in
understanding coherent nucleon structure. Generalized
spin polarizabilities describe the response to virtual pho-
tons. The low-energy theorem defining the generalized
forward spin polarizability is:

<e½gTTð�;Q2Þ � gpoleTT ð�;Q2Þ�

¼
�
2�

M2

�
ITTðQ2Þ�þ �oðQ2Þ�3 þOð�5Þ; (4)

where gTT is the spin-flip doubly-virtual Compton scatter-
ing amplitude, and ITT is the coefficient of theOð�Þ term of
the Compton amplitude which can be used to generalize
the GDH sum rule to nonzero Q2 [9,15]. We have
ITTðQ2 ¼ 0Þ ¼ 
=4. In practice �0 can be obtained from
a sum rule which has a derivation akin to that of the GDH
sum rule

�0 ¼ 16�M2

Q6

Z x0

0
x2
�
g1 � 4M2

Q2
x2g2

�
dx; (5)

where g2 is the second spin structure function and � is the
fine structure constant. Similar relations define the gener-
alized longitudinal-transverse polarizability �LT:

<e½gLTð�;Q2Þ � gpoleLT ð�;Q2Þ�

¼
�
2�

M2

�
QILTðQ2Þ þQ�LTðQ2Þ�2 þOð�4Þ; (6)

�LT ¼ 16�M2

Q6

Z x0

0
x2ðg1 þ g2Þdx: (7)

where gLT is the longitudinal-transverse interference am-
plitude, and ILT is the coefficient of the Oð�Þ term of the
Compton amplitude. Details on the derivation of Eqs. (4)–
(7)- can be found in [9,44]. The isovector quantity �p

0 � �n
0

eliminates the �1232 resonance contribution [23], and
therefore offers the same advantage as �LT when compar-
ing to calculations based on �PT. Higher moments are
advantageous because they are essentially free of the un-
certainty associated with the low x extrapolation. An iso-
spin separation of �LT or �0 may help us to understand why
the �PT calculations fail to describe them. For example,
the t-channel exchange of axial-vector mesons (short range
interactions), which are not included in the calculations,
could be identified if one of the isospin components agrees
with the �PT calculations while the other disagrees.
We formed �p

0 � �n
0 using the proton data from EG1b

[21] and the neutron data from JLab experiment E94010
[24]. The 3He data [24] are more precise than the deuteron
data [21] that contain contributions from quasielastic and
two-body break-up, which are not resolved by the CLAS
spectrometer but are large at low Q2. (This difficulty
prevented �n

0 from being obtained from the EG1b data

[21]). EG1b goes to lower Q2 than E94010, but the cover-
age of E94010 is sufficient for our investigation. The
resulting �p

0 � �n
0 is shown in Fig. 4 (top plot) together

γ 0
p-

n  
(1

0
)

-4
fm

4

Kao et al.

Bernard et al.

MAID

Q2(GeV2)

γ 0
p+

n  
(1

0
)

-4
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4

Kao et al.

Bernard et al.

MAID

-6
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-2

0
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6
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6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 4. The isovector �p
0 � �n

0 (top) and isoscalar �p
0 þ �n

0

(bottom) generalized forward spin polarizabilities together
with �PT-based calculations and the results from the MAID
model. The proton and neutron data are, respectively, from
CLAS [21] and Hall A [24]
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with the predictions from Bernard et al. at OðP4Þ [35] and
Kao et al. at OðP4Þ [45]. Experimental values are given in
Table II. We also plot the result from the 2003 MAID
model [46]. As is true for �p

0 [21] and �n
0 [24], �PT

calculations disagree with �p�n
0 as well. Clearly, the dis-

crepancy seen for �p
0 and �n

0 cannot solely be due to the

�1232 resonance. The MAID model, which provides a
relatively good description of �p

0 and �n
0 , disagrees mildly

for their difference at the lowest Q2 point. Complementary
to this study, we formed the isoscalar part �p

0 þ �n
0 and

compared it to the data (Fig. 4 bottom plot). The gray band
on the Bernard et al. result is due to the uncertainty from
the �1232 resonance. The MAID model provides a good
description, whereas the �PT-based calculations still dis-
agree. A disagreement in the �PT calculation of one of the
isospin components of �0 along with agreement for the
other component might have allowed us to identify a
missing piece, such as, for example, a short range interac-
tion due to heavy mesons, in the �PT calculations.
However, the discrepancy between data and �PT calcula-
tions for both isospin components does not allow us to
draw such conclusion. This suggests that the nonresonant
background is responsible.

VI. SUMMARYAND CONCLUSION

The Bjorken integral was extracted from polarized pro-
ton and deuteron data for 0:054<Q2 < 2:92 GeV2. The
results for intermediate Q2 (the parton to hadron transition
domain) are consistent with previous JLab data in which
the neutron information was extracted from polarized 3He.
This region exhibits a strong Q2-behavior, both from
pQCD evolution and from some higher-twist effects. On
the other hand, in the high-Q2 domain the Bjorken integral
is rather flat. The data together with kinematic constraints
at Q2 ! 0 also suggest a small Q2 dependence, in quali-
tative agreement with the generalized GDH sum
predictions.

At the lowestQ2 accessed by our data, �PT calculations
agree better with the Bjorken integral (an isovector quan-
tity in which the �1232 resonance does not contribute) than
with moments on individual nucleons. This is not trivial

since the �PT calculations fail to describe the generalized
spin polarizability �LT in which the �1232 is also
suppressed.
Data on the generalized forward spin polarizability �p�n

0

are not reproduced by the �PT-based calculations even
though the �1232 does not contribute.
It is clear from previously published data on �LT and our

analysis of �0 that the �1232 resonance contribution is not
responsible for the discrepancy between data and calcula-
tions. The discrepancy between the �PT calculations and
the data occurs in all isospin channels, which makes it less
likely that it is due to the contribution from heavier mesons
in the chiral expansion.
The low Q2 �PT regime has been recently mapped by

two additional dedicated experiments in CLAS using
polarized proton [47] and deuteron targets [32] and one
in Hall A using polarized 3He [31]. These experiments will
provide further precision tests of �PT calculation
techniques.
The moderate Q2 data (1 to 3 GeV2) allow us to extract

higher twist contributions and color polarizabilities. The
twist-4 coefficient was found to be large: fp�n

2 ’ �0:1 at

Q2 ¼ 1 GeV2 (compare to �p�n
1 ¼ 0:125, ap�n

2 ¼ 0:031
and dp�n

2 ¼ �0:007). The uncertainty on fp�n
2 remains

relatively large ( � 70%); however, we have completed
several systematic studies both with the existing data as
well as simulated data (with no statistic fluctuations) that
indicate our result is stable. The sign and magnitude of
fp�n
2 agree with a recent analysis performed on g1 directly

[48]. The observation that higher twist effects on �p�n
1 are

small overall does not imply that the net higher twist effect
on the structure function gp�n

1 is small at any x. It is

important to study the x dependence of the higher twists,
as is done in Ref. [48]. That jf2j is significantly larger than
d2, and that f2 < 0, agrees well with the prediction of the
two-scale model [43]. Overall the net effect of higher
twists is small, because of a cancellation between the twist
4 and twist 6 terms that are of similar sizes but opposite
signs. This trend has also been seen for higher twist analy-
ses done on the unpolarized structure function F2 [49].
This can be interpreted within a vector dominance frame-
work: the oscillating signs arise from the development in
series of the vector meson propagator / 1=ðQ2 �M2

mÞ
where Mm is the meson mass.
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TABLE II. Isovector and isoscalar parts of the generalized
forward spin polarizability �0.

Q2 ðGeV2Þ �p�n
0 �pþn

0 Stat. Syst.

0.1 1.53 �2:51 0.120 0.490

0.26 0.470 �0:869 0.021 0.177

0.42 0.159 �0:241 0.006 0.058

0.58 0.0835 �0:0845 0.0040 0.0233

0.74 0.0441 �0:0299 0.0037 0.0090

0.9 0.0217 �0:0103 0.0016 0.0040
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