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We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two

flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta

function, which governs the change in the running coupling under a discrete change of spatial scale,

changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g2 ¼ 2:0.

The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated

possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4=3, we work at a

single lattice spacing.

DOI: 10.1103/PhysRevD.78.031502 PACS numbers: 11.15.Ha, 11.10.Hi, 12.60.Nz

I. INTRODUCTION

Gauge theories with groups larger than SU(3), or with
light fermions in representations higher than the funda-
mental, are a staple of theories that go beyond the standard
model [1]. Among the mechanisms proposed to connect
these theories to the standard model at low energies are
technicolor [2,3] and tumbling [4], with many associated
variants. Both of these depend largely on weak-coupling
pictures for their dynamics: a perturbative � function to
take technicolor from weak to strong coupling as the
energy scale drops, and a most-attractive-channel argu-
ment for scale separation and selection of the condensed
channel in tumbling. Nonperturbative tests of these pic-
tures are long overdue. While some lattice studies have
been carried out on SU(3) gauge theories with Nf > 3

fundamental flavors [5–9], scant attention has been paid
to more general alternatives where a richer set of phe-
nomena may be sought [10–13].

A number of ideas focus on the behavior of the gauge
theory’s � function and the possibility of an IR-attractive
fixed point [14,15]. The infrared limit of the massless
theory is then scale invariant and probably conformal,
devoid of confinement and of chiral symmetry breaking
[16,17]. Alternatively, the near appearance of a fixed point
makes the � function hover near the axis without crossing
it; this is the scenario of ‘‘walking’’ [18,19], wherein
enormous scale ratios are generated before confinement
finally sets in at large distances.

Let us describe the perturbative picture of the theory we
have studied. This is the SU(3) gauge theory with Nf
fermions in the symmetric two-index representation
[20,21], which for this group is the sextet. Consider vary-
ing Nf upwards from zero. At first, the one- and two-loop

terms in the � function [14,22]

�ðg2Þ¼ dg2

dlogðq2Þ¼� b1
16�2

g4� b2
ð16�2Þ2g

6þ��� ; (1)

where

b1 ¼ 11� 10
3Nf; (2)

b2 ¼ 102� 250
3 Nf (3)

are both negative: this is like ordinary QCD. When Nf
passes 306

250 ’ 1:22, the two-loop coefficient in the � func-

tion becomes positive, and hence the two-loop � function
acquires a zero at positive coupling g ¼ g�. For theNf ¼ 2

theory studied in this paper, this zero is at the very large
coupling g2 ’ 10:4. As Nf grows g� becomes weaker,

lending perhaps more credibility to the perturbative pre-
diction [23,24]. It should be kept in mind, though, that
when one-loop and two-loop effects compete, there are
usually similar-size contributions coming from higher or-
ders in perturbation theory. An infrared fixed point gener-
ally requires nonperturbative confirmation.
We have begun a study of the SU(3) lattice theory with

Nf ¼ 2Wilson fermions in the sextet representation. Since

the � function gives the most direct approach to all these
scenarios, we chose it as our first object of study. We apply
the Schrödinger functional (SF) method [25–32], wherein
we impose a background gauge field and calculate directly
the running coupling as the scale of the background field is
changed. Since we change the scale by a discrete amount,
we obtain the discrete beta function (DBF), analogous to
the usual � function.
We find that the DBF of the massless theory crosses zero

at g2 ’ 2:0, far short of the perturbative prediction. If the
full renormalization-group flow of the theory can indeed be
summed up by this single coupling constant, then this is an
IR-attractive fixed point, implying scale invariance in the
IR physics of the strictly massless lattice theory defined in
the fixed point’s catchment basin. At the same time, the
zero of the DBF allows for more complex possibilities
stemming from more complex RG flows, as discussed
below.
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In order to judge the significance of the zero of the DBF,
as well as to study the physics of the theory in its vicinity,
we have also calculated observables connected with the q �q
potential and with chiral symmetry. While our presentation
here is brief, we wish to place it in its proper context. A
simple and general argument shows that the formation of
any bound states made out of light fermions in a gauge
theory (without scalars) necessitates the spontaneous
breaking of chiral symmetry [33]. Thus, if the infrared
limit is a confining theory, chiral symmetry must be broken
spontaneously at an energy scale at least as high as the
confinement scale [33,34].1 If the two scales are indeed
separated, the intermediate region breaks chiral symmetry
but does not show confinement; and an entirely nonconfin-
ing theory can still break chiral symmetry spontaneously.
A conformal theory, on the other hand, is inconsistent with
spontaneously broken chiral symmetry, since the breaking
creates a mass scale.

II. SCHRODINGER FUNCTIONAL METHOD

In order to introduce the SF running coupling gðLÞ, we
begin with the gauge theory defined in a small Euclidean
box of volume L4. We can consistently choose the coupling
in this volume to be small; asymptotic freedom ensures that
there is only one effective coupling, that it runs with the
perturbative � function, and hence that at yet smaller
distances, the coupling is even smaller. In determining
the running coupling non-perturbatively, virtually any ob-
servable can in principle be used to extract it. For consis-
tency, we require that a perturbative calculation of the same
observable will indeed reproduce the running coupling at
this small scale.

The SF definition of the running coupling gðLÞ is an
application of the background field method. Consider a
background field calculation in the classical field strength
F��=g. If by construction the only distance scale that

characterizes the background field is L, the n-loop effec-
tive action � � � logZ gives the running coupling via

� ¼ gðLÞ�2SclYM; (4)

where

SclYM ¼
Z
d4xF2

��: (5)

gðLÞ is the result of integrating the n-loop � function.
The SF defines the background field by imposing

Dirichlet boundary conditions at t ¼ 0 and t ¼ L. The
boundary values are chosen such that the classical action
has a unique, nontrivial minimum, and the configuration at
this minimum is F��=g [25]. The effective action � is then

calculated and compared via Eq. (4) to SclYM, which in turn

is to be evaluated for the classical field that minimizes it
with the given boundary conditions. If the effective action
is calculated nonperturbatively, this procedure gives a non-
perturbative definition of gðLÞ.
At short distances, the static potential between color

sources is a Coulomb potential. The scale dependence of
g2 provides a small correction. We postulate that this is true
when the volume is small enough that confinement is not
evident. In large volumes, on the other hand, the static
potential can be qualitatively different; the notion of a
unique effective coupling that depends only on the overall
scale may no longer be tenable. The upshot is that one must
be cautious in drawing conclusions from the running of a
single coupling constant. We bear this in mind as we take
Eq. (4) to define of gðLÞ beyond perturbation theory.
The continuum framework carries over to the lattice

with minor adaptations. A technical obstacle is that
Monte Carlo methods do not allow for the direct compu-
tation of the effective action. This is solved by considering
a family of gauge-field boundary values that depend on a
continuous parameter �. By differentiating Eq. (4) we
obtain

@�

@�

���������¼0
¼ K

g2ðLÞ ; K � @SclYM
@�

���������¼0
: (6)

The derivative of � gives an observable quantity, whileK is
just a number [26].
Our lattice theory is defined by the single-plaquette

gauge action and a Wilson fermion action with added
clover term [37]. Our choice of Nf ¼ 2 ensures positivity

of the fermion determinant, which in turn allows use of the
standard hybrid Monte Carlo algorithm. We eschew per-
turbative corrections [29] to the parameters and operators
in this exploratory study, but we do modify the clover
term’s coefficient via self-consistent tadpole improvement,
cSW ¼ 1=u30. The quantum correction cSW � 1 is known to
be nonperturbative and large for fundamental fermions
[31], where it serves to bring the theory closer to the
continuum limit; the tadpole estimate supplies a large
portion of the correction.
The SF boundary conditions take the form of fixed,

spatially constant values for the spacelike links Ui on the
top and bottom layers of the lattice. These links enter into
the gauge plaquette and into the clover term of the fermion
action. Thus, the � derivative of the effective action is
given by

@�

@�

���������¼0
¼

�
@SYM
@�

� tr

�
1

Dy
F

@ðDy
FDFÞ
@�

1

DF

�����������¼0
; (7)

where DF is the complete Wilson-clover fermion action.

(The appearance ofDy
FDF indicates thatNf ¼ 2; we evalu-

ate the functional trace with a noisy estimator [32].) The
boundary fields are chosen as described in Ref. [31]; the
parameter � enters linearly into phase angles, so the de-

1Casimir scaling is the most popular mechanism to explain
how chiral symmetry could be broken at an energy scale much
higher than the confinement scale [10–12,35,36].
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rivatives on the right-hand side of Eq. (7) are implemented
by putting the appropriate fixed values in place of the
boundary links [26]. With these boundary values the coef-
ficient2 K ¼ 37:7. We also impose twisted spatial bound-
ary conditions on the fermion fields as suggested in
Ref. [28],  ðxþ LÞ ¼ expði�Þ ðxÞ, with � ¼ �=5 on all
three axes [32].

Equation (6) defines the running coupling at any given
length scale L, which we take to be the linear size of the
lattice. The discrete beta function gives the change inK=g2

when L is multiplied by n. Defining u � K=g2ðLÞ, we
write

Bðu; nÞ ¼ K

g2ðnLÞ � u; (8)

which is the counterpart of Eq. (1).3 We use a lattice
approximation of Eq. (8), which introduces an implicit
dependence on the ultraviolet cutoff: We calculate
Bðu; n ¼ 2Þ with lattice spacing a ¼ L=4, and Bðu; n ¼
4=3Þ with a ¼ L=6.

III. LATTICE CALCULATION OF THE DISCRETE
BETA FUNCTION

We study herein the scaling of only the massless theory.
In the case of Wilson fermions, where the quark mass is
unprotected against additive renormalization, this means
fixing the hopping parameter to its critical value � ¼ �c at
each value of the bare lattice coupling � � 6=g20. It is easy
to locate �cð�Þ when SF boundary conditions are used,
since these boundary conditions (and the spatial twists)
limit the condition number of the fermion matrix even
when there is no mass, and hence we can carry out simu-
lations precisely at �c. A straightforward way of finding �c
is to calculate the quark mass as defined by the lattice
approximation of an axial Ward identity

mq ¼ 1

2

@4hAb4ðtÞObð0Þi
hPbðtÞObð0Þi : (9)

Here, Ab4ðtÞ ¼ � �5�4	
b is the time component of the

local axial vector current with flavor b, taken at zero spatial
momentum on the time slice t; PbðtÞ is the local pseudo-
scalar density. The operator Obð0Þ is defined by introduc-
ing spatially constant (Grassmann) Dirichlet boundary
conditions for the fermions, differentiating with respect
to these boundary values, and finally setting them to zero
[29]. The derivative in Eq. (9) is a symmetric difference
evaluated about t ¼ L=2, the center of the lattice.
Equation (9) neglects multiplicative renormalization of
the currents, but this is unimportant, since we only use it
to locate �c by demandingmq ¼ 0. In addition, we neglect

the mixing of Ab� with @�P
b, which is known to be a small

effect for fundamental fermions [29,31].
We list the values of �c and the tadpole coefficient u0 in

Table I. While these values were determined for L ¼ 4a,
we find a small movement inmq (0.01–0.04) when going to

L ¼ 6a and then L ¼ 8a. Calculation of the DBF demands
keeping the ultraviolet cutoff fixed as the volume is
changed, and thus �, �, and u0 must remain unchanged
when comparing different lattices. The undesirable shift in
mq is a discretization error; it can only be reduced by going

to larger pairs of lattices.
Beginning with the scale factor n ¼ 2, we thus calculate

the running couplingK=g2 for given bare coupling� at the
critical hopping parameter � ¼ �cð�Þ, first on a lattice
with 44 sites, which defines the scale L ¼ 4a, and then at
the same ð�; �Þ on an 84 lattice, which gives the scale 2L.
We show the results in Fig. 1. At large � (corresponding to
the perturbative regime, large u) the DBF agrees with the
one-loop result Bðu; 2Þ ¼ �½Kb1=ð16�2Þ�2 log2 ’ �1:43;
the dashed curve shows the two-loop result. It is plain that
the DBF departs from two-loop perturbation theory and

TABLE I. �c and u0 for L ¼ 4a with SF boundary conditions.
Linear interpolation may be used safely between � ¼ 5:0 and
5.5 and between � ¼ 5:5 and 6.0.

� �c u0

5.0 .1723 .875

5.5 .1654 .887

6.0 .1610 .900

7.0 .1536 .916

8.0 .1486 .928

15 20 25 30 35

u = K/g
2
 (4

4
)

-2

-1

0

1

2

B
(u

,2
)

FIG. 1 (color online). Discrete beta function for the scale
transformation L! 2L, as defined in Eq. (8). The lattice spacing
is fixed such that L ¼ 4a. The dashed curve is the two-loop
result. The data points are calculated at bare couplings (left to
right) � ¼ 5:2 to 6.0 by 0.1, and then � ¼ 7:0 and 8.0.
Horizontal error bars are the size of the plotted symbols.

2This is the value for a lattice with 84 sites. There is a tiny
dependence on the lattice size, which we safely neglect.

3In the SF literature it is customary to define the step scaling
function 
ðvÞ ¼ g2ð2LÞ, with v � g2ðLÞ.
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crosses the axis in the neighborhood ofK=g2 ¼ 19, or g2 ’
2:0. The corresponding bare coupling is � ’ 5:6.

For an indication of the dependence of the result on the
lattice spacing a ¼ L=4, we have carried out a parallel
calculation of Bðu; 4=3Þ with a ¼ L=6. This means calcu-
lating K=g2 on a lattice with 64 sites, at the same � values
as above,4 and comparing to the results on 84 sites. The first
lattice defines the scale L, while the second now gives the
scale 4L=3. This is economical because the same 84 data
are used in this calculation as in the preceding.

These results are shown in Fig. 2 along with the two-
loop prediction. The latter is smaller than that for Fig. 1
because the scale factor is 4=3 rather than 2. In the lattice
data, the crossing of zero (again near g2 ¼ 2:0) is evident.
This comparison of course does not take the place of a real
scaling study.

IV. NONCONFINEMENTAND CHIRAL
SYMMETRY

We have also carried out calculations on lattices of
volume 83 � Nt for Nt ¼ 8 and 12 with ordinary (anti-)
periodic boundary conditions, at several values of � < �c
in the same range of �. These calculations show that � ¼
5:6, with � ¼ �c, lies well on the weak-coupling side of the
finite-volume crossover associated with confinement phys-
ics: The average Polyakov loop is large and the static q �q
potential is entirely Coulombic in the range allowed by the
volume. This means that the lattices of size L ¼ 8 are not
large enough to contain the physics of confinement. As
discussed above, this is essential for interpreting gðLÞ as an
effective coupling that characterizes the theory.

By QCD standards, a coupling g2=4� ’ 0:16 is pertur-
bative. This is in line with the lack of confinement in our 84

lattices. Nevertheless, this coupling may not be weak when
considering the possibility of spontaneous chiral symmetry
breaking for higher-representation fermions. Indeed, a
quenched study with color-sextet fermions found that the
finite-temperature chiral transition occurs at � ’ 7:8 with
Nt ¼ 4, a far larger � value than that of the deconfinement
transition [10]. With our dynamical fermions, however,
things are different. On lattices with 82 � 12� Nt sites,
with Nt ¼ 8, we find the chiral restoration crossover at �
close to, but definitely below �cð�Þ. Thus, the coupling at
the zero of the DBF does not break chiral symmetry either.

V. DISCUSSION

The simplest explanation of the zero of the DBF is that
the strictly massless theory with two color-sextet fermions
has an infrared-attractive fixed point, leading to conformal
physics without chiral symmetry breaking and without
confinement. Accepting this conclusion, a major goal of
further lattice studies would be to understand the behavior
of the same theory at nonzero fermion mass. In a truly
conformal theory, the introduction of a fermion mass pro-
vides the only scale; that scale can sometimes play the role
of an effective ultraviolet cutoff, and sometimes the role of
an infrared cutoff. This is an unfamiliar territory that
contains many interesting questions.
Our results clearly do not allow for a continuum ex-

trapolation. More lattice volumes are needed, and it is also
desirable to compute the DBF for more scale ratios. Such
detailed information would allow the reconstruction of a
continuous � function. Appelquist, Fleming, and Neil [8]
have recently presented an extensive SF analysis of the SU
(3) gauge theory with Nf ¼ 8 and 12 flavors of fundamen-

tal fermions. Their results are based on larger statistics as
well as a detailed continuum extrapolation. This allows
them to conclude with certainty that the Nf ¼ 12 theory

has an infrared fixed point.
Our results for the DBF of the color-sextet theory do not

preclude more elaborate scenarios whereby the dynamics
generates new effective degrees of freedom at some non-
perturbative scale. This would typically lead to new rele-
vant and/or marginal couplings; our single-parameter DBF
would result from projecting the multiparameter RG flow
into a one-dimensional subspace.
A concrete scenario in this direction was proposed by

one of us in Ref. [38]. One supposes that chiral symmetry
breaks spontaneously when the interaction is still
Coulombic. This allows for the existence of colored ex-
citations. The fermion condensate is then polarized in
response to an applied color field. As we move down in
energy scale across the chiral transition, the effective gauge
coupling is screened by the collective response of the
fermion condensate. This effect, if found, would be the
relativistic counterpart of the familiar dielectric polariza-

15 20 25 30 35

u = K/g
2
 (6

4
)

-2

-1

0
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2
B
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, 4

/3
)

FIG. 2 (color online). Discrete beta function for the scale
transformation L! 4L=3. The lattice spacing is fixed such
that L ¼ 6a. The dashed curve is the two-loop result. The data
points are calculated at the same bare couplings as in Fig. 1.
Horizontal error bars are the size of the plotted symbols.

4We use the same values of � ¼ �c and u0 as above.
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tion. The scenario is described by an effective Lagrangian
that indeed contains new couplings [38]. For a short while,
the running of the gauge coupling reverses its direction
from that of an asymptotically free theory; a discrete
sampling of this running can result in a zero of the DBF,
imitating a fixed point.

Whatever the scenario, our DBF flatly contradicts con-
tinuum perturbative estimates. If confirmed by a true scal-
ing study, it would show that this theory is not like QCD
with a small number of fundamental fermions, where the
beta function is always negative; and it is not like theories
where the fermions condense and decouple from the gauge
fields, since in that case the beta function would behave as
if Nf ¼ 0, becoming even more negative than that of the

fully coupled theory. The simplest explanation of our DBF
is still an infrared-attractive fixed point, at an unexpectedly

weak coupling. This would place the massless theory
squarely in the conformal window: It would prevent con-
finement and the spontaneous breaking of chiral symmetry,
and remove the theory from the list of candidates for
walking.
We will present a detailed study of the physics of this

model, so different from QCD, in a forthcoming paper.
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