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We reply to the recent criticism by Garriga and Tanaka of our proposal that quantum gravitational loop

corrections may lead to a secular screening of the effective cosmological constant. Their argument rests

upon a renormalization scheme in which the composite operator ðR ffiffiffiffiffiffiffi�gp � 4�
ffiffiffiffiffiffiffi�gp Þren is defined to be

the trace of the renormalized field equations. Although this is a peculiar prescription, we show that it does

not preclude secular screening. Moreover, we show that a constant Ricci scalar does not even classically

imply a constant expansion rate. Other important points are: (1) the quantity Rren of Garriga and Tanaka is

neither a properly defined composite operator, nor is it constant; (2) gauge dependence does not render a

Green’s function devoid of physical content; (3) scalar models on a nondynamical de Sitter background

(for which there is no gauge issue) can induce arbitrarily large secular contributions to the stress tensor;

(4) the same secular corrections appear in observable quantities in quantum gravity; and (5) the prospects

seem good for deriving a simple stochastic formulation of quantum gravity in which the leading secular

effects can be summed and for which the expectation values of even complicated, gauge invariant

operators can be computed at leading order.
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I. INTRODUCTION

Some years ago we proposed that the continual produc-
tion of infrared gravitons induces a sort of quantum friction
which gradually slows inflation [1]. When inflation rips a
pair of infrared gravitons from the vacuum, which is a 1-
loop effect, they induce a gravitational potential that con-
tributes to the energy density at next order. This potential
remains imprinted on the spacetime even after the pair has
been pulled out of causal contact. The number density of
pairs remains constant because the vast expansion of the
spatial volume cancels the continual creation of pairs.
However, the induced gravitational potential grows with-
out bound. Taking account of the number of infrared
gravitons inside the past light cone of a local observer
gives ���GH2 �Ht [2]. The effect of this potential
must be to slow inflation because gravity is attractive.
Hence, the induced energy density of interaction is nega-
tive, ���GH6 �Ht. Because gravity is weak, this energy
density grows very slowly, in other words, j _�j � Hj�j for
Ht� 1. Combining that fact with stress-energy conserva-
tion, _� ¼ �3Hð�þ pÞ, implies the induced pressure is
p���. Hence, one gets a growing, negative vacuum
energy.

It is tempting to speculate that this mechanism might
simultaneously explain why the observed cosmological
constant is so much smaller than the natural scales of
particle physics, and also provide a model of inflation

which has no fundamental scalar. The idea is that primor-
dial inflation would start because the bare cosmological
constant is positive and of GUT scale. This avoids the
problem of needing a scalar inflaton to be unnaturally
homogeneous over a super-Hubble volume [3]. Inflation
would persist for a long time because gravity is a weak
interaction, thereby dispensing with the need for a shallow
potential. Inflation would be brought to an end by the
gradual accumulation of negative vacuum energy.
Explicit computations in this scheme are challenging

because the first effect should be at two loops and because
the putative effect would be nonperturbatively strong dur-
ing the current epoch. Ford was early able to show that
there is no secular deviation from de Sitter background at
one loop [4], in agreement with the mechanism. This 1-
loop result has been confirmed by two other groups [5,6]. A
year-long computation of the graviton 1-point function
revealed secular slowing at the expected 2-loop order
[7].1 Because backreaction should be small until the last
few e-foldings, it was possible to use the 2-loop result to
estimate the scalar and tensor power spectra [8]. Some
thought has also been given to how the mechanism might
operate after it becomes nonperturbatively strong at the end
of inflation [9].
Our proposal has recently been criticized by Garriga and

Tanaka [10]. They raise two objections:
(1) The graviton 1-point function cannot show slowing,

or anything else, because it is gauge dependent.

*tsamis@physics.uoc.gr
+woodard@phys.ufl.edu

1This work has not been confirmed, nor redone using dimen-
sional regularization [6].
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(2) There can be no slowing of inflation in pure quan-
tum gravity because the field equations set the re-
normalized Ricci scalar to a constant.

In Sec. II we point out that physical information can reside
in gauge-dependent quantities, that the secular growth we
found was not injected through our gauge fixing functional,
that the only invariant quantities so far checked in quantum
gravity show the same type of secular dependence, that this
secular dependence also affects the vacuum energy of
scalar models for which there is no gauge issue, and that
it could only drop out of the quantum gravitational vacuum
energy through an infinite series of cancellations.
Section III contains two important points:

(1) Garriga and Tanaka did not show that the renormal-
ized Ricci scalar is constant and the relation they
actually derived is completely consistent with secu-
lar slowing.

(2) They did not define the Ricci scalar as a properly
renormalized composite operator but rather the
Ricci scalar times the volume element.

We also comment on some peculiarities of their renormal-
ization scheme. Section IV makes the short but crucial
point that a constant Ricci scalar does not even classically
imply expansion. In Sec. V we review recent progress in
developing a computational formalism which is powerful
enough to evolve into the nonperturbative regime.

II. GAUGE DEPENDENCE

The fact that the expectation value of the metric cannot
be formed into a gauge invariant quantity in the same way
as a classical metric was originally pointed out by Unruh
[11]. We agree with him, and two years ago we advocated
that the quantum gravitational backreaction on �-driven
inflation should be quantified with an invariant operator
which measures the geodesic deviation [12]. The expecta-
tion value of this operator has not yet been computed at 2-
loop order owing to its complexity. It is worth noting that
the difficulty of working with gauge invariant observables
has led Losic and Unruh as well to the consideration of
gauge-dependent quantities in their own interesting study
of backreaction [13].

A. Gauge dependence does not automatically imply
lack of physical content

A good example is provided by the 1PI functions of the
standard model. These 1PI functions are certainly gauge
dependent, yet they can be assembled to give the gauge-
independent S-matrix, which has of course been subject to
impressive experimental verification. So the gauge-
dependent 1PI functions of the standard model must con-
tain valid, physical, and gauge-independent information
along with some unphysical and gauge-dependent
behavior.

An especially noteworthy example is the gauge depen-
dence of effective potentials [14]. In the days when people

were studying the possibility for loop corrections to stabi-
lize Kaluza-Klein compactifications [15], this gauge de-
pendence was regarded with great suspicion and even
despair. The question was asked, ‘‘Which result should
be trusted if the effective potential shows a nontrivial
minimum in one gauge but not in another?’’ It was even
believed that a ‘‘field-space metric’’ could be identified
that would allow construction of a gauge-independent (and
also field redefinition independent) effective action
[16,17].
It was eventually realized that gauge dependence is

actually a blessing for this problem. What one really wants
is to find a stationary point of the full effective action; it is
only because the effective action is too complicated to
evaluate for an arbitrary background field that one is
reduced to studying the effective potential. Because differ-
ent gauges are related by field-dependent gauge transfor-
mations, the same finite-parameter family of field
configurations in one gauge can, in another gauge, probe
a different direction in the full space of fields. Hence, the
correct conclusion is not that both effective potentials are
rubbish on account of their gauge dependence, or that one
is right and the other wrong, but rather that each one
represents valid physical information about the theory.
For a putative solution to be correct it must make each of
the effective potentials stationary—and even then it might
still be spurious if there is a nonstationary direction that
neither of the restricted probes of field space chances to
access.
The expectation value of the graviton 1-point function in

a fixed gauge is a perfectly valid measure of quantum
corrections to the background in that gauge. It might be
that the secular screening we found is an artifact of the
gauge (or even an error in what was a very long and
difficult computation) but several possibilities can be ruled
out. First, the secular dependence we found was not intro-
duced through the gauge fixing functional. We found ‘‘in-
frared logarithms;’’ these are logarithms of the ratio of the
scale factor at the observation time to its value at the
beginning of inflation. These logarithms break the part of
the 10-parameter de Sitter group known as dilatations; the
latter generate the transformation x� ! k � x� in confor-
mal coordinates. However, our gauge condition preserves
this symmetry.

B. Infrared logarithms do not always drop out of
physical and gauge invariant quantities

The only invariant so far checked is the inflationary
power spectrum and Weinberg has shown that infrared
logarithms do correct this [18,19]. Because the logarithms
in that case are of the ratio of the current scale factor to the
scale factor at horizon crossing, their enhancement is at
most about lnða=ahcÞ � 100 for any perturbation whose
spatial variation we can resolve. This is not enough to
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overcome the small loop counting parameter of GH2 &
10�12. However, there can be arbitrarily large infrared
logarithms correcting things we perceive as spatially con-
stant such as the vacuum energy.

It might still be that the vacuum energy is somehow
protected from the secular effects which contaminate 1PI
functions [7,20], the quantum-corrected mode functions
[21] and the power spectrum [18,19]. But that is certainly
not true for scalar models on nondynamical, de Sitter
background. In that case the calculations are vastly sim-
pler, and there is no gauge issue to frustrate drawing
obvious physical conclusions. It suffices to compute the
expectation value of the stress tensor. For example, a fully
renormalized, 2-loop computation of the stress tensor of a
massless, minimally coupled scalar with a ’4 self-
interaction which is released in Bunch-Davies vacuum at
t ¼ 0 [with scale factor aðtÞ ¼ eHt] reveals the following
secular growth for the induced energy density and pressure
[22]:

�ðtÞ ¼ �H4

ð2�Þ4
�
1

8
ln2ðaÞ

�
þOð�2Þ; (1)

pðtÞ ¼ �H4

ð2�Þ4
�
� 1

8
ln2ðaÞ � 1

12
lnðaÞ

�
þOð�2Þ: (2)

At leading logarithm order this result is in perfect agree-
ment with the nonperturbative analysis of Yokoyama and
Starobinski�� [23,24]. It also has the transparent physical
interpretation that the inflationary production of scalars
increases the scalar field strength, which drives the scalar
up its ’4 potential and thereby induces a growing vacuum
energy.

One may dismiss the ’4 result on the grounds that it
shows an increase in the vacuum energy, whereas we claim
a decrease for quantum gravity. But it is simple to find
scalar models whose induced vacuum energy is negative.
Consider scalar quantum electrodynamics, for which the
analogous 2-loop results are [25,26]

�ðtÞ ¼ e2H4

ð2�Þ4 �
�
� 3

4
lnðaÞ

�
þOðe4Þ; (3)

pðtÞ ¼ e2H4

ð2�Þ4 �
�
3

4
lnðaÞ

�
þOðe4Þ: (4)

The physical interpretation seems to be that the inflationary
production of charged scalars polarizes the vacuum
[27,28], which lowers the scalar energy.

Again one may dismiss the scalar QED results on the
grounds that they represent a transient effect that ap-
proaches a constant after a nonperturbatively large time
�t� 1=ðe2HÞ [26]. The specious nature of this argument
can be seen from a massless fermion which is Yukawa
coupled to a massless, minimally coupled scalar on non-
dynamical de Sitter background. For that model the in-
duced vacuum energy falls without bound [29]. This also

has a transparent physical interpretation: the inflationary
production of scalars increases the scalar field strength,
which induces a fermion mass, whose effect is to decrease
the vacuum energy. Had gravity been dynamical in this
model, the resulting secular backreaction would end infla-
tion. That the universe subsequently decays to a big rip
singularity does not alter the model’s demonstration that
secular backreaction can accumulate to dominate late time
cosmology.
Finally, it should be noted that the absence of secular

quantum gravitational backreaction would not only require
that a single infrared logarithm drops out at two loops. The
number of infrared logarithms grows with each loop in a
way that can be predicted from the number of undifferen-
tiated massless, minimally coupled scalars or graviton
fields in the basic interaction vertex. The number of extra
infrared logarithms for each extra coupling constant in
�’4, Yukawa theory, and scalar QED are [26]

�’4 ffiffiffiffiffiffiffi�gp ) ln2ðaÞ for every �; (5)

� f’ �  
ffiffiffiffiffiffiffi�gp ) lnðaÞ for every f2; (6)

ieð’�@�’� @�’
�’ÞA�g�� ffiffiffiffiffiffiffi�gp ) lnðaÞ for every e2:

(7)

These expectations are verified in a large number of ex-
plicit 1-loop, 2-loop, and even 3-loop computations [30].
They follow as well from the stochastic analysis of
Starobinski�� and Yokoyama [23,24,26].2

The basic interaction of quantum gravity takes the form
�nhn@h@haD�2 [32], where �2 � 16�G is the loop count-
ing parameter. The number of extra infrared logarithms for
each extra factor of GH2 is [26]

�nhn@h@haD�2 ) lnðaÞ for every GH2: (8)

So the absence of secular backreaction in quantum gravity
would require that the escalating series of infrared loga-
rithms which do appear in 1PI functions and physical
quantities somehow contrives to cancel out of the expan-
sion rate. We do not regard it as reasonable to suppose that
this happens. Of course Garriga and Tanaka claim to have
proven that it does happen, and to all orders. We turn now
to an explanation of why their proof is not correct.

III. RENORMALIZING THE RICCI SCALAR

The basic argument of Garriga and Tanaka consists of a
peculiar scheme for renormalizing the Ricci scalar so that
the following relation applies:

hRren

ffiffiffiffiffiffiffi�gp i ¼ 4�hð1þ �volÞ ffiffiffiffiffiffiffi�gp i: (9)

2Certain 1PI functions have counterterms that can be used to
absorb infrared logarithms at low loop orders [31] but factors of
lnðaÞ always show up at higher orders.
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We shall presently describe some technical problems with
this scheme but the most significant point of this section is
that (9) does not imply a constant Ricci scalar. We shall
demonstrate that (9) is completely consistent with the
relaxation mechanism of Sec. I. Moreover, Rren as defined
by Garriga and Tanaka (GT) is not a properly renormalized
composite operator because it fails to produce finite results
when inserted in 1PI functions.

A. Preliminaries

Many people have concluded that screening is impos-
sible in pure quantum gravity because the trace of the
classical field equations implies R ¼ 4�:3

L ¼ 1

16�G
ðR� 2�Þ ffiffiffiffiffiffiffi�gp ) 16�Gg��

�S

�g��

¼ ð�Rþ 4�Þ ffiffiffiffiffiffiffi�gp ¼ 0: (10)

The conclusion is premature because quantizing general
relativity requires adding to the Lagrangian an infinite
sequence of ever-higher dimensional, Bogoliubov-
Parasuik-Hepp-Zimmerman (BPHZ) counterterms:

�L ¼ �1R
2 ffiffiffiffiffiffiffi�gp þ �2C

�	��C�	��
ffiffiffiffiffiffiffi�gp þ � � � : (11)

The divergent parts of the �i’s are fixed by the need to
cancel primitive divergences, but no physical principle
seems to fix their finite parts, and what they are affects
physical predictions. That is one way of expressing the
problem of quantum gravity.

Of particular interest to us is the fact that even the lowest
order counterterms alter the relation between R and �
implied by the trace of the renormalized field equations:4

0 ¼ 16�Gg��
�ðSþ �SÞ
�g��ðxÞ

¼ ð�Rþ 4�þ 16�G� 6�1hRþ � � �Þ ffiffiffiffiffiffiffi�gp
: (12)

One would typically break the �i’s up into divergent and
finite parts, and render this equation in terms of suitably
renormalized composite operators:

0 ¼ ð�R ffiffiffiffiffiffiffi�gp þ 4�
ffiffiffiffiffiffiffi�gp Þren þ 16�G

� 6�1;finiteðhR ffiffiffiffiffiffiffi�gp Þren þOðG2Þ: (13)

The Eddington counterterm—the one proportional to �1—
was exploited by Starobinski�� in constructing an early
model of what would later be called inflation [34]. It should
therefore be obvious that the equations of quantum gravity

cannot imply the Ricci scalar is constant unless the finite
parts of a countably infinite number of �i’s are set to zero.

B. The Garriga and Tanaka argument

They propose to circumvent the problem of counter-
terms by absorbing them into the renormalized Ricci scalar
Rren and the renormalized volume element ð1þ �volÞ ffiffiffiffiffiffiffi�gp

.

Their Eq. (36) defines the operator whose vanishing in
expectation values is claimed to preclude secular back-
reaction:

O GT �
Z
d4xWðxÞ½�Rren þ 4�ð1þ �volÞ	 ffiffiffiffiffiffiffi�gp

: (14)

Here WðxÞ is their ‘‘window function’’ which is supposed
to be a scalar that does not depend upon the metric.5

Combining Eqs. (38) and (41) of Garriga and Tanaka
results in their definition for Rren:

Rren � R� 16�G� g��ffiffiffiffiffiffiffi�gp ��S

�g��
þ 4��vol: (15)

Substituting (15) in (14) reveals the key operator of Garriga
and Tanaka as the smeared trace of the renormalized field
equations:

O GT ¼ 16�G�
Z
d4xWðxÞg��ðxÞ�ðSþ �SÞ

�g��ðxÞ : (16)

Of course this does vanish, as do all components of the
renormalized field equations, in all expectation values,
with or without the smearing.

C. Consistency with screening

Garriga and Tanaka have not shown their definition of
the renormalized Ricci scalar is constant but rather that it,
times the volume element, equals another operator:

hRren

ffiffiffiffiffiffiffi�gp i ¼ 4�hð1þ �volÞ ffiffiffiffiffiffiffi�gp i: (17)

This is completely consistent with the secular screening
mechanism described in Sec. I. It is incorrect to think of R
and

ffiffiffiffiffiffiffi�gp
as possessing distinct time dependences in (17)

but one can do so at leading logarithm order. In that case,
working in conformal coordinates, the mechanism of Sec. I
implies the following relaxations for the Ricci scalar and
volume element:

R¼ 4�þ8�Gð��3pÞ�4�½1�#G2H4 lnðaÞþOðG3Þ	;
(18)

ffiffiffiffiffiffiffi�gp � a4½1� #G2H4ln2ðaÞ þOðG3Þ	: (19)

3We first heard the argument from Susskind in the mid-1980’s
[33].

4Computing the trace in dimensional regularization would
result as well in finite contributions from the �1 and �2 counter-
terms whose inclusion would only strengthen the argument we
shall make.

5We remark that WðxÞ must involve the metric if it is not
constant. Garriga and Tanaka seem to feel that metric depen-
dence in WðxÞ would prevent the equations of motion from
holding, but any obstruction of this sort can be absorbed into
an operator ordering [35].
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At leading logarithm order, the change in R is insignificant
compared with that of the volume element and both sides
of Eq. (17) are equal:

hRren

ffiffiffiffiffiffiffi�gp i ¼ 4�hð1þ �volÞ ffiffiffiffiffiffiffi�gp i;
� 4�a4f1� #½GH2 lnðaÞ	2 þOðG3Þg:

(20)

This continues to be true at all orders in the loop expansion,
as per relation (8), because R involves differentiated met-
rics whereas

ffiffiffiffiffiffiffi�gp
does not. Of course Garriga and Tanaka

want Eq. (17) to be exact and not just valid at leading
logarithm order. However, the necessary subleading loga-
rithms can easily be supplied by cross terms between R andffiffiffiffiffiffiffi�gp

, and by the operator �vol.

D. Peculiar renormalization

Although the renormalization scheme (15) is consistent
with secular slowing, we still find it dubious. As Garriga
and Tanaka point out, using the equations of motion inside
a functional integral requires the integrand to be an invari-
ant [35]. Hence, one is not considering ‘‘ R’’ and ‘‘1’’ but
rather ‘‘ R

ffiffiffiffiffiffiffi�gp
’’ and ‘‘

ffiffiffiffiffiffiffi�gp
.’’ Renormalizing such com-

posite operators requires that their insertion in a 1PI dia-
gram be accompanied by the insertion of counteroperators:

ðR ffiffiffiffiffiffiffi�gp Þren � R
ffiffiffiffiffiffiffi�gp þ �R

ffiffiffiffiffiffiffi�gp
; (21)

ð ffiffiffiffiffiffiffi�gp Þren � ffiffiffiffiffiffiffi�gp þ �vol

ffiffiffiffiffiffiffi�gp
: (22)

We know of no previous study of these operators with a
nonzero cosmological constant but, on general grounds of
symmetry and the degree of 1-loop divergences one ex-
pects [36,37]:

�vol ¼ 16�G� 
1RþOðG2Þ; (23)

�R ¼ 16�G� ð�1hRþ �2R
2 þ �3R

��R��

þ �4C
�	��C�	�� þ 4
1�RÞ þOðG2Þ: (24)

The trace of the renormalized field equations (12) requires
that the divergent part of �1 should agree with the diver-
gent part of�6�1, and that �2�4 should vanish. That is no
problem. However, the renormalization scheme (15) of
Garriga and Tanaka also requires that the finite part of �1

should agree with the finite part of �6�1. An escalating
series of similar relations must hold as one moves up the
loop expansion.

There are two ways of viewing this. Either Garriga and
Tanaka have solved the problem of quantum gravity by
uniquely specifying the finite parts of every �i except �2,

6

or else they are defining the Ricci scalar so as to absorb
known classical effects. In the latter case, one could also
absorb the crucial R2 term of Starobinski��’s model [34] to

conclude that the ‘‘renormalized Ricci scalar’’ is constant.
Indeed, there seems no reason to restrict the procedure to
pure gravity. Were it applied to scalar-driven inflation—by
including the scalar action in the ‘‘ �S’’ they use in (15)—
then one would conclude that scalar-driven inflation never
ends.
It might be objected that a key distinction between the

counterterms of quantum gravity and the inflaton potential
is that the former contain factors of @ whereas the latter
does not. If so, then suppose the inflaton potential derives
from a 1-loop correction, such as the Coleman-Weinberg
potential of new inflation [38]. The inflaton potential now
carries a factor of @, so it can be absorbed into the ‘‘re-
normalized Ricci scalar’’ and we have just shown that new
inflation is pure de Sitter.

E. The composite operator Rren of (15) is neither
properly defined nor is it constant

Correctly defined composite operators have the property
that inserting them in 1PI functions gives finite results.
With the conventions of Garriga and Tanaka, the composite
operators Rren

ffiffiffiffiffiffiffi�gp
and ð1þ �renÞ ffiffiffiffiffiffiffi�gp

have this property

but Rren does not. Simply divide out the volume element
from both sides of their key relation (9):

Rren

ffiffiffiffiffiffiffi�gp ¼ 4�ð1þ �volÞ ffiffiffiffiffiffiffi�gp ) Rren ¼ 4�ð1þ �volÞ:
(25)

Now note two crucial features of the volume counterterm
�vol:
(1) It is not finite.
(2) It is an operator rather than a constant.

The first feature can be seen by expanding the volume
element operator in powers of the graviton field:

ffiffiffiffiffiffiffi�gp ¼ aD
�
1þ �

2
h�� þ �2

8
ðh��Þ2 � �2

4
h�	h�	 þ � � �

�
:

(26)

Inserting
ffiffiffiffiffiffiffi�gp

in the vacuum amplitude gives a divergence

at order �2 ¼ 16�G from the coincident propagator.7

From expression (23) we see that this divergence is can-
celed by the 1-loop contribution to �vol, which is �

2
1R ¼

1DðD� 1Þ�2H2 þOð�4Þ. It follows that 
1 is divergent,
so inserting just �vol into a 1PI function, without the factor
of

ffiffiffiffiffiffiffi�gp
, does not produce finite results. We therefore

conclude that Garriga and Tanaka cannot claim to have
shown that the Ricci scalar is constant—or anything else—
because they have not correctly defined it as a composite
operator. Further, the quantity Rren, is not constant but
rather an infinite series of time-dependent operators.

6The single parameter �2 would not prevent us from making
sense of quantum gravity.

7The divergence would be �2H2

4�2
1

D�4 in our gauge, implying

1 ¼ � 1

48�2
1

D�4 þ finite.
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IV. RICCI SCALAR CONSTANCYAND EXPANSION

It is time to critically examine the unstated assumption
of Garriga and Tanaka that proving the Ricci scalar is
constant implies de Sitter expansion. This is quite incor-
rect. Neither the classical field equation, R�� � 1

2Rg�� þ
�g�� ¼ 0, nor its trace, �Rþ 4� ¼ 0, precludes the

presence of gravitational radiation. In fact, all gravitational
wave solutions with � � 0 must obey these equations.
Because gravity is a nonlinear theory, gravitational radia-
tion interacts with itself. Because the gravitational force is
attractive, this self-interaction opposes the expansion of
spacetime. If enough gravitational radiation is present, the
result is not expansion but rather collapse into one or more
black holes. This is an unavoidable consequence of the
singularity theorems. Therefore, one cannot conclude that
constant Ricci scalar implies a constant expansion rate
because this is not even true classically.

It might be objected that a positive cosmological con-
stant opposes the tendency towards collapse of too much
gravitational radiation. So the correct result is that a fixed,
initial distribution of gravitational radiation may well col-
lapse to one or more black holes, but the late time geometry
away from these black holes will approach the local de
Sitter form for which R�	�� ¼ H2ð���g	� � �

�
�g	�Þ. That

would be true enough classically, where no new gravita-
tional radiation can be generated beyond what was present
initially, but it is not correct when quantum effects are
included. The simplest way to understand quantum effects
is as the classical response to the source provided by
uncertainty principle. In these terms, our screening mecha-
nism is driven by the steady injection of gravitational
radiation, throughout space, as more and more infrared
virtual gravitons are ripped out of the vacuum. These
gravitons must slow the expansion of spacetime because
that is what a classical distribution of gravitational radia-
tion would do. However, such a classical distribution
would obey R ¼ 4�.

V. EPILOGUE

It seems obvious that gravitons contribute to vacuum
energy. At 1-loop order, where each mode contributes
separately, infrared gravitons participate on an equal foot-
ing with ultraviolet ones; this can be shown by explicit
computation [4–6]. Higher loop contributions involve non-
linear combinations of gravitons which are best viewed as
integrals over position space. These integrals reach back
from the point of observation, along the past light cone to
the fixed initial value surface. Because the past light cone
grows as the time of observation evolves, these higher loop

contributions can grow as well. That has to be expected in
view of the infrared singularities of quantum gravity on a
locally de Sitter background [39].
Nothing ought to seem dubious about this. Although the

effect has not yet been demonstrated for an invariant
measure of the quantum gravitational backreaction on in-
flation, the same phenomenon injects secular dependence
into other invariant quantities [18,19]. It also engenders
secular contributions to the vacuum energies in scalar
models [22,26,29] for which there is no gauge issue to
prevent one from drawing obvious conclusions.
We have shown that the renormalization scheme em-

ployed by Garriga and Tanaka is highly dubious and
that, even if accepted, it does not preclude secular slowing.
Nor would proving any plausibly defined ‘‘Ricci scalar’’ to
be constant preclude secular slowing. Of course the burden
of proving that secular slowing does occur rests quite
properly with us. Even an explicit perturbative demonstra-
tion of this at 2-loop order would not establish quantum
gravitational backreaction either as an explanation for
why the observed cosmological constant is so small or
as the basis of a viable model of inflation. For that, one
would need a reliable way of computing in the late time
regime, after backreaction has become nonperturbatively
strong.
We do not think such computations are beyond reach.

Starobinski�� has proposed a simple stochastic formalism
[40] that reproduces the leading infrared logarithms of
scalar potential models to all orders [24] and which can
be summed to give nonperturbative results [23]. We have
recently extended Starobinski��’s formalism to massless,
minimally coupled scalars that interact with other kinds
of fields. This has led to explicit, nonperturbative results
for Yukawa theory [29] and for scalar QED [26]. We do not
yet know how to treat derivative interactions of the sort
quantum gravity possesses but the problem does not seem
insolvable.
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