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We study the holographic map between long open strings, which stretch between D-branes separated in

the bulk space-time, and operators in the dual boundary theory. We focus on a generalization of the Sakai-

Sugimoto holographic model of QCD, where the simplest chiral condensate involves an operator of this

type. Its expectation value is dominated by a semiclassical string world sheet, as for Wilson loops. We also

discuss the deformation of the model by this operator, and, in particular, its effect on the meson spectrum.

This deformation can be thought of as a generalization of a quark mass term to strong coupling. It leads to

the first top-down holographic model of QCD with a non-Abelian chiral symmetry which is both

spontaneously and explicitly broken, as in QCD. Other examples we study include half-supersymmetric

open Wilson lines, and systems of D-branes ending on NS5-branes, which can be analyzed using world

sheet methods.
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I. INTRODUCTION AND SUMMARY

Holographic dualities [generalizing the anti-de Sitter/
conformal field theory (AdS/CFT) correspondence [1]]
have proven to be very useful, both for studying quantum
gravity in backgrounds with appropriate boundaries, and
for studying the dual theories living on these boundaries.
However, the dictionary between the boundary theories
and the corresponding quantum gravity duals is not yet
complete.

There are two types of objects which we know how to
translate between the bulk and boundary theories (at least
in the limit in which the bulk geometry is weakly curved,
and thus well described by supergravity). Local fields in
the bulk map to local operators in the dual boundary
theory; sources for these fields map to sources for the
corresponding operators [2,3]. Extended p-dimensional
branes in the bulk can end on closed ðp� 1Þ-dimensional
surfaces on the boundary. They correspond to operators in
the boundary theory that are associated with these surfaces.

For example, when the boundary theory is a large N
gauge theory, a Euclidean closed fundamental string world
sheet in the bulk, which ends on a closed loop C on the
boundary, maps to (a locally supersymmetric version of) a
Wilson loop in the dual field theory [4–6]. The latter can be
thought of as associated with external (infinitely massive)
W bosons in the gauge theory.

In this note we add another entry to this dictionary.
When the bulk background includes branes extending to
the boundary, it is possible for other branes to end on these
branes, and give additional observables in the theory. We
will focus on the case where the bulk contains D-branes,

and the branes ending on them are fundamental strings, but
the discussion can be generalized to other systems.
String theory in the bulk contains in this case operators

corresponding to open strings stretched between D-branes
near the boundary. There are two qualitatively different
classes of such operators. One corresponds to strings which
can shrink to zero size (‘‘short strings’’). These are very
similar to the closed string operators mentioned above;
their duals in the boundary theory are local operators,
which contain the degrees of freedom associated with the
D-branes. The second class corresponds to ‘‘long strings,’’
that are stretched between D-branes which are separated
by a finite amount near the boundary. Such operators

depend on the choice of an open contour ~C, which ends
on the twoD-branes on the boundary.We propose that their
duals in the boundary theory are certain ‘‘line operators.’’
In the case of large N gauge theories, D-branes ending

on the boundary are associated with fields in the funda-
mental representation of SUðNÞ, and the line operators are
open Wilson lines starting from a field in the fundamental
representation associated with the first D-brane, and end-
ing on a field in the antifundamental representation asso-
ciated with the second one. We propose that an insertion of
such an open Wilson line in the field theory corresponds in
the bulk to an insertion of an open string ending on the
corresponding contour on the boundary, as in the Wilson
loop case. As there, some correlation functions of these
operators are dominated by semiclassical string world
sheets with the appropriate boundary conditions, and can
thus be computed in the supergravity limit.
A case in which long open string operators play an

important role is the Sakai-Sugimoto holographic model
of QCD [7] and its generalizations studied in [8,9]. This
model shares with QCD the phenomena of confinement
and non-Abelian chiral symmetry breaking. As we discuss
below, open Wilson lines play an important role in under-
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standing the latter. Previous attempts to study them in this
model appeared in [10,11], but our methods are different.

The Sakai-Sugimoto model describes a 4þ 1 dimen-
sional SUðNcÞ maximally supersymmetric Yang-Mills
(SYM) theory, with ’t Hooft coupling �5, compactified
on a circle of radius Rðx4 � x4 þ 2�RÞ with antiperiodic
boundary conditions for the fermions, and coupled to Nf
left- and right-handed fermions in the fundamental repre-
sentation of SUðNcÞ localized at x4 ¼ �L=2 and x4 ¼
L=2, respectively.

The three parameters with dimensions of length, �5, R,
and L, can be thought of as providing an overall scale and
two dimensionless couplings on which the dynamics de-
pends [8,9]. In the region of parameter space �5 � L� R,
the 4þ 1 dimensional gauge theory is weakly coupled at
the scale L� R, and the model is equivalent at long
distances (much larger than L, R, which can be viewed
from this perspective as a UV cutoff), to massless 3þ 1
dimensional QCD.

For large �5, the 4þ 1 dimensional gauge theory is
strongly coupled and needs to be UV completed. In string
theory this is achieved by realizing the gauge theory as a
low-energy theory on a stack of Nc D4-branes wrapped
around the twisted x4 circle, intersecting Nf, D8, and
�D8-branes along an R3;1, at x4 ¼ �L=2.
At strong coupling (and large Nc), one can replace the

D4-branes by their near-horizon geometry, and study the
dynamics of the eight-branes in this geometry. One finds
that in the vacuum the UðNfÞL �UðNfÞR global chiral

symmetry associated with theD8 and �D8-branes is sponta-
neously broken to the diagonal UðNfÞ, due to the fact that

the eight-branes connect in the bulk. To study this breaking
in more detail, one would like to identify an operator in the
field theory that transforms nontrivially under UðNfÞL �
UðNfÞR, and has a nonzero vacuum expectation value

(VEV) that preserves the diagonal UðNfÞ, i.e., an order

parameter for the symmetry breaking.
Since the left- and right-handed fermions are separated

in x4, there are no local gauge-invariant operators in the
D4-brane theory that are charged under both UðNfÞ
groups. The simplest operators with the desired flavor
quantum numbers are open Wilson lines of the type dis-
cussed above, such as (for a specific choice of the contour
~C)

OWj
i ðx�Þ¼ yj

L

�
x�;x4¼�L

2

�
P exp

�Z L=2

�L=2
ðiA4þ�Þdx4

�

� Ri
�
x�;x4¼L

2

�
; (1.1)

where � is one of the scalar fields of the SYM theory, and
P denotes path ordering.

In the weak coupling regime, the gauge field A4 and
scalar� are weakly coupled at the scale L, and the Wilson

line in (1.1) can be neglected. Thus, the operator OWj
i

reduces in this case to the local operator  yj
L  Ri, which is

the familiar order parameter of chiral symmetry breaking
in field theory. In the QCD regime, its VEV is expected to
be of order �3

QCD, where the QCD scale �QCD also sets the

scale of masses of mesons and glueballs in the theory.
At strong coupling, the Wilson line cannot be neglected,

since the 4þ 1 dimensional gauge theory degrees of free-
dom are strongly interacting at the scale L. We will com-

pute the expectation value ofOWj
i (1.1) below and find that

it is exponentially large. For example, in the original model
of [7] (in which L ¼ �R), it scales like expð�5=18�RÞ. We
interpret this exponentially large value as associated with
the Wilson line contribution to (1.1), rather than with the
fermions, since such exponentially large values do not
appear in the effective action of the Nambu-Goldstone
bosons (the ‘‘pions’’) and of the other mesons. Moreover,
we will see that the expectation value depends strongly on

the choice of contour ~C connecting the two intersections.
Another interesting question in the Sakai-Sugimoto

model is how to give a mass to the quarks.1 As explained
above, local operators which couple the left- and right-
handed fermions are not gauge invariant in this model. The
best we can do is to add to the Lagrangian the nonlocal
operator (1.1). This breaks the chiral symmetry explicitly,
and in the region in parameter space in which the model
reduces to QCD, becomes equivalent to the quark mass
deformation.
On the other hand, at strong coupling where we can use

supergravity, this deformation is highly nonlocal and ir-
relevant (i.e., it grows in the UV). At low energies it leads
to a change in the masses of the mesons, and, in particular,
to a nonzero mass for the Nambu-Goldstone bosons asso-
ciated with the symmetry breaking. We will study this
deformation to leading order in the deformation parameter,
and comment briefly on higher order effects.
In addition to this main example, we present two other

examples of long open string operators. One involves a
system of k NS5-branes, with Nf Dp and �Dp-branes a

distance L apart ending on them. For a critical value of the
distance, the branes and antibranes can connect, and form a
single curved D-brane, the hairpin brane of [12–14]. In the
process, the UðNfÞL �UðNfÞR symmetry acting on the

D-branes breaks to the diagonal subgroup, as before. The
long open string stretched between the branes and anti-
branes near the boundary can again be viewed as an order
parameter for the breaking. It has a nonzero VEV that can
be computed in the same way as for the generalized Sakai-
Sugimoto model, and one can again study the deformation
that breaks the symmetry explicitly.
The main advantage of this example compared to the

previous one is its tractability. The near-horizon limit of the

1So far there are no top-down holographic examples of quark
masses in theories with a non-Abelian chiral symmetry.
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NS5-branes is described by a solvable world sheet theory
[the linear dilaton conformal field theory (CFT)], and the
hairpin boundary state gives rise to a solvable boundary
CFT, due to the fact that it preserves N ¼ 2 superconfor-
mal symmetry on the world sheet. One can write down
explicitly the open string vertex operator corresponding to
the long string, and compare the results of our semiclassi-
cal analysis to those obtained from the effective action of
the stretched open strings, and to the exact solution of the
world sheet CFT.

A second example which we present briefly is of a long
open string operator in type IIB string theory onAdS5 � S5

with D-brane defects, which preserves half of the super-
symmetry, and is analogous to the circular closed Wilson
loop in the d ¼ 4 N ¼ 4 SYM theory. It is easy to
construct many other examples of supersymmetric open
string operators, and it would be interesting to study them
in more detail, generalizing the studies of supersymmetric
closed string operators. It would also be interesting to
understand if there is any relation (along the lines of
[15–17]) between open Wilson lines of the type studied
here and scattering amplitudes of quarks and gluons.

The organization of this paper is as follows. We begin in
Sec. II with a general discussion of open Wilson line
operators and their holographic description. In Sec. III
we discuss some holographic computations of their corre-
lation functions in the D4�D8� �D8 system. In Sec. IV
we study the deformation of the Lagrangian of this system
by the operator (1.1), which explicitly breaks the chiral
symmetry, to leading order in the deformation. In Sec. V
we describe the system ofD-branes ending onNS5-branes.
Finally, in Sec. VI we present a simple example of a
supersymmetric long open string operator, and discuss
cusplike divergences which occur in the computation of
correlation functions of generic long open string operators
(both at weak and at strong coupling).

II. HOLOGRAPHIC OPEN WILSON LINES

As mentioned in the introduction, in this paper we will
discuss certain nonlocal observables in the context of the
AdS/CFT correspondence and its generalizations [1–3]. A
class of such observables that has been widely studied is
Wilson loops in large N gauge theories with only adjoint
fields. Locally supersymmetric Wilson loops in the funda-
mental representation dressed with scalar fields �i,

W½C� ¼ tr

�
P exp

�I
C
dsðiA�ðx�ðsÞÞ _x�ðsÞ

þ niðsÞ�iðx�ðsÞÞj _xjðsÞÞ
��
; (2.1)

have been found [4–6] to correspond to strings ending on
the closed boundary contour C (parametrized by x�ðsÞ in
the noncompact space-time, and by the unit vector ~nðsÞ in
the compact space). Thus, an insertion of the operator
W½C� on the boundary corresponds in the bulk path integral

to summing over configurations which include a string
world sheet2 ending on the loop C on the boundary.
Wilson loops with generic (or no) couplings to scalar fields
are more subtle; in particular, their correlation functions
have perimeter divergences [unlike (2.1)] that need to be
regularized. Nevertheless, the operators (2.1) already give a
large amount of information about the theory. For instance,
they can be used as a diagnostic for confinement.
When the boundary theory is a large N gauge theory

with a finite number of fields in the fundamental represen-
tation, the corresponding bulk description involves adding
D-branes to the gravity background created by the adjoint
fields.3 The gauge symmetry on the D-branes corresponds
to a global flavor symmetry in the dual field theory (which
may or may not be a symmetry of the vacuum). From the
(bosonic or fermionic) fundamental and antifundamental
fields  iðxÞ, � jðxÞ, one can form local gauge-invariant
operators such as � jðxÞ iðxÞ. Such operators typically
map under holography to local fields in the bulk, arising
from short open strings stretching from the ith to the jth
D-brane [22].
The situation is different when the D-branes are local-

ized in some of the dimensions in which the gauge theory
lives, and thus give rise to defects. Examples include the
D4�D8� �D8 (generalized Sakai-Sugimoto) model [7–
9] mentioned in the previous section, the closely related
intersecting brane systems described in [23,24], and the
D3�D5 system that corresponds to adding 2þ
1-dimensional hypermultiplets to N ¼ 4 SYM [25,26].
In these cases there are no local gauge-invariant opera-

tors that involve fundamental fields from different brane
intersections (separated in space-time). The best one can
do is to consider generalizations of (1.1),

OWj
i ½ ~C� ¼ � jðxjÞP exp

�Z
~C
dsðiA�ðx�ðsÞÞ _x�ðsÞ

þ nkðsÞ�kðx�ðsÞÞj _xjðsÞÞ
�
 iðxiÞ; (2.2)

where ~C is a contour between the point xj in the intersec-

tion at which the field � j lives, and the point xi in the
intersection at which the field  i lives. This contour is
topologically a line segment; thus, we will refer to opera-
tors of the form (2.2) as open Wilson Lines, or OWLs.

Since locally along the contour ~C the operator (2.2)
looks just like (2.1), when ~n is a unit vector this operator
is locally supersymmetric and its correlation functions do
not exhibit divergences proportional to the length of the

2For Wilson loops in higher dimensional representations of the
gauge group, the dominant configurations do not look like strings
but rather like other branes carrying the same charges [18–20].

3This follows from ’t Hooft’s [21] mapping of Feynman
diagrams to string world sheets, in which loops of fields in the
fundamental representation correspond to holes in the world
sheet.
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path ~C. The holographic dual of (2.2) must involve a string

world sheet ending on the open contour ~C on the boundary.
Thus, we propose that an insertion of the operator (2.2) into
the path integral of the boundary gauge theory corresponds
in the bulk to summing over configurations which include

an open string world sheet which approaches the contour ~C
at the boundary of the bulk space-time, and near the
boundary looks like a strip whose ends lie on the ith and
jth D-branes.

As we will see, in some cases the computation of corre-
lation functions of these operators is dominated by a saddle
point corresponding to a semiclassical string world sheet,
just like for many holographic closed Wilson loop compu-

tations. In particular, the one-point function hOWj
i i is given

to leading order in the semiclassical expansion by
expð�A=2��0Þ, where A is the minimal area of the world
sheet of such a string. If a finite area string world sheet does
not exist, the one-point function of the OWL vanishes.

A few comments about the preceding discussion are in
order:

(1) Just like for other holographic operators, in order to
obtain finite correlation functions one needs to in-
troduce a UV cutoff, and renormalize the OWL
operators described above. In particular, the string
world sheet that enters the calculation of the one-
point function must only have finite area for finite
UV cutoff.

(2) When performing the bulk path integral in the pres-
ence of the open string world sheet, one has to
include all the couplings of the string to the back-
ground fields, such as the Neveu-Schwarz (NS)-NS
B�� field, and the gauge fields that live on the

D-branes.
(3) When the ith and/or jth D-branes give rise to more

than one fundamental field in the gauge theory, the
distinction between the corresponding bulk opera-
tors in the semiclassical calculation described above
arises from quantization of zero modes on the world
sheet of the string.

The example that motivated this investigation is the
Sakai-Sugimoto model of holographic QCD. In this model,
the large N gauge theory lives on D4-branes in type IIA
string theory, and the fundamental fields are left- and right-
handed fermions,  L and  R, which are localized at 3þ 1
dimensional defects—the intersections of the D4-branes
with Nf D8 and �D8-branes, respectively. The D8 and
�D8-branes are separated by a distance L in the direction
x4 along the D4-branes. The model has a UðNfÞL �
UðNfÞR global symmetry corresponding to the gauge sym-

metry on the D8 and �D8-branes.
In the strongly coupled regime �5 � L, R, the vacuum

of this model corresponds to a brane configuration in which
the D8 and �D8-branes are connected, and the chiral
UðNfÞL �UðNfÞR symmetry is dynamically broken to

the diagonal UðNfÞ. Most of the work on the model in-

volved light open 8–8 strings, such as the translational
modes of the eight-branes and their world volume gauge
fields. The latter correspond in the boundary theory to
the UðNfÞL �UðNfÞR chiral symmetry currents

 y
LðxÞ�� LðxÞ,  y

RðxÞ ��� RðxÞ.
These ‘‘short string’’ operators are useful for analyzing

the low-lying spectrum of mesons, but in order to study
chiral symmetry breaking it is better to consider operators
such as (1.1), which transform as ðNf; �NfÞ under the chiral
symmetry. In the next section we will use holography to
show that the expectation value of these operators is non-
zero at strong coupling; thus, they are natural order pa-
rameters for chiral symmetry breaking.
In QCD one can break the chiral symmetry explicitly by

adding a mass term for the quarks. The closest analog of
this at strong coupling is to add (1.1) to the Lagrangian. We
will describe some results about this deformation in
Sec. IV below.
OWL operators of the form (2.2) can in principle be also

defined for theories in which the fundamental fields are not
localized at defects, but they seem to be less useful in such
cases. Consider, for example, the D3�D7 system, which
corresponds to adding to N ¼ 4 SYM a massless hyper-
multiplet in the fundamental representation of the gauge
group. In the dual description this corresponds [22,27] to
adding a D7-brane wrapping AdS5 � S3 to type IIB string
theory on AdS5 � S5, where the S3 is a maximal three-
sphere inside S5.
The one-point function of an open Wilson line operator

(2.2) involves in this case a configuration with a string

ending on the contour ~C connecting the points xi and xj in

R3;1. The world sheet of such a string can always reduce its
area by contracting towards the boundary. Therefore, the
corresponding one-point function depends on the UV regu-
lator, and does not appear to be well-behaved.4 This is
reasonable from the general perspective described in the
introduction. The open string in question is really a short
D7�D7 string that does not shrink only because its two
ends are held fixed at two different points in R3;1. A more
natural basis for describing such strings is in terms of
excited perturbative D7�D7 strings, rather than the
OWL basis (2.2).
The last remark is also applicable to long open strings

connecting widely separated D-branes. For a given pair of

branes there is a preferred contour ~C that has minimal
length, and it is natural to study the OWL operator asso-
ciated with it. For the D4�D8� �D8 system this is the
operator (1.1). One can consider other contours that con-
nect different points in R3;1 and/or vary nontrivially in the
interior, as in (2.2), but these are less natural. They can be
alternatively described by adding string oscillators to the
operator corresponding to the minimal contour (1.1).

4This is also true at weak coupling, due to divergences
associated with the screening by the fundamental representation
fields.
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III. OPEN WILSON LINES IN THE D4�D8� �D8
SYSTEM

To demonstrate the general discussion of the previous
section, we will consider here the following intersecting
brane system in type IIA string theory. We start with Nc
D4-branes stretched in the R4;1 labeled by
ðx0; x1; x2; x3; x4Þ, and add to them Nf D8-branes localized

at x4¼�L=2, as well as Nf �D8-branes localized at x4 ¼
þL=2.

This leads [8] to a nonconfining theory of massless left-
and right-handed fermions,  L,  R, which are localized at
the 4–8 and 4–�8 intersections, respectively, and interact via
exchange of modes living on the D4-branes.5 The strength
of the interaction is determined by the ’t Hooft coupling
�5 ¼ ð2�Þ2gsNcls. When the interaction at the scale L is
strong ð�5 � LÞ, one can replace the D4-branes by their
near-horizon geometry [28,29]. The metric is given by

ds2 ¼
�
u

RD4

�
3=2

�
�ðdx0Þ2 þX4

i¼1

ðdxiÞ2
�

þ
�
RD4
u

�
3=2½du2 þ u2d�2

4�; (3.1)

where R3
D4 � �gsNcl

3
s . The Ramond-Ramond four-form

and dilaton are

Fð4Þ ¼ 2�Nc
VolðS4Þ �4; e� ¼ gs

�
u

RD4

�
3=4
: (3.2)

The dynamics of the fermions are determined by the shape
of the eight-branes in this background. It was found in [8]
that in the lowest energy configuration the D8 and
�D8-branes are connected by a tube and form a single stack
of Nf connected eight-branes. They are extended in the

R3;1 labeled by ðx0; x1; x2; x3Þ, wrap the four-sphere labeled
by�4, and form a curve uðx4Þ in the ðu; x4Þ plane, which is
a solution of the first order differential equation

u4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðRD4u Þ3u02

q ¼ u40: (3.3)

The solution of (3.3) is aU-shaped brane, with the distance
between the two arms approaching L at large u. The
minimal value of u to which the D8-branes extend, u0, is
determined by L,

L ¼ 1
4R

3=2
D4 u

�1=2
0 B

�
9
16;

1
2

�
: (3.4)

For strong coupling, the curvature of the metric (3.1) near
the D8-branes is small. The string coupling (3.2) diverges
as u! 1, but in the ’t Hooft large Nc limit there is a

parametrically wide region in u in which it is small, and we
can restrict attention to that region by placing a UV cutoff
on u, u 	 umax.
Since the D8 and �D8-branes are connected in the vac-

uum, the chiral UðNfÞL �UðNfÞR symmetry acting on

them is spontaneously broken to its diagonal subgroup.
The fermions  L,  R, which correspond in the brane
picture to strings stretching from the bottom of the curved
D8-branes towards u ¼ 0, obtain a dynamically generated
‘‘constituent mass’’ m ¼ u0=2��

0 � �5=L
2.

One can use the effective action for the D8-branes
(which includes the Dirac-Born-Infeld (DBI), Wess-
Zumino, and fermionic terms) to study the low-lying ex-
citations of the model, and, in particular, to verify the
existence of N2

f massless Nambu-Goldstone mesons cor-

responding to the breaking of the chiral symmetry. The rest
of the spectrum is massive; the masses of the lowest lying
mesons are of order 1=L. They are much lighter than the
fermions, and can be thought of as tightly bound states of
two fermions.
As explained above, the simplest operator which can

serve as an order parameter for chiral symmetry breaking
in this theory is the OWL operator (1.1). We next turn to a
calculation of its one-point function at strong coupling, the
chiral condensate, and comment on more general operators
of the form (2.2).

A. One-point functions of open Wilson lines

In order to compute the expectation value of the OWL
operator (1.1) at strong coupling, we need to perform the
gravitational path integral in the closed string background
(3.1) and (3.2), in the presence of the curved D8-branes
described around (3.3), and of a Euclidean fundamental
string world sheet which near the (regularized) boundary at
u ¼ umax stretches along a straight line in the x4 direction
between the two arms of the curved D8-branes.
This path integral is dominated by a semiclassical con-

tribution of a Euclidean world sheet, which is localized at a
point in R3;1 � S4, and fills the region in the ðu; x4Þ plane
between the boundary at u ¼ umax and the D8-branes (see
Fig. 1).
To leading order in �0 the action of such a string is

proportional to its area,

Sstr ¼ 1

2��0
Z
dx4

Z umax

uðx4Þ
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
guug44

p

¼ 1

2��0
Z
dx4½umax � uðx4Þ�: (3.5)

Performing the integral one finds

Sstr ¼ umaxL

2��0 �
R3=2
D4 u

1=2
0

8��0 B

�
7

16
;
1

2

�
¼ umaxL

2��0 � C1

�5

L
;

(3.6)

where the constant C1 is given by C1 ¼
Bð 716 ; 12ÞBð 916 ; 12Þ=128�2 ’ 0:0079, and we neglected correc-

5The Sakai-Sugimoto model [7] is obtained by compactifying
x4 on a circle, with twisted boundary conditions for the fermions
on theD4-branes [28]. We will comment on the generalization of
our considerations to this case below.
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tions that go to zero in the limit umax ! 1. The term
proportional to the UV cutoff umax on the right-hand side
is independent of the coupling �5, and can be absorbed in
the definition of the operator (1.1).6

Thus, we conclude that at strong coupling the expecta-
tion value of the operator (1.1) is given by

hOWj
i i ’ �ij expð�SstrÞ ’ �ij expðC1�5=LÞ: (3.7)

The calculation above captures the leading behavior of this
one-point function at strong coupling. The first subleading
corrections come from quadratic fluctuations around the
Euclidean world sheet of Fig. 1, and from the coupling of
the string to the varying dilaton. They are expected to give
a polynomial prefactor in front of the exponential (3.7).

The nonvanishing expectation value (3.7) exhibits the
expected pattern of chiral symmetry breaking, UðNfÞL �
UðNfÞR ! UðNfÞdiag, in agreement with our earlier dis-

cussion. It grows exponentially with the coupling �5=L in
the region �5 � L in which our calculation is reliable. At
first sight this might seem surprising, since in the weakly
coupled field theory regime the chiral condensate is closely
related to the dynamically generated fermion mass,
whereas here this is not the case—the fermion mass scales
like �5=L

2, those of the mesons scale like 1=L, while the
condensate (3.7) is exponentially large.7 The difference
between the two regimes is that for strong coupling most
of the contribution to (3.7) appears to be due to the Wilson
line in (1.1) rather than to the fermion bilinear part of the
operator, while for weak coupling this Wilson line gives a
negligible contribution.

The fact that the exponential behavior of (3.7) at strong
coupling is due to the Wilson line rather than to the
fermions can be seen more quantitatively by studying its

dependence on the contour ~C. Consider, for instance, the
one-point function of an open Wilson line (2.2) connecting
two points in R3;1, x

�
0 , and x

�
1 , (spacelike) separated by a

distance much larger than L. A class of contours connect-
ing these points that is useful for our purposes involves
moving first in x4 (at a fixed value of x�, x� ¼ x

�
0 ) from

�L=2 to some x40, then varying x� from x
�
0 to x

�
1 at fixed

x4, and finally moving again in x4 to L=2. Such contours
have cusps, but these can be smoothed out (and in any case
the divergences they lead to are well understood and can be
subtracted out).
Finding the precise shape of the string world sheet which

minimizes the action with these boundary condition is
rather complicated. However, when the two points x0 and
x1 are widely separated, we expect the main contribution to
this expectation value to come from the part of the world
sheet at x4 ¼ x40. In the special case x

4
0 ¼ 0, this part of the

world sheet is easy to analyze. Its contribution to the
regularized action is given by

Sstr ¼ � u0j ~x0 � ~x1j
2��0 / � �5

L2
j ~x0 � ~x1j: (3.8)

The proportionality constant on the right-hand side can be
read off from (3.4). On the other hand, when x40 approaches
(say) L=2, the regularized action turns out to be propor-
tional to ��5j ~x0 � ~x1j=ðx40 � L=2Þ2.
We see that the expectation values of these operators,

proportional to expð�SstrÞ, grow exponentially with the

distance between the endpoints of the contour ~C in R3;1,
and the coefficient of the distance in the exponent depends
on the precise contour we choose. We conclude that this
exponential growth is a property of the contour rather than
of the fermion bilinear at its ends. This also explains why
the expectation value under consideration does not decay
exponentially with the distance in R3;1, j ~x0 � ~x1j, as one
might have expected due to the fact that the fermions are
massive.
So far we have discussed the computation of the chiral

condensate for the extremalD4-brane background, but it is
easy to generalize the discussion to the case where x4 lives
on a circle of radius R, with antiperiodic boundary con-
ditions for the fermions. The near-horizon D4-brane ge-
ometry is in this case a Wick-rotated Euclidean black hole
geometry, in which the radius of the x4 circle varies be-
tween its asymptotic value R at large u and zero at u ¼
u� ¼ �5�

0=9�R2 [28].
One can again analyze the shape of the D8-branes as a

function of L and R and calculate the expectation value of
OWL operators such as (1.1), by evaluating the area of the
corresponding Euclidean string world sheet. There are
some small differences in the precise form of the solutions
for the D8-branes and for the strings, but the qualitative

u

x4

L

D8

umax

u 0

FIG. 1 (color online). The semiclassical world sheet which
gives the chiral condensate in the D4�D8� �D8 model is
drawn in green.

6As explained in [6], this term is naturally canceled by a
Legendre transform which is part of the definition of locally
supersymmetric Wilson line operators.

7The chiral condensate we find is also widely separated from
the pion decay constant f�, which will be discussed in the next
section.
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properties are not modified. There are now two indepen-
dent operators of the form (1.1), one with the Wilson line
going in the positive x4 direction and the other in the
negative x4 direction. For generic L, R, the world sheets
that determine the expectation values of the two operators
have different areas, so one of the operators has a larger
VEV. In the special antipodal case L ¼ �R considered in
[7], the one-point functions of both operators are given by

hOWj
i i ’ �ij expð�5=18�RÞ: (3.9)

For general L� �5 one finds a result that smoothly inter-
polates between (3.9) for L ¼ �R and (3.7) for L� R,
where the modification of the background at the location of
the D8-branes due to the compactness of x4 is negligible.

The discussion above was restricted to the strong cou-
pling regime �5 � L. In the opposite limit, �5 � L� R,
at energies much smaller than 1=R one expects the model
to reduce to QCD with massless quarks. In this limit the
gauge field A4 and the scalar fields are expected to de-
couple [28], so (1.1) should go over to the usual chiral
condensate of QCD, which scales as �3

QCD ’ 1
R3 �

expð�16�3R=�5Þ. If there is no phase transition as one
varies �5=R, we expect a smooth interpolation between this
result and (3.9).

For L� R, and, in particular, in the limit R! 1 with
fixed L, the situation is not completely clear. At strong
coupling (�5 � L), one finds in this limit a theory which
breaks chiral symmetry but does not confine, which can be
thought of as a particular UV completion of the Nambu-
Jona-Lasinio model [8]. Field theoretic intuition suggests
that at weak coupling (�5 � L) chiral symmetry is not
broken, and thus the theory undergoes a phase transition at
some critical value of the coupling �5=L, but this has not
been conclusively established yet.

In other closely related brane systems, discussed in
[23,24], which give rise to 1þ 1 dimensional intersections,
such as the D4�D6� �D6 system, one can analyze the
dynamics for both weak and strong coupling, and, in
particular, calculate the expectation value of (1.1) in both
limits (for any value of R). The strong coupling computa-
tion is very similar to that described above, and gives

hOWi � expð ~C1�5=LÞ with some calculable constant ~C1

that depends on L=R and approaches a finite value as
L=R! 0.

For weak coupling and infinite R, one obtains in this
case a generalized Gross-Neveu model which can be ana-
lyzed using field theoretic methods and gives hOWi �
expð�L=�5Þ. For finite R one gets a generalization of the
’t Hooft model of two dimensional QCD that includes four-
Fermi interactions, and is solvable at large Nc, like its two
extreme limits—the ’t Hooft and Gross-Neveu models. It
would be interesting to compute the chiral condensate in
this model as a function of L=R, and compare it to the
strong coupling calculation described above. We expect a
smooth interpolation between the strong and weak cou-

pling limits as one varies the parameters �5=L, �5=R that
govern chiral symmetry breaking and confinement,
respectively.

B. Correlation functions of open Wilson lines

The computation of the expectation value of a product of
several OWLs (2.2) is also straightforward in principle, but
in practice it is more difficult to find the appropriate
semiclassical string world sheets (if they exist). As in
correlation functions of closed Wilson loops, in some cases
a correlation function of a product of OWLs is dominated
by a single semiclassical world sheet; in other cases it is
dominated by several semiclassical world sheets connected
by propagators in the bulk (at leading order in 1=Nc they
must be connected by propagators of open string fields); in
yet other cases there may be no semiclassical contribution
at all. In the supergravity limit, there can be sharp phase
transitions between the first two possibilities, as in closed
Wilson loop correlators [30].
A case where the dominant world sheets are easy to

describe is the correlation function F2 � hOWi
i ðx�0 Þ�

ðOWi
i Þyðx�1 Þi (no sum over i implied) in the D4�D8�

�D8 system. There are two distinct semiclassical contribu-
tions to this correlation function. One involves the world
sheets that appear in the computation of the one-point
functions ofOWi

i and ðOWi
i Þy (the world sheet correspond-

ing to OWy is the same as the one for OW, but with an
opposite orientation), connected by a propagator of an
open string field on the D8-brane. It is depicted in the
left part of Fig. 2. The leading order contribution at large
distances is due to massless pion exchange, and should be
proportional to

F2 ’ hOWiiihOWiiiy
j ~x0 � ~x1j2

’ expð2C1�5=LÞ
j ~x0 � ~x1j2

: (3.10)

The second semiclassical world sheet smoothly connects
the two OWL’s at x

�
0 and x

�
1 , by extending into the bulk, as

in the right part of Fig. 2.
If the D8 and �D8-branes were localized at fixed values

of x4, this configuration would be precisely the one that
appears in the computation of the energy of a quark and an
antiquark separated by a distance j ~x0 � ~x1j, with x4 playing
the role of time (the world sheet would simply stretch in
this direction and end on the D8-branes at x4 ¼ �L=2). In
the D4-brane background (3.1) and (3.2), this energy is
given by [31] ð��5=j ~x0 � ~x1j2Þ, so in this case we would
obtain

F2 ’ expð�5L=j ~x0 � ~x1j2Þ: (3.11)

In the actual configuration we are interested in, the
D8-branes bend in x4, and (3.11) should be modified by
taking their shape into account. When the extent of the
string in the radial direction becomes comparable to u0,
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this modification is significant. However, for short dis-
tances, (3.11) is still reliable.8

As the distance increases, the area of the world sheet in
the right part of Fig. 2 increases, and at some point it
becomes larger than that in the left part. At that point,
the correlation function in question makes a phase transi-
tion from (3.11) to (3.10). This transition is expected to
occur at j ~x0 � ~x1j ’ L.

An example of a correlator for which there is no obvious
smooth world sheet configuration at short distances is
hOWi

i ðx�0 ÞOWi
i ðx�1 Þi. The string ending at x�0 would have

to change its orientation in the bulk before coming back to
end at x�1 . Thus, in this case it seems likely that the two-

string configuration on the left of Fig. 2 always dominates
and gives the behavior (3.10).

Another interesting correlator is hdetðOWj
i ðx�ÞÞi, which

is a singlet of the non-Abelian SUðNfÞL � SUðNfÞR but

carries axial Uð1Þ charge. In the case of finite R, due to
the axial anomaly, this should be nonzero even in phases
where the chiral symmetry is not spontaneously broken
and the D8-branes and �D8-branes do not connect. The

computation of hdetðOWj
i Þi involves in this case Nf strings

ending on the boundary, on the D8-branes and on the
�D8-branes. Naively it vanishes when the D8-branes and
�D8-branes do not connect, since the strings have nowhere
to end in the IR. However, there are contributions from
Euclidean D0-branes wrapped around the x4 circle (which
are instantons from the point of view of the 4þ 1 dimen-
sional gauge theory). Such Euclidean D0-branes should
have Nf fundamental strings ending on them between the

D8-branes and the �D8-branes [32].9 These strings can
extend to the boundary and thus contribute to

hdetðOWj
i Þi. Being D-instanton effects, such contributions

are exponentially suppressed in the ’t Hooft large Nc limit,

but they are the leading contribution to hdetðOWj
i Þi in

phases where the non-Abelian chiral symmetry is
unbroken.

IV. DEFORMING BY OPEN WILSON LINES

In the previous section we computed the expectation
value of the OWL operator (1.1) in the generalized
Sakai-Sugimoto model. In this section we will study a
deformation of the model that corresponds to adding this
operator to the Lagrangian,

�S ¼ 	
Z
d4x

XNf
j¼1

OWj
j ðxÞ þ c:c:: (4.1)

This leads to explicit breaking of the UðNfÞL �UðNfÞR
chiral symmetry to the diagonal UðNfÞ, in addition to the

spontaneous breaking present at 	 ¼ 0. The deformation
(4.1) can be thought of as a generalization to strong cou-

pling of a ‘‘current mass’’ for the fermions, �S ¼
	
R
d4x

P
j 

yj
L  Rj þ c:c:, that plays a role in QCD. The

generalization to nonequal ‘‘masses’’ 	j for different quark

flavors is straightforward.
We will study the deformed theory semiclassically at

strong coupling, in the hope that the strong coupling results
are smoothly related to largeNc QCDwith massive quarks.
We will work to first order in the mass parameter 	; this
involves a single insertion of the perturbation, for which
we can use our results from the previous section. In QCD
this is a good approximation for the u and d quarks, whose
current mass is much smaller than the QCD scale. It would
be interesting to go beyond first order in 	. For this, one
needs to evaluate n > 1 point functions of the operators
OWi

i ðxÞ, which are complicated, as discussed in the pre-
vious section.
To first order in 	, the deformation (4.1) can be de-

scribed by adding to the space-time action the term

�S ¼ 	

VolðS4Þ
Z
d4x

Z
d4�

X
i

e�S
ðiÞ
str þ c:c:; (4.2)

where SðiÞstr is the action of the string ending on the ith
D8-brane discussed in the previous section,10 and the in-
tegral over the four-sphere implements an average over the
scalar field that enters the definition of the operator (1.1),
restoring the SOð5Þ symmetry of the model.

The deformation (4.2) is nonlocal,11 since the action SðiÞstr
depends on the position of theD8-branes everywhere in the

FIG. 2 (color online). The two semiclassical configurations
that dominate the computation of F2. On the left we have the
two-string configuration, with one string (as in Fig. 1) ending on
a D8-brane at x0 and the other at x1, connected by an open
string propagator inside the D8-brane. On the right we have the
single string configuration. The string world sheets are filled
with diagonal lines, and the D8-brane lives everywhere but was
only drawn at x0 and x1.

8Note that F2 diverges as ~x0 ! ~x1 (when the cutoff is sent to
infinity).

9Recall that the D8-branes generate a tenform flux, which
couples to the gauge field on the D0-branes.

10Of course, this only makes sense in the phase in which the D8
and �D8-branes are connected. In phases like the high-
temperature phase of the Sakai-Sugimoto model in which the
branes are not connected, hOWi vanishes, and we do not have a
semiclassical description of the deformation.
11Similar nonlocal mass terms were also recently considered in
[33].
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radial coordinate (it also includes a coupling to the gauge
field on the D8-branes, and to closed string fields). This is
not surprising, since the field theory deformation (4.1) is
nonlocal. In the dual string description, in addition to the
explicit nonlocality in the direction of the Wilson line, we
also have nonlocality in the radial direction.12

The deformation (4.1) and (4.2), is of order Nc (or 1=gs),
like any other open string deformation, so it is expected to
influence open string fields (like the position of the
D8-branes) at leading order, while the corrections to closed
string fields (like the metric) are suppressed by a power of
gs. One thing that is relatively easy to compute is the mass
of the Nambu-Goldstone bosons (the pions) due to the
deformation (4.1) at leading order in 	.

For 	 ¼ 0 we have a UðNfÞL �UðNfÞR global symme-

try spontaneously broken to UðNfÞ. In the effective field

theory on theD8-branes the order parameter for this break-
ing can be taken to be the holonomy matrix

U � P exp

�
i
Z L=2

�L=2
dx4 ~Ax4

�
; (4.3)

where ~A is the gauge field on the D8-branes. The matrix U
transforms as a bifundamental ofUðNfÞL �UðNfÞR.13 It is
precisely the matrix appearing in the low-energy chiral
Lagrangian,14 which is usually written in terms of pion
fields as UðxÞ ¼ expði�ðxÞ=f�Þ. Its low-energy effective
Lagrangian is given by

Leff ¼ ðf2�=4ÞTrð@�U@�UyÞ; (4.4)

with [7,35]

f2� ’ �5Nc=L
3: (4.5)

The N2
f pion fields in U are massless Nambu-Goldstone

bosons.15

The deformation (4.1) explicitly breaks the chiral sym-
metry to the diagonal subgroup, and is expected to give a
mass to all the Nambu-Goldstone bosons. Indeed, the

perturbation expð�SðiÞstrÞ in (4.2) includes a coupling to the
gauge field on the D8-branes, of the form

ðP exp½�iRL=2�L=2 dx
4 ~Ax4�Þii. This coupling did not play a

role in our evaluation of hOWi, since we assumed that we
were expanding around a configuration in which the gauge
field on the D8-branes vanishes, but it is important in
analyzing the perturbed theory (4.2). The effective
Lagrangian for U, (4.4), is deformed at first order in 	 by

�Leff ¼ jhOWij	trðUÞ þ c:c:: (4.6)

When 	 is real and positive, this is precisely the same as
the change in the low-energy effective action of QCDwhen
we add to the theory a quark mass proportional to 	 (the
proportionality constant depends on the chiral condensate).
It leads to a pion mass equal to (this is sometimes called the
Gell-Mann-Oakes-Renner relation [38])

m2
� ¼ 4	jhOWij

f2�
: (4.7)

Note that 	 and f� have dimensions of mass, while OW
has the dimension of a mass cubed.
When 	 has an imaginary part (or is negative), the

minimum of the pion potential is no longer at �ðxÞ ¼ 0
and the deformation (4.1) leads to a change in the phase of
the chiral condensate. We will assume that 	 is positive
from here on (the other cases are classically equivalent to
this, since they are related by the axial Uð1Þ symmetry).
In addition to giving a mass to the pions, the perturbation

(4.2) changes the masses of the massive mesons as well. To
calculate their mass shifts, one needs to determine the
shape of the D8-branes in the presence of the perturbation.
This shape is obtained by minimizing the deformed
Lagrangian for the eight-branes,

L ¼ TD8
Z
dx4u4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
RD4
u

�
3
u02

s

þ 2	B exp

�
1

2��0
Z
dx4u

�
; (4.8)

where B is the coefficient of the exponent in the computa-
tion of hOWi, which is necessary to give L the appropriate

12This nonlocality could be avoided if instead of deforming by
ðOW þ c:c:Þ we would deform by ðlnðOWÞ þ c:c:Þ, since this
would just shift the action by a multiple of the action Sstr of the
stretched string, which is an integral of a local function of the
D8-brane fields (a similar perturbation for closed Wilson loops
was recently considered in [34]). However, such a deformation
does not have the same symmetry properties as (4.1) (in par-
ticular it does not break the axial Uð1Þ symmetry), and it is not
obvious that hlnðOWÞi ¼ lnðhOWiÞ semiclassically, so we will
not consider it further here.
13Parametrizing the position of the D8-branes in the ðu; x4Þ
plane by a variable z which goes from minus infinity at one
boundary of the branes to plus infinity at the other boundary, we
can write U ¼ P expðiR1

�1 dz ~AzÞ.
14Naively one might think that the holonomy matrix U could
serve as an order parameter for the chiral symmetry breaking in
the full string theory as well. However, while the holonomy is
gauge-invariant in the D8-brane gauge theory, it is not gauge
invariant in the full string theory under gauge transformations of
the NS-NS B field. In order to obtain a gauge-invariant object we
must multiply U by expðiRBÞ where the integral is over a
surface bounded by the D8-branes. The only way to construct
an operator containing this phase in string theory is to put in a
fundamental string (or another object with the same charges)
ending on the D8-branes, giving precisely the OWL operators
discussed above. Thus, one can think of OW as a completion of
U to the full string theory; in the Nf ¼ 1 case U is the phase of
OW.

15The axial Uð1Þ symmetry is anomalous, and the correspond-
ing pion obtains a mass at order 1=Nc [7,32,36,37].
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dimension and to make the second term have the same
scalingOðNcÞ as the first term.16 In the second term in (4.8)
we used (3.5).

The equation of motion corresponding to (4.8) is

TD8R
3
D4

½1þ ðRD4u Þ3u02�3=2
�
uu00 � 11

2
u02 � 4

�
u

RD4

�
3
�

¼ 	B

��0 exp
�

1

2��0
Z
dx4u

�
: (4.9)

The right-hand side is independent of x4, so the left-hand
side is a constant. Denoting this constant by A �
	jhOWij=��0, (4.9) is equivalent to the first order differ-
ential equation

H ¼ TD8u
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðRD4u Þ3u02
q � Au ¼ constant; (4.10)

associated with the symmetry fx4 ! x4 þ constantg of
(4.8). The constant value of H may be determined by
requiring that u goes to the UV cutoff u ¼ umax at x4 ¼
�L=2. It is related to the minimal position u0 of the
D8-branes in the u direction by H ¼ TD8u

4
0 � Au0.

Equation (4.10) enables us to compute the deformation
in the position of the D8-branes at leading order in
	jhOWij. This may then be used to determine the shift of
the meson masses, by analyzing the quadratic fluctuations
of the deformed action around this new solution. It would
be interesting to understand how to go to higher orders in
	.

Note that, unlike the QCD mass deformation, the defor-
mation (4.2) in the strongly coupledD4�D8� �D8 theory
is irrelevant, and its effect grows in the UV region; this is
clear from (4.10). Thus, as for other irrelevant deforma-
tions, the perturbation expansion in the deformation is only
meaningful if we put in a finite UV cutoff u ¼ umax, and
demand that the deformation is small at the cutoff scale.

It is easy to generalize the computations above to the
Sakai-Sugimoto model in which the x4 direction is com-
pactified. One interesting difference is that, in the special
case of L ¼ �R, it seems natural to deform by the sum of
the OWL operator (1.1) corresponding to the contour con-
necting the D8 and �D8-branes in the positive x4 direction,
and the one connecting them in the negative x4 direction. In
this case the shape of the D8-branes is not modified by the
deformation, since the two semiclassical strings pull the
D8-branes in opposite directions. Thus, in this special case,
adding the ‘‘quark mass deformation’’ does not change the
shape of theD8-branes, but it does give a mass to the pions
as discussed above. In all other cases, the shape of the
D8-branes is also modified; they are pulled to larger values

of u by the string. In this model the distance between the
minimal position of the D8-branes, u0, and the minimal
value of the u coordinate, u�, may be interpreted as a
constituent quark mass (at least in the context of high-
spin mesons [39–41]). We find generically (except for the
special case discussed above) that increasing the bare
quark mass increases also the constituent quark mass, as
expected.

V. D-BRANES IN THE BACKGROUND OF
NS5-BRANES

In this section we study another example of a holo-
graphic description of operators corresponding to long
strings stretched between two D-branes. This example is
of interest for the study of D-brane dynamics near singu-
larities of the bulk geometry. It also has the advantage that
the relevant classical string background is under control,
and can be analyzed exactly in �0.
Consider the following brane configuration in type II

string theory. We start with k NS5-branes stretched in R5;1

labeled by ðx0; x1; x2; x3; x4; x5Þ, and located at the origin in
the transverse R4. As is well known from the brane con-
struction of gauge theories (see [42] for a review),
Dp-branes which have one direction transverse to the
five-branes can end on them. Thus, we add a Dp-brane
stretched in the directions ðx0; x1; x2; 
 
 
 ; xp�1Þ, and semi-
infinite in the x6 direction (i.e., it has x6 � 0 and ends on
the five-branes at x6 ¼ 0).
The above D-brane is localized in the R6�p labeled by

ðxp; xpþ1; 
 
 
 ; x5Þ. We can add a second D-brane, which is
parallel to the first one, but is displaced from it by a
distance L in R6�p, and has the opposite orientation, i.e.,
it is a �Dp-brane. We will label the direction along which
the D and �D-brane are separated by x, with xðDÞ ¼ � L

2

and xð �DÞ ¼ þ L
2 . The brane configuration is depicted in

Fig. 3.
We will be primarily interested in the physics associated

with the two brane intersections in Fig. 3. As reviewed in
[42], each of the two intersections separately preserves
eight supercharges,17 and carries no localized massless
modes. One way to see this is to compactify some of the
directions along the five-branes, and use U-duality to turn
each of the intersections in the system in question to k
D5-branes stretched in (012345) intersecting a D3-brane
stretched in (0126) along an R2;1. If the D3-brane is fully
extended in x6, 3–5 strings give a massless hypermultiplet
in the fundamental representation of the low-energy UðkÞ
gauge symmetry on the five-branes, localized at the inter-
section. To reach the configuration of interest to us, one
needs to separate the two halves of the D3-brane (those
with positive and negative x6) along the five-branes, and to

16This coefficient also depends on uðx4Þ through the coupling
of the world sheet to the varying dilaton in our background.
However, this dependence is suppressed by a power of �0 in the
small curvature limit we are working in.

17The system with both branes and antibranes of course does
not preserve any supersymmetry.
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send the lower half to infinity. This corresponds to giving
an infinite mass to the hypermultiplet.

The endpoint of the Dp-brane on the five-branes looks
like a charged object in the five-brane theory. For example,
for p ¼ 1, the D1-brane ending on the NS5-branes gives
rise to a static quark in the fundamental representation of
the low-energy UðkÞ gauge theory of k NS5-branes in
type IIB string theory. For p ¼ 3, the D-brane is extended
in two of the directions along the five-branes (12), and
looks like a magnetic monopole in the remaining three.

While the system with just one intersection is uninter-
esting in the infrared,18 when both branes and antibranes
are present, as in Fig. 3, the situation is richer. Since we are
interested in the physics near the intersections, we can
replace the five-branes by their near-horizon geometry,
the Callan-Harvey-Strominger geometry [43]

ds2 ¼ dx�dx
� þ d
2 þ d�2; (5.1)

where
 is related to the radial coordinate in the transverse
R4 as follows:

r ¼ gs
ffiffiffiffiffiffiffiffi
k�0p

exp

�

ffiffiffiffiffiffiffiffi
k�0p

�
; (5.2)

and � parametrizes the angular three sphere in R4, whose

radius is given by
ffiffiffiffiffiffiffiffi
k�0p

. More precisely, the angular de-
grees of freedom are described by a supersymmetric SUð2Þ
Wess-Zumino-Witten model at level k. gs is the asymptotic
string coupling, far from the five-branes. The geometry
(5.1) is obtained from the full five-brane geometry by
taking gs ! 0 with 
 held fixed; in this limit it describes
a ‘‘little string theory’’ (LST) (see [44,45] for reviews).
The dilaton behaves in this limit like

� ¼ � 
ffiffiffiffiffiffiffiffi
k�0p : (5.3)

A Dp-brane ending on the five-branes corresponds in the
geometry (5.1), (5.2), and (5.3) to a brane stretched in

ðx0; x1; 
 
 
 ; xp�1; 
Þ, and localized on the three sphere
and in R6�p [46]; the �Dp-brane is described similarly.
As in the full geometry, the D and �D-branes are a distance
L apart in R6�p. Note that unlike the previous cases we
discussed, here this distance does not grow as we move out
in the radial direction.
The Dp and �Dp-branes attract each other via exchange

of closed string modes, but we will ignore this effect, and
work just at leading order in the string coupling. We will
view the distance between the Dp and �Dp-branes at 
!
1, L, as a fixed ( ¼ non-normalizable) boundary condi-
tion. Our focus here will be on the classical dynamics of
normalizable open string modes.
It turns out that for L larger than a certain critical value,

Lcrit ¼ �
ffiffiffiffiffiffiffiffi
k�0p

; (5.4)

all such modes are massive. As L! Lcrit, a light mode
appears. For L < Lcrit this mode becomes tachyonic and
destabilizes the brane configuration of Fig. 3. A heuristic
way of understanding this instability is the following. The
endpoints of the Dp and �Dp-branes on the NS5-branes
attract each other via exchange of modes localized on the
five-branes (LSTmodes). However, since the tension of the
Dp-branes goes like the inverse string coupling, while the
attractive force due to exchange of a particular five-brane
mode is of order one, this is a subleading effect in (the
local) gs.
A classical instability can only occur if the sum over the

exchanges of all modes of the LST diverges. Such a
divergence can only be due to the contributions of arbi-
trarily heavy LST states. The contribution to the attractive
force of a given mode of mass m decreases at large mass
like expð�mLÞ, while the density of LST states is well-

known to behave like �ðmÞ � expð2� ffiffiffiffiffiffiffiffi
�0k

p
mÞ. Thus,

superficially it seems that the sum over states diverges
for L < 2Lcrit (5.4).
This factor of 2 discrepancy is familiar from another,

closely related, context—closed string emission from ac-
celerating branes in LST. It was argued in [47] that it is
natural to expect that the density of states that can be

emitted by D-branes in LST in fact goes like
ffiffiffiffiffiffiffiffiffiffiffi
�ðmÞp

.
This would certainly be the case in ordinary (critical) string
theory, since a D-brane can only emit left-right symmetric
closed string states. Assuming that this is the case in LSTas
well, we conclude that the exchange of LST modes by the
D-branes diverges precisely for L < Lcrit.
In the regime k� 1, Lcrit is large in string units, and the

above light mode is best described as a translational mode
of the D-brane configuration (which will be described in
detail below). For k� 1 or smaller,19 a better description of
this mode is as a fundamental string stretched between the

x 6

x

Dp Dp

k NS

L

FIG. 3 (color online). The brane configuration: a Dp-brane
and an �Dp-brane ending on NS5-branes.

18In brane constructions of gauge theories, such systems do
give interesting infrared physics when embedded in richer brane
configurations; this will not play a role in our discussion below.

19Such values of k in (5.3) cannot arise in the near-horizon limit
of flat NS5-branes, but they can arise in other systems.
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D and �D-branes. We will consider the geometric regime
k� 1, but will return to this stretched string below.

To exhibit the geometric massless mode for k� 1,
consider the projection of the D-branes of Fig. 3 on the
two dimensional space labeled by ð
; xÞ. This corresponds
to a D string described by a curve x ¼ xð
Þ. The configu-
ration of Fig. 3 corresponds to x ¼ �L=2; the light mode
corresponds to deformations to a more general xð
Þ. The
DBI action for such a D-brane is given by

S ¼ �C
Z
dx exp

�

ffiffiffiffiffiffiffiffi
k�0p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
02

q
: (5.5)

Here 
 ¼ 
ðxÞ, 
0 ¼ @x
, and C is a known constant
whose value will not be needed below.

The fact that the Lagrangian (5.5) does not depend
explicitly on x implies that one can integrate the Euler-
Lagrange equation once. After squaring the resulting equa-
tion one gets

exp

�
2
ffiffiffiffiffiffiffiffi
k�0p

�
¼ 1þ
02; (5.6)

where we fixed a constant that appears in the integration to
a particular value by shifting 
. The solution of (5.6) is

exp

�
� 
ffiffiffiffiffiffiffiffi

k�0p
�
¼ cos

�
xffiffiffiffiffiffiffiffi
k�0p

�
: (5.7)

It describes a U-shaped connected brane, the hairpin brane
of [12] (or, more precisely, its generalization to the fermi-
onic string discussed in [13,14], and other papers). As
!
1, it approaches a brane and antibrane a distance Lcrit (5.4)
apart. As
 decreases, the twoD-branes bend towards each
other; they smoothly connect at 
 ¼ 0 (see Fig. 4).

As mentioned above, the position of the bottom of the
brane depicted in Fig. 4 is a free parameter of the solution,
as is clear from the form of the action (5.5). Moreover, the
energy of the brane is independent of this parameter. Thus,
when the distance between theD and �D-branes at infinity is
equal to the critical one (5.4), the mode corresponding to
fluctuations of the bottom of the hairpin brane is massless
and has a flat potential (at leading order in the string
coupling).

When L > Lcrit, this mode is massive, and the hairpin
tends to collapse back to the brane-antibrane configuration
of Fig. 3. For L < Lcrit it is tachyonic and the bottom of the
U-shape tends to run to large 
. The resulting time-
dependent solutions can be described using techniques
similar to those of [48], who studied a closed string analog
of this problem.
The original brane configuration of Fig. 3 has a Uð1Þ �

Uð1Þ symmetry associated with the twoDp-branes. This is
a local symmetry on the D-branes, but from the point of
view of the LST it is a global one. This symmetry is broken
to the diagonal Uð1Þ when the branes connect. It is inter-
esting to ask whether there is an operator that is charged
under the brokenUð1Þ and has a nonzero expectation value
in the configuration of Fig. 4. Such an operator could serve
as an order parameter for the symmetry breaking described
above, as in our discussion of the D4�D8� �D8 system
in Sec. III.
A natural candidate for such an operator is a string

stretched between the Dp and �Dp-branes in Fig. 3. The
lowest lying state of such a string is the open string
‘‘tachyon’’ stretched between the two branes. From studies
of the hairpin brane, which turns out to be described by an
exactly solvable boundary conformal theory, it is known
that such an operator is indeed turned on in the vacuum. In
the bosonic string this was discussed in [12,49], while in
the fermionic case of interest to us here in [50].
Asymptotically, at large 
, the world sheet Lagrangian

contains a term corresponding to a boundary N ¼ 2
superpotential, which behaves like

�Sws ¼ �
Z
dtd� exp

�
� 1

2

ffiffiffiffiffi
k

�0

s
ð
þ i~xÞ

�
þ c:c:: (5.8)

Here ~x ¼ xL � xR is the T dual of x, and the coupling � is
determined by 
IR, the location of the bottom of the hair-
pin brane. The dependence can be determined by a scaling
argument of the kind familiar from Liouville theory. For
the hairpin shape (5.7), one has 
IR ¼ 0, which corre-

sponds to some particular � ¼ �ð�Þ. If we replace 
!

�
IR, such that the bottom of the hairpin is at
 ¼ 
IR,
we see from (5.8) that

� ¼ �ð�Þ exp
�
1

2

ffiffiffiffiffi
k

�0

s

IR

�
: (5.9)

When 
IR ! �1, the bottom of the hairpin brane de-
scends into the strong coupling region and one smoothly
approaches the parallel brane-antibrane configuration of
Fig. 3. � (5.9) also goes to zero in this limit.20

As mentioned above, the large symmetry of the problem
(N ¼ 2 world sheet superconformal symmetry) allowsk NS

Dp

Lcrit

x

φ

FIG. 4 (color online). The hairpin D-brane (5.7).

20When 
IR becomes too small, we cannot trust the shape of
the bottom of the hairpin due to strong quantum effects, but there
is no reason to expect nonsmooth behavior there.
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one to solve the boundary conformal field theory corre-
sponding to the hairpin brane exactly, and, in particular,
one can deduce the presence of the boundary N ¼ 2
superpotential (5.8). Thus, it is interesting to study this
case in detail, in the hope of developing techniques which
could be useful also in more general circumstances where
the world sheet theory is not solvable, such as backgrounds
with Ramond-Ramond fields turned on.

In particular, we would like to understand the origin of
(5.8) at large k, where both the closed string background
(5.1), (5.2), and (5.3), and the shape of the D-brane (5.7),
are slowly varying, and we can expect semiclassical tech-
niques to be valid. To do that it is useful to note that the
boundary superpotential (5.8) is a normalizable operator at
large 
. As is familiar from holography in general, � is
proportional to the expectation value of the non-
normalizable operator that creates a string stretched be-
tween the D and �D-branes at the boundary. This operator,
which is analogous to the OWL operators described in the
previous sections, behaves at large 
 like

T ’ exp

��
1

2

ffiffiffiffiffi
k

�0

s
� 1ffiffiffiffiffiffiffiffi

k�0p
�

� i

2

ffiffiffiffiffi
k

�0

s
~x

�
: (5.10)

Thus, we need to calculate the expectation value of (5.10)
in the hairpin state. A scaling argument similar to that
described above implies that if this expectation value is
nonzero, it is indeed proportional to � (5.9).

To calculate this expectation value it is useful to note
that the tachyon background (5.8) is a nonperturbative
effect in the world sheet theory, whose loop expansion

parameter is 1=
ffiffiffi
k

p
(the curvature of the D-brane). Thus,

it is natural to expect that it is due to a world sheet instanton
effect, involving an open string ending on the boundary;
this also follows from our general discussion in the pre-
vious sections of the holographic dual of long open strings.
The instanton in question is a map from the world sheet
disk jzj 	 1 to the part of the two dimensional ðx;
Þ plane
bounded by the hairpin,

exp

�
� 
ffiffiffiffiffiffiffiffi

k�0p
�
	 cos

�
xffiffiffiffiffiffiffiffi
k�0p

�
: (5.11)

Near the boundary 
! 1 this world sheet looks like a
string stretched between the D-branes, which implies that
this configuration contributes to the one-point function of
the stretched string operator (5.10).

The instanton configuration can be constructed as fol-
lows. Start with the world sheet action

S ¼ 1

��0
Z
d2zð@z
@�z
þ @zx@�zxÞ: (5.12)

It is convenient to parametrize the ðx; 
Þ plane by the
coordinate

U ¼ exp

�

�
IR þ ixffiffiffiffiffiffiffiffi

k�0p
�
; (5.13)

in terms of which the hairpin shape (5.7) takes the simple
form

UþU� ¼ 2; (5.14)

or, equivalently, ReðU� 1Þ ¼ 0.
The world sheet action (5.12) now takes the form

S ¼ k

�

Z
d2z

1

jUj2 ð@zU@�zU
� þ @�zU@zU

�Þ: (5.15)

The disk instanton we are looking for is a holomorphic
map from the disk to the half-plane bounded by (5.14), and
is easy to write down

U� 1 ¼ 1þ z

1� z
: (5.16)

Its action is proportional to the area A of the Euclidean
string world sheet (5.16)

Sinst ¼ A

2��0 : (5.17)

This area is infinite, since as 
! 1 the hairpin looks like
two D strings a distance Lcrit (5.4) apart, so there is a
divergence from that region. This divergence can be regu-
lated by introducing an upper bound on
,
UV, which can
be thought of as a UV cutoff.
In any case, we are only interested in the dependence of

the area on the position of the bottom of the hairpin, 
IR,
discussed around (5.9). We can isolate this dependence by
differentiating the area with respect to 
IR. A short calcu-
lation leads to

@A

@
IR

¼ �Lcrit (5.18)

in the limit 
UV ! 1. Therefore, after rescaling the op-
erator (5.10) by a factor which depends on the UV cutoff,
we conclude that

hTi � expð�SinstÞ � exp

�
Lcrit
IR

2��0

�
��; (5.19)

where we used (5.4), (5.9), (5.17), and (5.18). We see that
indeed the instanton contribution scales in the right way
with 
IR to give a nonzero one-point function to the long
open string operator (5.10). Note that we have only com-
puted the leading exponential contribution to the one-point
function. The preexponential factor involves contributions
from the dilaton coupling in the world sheet action, and the
determinant of small fluctuations around the instanton
(5.16). These are subleading in the large k limit, and are
expected to give rise to a constant contribution to (5.19)
(independent of 
IR).
So far we discussed the spontaneous breaking of the

Uð1Þ �Uð1Þ symmetry of the brane configuration of Fig. 3
to the diagonal Uð1Þ, by the brane configuration of Fig. 4.
We have seen that the order parameter for this breaking can
be taken to be the stretched string operator (5.10), and it
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indeed has a nonzero expectation value in the hairpin state
(5.19). It is natural to ask what happens if we deform the
system by adding to the world sheet Lagrangian the non-
normalizable operator T (5.10),

�Sws ¼ 	

2

Z
dtd�Tð
; xÞ þ c:c:: (5.20)

This deformation breaks the Uð1Þ �Uð1Þ symmetry ex-
plicitly. It also breaks theN ¼ 2 superconformal symme-
try of the hairpin brane; therefore we do not expect the
resulting theory to be exactly solvable. However, one can
still ask how the shape of the D-brane and its low-lying
spectrum change in the presence of this deformation.

To first order in 	 and in the semiclassical regime k� 1
one can answer this question by adding to the DBI action
(5.5) the exponential of the Nambu-Goto (NG) action for
the instanton string discussed above,

S ¼ �C
Z
dx exp

�

ffiffiffiffiffiffiffiffi
k�0p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
02

q
� 	Be�SNG : (5.21)

Here, as before [see (5.17)], SNG ¼ A
2��0 , where A is the

area of a minimal world sheet enclosed by the deformed
hairpin, and B is the preexponential factor in the expecta-
tion value of T above. It depends on the shape of the
deformed hairpin, but for the purpose of the calculation
below, to leading order in the 1=k expansion we can neglect
this dependence.

To calculate the shape of the deformed hairpin to first
order in 	 we need to solve the equation of motion of 
ðxÞ
with the deformed action (5.21). For this we need the
dependence of SNG on the shape 
ðxÞ. It is easy to see
that it is given by

SNG ¼ � 1

2��0
Z
dx
ðxÞ þ 
 
 
 ; (5.22)

where the ellipsis stand for terms that depend on the UV
cutoff 
UV, but not on the shape 
ðxÞ. Varying (5.21) with
respect to 
ðxÞ and integrating once, we find the first order
equation

C
eð
=

ffiffiffiffiffiffi
k�0p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
02p þ 	hTi
2��0
 ¼ D; (5.23)

where D is a function of 
IR (or, equivalently, of the
separation between the brane and antibrane at some UV
cutoff 
UV). This equation generalizes (5.6) to nonzero 	,
and it can be solved by expanding 
 as 
 ¼ 
0 þ 	
1 þ

 
 
 , and keeping only first order terms in 	. For example,
at large 
, the leading deformation of the hairpin from its
original form is given by

C@
x ¼
�
D� 	hTi

2��0

�
e�ð
= ffiffiffiffiffiffi

k�0p Þ: (5.24)

Of course, when 
 becomes too large, one has to go
beyond the linear approximation in 	 described above.

It is interesting to compare the deformed shape of the
hairpin (5.24) which we found above, to the deformed
shape implied by the effective action on the Dp-brane
coupled to the tachyon field T. In curved space and for
curved D-branes (as in the discussion of the previous
sections) it is not known how to write down such an
effective action, but for flat D-branes in flat space we
know how to write it down, and this is the situation in
the asymptotic region of the hairpin. In this region we
know that, if we denote the distance between the brane
and the antibrane by Lcrit � 2xð
Þ [where xð
Þ is small in
the UV], the mass of the open string ground state is given
by

m2ðxð
ÞÞ ¼ � 1

2�0 þ
�
Lcrit � 2x

2��0

�
2 ’ m2

0 �
ffiffiffiffiffiffiffi
k

�03

s
x

�
:

(5.25)

The effective action of the tachyon stretched between
the D and �D-branes in Fig. 4 is given to quadratic order by

S ¼ �C
Z
d
 exp

�

ffiffiffiffiffiffiffiffi
k�0p

�
½ð@
xÞ2 þ ð@
TÞ2 þm2ðxÞT2�:

(5.26)

We are looking for a configuration where the normalizable
mode of the tachyon (5.8) is turned on with a coefficient
hTi, and the non-normalizable mode (5.10) is turned on
with a coefficient 	, such that at leading order in 	 the
tachyon field behaves asymptotically as

T2 ’ 	hTi exp
�
� 
ffiffiffiffiffiffiffiffi

k�0p
�
; (5.27)

where  is a constant coming from carefully normalizing
the normalizable and non-normalizable modes of the
tachyon.
The equation of motion of xð
Þ with this tachyon

source, at leading order in 	 (and in the UV region where
x is small), then takes the form

@


�
exp

�

ffiffiffiffiffiffiffiffi
k�0p

�
@
x

�
¼ �	hTi

2��0

ffiffiffiffiffi
k

�0

s
: (5.28)

For 1= ¼ C
ffiffiffiffiffiffiffiffiffiffi
k=�0p

, this precisely agrees with (5.24)
above.

VI. ADDITIONAL ISSUES

A. A supersymmetric example

The main examples we focused on so far were non-
supersymmetric, but one can also construct interesting
examples of OWL operators (2.2) in supersymmetric theo-
ries, including examples which preserve some of the su-
persymmetry. We will describe here just one example,
leaving a further investigation to future work.
Consider the d ¼ 4 N ¼ 4 SUðNcÞ SYM theory

coupled to Nf three dimensional massless hypermultiplets
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living on the surface x3 ¼ 0. In the ’t Hooft large Nc limit
with ’t Hooft coupling �4 and with fixed Nf, this is de-

scribed by type IIB string theory on AdS5 � S5, with Nf
D5-branes filling anAdS4 � S2 subspace [25,26]; if we use
the Poincaré coordinates of AdS5 (with a boundary at z!
0),

ds2 ¼ ffiffiffiffiffiffi
�4

p
�0 dx

2
� þ dz2

z2
; (6.1)

then the D5-branes are simply located at x3 ¼ 0 (and wrap
some maximal S2 inside the S5). This theory breaks half of
the supersymmetry of the N ¼ 4 SYM theory; it pre-
serves a d ¼ 3 N ¼ 4 superconformal symmetry.

Now, consider an OWL starting at a hypermultiplet at
x0 ¼ x1 ¼ x2 ¼ x3 ¼ 0 and stretching to infinity in the x3
direction. Such an operator is analogous to the ‘‘straight
Wilson line’’ in theN ¼ 4 SYM theory; it is well-defined
if we put appropriate boundary conditions at infinity. In the
holographic dual description, the computation of the one-
point function of this operator is dominated by a string
sitting at x0 ¼ x1 ¼ x2 ¼ 0 and filling the z axis and the
positive x3 axis in (6.1) (we assume that the OWL couples
to a scalar such that the string lives at a point in the S2 filled
by the D5-branes). This operator breaks half of the super-
symmetry (leaving eight unbroken supercharges, including
both regular supercharges and superconformal charges),
and the holographic computation of its VEV gives one,
since the regularized area of the surface vanishes (just like
for the ‘‘straight Wilson line’’).

This case is not very interesting, but suppose that we
now perform a conformal transformation involving an
inversion around a point x0 ¼ x1 ¼ x3 ¼ 0, x2 ¼ a. This
transformation leaves the field theory described above
invariant. However, the contour in the OWL now maps to
a semicircle�

x2 � aþ 1

2a

�
2 þ x23 ¼

1

4a2
; x3 � 0: (6.2)

This is a standard OWL connecting two hypermultiplets of
the form (2.2), with a semicircular contour (6.2) between
the two points (x2 ¼ a, x3 ¼ 0) and (x2 ¼ a� 1=a, x3 ¼
0). Our derivation of this configuration by a conformal
transformation ensures that this OWL still preserves eight
supercharges, though these are now combinations of stan-
dard supersymmetries and superconformal symmetries.

The holographic computation of the one-point function
of this OWL is straightforward; the dominant solution is
just half of the solution for the circular Wilson line [6,51],
with a string world sheet at�

x2 � aþ 1

2a

�
2 þ x23 þ z2 ¼ 1

4a2
; x3 � 0: (6.3)

Its area is thus half of that corresponding to the circular
Wilson line, which is

ffiffiffiffiffiffi
�4

p
, so the VEV of the OWL (at

leading order in the �0 expansion) is equal to expð ffiffiffiffiffiffi
�4

p
=2Þ.

In the case of the closed circular Wilson line case it has
been conjectured [52,53] and recently proven [54] that the
result is given by a zero-dimensional matrix model, since
the conformal transformation can only change the result
because a point is brought in from infinity. Similar argu-
ments imply that the semicircular open Wilson line hOWi
described above should also be computable by a zero-
dimensional model of matrices and vectors; it would be
interesting to verify this.

B. Divergences in open Wilson line computations

Closed supersymmetric Wilson loops are known to have
divergences at cusps, which can be computed both pertur-
batively and at strong coupling (with a qualitatively similar
behavior found in both limits [6]). Similarly, in the case
that the fields in the fundamental representation are local-
ized on some subspace, the correlation functions of the
open Wilson line observables (2.2) have a divergence

whenever the contour ~C ends on that subspace at an angle
which is not a straight angle. In this section we describe
this divergence both at weak coupling (using perturbation
theory) and at strong coupling (using the mapping to string
world sheets).
Let us consider a D-dimensional large N gauge theory,

in which some fields in the fundamental representation are
localized on a d-dimensional subspace; without loss of
generality we can take this subspace to be

xdþ1 ¼ xdþ2 ¼ 
 
 
 ¼ xD ¼ 0: (6.4)

When we consider an open Wilson line operator of the
form (2.2), starting at a fundamental field located at x ¼ 0,
there is now an angle associated with this operator, which
is the angle � between the direction of theWilson line (near
x ¼ 0) and the subspace that the fundamental fields live on.
For instance, again without loss of generality, we can
assume that near x ¼ 0 the Wilson line (parametrized by
t) looks like

xdþ1 ¼ t sinð�Þ; xd ¼ t cosð�Þ; t � 0; (6.5)

implying that the Wilson line couples to the gauge field
components sinð�ÞAdþ1 þ cosð�ÞAd. On the other hand,
the fields in the fundamental representation couple just to
Ad and they do not couple to Adþ1. The one-loop diagram
involving the exchange of a gauge field between the
Wilson line and the propagator of the field in the funda-
mental representation then has a divergence as t! 0,
proportional (near � ¼ �=2) to cos2ð�Þ, going asR
dt=tD�3. For D ¼ 4 we have a logarithmic divergence

(as for a cusp in a closed Wilson line), and for D ¼ 5 a
linear divergence. The only case in which there is no
divergence is when the Wilson line intersects the surface
(6.4) at a straight angle � ¼ �=2.
When the fundamental representation fields couple also

to scalar fields (note that this is not the case in the D4�
D8� �D8 system), then, for a specific choice of the scalar
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field couplings of the open Wilson line, it may be possible
to cancel this divergence. However, generally this diver-
gence is present even for locally supersymmetric OWL
operators (as is the case for the cusp divergence).

On the strong coupling side, for the purposes of comput-
ing the divergence in the open Wilson line correlators we
can concentrate just on the region near the boundary, where
the flavor D-brane just sits at xdþ1 ¼ 
 
 
 ¼ xD ¼ 0 and
stretches in the radial direction. We need to find a minimal
world sheet ending on the contour (6.5) at the boundary and
transverse to theD-brane. It is easy to convince oneself that
such a world sheet is the same as half of the closed string
world sheet ending on the contour

xdþ1 ¼ t sinð�Þ; xd ¼ jtj cosð�Þ; (6.6)

that we obtain by joining to (6.5) its reflection around the
subspace that the fundamental fields live on (a similar trick
was recently used in [17]). This contour has a cusp at t ¼ 0
with an angle of 2�, so it leads to a divergence which is
similar to the cusp divergence occurring in closed Wilson
loops (whenever � � �=2). For the case of D ¼ 4 this is a
logarithmic divergence, just as in the previous paragraph,
but its precise dependence on the angle is different from the
one found at weak coupling (this is also true for the closed
Wilson loop cusp divergence) [6].

Note that in this computation we assumed that the end of
the open Wilson line is at the same position as the D-brane
in the compact directions (otherwise there is no semiclas-
sical world sheet contributing to the computation of corre-
lation functions of OW). If the D-brane is partially
localized in the compact directions (so that the fundamen-

tal fields couple to some of the scalar fields of the gauge
theory) then this implies that near the end of the open
Wilson line, the Wilson line couples to different scalar
fields than the ones which the fundamental fields couple
to. Thus, for such Wilson lines there is no contribution
from the scalar fields at leading order in perturbation
theory, and their one-loop computation diverges as de-
scribed above.
In any case, we showed that both at weak coupling and at

strong coupling, when the fundamental representation
fields are localized on a subspace, one has to choose the
Wilson line operators (2.2) such that the direction of the
open Wilson line is transverse to that subspace at its
beginning and end, in order to avoid cusplike divergences
in the computation.

ACKNOWLEDGMENTS

We would like to thank O. Bergman, N. Drukker, S.
Hartnoll, Z. Komargodski, O. Lunin, D. Reichmann, A.
Schwimmer, J. Sonnenschein, and S. Yankielowicz for
useful discussions. The work of O.A. was supported in
part by the Israel-U.S. Binational Science Foundation, by a
center of excellence supported by the Israel Science
Foundation (Grant No. 1468/06), by a grant (DIP H52) of
the German Israel Project Cooperation, by the European
network MRTN-CT-2004-512194, and by Minerva. D.K.
is supported in part by DOE Grant No. DE-FG02-
90ER40560, by the National Science Foundation under
Grant No. 0529954, and by the Israel-U.S. Binational
Science Foundation. D.K. thanks the Weizmann Institute
for hospitality during part of this work.

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999).

[2] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Phys.
Lett. B 428, 105 (1998).

[3] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[4] J.M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998).
[5] S. J. Rey and J. T. Yee, Eur. Phys. J. C 22, 379 (2001).
[6] N. Drukker, D. J. Gross, and H. Ooguri, Phys. Rev. D 60,

125006 (1999).
[7] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843

(2005).
[8] E. Antonyan, J. A. Harvey, S. Jensen, and D. Kutasov,

arXiv:hep-th/0604017.
[9] O. Aharony, J. Sonnenschein, and S. Yankielowicz, Ann.

Phys. (N.Y.) 322, 1420 (2007).
[10] O. Bergman, S. Seki, and J. Sonnenschein, J. High Energy

Phys. 12 (2007) 037.
[11] A. Dhar and P. Nag, J. High Energy Phys. 01 (2008) 055.
[12] S. L. Lukyanov, E. S. Vitchev, and A. B. Zamolodchikov,

Nucl. Phys. B683, 423 (2004).

[13] D. Kutasov, arXiv:hep-th/0405058.
[14] Y. Nakayama, Y. Sugawara, and H. Takayanagi, J. High

Energy Phys. 07 (2004) 020.
[15] L. F. Alday and J.M. Maldacena, J. High Energy Phys. 06

(2007) 064.
[16] Z. Komargodski and S. S. Razamat, J. High Energy Phys.

01 (2008) 044.
[17] J. McGreevy and A. Sever, J. High Energy Phys. 02 (2008)

015.
[18] N. Drukker and B. Fiol,J. High Energy Phys. 02 (2005)

010.
[19] S. Yamaguchi, J. High Energy Phys. 05 (2006) 037.
[20] J. Gomis and F. Passerini, J. High Energy Phys. 08 (2006)

074.
[21] G. ’t Hooft, Nucl. Phys. B72, 461 (1974).
[22] O. Aharony, A. Fayyazuddin, and J.M. Maldacena, J.

High Energy Phys. 07 (1998) 013.
[23] E. Antonyan, J. A. Harvey, and D. Kutasov, Nucl. Phys.

B776, 93 (2007).
[24] E. Antonyan, J. A. Harvey, and D. Kutasov, Nucl. Phys.

OFER AHARONYAND DAVID KUTASOV PHYSICAL REVIEW D 78, 026005 (2008)

026005-16



B784, 1 (2007).
[25] A. Karch and L. Randall, J. High Energy Phys. 06 (2001)

063.
[26] O. DeWolfe, D. Z. Freedman, and H. Ooguri, Phys. Rev. D

66, 025009 (2002).
[27] A. Karch and E. Katz, J. High Energy Phys. 06 (2002) 043.
[28] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[29] N. Itzhaki, J.M. Maldacena, J. Sonnenschein, and S.

Yankielowicz, Phys. Rev. D 58, 046004 (1998).
[30] D. J. Gross and H. Ooguri, Phys. Rev. D 58, 106002

(1998).
[31] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S.

Yankielowicz, J. High Energy Phys. 06 (1998) 001.
[32] O. Bergman and G. Lifschytz, J. High Energy Phys. 04

(2007) 043.
[33] C. D. Carone, J. Erlich, and M. Sher, arXiv:0802.3702.
[34] M. Headrick, Phys. Rev. D 77, 105017 (2008).
[35] O. Aharony, K. Peeters, J. Sonnenschein, and M.

Zamaklar, J. High Energy Phys. 02 (2008) 071.
[36] E. Witten, Nucl. Phys. B156, 269 (1979).
[37] G. Veneziano, Nucl. Phys. B159, 213 (1979).
[38] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.

175, 2195 (1968).
[39] M. Kruczenski, L. A. P. Zayas, J. Sonnenschein, and D.

Vaman, J. High Energy Phys. 06 (2005) 046.
[40] K. Peeters, J. Sonnenschein, and M. Zamaklar, J. High

Energy Phys. 02 (2006) 009.
[41] F. Bigazzi and A. L. Cotrone, J. High Energy Phys. 11

(2006) 066.
[42] A. Giveon and D. Kutasov, Rev. Mod. Phys. 71, 983

(1999).
[43] C. G. Callan, J. A. Harvey, and A. Strominger, arXiv:hep-

th/9112030.
[44] O. Aharony, Classical Quantum Gravity 17, 929 (2000).
[45] D. Kutasov, Prepared for ICTP Spring School on

Superstrings and Related Matters, Trieste, Italy, 2001.
[46] S. Elitzur, A. Giveon, D. Kutasov, E. Rabinovici, and G.

Sarkissian, J. High Energy Phys. 08 (2000) 046.
[47] D. A. Sahakyan, J. High Energy Phys. 10 (2004) 008.
[48] N. Itzhaki, D. Kutasov, and N. Seiberg, J. High Energy

Phys. 12 (2005) 035.
[49] S. L. Lukyanov and A. B. Zamolodchikov, Nucl. Phys.

B744, 295 (2006).
[50] D. Kutasov, arXiv:hepth/0509170.
[51] D. E. Berenstein, R. Corrado, W. Fischler, and J.M.

Maldacena, Phys. Rev. D 59, 105023 (1999).
[52] J. K. Erickson, G.W. Semenoff, and K. Zarembo, Nucl.

Phys. B582, 155 (2000).
[53] N. Drukker and D. J. Gross, J. Math. Phys. (N.Y.) 42, 2896

(2001).
[54] V. Pestun, arXiv:0712.2824.

HOLOGRAPHIC DUALS OF LONG OPEN STRINGS PHYSICAL REVIEW D 78, 026005 (2008)

026005-17


