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Certain time-dependent configurations in the c ¼ 1 matrix model correspond to string theory back-

grounds which have spacelike boundaries and appear geodesically incomplete. We investigate quantum

mechanical properties of a class of such configurations in the matrix model, in terms of fermionic

eigenvalues. We describe Hamiltonian evolution of the eigenvalue density using several different time

variables, some of which are infinite and some of which are finite in extent. We derive unitary

transformations relating these different descriptions, and use those to calculate fermion correlators in

the time-dependent background. Using the chiral formalism, we write the time-dependent configurations

as a state in the original matrix model Hilbert space.
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I. INTRODUCTION

It is well known that the c ¼ 1 matrix model is equiva-
lent to two dimensional Liouville string theory [1]. This
equivalence is an example of open-closed duality: the
density of matrix eigenvalues (representing the tachyonic
mode of open strings attached to D0-branes) is directly
related to the closed string ‘‘tachyon’’ field. Since the c ¼
1 matrix model is solvable, it provides us with an exact
quantum mechanical solution to string theory in two
dimensions.

This framework is a nice toy model for the study of time-
dependent backgrounds in string theory. Time-dependent
solutions can easily be constructed in the matrix model, as
there are no conceptual difficulties associated with time
dependence in quantum mechanics. These solutions corre-
spond to particular time-dependent string theory back-
grounds. Correlators of small fluctuations can be studied
in the matrix model to probe the spacetime structure of
string backgrounds. Any conceptual difficulties associated
with presence of time dependence in string theory can be
resolved by going back to the unambiguous description in
terms of matrix quantum mechanics.

One of the essential features of the matrix model solu-
tion to Liouville string is that space (i.e., the Liouville
direction) is emergent: it is constructed from the collective
motion of matrix eigenvalues. Time-dependent back-
grounds for string theory are constructed in the matrix
model by considering large deviations from the static
eigenvalue distribution. An outstanding issue of this ap-
proach has been that these deviations might be too large to
live in the Hilbert space of the original matrix quantum
mechanics, which would complicate their interpretation.
We address this issue here.

For static Liouville backgrounds, the time variable in
string theory is inherited from matrix quantum mechanics;
in time-dependent solutions the original quantummechani-
cal time is mixed with the emergent space dimension. The
emergent nature of space and the mixing with the time

dimension make these models particularly interesting, po-
tentially leading to insights into the question of emergent
time in string theory.
In [8], certain time-dependent solutions in the c ¼ 1

matrix model were proposed, presenting a variety of physi-
cal scenarios which were further studied in [9–12]. Some
of the most promising scenarios correspond to spacetimes
with spacelike boundaries Iþ and/or I� [13–15]. The
appearance of spacelike I� is associated with the exis-
tence of cosmological horizons, and is reminiscent of de
Sitter spacetimes. Some properties of such solutions were
studied in [13,15], from the point of view of the classical
effective theory. In the present paper, a foray is made into
quantum mechanical description of those solutions.
Here we explore, at the full quantum level, the relation-

ship between different solutions of matrix quantum me-
chanics. One of the results of this paper is that our time-
dependent solutions do live in the same Hilbert space as the
static ones, and therefore should be thought of as fluctua-
tions in the original theory, a point which has not been
made clear before.
The main thrust of the paper is that the same quantum

mechanical evolution can be described as taking either a
finite or an infinite amount of time, depending on the
choice of the time variable. The appearance of a finite
time variable is what leads to a spacelike future boundary
Iþ in string theory.
The existence of these drastically different and yet

equivalent descriptions is interesting in its own right. It is
often stressed that one of the difficulties with quantum
gravity is that, while quantum mechanics assumes the
presence of an a priori time, general relativity has no
preferred time direction. Our simple example illustrates
that the requirement of an a priori time in quantum me-
chanics might not be as rigid a constraint as it is thought to
be. Here, quantum mechanical evolution is written in terms
of one of two different time variables, which have different
topologies: one is infinite in extent, and the other only
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semi-infinite. This behavior is quite generic in quantum
mechanics; here we simply find a specific instance of it
which gives us insight into the quantum mechanical prop-
erties of particular time-dependent solutions of the c ¼ 1
matrix model.

Our quantum correspondence between different solu-
tions allows us to relate the exact quantum correlators in
the time-dependent solution to those in the static solution.
While beyond the scope of this paper, further exploration
of quantum correlators near the boundary might lead to a
calculation of the conformal factor of the spacetime metric
(which is not computable from classical information), and
eventually shine light on the nature of spacelike singular-
ities in string theory.

The paper is organized as follows. In the next section,
we briefly review the solutions of interest from [13], and
introduce some useful notation. In Sec. III, we write down
the correspondence between different solutions in quantum
mechanical language, and explain why they all live in the
same Hilbert space. In Sec. IV, using the chiral formalism,
we write down explicit linear transformations between the
wave functions describing different solutions. In Sec. V, we
study the fermion correlators, and compare our results to
predictions from classical collective field theory. Finally, in
Sec. VI, we discuss a few interesting consequences and
suggest possible extensions of our work. Our discussion is
limited to matrix quantum mechanics side of the duality,
except for some comments in the last section. A variety of
useful formulas is collected in the Appendix.

II. TIME-DEPENDENT SOLUTIONS IN
CLASSICAL EFFECTIVE THEORY

The c ¼ 1 matrix model quantum mechanics has as its
fundamental degrees of freedom noninteracting fermions
in upside down harmonic oscillator potential, with the
Hamiltonian

H ¼ 1
2p

2 � 1
2x

2: (1)

The curvature at the top of the potential is fixed by taking
�0 ¼ 1 in the corresponding Liouville string theory. The
effective (or bosonized) picture for this system is that of a
Fermi fluid moving in phase space ðx; pÞ. Its dynamics can
be described in terms of the density of this fluid. In the
classical limit, the density takes on values of either 1 or 0,
since the Fermi fluid is incompressible. Therefore, it is
sufficient to specify the region where eigenvalues are
present, which is the Fermi sea in phase space, bounded
by a Fermi surface. In the simplest case, this surface can be
presented as its upper and lower branches at each point x,
p�ðx; tÞ. The local density of fermions in x space is then
given by the distance between the two branches of p:

’ðx; tÞ � 1
2ðpþðx; tÞ � p�ðx; tÞÞ: (2)

Static Fermi surfaces are hyperbolas given by the equation

x2 � p2 ¼ 2�; or ’0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 2�

q
: (3)

Any small fluctuation around this static background moves
along one branch of the hyperbola from x ¼ 1 towards
finite x and back out to x ¼ 1 along the other branch. This
is captured by the effective action for small fluctuations
about the static solution which is given by

S ¼
Z
d�d�

�
1

2
ðð@��Þ2 � ð@��Þ2Þ �

ffiffiffiffi
�

p
6’2

0

ð3ð@��Þ2ð@��Þ

þ ð@��Þ3Þ þ ð@��Þ2
2

X1
n¼2

�
�

ffiffiffiffi
�

p ð@��Þ
’2

0

�
n
�
: (4)

� here is the fluctuation of fermion density about its static
configuration

’ðx; tÞ ¼ ’0ðxÞ þ
ffiffiffiffi
�

p
@x�ðx; tÞ; (5)

and the coordinates � and � are related to x and t via

x ¼ ffiffiffiffiffiffiffi
2�

p
cosh�; t ¼ �: (6)

Note that � is defined on the interval ½0;1Þ and there is a
Dirichlet boundary condition for � at � ¼ 0. Effectively,
the fluctuations live on patch in ð�; �Þ space pictured in a
Penrose diagram in Fig. 1(a). The � and � variables are
related to the spacetime coordinates in Liouville string

FIG. 1. The Penrose diagram of the causal structure of:
(a) static Liouville string; (b) spacetime resulting from the
closing hyperbola solution (7); (c) spacetime resulting from
the opening hyperbola solution (9). In all three cases, the dashed
line on the left-hand side represents the Liouville wall.
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theory by a nonlocal transformation, whose exact form is
known only at null asymptotia. The characteristic length
scale of the nonlocality is string length, and therefore the
Penrose diagram in Fig. 1(a), while strictly correct for the
fermionic excitations of the matrix model, gives a good
representation of the spacetime of Liouville string on
length scales longer than string length.

Having reviewed these basic facts, we will now start
with simple time-dependent solutions from [13] which
exhibit a spacelike Iþ and a null I�.

At the classical level, the first solution is given as a
moving Fermi surface

ðxþ p� e2tðx� pÞÞðx� pÞ ¼ 2�: (7)

Geometrically, this is a hyperbola which closes on itself
[see Fig. 1(b)]. Surprisingly, the following change of var-
iables

x ¼
ffiffiffiffiffiffiffi
2�

p
cosh�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2�
p ; ð1þ e2tÞð1� e2�Þ ¼ 1 (8)

brings the action for small fluctuations around this surface
exactly to the static action in (4).

The entire evolution of the Fermi surface is described by
a coordinate patch � � 0 and � � 0. The corresponding
Penrose diagram is shown in Fig. 1(b). Time dependence of
the solution is now hidden in the presence of this boundary,
since the effective action, (4), does not depend on � at all.
Even though nothing interesting happens to the action at
� ¼ 0, there is no reason to extend past the spacelike
boundary, as the evolution of the original system is fully
captured by just this incomplete patch. Extending past � ¼
0 has no meaning in the matrix model.

Another interesting solution we will encounter in the
later section is given by

ðx� pÞðxþ pþ e2tðx� pÞÞ ¼ 2�: (9)

This describes a hyperbola which opens up to a straight line
[see Fig. 1(c)]. Again, the effective action can be brought
into the static form (4), only this time the change of
variables is more involved:

t < 0; x ¼ �
ffiffiffiffiffiffiffi
2�

p
cosh�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2�
p ;

ð1� e2tÞð1þ e2�Þ ¼ 1;

(10)

t > 0; x ¼
ffiffiffiffiffiffiffi
2�

p
sinh�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e�2� � 1
p ;

ðe2t � 1Þðe�2� � 1Þ ¼ 1:

(11)

The subtlety here is that we must include both sides of the
potential (allow both positive and negative x) as the solu-
tion crosses x ¼ 0 at t ¼ 0. The corresponding Penrose
diagram can be seen in Fig. 1(c). It consists of two pieces,
one for t < 0 and one for t > 0, joined by an identification

at the null boundaries. We will have more to say about this
in Sec. .
The remarkable fact that the classical effective action is

the same for all of the above solutions suggests that per-
haps the equivalence holds at the quantum level as well
[16]. This turns out to be true, and is one of the main points
of this paper.
As a first step, we shall introduce a bit of useful notation.

Consider two coordinate systems, which we will refer to as
A and B, linked by the following transformation (given
here together with its inverse for later convenience):

� xB ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þe2tA

p xA

pB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2tA

p
pA � e2tAffiffiffiffiffiffiffiffiffiffiffi

1þe2tA
p xA

� xA ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1�e2tB

p xB

pA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2tB

p
pB þ e2tBffiffiffiffiffiffiffiffiffiffiffi

1�e2tB
p xB

ðe2tA þ 1Þð1� e2tBÞ ¼ 1:

(12)

The coordinate transformation (12) was chosen so that, if

d

dtA
xA ¼ pA and

d

dtA
pA ¼ xA; (13)

then

d

dtB
xB ¼ pB and

d

dtB
pB ¼ xB; (14)

and therefore the Hamiltonian in both coordinates is just
(1):

H ¼ 1
2p

2
A � 1

2x
2
A ¼ 1

2p
2
B � 1

2x
2
B: (15)

As this transformation leaves the Dirac (or the Poisson)
bracket invariant

½xA; pA� ¼ ½xB; pB� ¼ i; (16)

it can be treated as a change in either classical or quantum
phase space variables for the fermions.
It is easy to check that the transformation from B to A

turns the static solution in Eq. (3) into the closing hyper-
bola solution in Eq. (7), and that the inverse transformation
from A to B turns the static hyperbola into the opening
hyperbola. Actually, the latter is only true for tB < 0; to
obtain the remainder of the evolution of the opening hy-
perbola we need to analytically continue (12) in time.
This extended mapping from A to B, valid for tB > 0 and

tA < 0, is

� xB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2tA�1

p xA

pB ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2tA � 1

p
pA þ e�2tAffiffiffiffiffiffiffiffiffiffiffiffiffi

e�2tA�1
p xA

� xA ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
e2tB�1

p xB

pA ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2tB � 1

p
pB þ e2tBffiffiffiffiffiffiffiffiffiffiffi

e2tB�1
p xB

ðe�2tA � 1Þðe2tB � 1Þ ¼ 1:

(17)
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The above mapping takes a static hyperbola solution in
A and turns it into the second half of the evolution of the
opening hyperbola in B, when combined with a replace-
ment of �! ��.

Demanding that our mapping (12) correctly connects the
static, opening and closing hyperbola solutions is not
enough to uniquely fix it. For example, in [15], a different
classical mapping was considered, based on the W1 alge-
bra acting on phase space. What distinguishes (12) from all
other possible maps is that the collective field �ðxÞ trans-
forms trivially under it. Therefore, (12) preserves the form
of the effective action (4). We should mention, however,
that the mapping used in [15] leads to the same quantum
state as ours.

III. TIME-DEPENDENT SOLUTIONS IN
FERMIONIC VARIABLES

On the face of it, we have a map between two systems
(either classical or quantum) with the same Hamiltonian
which however evolve on a different time interval, since tA
runs from �1 to 1 and tB runs from �1 to 0. Using
formulas in the Appendix, information contained in the
mapping (12) can be summarized by a time-dependent
unitary operator which transforms wave functions in the
B system of coordinates into those in the A system. Using
Eq. (A6), we see that

UðtÞ � exp

�
i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

p �
x2 � xpþ px

2

��
(18)

¼ exp

�
�i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2�

p �
x2 � xpþ px

2

��
(19)

does the job. In order to avoid a large number of awkward
indices in the following discussion, we have set t ¼ tA and
� ¼ tB. �ðtÞ< 0 is given by ðe2t þ 1Þð1� e2�Þ ¼ 1. To
remind ourselves that U evolves in time, we will write is
as either UðtÞ or Uð�Þ, whichever seems more natural. As t
and � are linked a one-to-one function, the choice of
variable is cosmetic.

The fact that the two systems have the same Hamiltonian
is exhibited by the following nontrivial property of U:

Uð�Þe�ið���0ÞH ¼ e�iðt�t0ÞHUðt0Þ; (20)

where �0 � �ðt0Þ (For example, if we take a convenient

choice of t0 ¼ 0 then �0 ¼ � ln
ffiffiffi
2

p
.) The above property of

U can be proven using a special case of the Baker-
Campbell-Hausdorff formula (see the Appendix for de-
tails). To put Eq. (20) in words, a wave function can either
be first evolved from �0 to � and then acted upon with U at
time �, or be acted upon withU at time t0 and then evolved
from t0 to t; the result will be the same.

To go from A to B, we use U�1 ¼ Uy

UyðtÞ � exp

�
�i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

p �
x2 � xpþ px

2

��

¼ exp

�
i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2�

p �
x2 � xpþ px

2

��
; (21)

which has the property

UyðtÞe�iðt�t0ÞH ¼ e�ið���0ÞHUyð�0Þ: (22)

The unitary operator U allows us to write time-
dependent wave functions corresponding to the closing
and opening hyperbola solutions, starting from the well-
known static eigenfunctions. Denote with  EðxÞ the eigen-
functions of the Hamiltonian (1) with energy E:

� 1
2ð@2x þ x2Þ EðxÞ ¼ E EðxÞ: (23)

There are two such eigenfunctions at each eigenenergy,
even or odd under parity. Since the change of variables we
consider in (12) commutes with taking x! �x, p! �p,
it is not necessary to worry about this degeneracy—every-
thing we say will be true for the even and odd eigenfunc-
tions separately.
Using again the formulas in the Appendix, we rewrite U

and Uy in the following form:

Uð�Þ � ð1� e2�Þ1=4 exp
�
i

2
e2�x2

�
exp

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2�

p
x
@

@x

�
;

(24)

UyðtÞ � ð1þ e2tÞ1=4 exp
�
� i

2
e2tx2

�

� exp

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

p
x
@

@x

�
: (25)

This form makes the action of UðtÞ on an arbitrary wave
function easy to read off. When acting on the stationary
wave function  EðxÞe�iE� with UðtÞ, we obtain

�ðx; tÞ � UðtÞ EðxÞe�iE�

¼ ð1þ e2tÞ�1=4 exp

�
i

2

e2t

1þ e2t
x2
�

�  E

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t
p

�
e�iE�ðtÞ: (26)

It is easy to check that (26) is a solution to the time-
dependent Schrödinger equation with Hamiltonian (1), as
long as we view t as the appropriate time variable. This
wave function corresponds to the closing hyperbola, and is
valid for all t.
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Similarly,

~�ðx; �Þ � Uyð�Þ EðxÞe�iEt

¼ ð1� e2�Þ�1=4 exp

�
� i

2

e2�

1� e2�
x2
�

�  E

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2�
p

�
e�iEtð�Þ; (27)

corresponds to the first half of the evolution of the opening
hyperbola (for � < 0). To obtain the second half of that
evolution, we must analytically continue in �, which will
be done in Sec. .

Let us investigate the form of the time-dependent wave
functions in some detail.

The static wave functions  Es are known exactly [17],
but let us start with the large x asymptotics. From theWKB
approximation, at large x the wave functions approach

 EðxÞ � 1ffiffiffi
x

p e�ix2=2 (28)

for all finite E. Therefore

�ðxÞ � 1ffiffiffi
x

p exp

�
i

2

e2t � 1

e2t þ 1
x2
�
: (29)

For the upper sign, the asymptotic behavior is the same as
in Eq. (28), but for the lower sign, the behavior is markedly
different. This raises doubt about whether (26) can be
written as a linear combination of  EðxÞs. If not, the
time-dependent wave functions � would be living in a
different Hilbert space from the  Es, and our quantum
equivalence would be in trouble.

Fortunately, this is not the right argument. The question
whether these wave functions live in the same Hilbert
space should be answered by comparing the space of L2

wave packets that can be built out of the ‘‘energy eigen-
basis’’ in either case. A moment of thought reveals that the
Hilbert space is indeed the same. Let us make it explicit.
Consider a wave packet built out of the static eigenfunc-
tions  EðxÞ, and denote it with ’ðxÞ. Now let us act on this
wave packet with the unitary operatorUð0Þ (taking t ¼ 0 to
be definite). This gives us a new wave packet

~’ðxÞ ¼ ðphaseÞð2Þ�1=4 expðix2=4Þ’
�
xffiffiffi
2

p
�
: (30)

There is no reason why this new wave packet, also in L2,
but formally in the Hilbert space of the closing hyperbola
states, cannot be written as a linear combination of the
static eigenfunctions  EðxÞ. We can calculate the Fourier
coefficients as we always do, and the integrals must con-
verge, by the virtue of ~’ being in L2. The two Hilbert
spaces are therefore the same. Simply comparing asymp-
totic behavior was not enough because, for any fixed x,
there are energies E sufficiently negative that the asymp-
totics do not apply. The change of basis formula, which we

will derive in Sec. IV, should also be interpreted in the
sense of wave packets.

Analytic continuation through � ¼ 0

Equation (26) describes a complete history of one fer-
mion. A collection of such fermions, one for each E from
minus infinity up to some �, is the quantum state corre-
sponding to the classical solution (7). We have obtained
this wave function by a linear transformation from the
static wave function, but in doing so, we only used the
evolution of the static state up to � ¼ 0. What about �
positive? Formally, we can analytically continue the
change of variables in (12) to positive � by replacing t!
i�ð2nþ 1Þ=2� t, where n is an arbitrary integer. This will
make the argument in  E imaginary, so we need to under-
stand  EðixÞ.
Fortunately,  EðixÞ is easy to deal with. In the differen-

tial Eq. (23), the variable x can be thought of as a complex
variable. As long as we focus on either odd or even wave
functions, the solutions to (23) are unique. Substituting
x! ix in (23) takes us back to the same equation, but
with E! �E. Therefore, using uniqueness, we must have
 EðixÞ �  �EðxÞ. The magnitude of the proportionality
factor can be determined from the known behavior of the

properly normalized wave functions at x	 ffiffiffiffiffiffiffijEjp
[17]

 EðxÞ � e��E=2

E1=4
coshð ffiffiffiffiffiffi

2E
p

xÞ for even wave functions;

(31)

 EðxÞ � e��E=2

E1=4
sinhð ffiffiffiffiffiffi

2E
p

xÞ for odd wave functions:

(32)

Therefore,

 EðixÞ ¼ ðphaseÞe�E �EðxÞ; (33)

for any  E which is either even or odd under x! �x.
With this result in hand, we can write, up to a constant,

the wave function resulting from continuing � through zero
to the positive side in Eq. (26):

�ðx; tÞ ¼ ðe�2t � 1Þ�1=4 exp

�
i

2

e�2t

e�2t � 1
x2
�

�  �E
�

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2t � 1

p
�
e�iE�ðtÞ; (34)

where now ðe2� � 1Þðe�2t � 1Þ ¼ 1 and t < 0. As can
easily be verified, this also is a solution to the time-
dependent Schrödinger equation.
The meaning of the analytic continuation through � ¼ 0

becomes more clear if we analyze the behavior of the
opening hyperbola solution. We will ignore again the over-
all normalization in the discussion, as it has no bearing on
the physics.
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Equation (27) gives the wave function corresponding to
the opening hyperbola, for the first half of its evolution,
� < 0. We can analytically continue this formula to posi-
tive �, where we obtain (up to an overall, irrelevant nor-
malization)

�ðx; �Þ ¼ ðe2� � 1Þ�1=4 exp

�
i

2

e2�

e2� � 1
x2
�

�  �E
�

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2� � 1

p
�
eiEtð�Þ; (35)

which also satisfies the Schrödinger equation. To check
whether this analytic continuation indeed gives the second
half of the evolution of the opening hyperbola, let us
compare it with the wave function obtained by transform-
ing the stationary wave function with the second mapping
in Sec. II, Eq. (18). Under that transformation, a stationary
wave function in system A,  EðxÞe�Et, becomes

�ðx; �Þ ¼ ðe2� � 1Þ�1=4 exp

�
i

2

e2�

e2� � 1
x2
�

�  E

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2� � 1
p

�
e�iEtð�Þ: (36)

This is clearly the same wave function as (35), as long as
we replace E! �E, in agreement with the �! ��
replacement which is part of (18).

The meaning of the analytic continuation is now clear: if
we are interested in the evolution of the system B over the
entire range of tB, from�1 toþ1, we must continue past
tA ¼ þ1, or alternatively use a second mapping for the
second half of the evolution (which is what was done in
[13]). These two approaches will lead to the same answer.
Analytic continuation of �! i�ð2nþ 1Þ=2� � is then
the meaning we should assign to the identification of
boundaries in the Penrose diagrams in Fig. 1(c) (repre-
sented by an arrow there).

IV. CHANGE OF BASIS FORMULA

In this section, we will study exact expressions for time-
dependent wave functions introduced in Sec. III, culminat-
ing in an explicit formula giving the closing hyperbola
wave function as a linear combination of the static wave
functions. We will perform this analysis in the chiral
formalism, (first introduced in [18]), in which the form of
the wave functions is simplest.

Define a� to be

a� � ðx� pÞ= ffiffiffi
2

p
; (37)

so that ½a�; aþ� ¼ i and a
 ¼ �i@=@a� . Our mapping

(12) in these coordinates is

a�B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2tA

p
a�A (38)

aþB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2tA

p aþA � e2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2tA

p a�A : (39)

The advantage of the chiral coordinates is that the
Hamiltonian is particularly simple

H ¼ 
i
�
a�

@

@a�
þ 1

2

�
; (40)

and so are its eigenfunctions,

 Eða�Þ ¼ a�iE�ð1=2Þ
� : (41)

Including time evolution is also very simple. Any wave

function of the form e
t=2’ðe
ta�Þ, for arbitrary ’ð�Þ, is a
solution to the time-dependent Schrödinger equation. In
particular, dressing up energy eigenfunctions in (41) with
the proper time dependence gives

 Eða�; tÞ ¼ ða�Þ�iE�ð1=2Þe�iEt ¼ e
t=2ðe
ta�Þ�iE�ð1=2Þ

(42)

The unitary operator in Eq. (18), when written in terms of
a�, is

UðtÞ ¼ exp

�
i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

p �
a2� þ aþa� þ a�aþ

2

��
: (43)

Using the formulas in the Appendix, we can rewrite this as

UðtÞ ¼ ð1þ e2tÞ1=4 exp
�
i

2
e2ta2�

�

� exp

�
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

p
a�

@

@a�

�
: (44)

Acting with UðtÞ on  Eða�; �Þ, we obtain the wave
function of the closing hyperbola in the a� basis:

�ða�; tÞ ¼ et=2 exp

�
i

2
e2tða�Þ2

�
ðeta�Þ�iE�ð1=2Þ; (45)

where we have rearranged the wave function to exhibit an
appropriate form of time dependence.
In this basis, it turns out to be possible to figure out how

to express the wave function (45) as a linear combination
of wave functions of the form (42).
To accomplish this, we make use of the following iden-

tity:

eiz ¼
Z
C

ds

2�
z�ise��s=2�ðisÞ (46)

¼ lim
A;B!þ1

P:V:
Z B

�A
ds

2�
z�ise��s=2�ðisÞ þ 1

2
; (47)

Contour C runs along the real-s axis from �1 to þ1 and
below the pole at s ¼ 0. This formula can be obtained from
the integral representation of the �-function [[19],
Eq. 8.312.2], together with orthogonality conditions for
the chiral wave functions (41). It holds for z > 0, and has
been verified numerically.
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The convergence for A; B! 1 is not uniform in z. The
limit B! 1 can be taken in a uniform fashion, since the
integrand goes to zero rapidly for large positive s. For s
large and negative, the integrand oscillates and only goes to

zero as 1=
ffiffiffiffiffiffijsjp

. It is then necessary to restrict A� z.
Without uniform convergence, we have to be careful
when applying this formula.

Using (47), we have that

exp

�
i

2
a2
�
a�ð1=2Þ�iE ¼

Z
C

d!

4�
2ði=2ÞðE�!Þeð�=4ÞðE�!Þ

� �

�
� i

2
ðE�!Þ

�
a�ð1=2Þ�i! (48)

and therefore

�ða�; tÞ ¼ UðtÞ Eða�; �Þ ¼
Z
d!KðE�!Þ !ða�; tÞ;

(49)

where

Kð�Þ � 1

4�
2i�=2e��=4�

�
� i�

2

�
þ 1

2
�ð�Þ: (50)

At the end of Sec. III, we argued that Hilbert spaces of the
closing hyperbola states and the static states are the same,
since the same L2 wave packets can be built in both cases.
The formula above should be read in that spirit: it links the
expansions of any given wave packet in the two basis.
Focusing on wave packets removes any difficulty caused
by the lack of uniform convergence.

For the sake of completeness, let us rewrite this result in
the x-basis:

�ðx; tÞ ¼ ð1þ e2tÞ�1=4 exp

�
i

2

e2t

1þ e2t
x2
�

�  E

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t
p

�
e�iE�ðtÞ

¼
Z
d!KðE�!Þ !ðx; tÞ: (51)

The kernel K is simply a representation of the unitary
operator UðtÞ in the appropriately time-evolving energy
eigenbasis.
Notice that Kð�Þ decays exponentially for � > 0.

Therefore, energy eigenstates with energy greater than E
do not enter into the closing hyperbola solution labeled by
E. This fact should is illustrated in Fig. 2(b): there, we can
see that the contours for the closing hyperbola state lie
within (i.e., at lower x) the static hyperbola contour at the
same E.

V. THE FERMI SEA AND CORRELATORS

We can now discuss the quantum state of the doubly
scaled matrix model. The fermionic field is defined as

�ðx; tÞ ¼ X
E

 EðxÞe�iEtcE; (52)

where cE is an annihilation operator for a fermion with

energy E, fcE; cyE0 g ¼ �E;E0 . The static ground state filled

up to the energy � is defined as

j�i ¼
�Y
E<�

cyE
�
j0i; (53)

where j0i is the state with no fermions, cEj0i ¼ 0 for all E.
The operator which creates a single fermion with a wave
function ’ðxÞ at time t is
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FIG. 2. Rough contour plots of the absolute value of the Wigner wave functions with E ¼ �10. In each case, the center hyperbola is
where the Wigner wave function peaks and the two other contours are at half height. (a) Static state  EðxÞ; (b) closing hyperbola state
(26) at expð2tÞ ¼ 3, the additional hyperbola shown is the half-height contour from (a); (c) opening hyperbola state (27) at expð2�Þ ¼
2=3. The data for the plots was computed from the definition of the Wigner wave function in the chiral basis.
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cy’ ¼
Z
dx�yðx; tÞ’ðxÞ: (54)

Therefore, the operator which creates a fermion in one of
the closing hyperbola states is given by

cyE;closing �
Z
dx�yðx; tÞ

Z
d!KðE�!Þ !ðx; tÞ

¼
Z
d!KðE�!Þcy!; (55)

and the state corresponding to the closing hyperbola is

j�; closingi ¼
�Y
E<�

Z
d!KðE�!Þcy!

�
j0i: (56)

This formula shows that the decaying Fermi sea is a state in
the Hilbert space of the matrix model, an important fact,
but not useful for computation of fermion correlators. More
useful formulas can be obtained if we use the linear trans-
formation UðtÞ instead of the kernel K.

To do that, let us define

~c E ¼ cE;closing �
Z
dx�ðx; tÞðUyðtÞ � Eðx; �ÞÞ; (57)

~c y
E ¼ cyE;closing �

Z
dx�yðx; tÞðUðtÞ Eðx; �ÞÞ; (58)

so that

j�; closingi ¼
�Y
E<�

~cy!
�
j0i (59)

and

�ðx; tÞ ¼ X
E

ðUðtÞ EðxÞe�iE�Þ~cE: (60)

Since f~cE; ~cE0 g ¼ �E;E0 , any correlator of the form

Aclosingðx1; t1; . . . ; xn; tn; x01; t01; . . . ; x0n; t0nÞ
¼ h�; closingj�yðx01; t01Þ . . . �yðx0n; t0nÞ

��ðx1; t1Þ . . . �ðxn; tnÞj�; closingi (61)

can be computed as a corresponding correlator in the static
state,

Aclosingðx1; t1; . . . ; xn; tn; x01; t01; . . . ; x0n; t0nÞ
¼ h�jðUyðt01Þ�yðx01; �01ÞÞ . . . ðUyðt0nÞ�yðx0n; �0nÞÞ

� ðUðt1Þ�ðx1; �1ÞÞ . . . ðUðtnÞ�ðxn; �nÞÞj�i: (62)

We have seen that

UðtÞ�ðx; �Þ ¼ ð1þ e2tÞ�1=4 exp

�
i

2

e2t

1þ e2t
x2
�

��

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t
p ; �ðtÞ

�
(63)

and therefore

Aclosingðx1; t1; . . . ; xn; tn; x01; t01; . . . ; x0n; t0nÞ

¼ Yn
k¼1

ð1þ e2tkÞ�1=4
Yn
k¼1

ð1þ e2t
0
kÞ�1=4

Yn
k¼1

� exp

�
i

2

e2tk

1þ e2tk
x2n

�Yn
k¼1

exp

�
� i

2

e2t
0
k

1þ e2t
0
k

ðx0nÞ2
�

� Astatic

�
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t1
p ; �1; . . . ;

xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2tn

p ; �n;

x01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

0
1

p ; �01; . . . ;
x0nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t
0
n

p ; �0n
�
: (64)

Correlators in the static background are well known, see
for example [17].
This formula is one of the main results of this paper, and

is a generalization of the formulas in [15].
As a test, and a demonstration of this result, let us now

compute the equal time correlator

Aclosingðx; t;y; tÞ ¼ h�;closingj�yðy; tÞ�ðx; tÞj�; closingi

¼ ð1þ e2tÞ�1=2 exp

�
i

2

e2t

1þ e2t
ðx2 � y2Þ

�

�Astatic

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t
p ; �;

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

p ; �

�
: (65)

This correlator is related to density of fermion eigenvalues
in the x-p plane via a well-known formula for the expec-
tation value of the Wigner operator in the context of the
c ¼ 1 models (see [20] and references therein)

	ðx; p; tÞ ¼
Z
dy
e�iyp

2�
h�yðxþ y=2; tÞ�ðx� y=2; tÞi:

(66)

After a short calculation, we conclude that

	closingðx; p; tÞ ¼ 	static

�
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2t

p
p� e2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2t
p x; �

�
: (67)

Taking the classical approximation where the density for a
static hyperbola is simply

	static
� ðx; p; tÞ ¼

�
1 for x2 � p2 >�
0 otherwise;

(68)

the above equation gives

	closingðx;p; tÞ ¼
�
1 for ðx�pÞðxþp� e2tðx�pÞÞ>�
0 otherwise;

(69)

which is the same answer we would have obtained if we
simply used the classical transformation (12) on 	static.
A formula analogous to (67) can be derived for products

of the Wigner operator, relating their correlators in the
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closing hyperbola state to the correlators in the static state
via the classical mapping (12).

VI. DISCUSSION AND EXTENSIONS

The same quantum evolution has been presented in this
paper in several different ways, which leads to the follow-
ing ambiguity. Let us say someone presents us with a
stationary wave function in the upside down harmonic
oscillator potential. Without any further information, it is
not clear whether this wave function is meant to describe
simply the stationary state, or the closing hyperbola state
(in which case we should interpret time as ending at zero),
or the opening hyperbola state [in which case we should
analytically continue the evolution of the system past the
time ¼ infinity mark, as can be seen in Fig. 1(c) and was
discussed in Sec. ].

There is hope that gravity resolves this ambiguity. After
all, before it can describe string theory, the matrix model
must be augmented by a leg-pole transform, which encodes
gravitational and other interactions [2,4]. Our analysis does
not capture everything about time-dependent solutions to
gravitational effective action. Only once the time-
dependent Fermi sea profile is translated into a valid back-
ground for dilaton gravity (and string theory) can addi-
tional information, such as the conformal factor for the
metric, and the behavior of the dilaton, resolve this ambi-
guity. Unfortunately, such an analysis is beyond the scope
of this paper. We have taken a first necessary step towards
it, by expressing the closing hyperbola solution as a state in
the Hilbert space of the matrix model.

With our explicit formula (56), it should be possible, at
least in principle, to bosonize the closing hyperbola quan-
tum state, and to obtain a quantum state in the bosonic
collective theory which is closely related to the string
theory tachyon. It might even be possible to find the string
theory background which corresponds to this solution. The
main obstacle is the currently incomplete understanding of
the leg-pole transform linking the collective field to the
tachyon.

To keep the algebra simple, we have considered here
only those time-dependent solutions of the matrix model
which approach the static solution in the infinite past. As a
result, of the two quantum mechanical descriptions under
consideration, one had a time variable running over the
entire real line, and the other had semi-infinite time. It is
possible to generalize the discussion in the paper to a more
involved situation in which the time-dependent solution
has time reversal symmetry, and thus diverges from the
static one in both its past and its future. Then, one of the
quantum mechanical descriptions has compact time: the
time interval over which the evolution happens is finite.

In [15], an entire family of opening and closing hyper-
bola solutions was discussed. For each member of this
family there exists a unitary operator U which translates
between time evolution of the original matrix model and a

new quantum system where the time-dependent solution
appears static. The quantum equivalence between the two
systems discussed in the present paper can be generalized
this way to an entire family of equivalences.
One might wonder whether the results could be extended

even further than that. What if we tried to treat more
general Fermi surfaces, obtained by acting with higher
order operators in the W1 algebra? The effective action
in that case could not be brought into a static form [14], and
therefore any equivalence would have to be between sys-
tems with different Hamiltonians. It would nonetheless be
interesting to investigate such a possibility. Another inter-
esting extension would be to consider the droplet solution
[14].
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APPENDIX

Here we gather, for reference, a number of useful for-
mulas which are used throughout the paper.

1. Baker-Campbell-Hausdorff formula

This formula states that for two elements X and Y of any
algebra, we can write expðXÞ expðYÞ as expðX þ Y þ � � �Þ,
where the � � � is built entirely out of nested commutators of
X and Y. The most widely used version of this formula is

½X; Y� ¼ 
) expðXÞ expðYÞ ¼ exp

�
X þ Y þ 


2

�
; (A1)

applicable if 
 is a c-number (in the center of the algebra).
We are going to need a little more. The following for-

mulas can be derived explicitly, for example, in the sl(2)
algebra,

½X; Y� ¼ sY ) expðXÞ expðYÞ ¼ exp

�
Xþ s

1� e�s
Y

�
;

and expðYÞ expðXÞ ¼ exp

�
Xþ s

es � 1
Y

�
: (A2)

Using the above two formulas we can also show that

½X; Y� ¼ sðX þ YÞ ) expð�XÞ expð�YÞ

¼ exp

�
ð�� �Þ

�
es� � 1

esð���Þ � 1
X þ es� � 1

1� esð���Þ
Y

��
;

(A3)

which is used to prove (20).
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2. Change of canonical variables

Let u and v be two canonical variables with ½û; v̂� ¼ i.
(We will use hats on operators here to make things more
clear.) We want to see how a wave function  ðuÞ � huj i
corresponding to a state j i is related to �ðUÞ � hUj i.
We will assume that Û, V̂ are related to û, v̂ by

Û
V̂

 !
¼ a b

c d

� �
û
v̂

� �
: (A4)

We will take ad� cb ¼ 1 so that ½Û; V̂� ¼ i, and assume
that a is positive.

The relationship between  ðuÞ and �ðUÞ depends on
whether b is zero or not. Let us start with the simpler case
of b ¼ 0. We then have d ¼ 1=a and c is arbitrary. It then
follows that

�ðUÞ ¼ 1ffiffiffi
a

p eði=2ÞcdU2
 ðU=aÞ: (A5)

One way to obtain this formula is to define a unitary
operator

expðDÞ � exp

�
�i lnðaÞ

2
ðû v̂þv̂ ûÞ � i

ac lnðaÞ
1� a2

û2
�
(A6)

which has the property that

expð�DÞ û
v̂

� �
expðDÞ ¼ a 0

c d

� �
û
v̂

� �
: (A7)

We now make use of one of the special cases of the Baker-
Campbell-Hausdorff formula, (A2) to obtain

expðDÞ ¼ exp

�
i

2
cdu2

�
exp

�
� lnðaÞ

2

�
u
@

@u
þ @

@u
u

��

¼ 1ffiffiffi
a

p exp

�
i

2
cdu2

�
exp

�
� lnðaÞu @

@u

�
; (A8)

from which Eq. (A5) can be read off easily.
For completeness, let us remark that for b � 0, we have

hUjui ¼ 1ffiffiffiffiffiffiffiffiffi
2�b

p eði=2bÞðau2�2uUþdU2Þ; (A9)

and the relationship between  and � is given by

�ðUÞ ¼
Z
duhUjui ðuÞ: (A10)

If needed, this formula can be used to relate the wave
functions in the chiral basis to those in the position basis.
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