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Light-front holography is a remarkable feature of the AdS/CFT correspondence between gravity in AdS

space and conformal field theories in physical space-time; it allows string modes�ðzÞ in the anti-de Sitter
(AdS) fifth dimension to be precisely mapped to the light-front wave functions of hadrons in physical

space-time in terms of a specific light-front impact variable � which measures the separation of the quark

and gluonic constituents within the hadron. This mapping was originally obtained by matching the exact

expression for electromagnetic current matrix elements in AdS space with the corresponding exact

expression for the current matrix element using light-front theory in physical space-time. In this paper we

show that one obtains the identical holographic mapping using matrix elements of the energy-momentum

tensor. To prove this, we show that there exists a correspondence between the matrix elements of the

energy-momentum tensor of the fundamental hadronic constituents in QCD with the transition amplitudes

describing the interaction of string modes in AdS space with an external graviton field which propagates in

the AdS interior. The agreement of the results for electromagnetic and gravitational hadronic transition

amplitudes provides an important consistency test and verification of holographic mapping from AdS to

physical observables defined on the light front.
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I. INTRODUCTION

One of the most challenging problems of strong inter-
action dynamics is to determine the composition of had-
rons in terms of their fundamental QCD quark and gluon
degrees of freedom. Because of the strongly coupling
nature of QCD in the infrared domain, it has been difficult
to find analytic solutions for the wave functions of hadrons
or to make precise predictions for hadronic properties
outside of the perturbative regime. Thus an important
theoretical goal is to find an initial approximation to bound
state problems in QCD which is analytically tractable and
which can be systematically improved. Recently the AdS/
CFT correspondence [1] between string states in anti-
de Sitter (AdS) space and conformal field theories (CFT)
in physical space-time, modified for color confinement, has
led to a semiclassical model for strongly-coupled QCD
which provides analytical insights into its inherently non-
perturbative nature including hadronic spectra, decay con-
stants, and wave functions.

As we have shown recently, there is a remarkable map-
ping between the AdS description of hadrons and the
Hamiltonian formulation of QCD in physical space-time
quantized on the light front. The light-front wave functions
of bound states in QCD are relativistic and frame-
independent generalizations of the familiar Schrödinger
wave functions of atomic physics, but they are determined
at fixed light-cone time � ¼ tþ z=c—the ‘‘front form’’
advocated by Dirac [2]—rather than at fixed ordinary time

t. The light-front wave functions of a hadron are indepen-
dent of the momentum of the hadron, and they are thus
boost invariant; Wigner transformations and Melosh rota-
tions are not required. The light-front formalism for gauge
theories in light-cone gauge is particularly useful in that
there are no ghosts, and one has a direct physical interpre-
tation of orbital angular momentum.
Light-front holography is an important feature of AdS/

CFT; it allows string modes �ðzÞ in the AdS fifth dimen-
sion to be precisely mapped to the light-front wave func-
tions of hadrons in physical space-time in terms of a
specific light-front impact variable � which measures the
separation of the quark and gluonic constituents within the
hadron. This mapping was originally obtained by matching
the exact expression for electromagnetic current matrix
elements in AdS space with the corresponding exact ex-
pression for the current matrix element using light-front
theory in physical space-time [3,4]. In this paper we shall
show that one obtains the identical holographic mapping
using the matrix elements of the energy-momentum tensor.
To prove this new result, we will show that there exists a
correspondence between the matrix elements of the
energy-momentum tensor of the fundamental hadronic
constituents in QCD with the transition amplitudes de-
scribing the interaction of string modes in anti-de Sitter
space with an external graviton field which propagates in
the AdS interior.
The AdS/CFT correspondence implies that a strongly-

coupled gauge theory is equivalent to the propagation of
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weakly-coupled strings in a higher dimensional space,
where physical quantities are computed in terms of an
effective gravitational theory. Thus, the AdS/CFT duality
provides a gravity description in a (dþ 1)-dimensional
AdS space-time in terms of a d-dimensional
conformally-invariant quantum field theory at the AdS
asymptotic boundary [5,6].

Holographic duality requires one to consider a higher
dimensional warped space with negative curvature and a
four-dimensional boundary. In particular, the conformal
isometries of the five-dimensional anti-de Sitter space, a
maximally symmetric space-time geometry with negative
curvature, provides the basis for establishing a duality
between a gravity or string theory on AdS5 space and a
conformal gauge theory defined at its four-dimensional
space-time boundary. In its original formulation [1], a
correspondence was established between the supergravity
approximation to type IIB superstring theory on a curved
background asymptotic to the product space of AdS5 � S5

[7] and the large NC,N ¼ 4, supersymmetric Yang-Mills
(SYM) gauge theory in four dimensions with gauge group
SUðNÞ [8]. The group of conformal transformations
SOð4; 2Þ which acts at the asymptotic boundary of AdS
space, acts also as the group of isometries of AdS5, and S

5

corresponds to the SUð4Þ � SOð6Þ global symmetry which
rotates the particles present in the SYM supermultiplet.
The supergravity duality requires a large AdS radius R
corresponding to a large value of the ’t Hooft parameter

gsNC, where R ¼ ð4�gsNCÞ1=4�01=2
s and �01=2

s is the string
scale. The classical approximation corresponds to the stiff
limit where the string tension T ¼ R2=2��0 ! 1, effec-
tively suppressing string fluctuations.

QCD is fundamentally different from SYM theories
where all the matter fields transform in adjoint multiplets
of SUðNCÞ. QCD is also a confining theory in the infrared
with a mass gap�QCD and a well-defined spectrum of color

singlet states. Conformal symmetry is broken in physical
QCD by quantum effects and quark masses. There are
indications however, both from theory and phenomenol-
ogy, that the QCD coupling is slowly varying at small
momentum transfer [9]. In particular, a new extraction of
the effective strong coupling constant �g1s ðQ2Þ from the
CEBAF Large Acceptance Spectrometer Collaboration
(CLAS) spin structure function data using the Bjorken
sum �p�n1 ðQ2Þ in an extended Q2 region [10], indicates

the lack of Q2 dependence of �s in the low Q2 limit. One
can understand this physically [9]: in a confining theory
where gluons have an effective mass or maximal wave-
length, all vacuum polarization corrections to the gluon
self-energy decouple at long wavelength; thus an infrared
fixed point appears to be a natural consequence of confine-
ment [11]. Furthermore, if one considers a semiclassical
approximation to QCD with massless quarks and without
particle creation or absorption, then the resulting � func-
tion is zero, the coupling is constant, and the approximate

theory is scale and conformal invariant [12]. One can use
conformal symmetry as a template, systematically correct-
ing for its nonzero � function as well as higher-twist
effects [13].
Different values of the holographic variable z determine

the scale of the invariant separation between the partonic
constituents. Hard scattering processes occur in the small-z
ultraviolet (UV) region of AdS space. In particular, the
Q! 1 zero separation limit corresponds to the z! 0
asymptotic boundary, where the QCD Lagrangian is de-
fined. In the large-z infrared (IR) region a cutoff is intro-
duced to truncate the regime where the AdS modes can
propagate. The infrared cutoff breaks conformal invari-
ance, allows the introduction of a scale and a spectrum of
particle states. In the hard-wall model [14] a cutoff is
placed at a finite value z0 ¼ 1=�QCD and the spectrum of

states is linear in the radial and angular momentum quan-
tum numbers: M� 2nþ L. In the soft-wall model a
smooth infrared cutoff is chosen to model confinement
and reproduce the usual Regge behavior M2 � nþ L
[15]. The resulting models, although ad hoc, provide a
simple semiclassical approximation to QCD which has
both constituent counting rule behavior at short distances
and confinement at large distances [9].
It is thus natural, as a useful first approximation, to use

the isometries of AdS to map the local interpolating op-
erators at the UV boundary of AdS space to the modes
propagating inside AdS. The short-distance behavior of a
hadronic state is characterized by its twist (dimension
minus spin) � ¼ �� �, where � is the sum over the
constituent’s spin � ¼ P

n
i¼1 �i. Twist is also equal to the

number of partons � ¼ n. Under conformal transforma-
tions the interpolating operators transform according to
their twist, and consequently the AdS isometries map the
twist scaling dimensions into the AdS modes [16].
The eigenvalues of normalizable modes in AdS give the

hadronic spectrum. AdS modes represent also the proba-
bility amplitude for the distribution of quarks and gluons at
a given scale. There are also non-normalizable modes
which are related to external currents: they propagate
into the AdS interior and couple to boundary QCD inter-
polating operators [5,6]. Following this simplified bottom-
up approach, a limited set of operators is introduced to
construct phenomenological viable five-dimensional dual
holographic models [17–20].
In the top-down supergravity approach, one introduces

higher dimensional branes to the AdS5 � S5 background
[21] in order to have a theory of flavor. One can obtain
models with massive quarks in the fundamental represen-
tation, compute the hadronic spectrum, and describe chiral
symmetry breaking in the context of higher dimensional
brane constructs [21–25]. However, a theory dual to QCD
is unknown, and this top-down approach is difficult to
extend beyond theories exceedingly constrained by their
symmetries.
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An important feature of light-front quantization is the
fact that it provides exact formulas for current matrix
elements as a sum of bilinear forms which can be mapped
into their AdS/CFT counterparts in the semiclassical ap-
proximation. The AdSmetric written in terms of light-front
coordinates x� ¼ x0 � x3 is

ds2 ¼ R2

z2
ðdxþdx� � dx2

? � dz2Þ: (1.1)

At fixed light-front time xþ ¼ 0, the metric depends only
on the transverse x? and the holographic variable z. Thus
we can find an exact correspondence between the fifth-
dimensional coordinate of anti-de Sitter space z and a
specific impact variable � in the light-front formalism.
The new variable � measures the separation of the con-
stituents within the hadron in ordinary space-time. The
amplitude �ðzÞ describing the hadronic state in AdS5 can
then be precisely mapped to the light-front wave functions
 n=H of hadrons in physical space-time [3,4], thus provid-

ing a relativistic description of hadrons in QCD at the
amplitude level.

The correspondence of AdS amplitudes to the QCD
wave functions in light-front coordinates was carried out
in [3,4] by comparing the expressions for the electromag-
netic matrix elements in QCD and AdS for any value of the
momentum transfer q2. It is indeed remarkable that such a
correspondence exists, since strings describe extended ob-
jects coupled to an electromagnetic field distributed in the
AdS interior, whereas QCD degrees of freedom are point-
like particles with individual local couplings to the elec-
tromagnetic current. However, as we have shown [3,4], a
precise mapping of AdS modes to hadronic light-front
wave functions can be found in the strongly-coupled semi-
classical approximation to QCD.

The matrix elements of local operators of hadronic
composite systems, such as currents, angular momentum,
and the energy-momentum tensor, have exact Lorentz
invariant representations in the light front in terms of the
overlap of light-front wave functions. One may ask, if the
holographic mapping found in [3,4] for the electromag-
netic current is specific to the charge distribution within a
hadron or a general feature of light-front AdS/QCD.

The matrix elements of the energy-momentum tensor
��� of each constituent define the gravitational form
factor of a composite hadron. In this paper we shall use
gravitational matrix elements to obtain the holographic
mapping of the AdS mode wave functions �ðzÞ in AdS
space to the light-front wave functions  H in physical 3þ
1 space-time defined at fixed light-cone time � ¼ tþ z=c.
We find the identical holographic mapping from z! � as
in the electromagnetic case. The agreement of the results
for electromagnetic and gravitational hadronic transition
amplitudes provides an important consistency test and
verification of holographic mapping from AdS to physical
observables defined on the light front.

This paper is organized as follows. After briefly review-
ing the QCD light-front Fock representation in Sec. II, we
derive in Sec. III the exact form of matrix elements of the
energy-momentum tensor for a n-parton composite object
in light-front QCD. In Sec. IV we discuss the gravitational
form factors in AdS/QCD. In Sec. V we describe the
normalization of the AdS hadronic solutions to the
energy-momentum tensor and obtain the corresponding
hadronic transition matrix elements in AdS space. The
actual mapping from AdS to QCD matrix elements is
carried out in Sec. VI, where the Hamiltonian in the holo-
graphic light-front representation is related to the light-
front Schrödinger equation predicted from AdS/QCD.
Some final remarks are given in the conclusions in
Sec. VII. Other aspects useful for the discussion of the
paper are given in the appendices. In particular we describe
in Appendix C the specific AdS/QCD mapping for a two-
parton hadronic bound state, which is useful for under-
standing the n-parton results discussed in this article.

II. LIGHT-FRONT FOCK REPRESENTATION

The light-front expansion of any hadronic system is
constructed by quantizing QCD at fixed light-cone time
[2] � ¼ tþ z=c. In terms of the hadron four-momentum
P ¼ ðPþ; P�;P?Þ, P� ¼ P0 � P3, the light-cone Lorentz

invariant Hamiltonian for the composite system HQCD
LF ¼

P�Pþ � P2
? has eigenvalues given in terms of the eigen-

mass M squared corresponding to the mass spectrum of
the color-singlet states in QCD [26]

HLFj Hi ¼ M2
Hj Hi; (2.1)

where j Hi is an expansion in multiparticle Fock eigen-
states fjnig of the free light-front (LF) Hamiltonian:
j Hi ¼

P
n n=Hj Hi. The light-front wave functions

(LFWFs) n=H provide a frame-independent representation

of a hadron which relates its quark and gluon degrees of
freedom to their asymptotic hadronic state.
The hadron wave function is an eigenstate of the total

momentumPþ and P? and the longitudinal spin projection
Sz, and is normalized according to

h HðPþ;P?; SzÞj HðP0þ;P0
?; S

0
zÞi

¼ 2Pþð2�Þ3	Sz;S0z	ðPþ � P0þÞ	ð2ÞðP? � P0
?Þ: (2.2)

Each hadronic eigenstate j Hi is expanded in a Fock-
state complete basis of noninteracting n-particle states jni
with an infinite number of components

j HðPþ;P?; SzÞi

¼ X
n;
i

Yn
i¼1

Z dxid
2k?i

2
ffiffiffiffi
xi

p ð2�Þ3 ð16�
3Þ	

�
1� Xn

j¼1

xj

�
	ð2Þ

�Xn
j¼1

k?j
�

�  n=Hðxi;k?i; 
iÞjn: xiPþ; xiP? þ k?i; 
ii; (2.3)

where the sum begins with the valence state; e.g., n � 3 for
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baryons. The coefficients of the Fock expansion

 n=Hðxi;k?i; 
iÞ ¼ hn: xi;k?i; 
ij Hi; (2.4)

are independent of the total momentum Pþ and P? of the
hadron and depend only on the relative partonic coordi-
nates, the longitudinal momentum fraction xi ¼ kþi =Pþ,
the relative transverse momentum k?i, and 
i, the projec-
tion of the constituent’s spin along the z direction. Thus,
given the Fock projection (2.4), the wave function of a
hadron is determined in any frame. The amplitudes  n=H
represent the probability amplitudes to find on-mass-shell
constituents i with longitudinal momentum xiP

þ, trans-
verse momentum xiP? þ k?i, and helicity 
i in the had-
ron H. Momentum conservation requires

P
n
i¼1 xi ¼ 1 andP

n
i¼1 k?i ¼ 0. In addition, each light-front wave function

 n=Hðxi;k?i; 
iÞ obeys the angular momentum sum rule

[27] Jz ¼ P
n
i¼1 S

z
i þ

P
n�1
i¼1 L

z
i , where S

z
i ¼ 
i and the n�

1 orbital angular momenta have the operator form

Lzi ¼ �i
�
@

@kxi
kyi �

@

@kyi
kxi

�
: (2.5)

It should be emphasized that the assignment of quark and
gluon spin and orbital angular momentum of a hadron is a
gauge-dependent concept. The LF framework in light-cone
gauge Aþ ¼ 0 provides a physical definition since there
are no gauge field ghosts and the gluon has spin projection
Jz ¼ �1; moreover, it is frame-independent.

The LFWFs are normalized according to

X
n

Z
½dxi�½d2k?i�j n=Hðxi;k?iÞj2 ¼ 1; (2.6)

where the measure of the constituents phase-space momen-
tum integration is

Z
½dxi� �

Yn
i¼1

Z
dxi	

�
1� Xn

j¼1

xj

�
; (2.7)

Z
½d2k?i� �

Yn
i¼1

Z d2k?i
2ð2�Þ3 16�

3	ð2Þ
�Xn
j¼1

k?j
�
: (2.8)

The spin indices have been suppressed.
The complete basis of Fock states jni is constructed by

applying free-field creation operators to the vacuum state
j0i which has no particle content, Pþj0i ¼ 0, P?j0i ¼ 0.
The fundamental constituents appear in light-front quanti-
zation as the excitations of the dynamical fields, the Dirac
field  þ,  � ¼ �� , �� ¼ �0��, and the transverse
field A? in the Aþ ¼ 0 gauge, each expanded in terms of
quark and gluon creation and annihilation operators on the
transverse plane with coordinates x� ¼ x0 � x3 and x? at
fixed light-front time xþ ¼ x0 þ x3 [26]. For each kind of
quark f the Dirac field operator is expanded as

 fðxÞ� ¼ X



Z
qþ>0

dqþffiffiffiffiffiffiffiffiffi
2qþ

p d2q?
ð2�Þ3 ½b

f

ðqÞu�ðq; 
Þe�iq�x

þ df
ðqÞyv�ðq; 
Þeiq�x�; (2.9)

with commutation relations

fbðqÞ; byðq0Þg ¼ fdðqÞ; dyðq0Þg
¼ ð2�Þ3	ðqþ � q0þÞ	ð2Þðq? � q0

?Þ:
(2.10)

Similar expansion follows for the transverse gluon field
A?. We shall use the Lepage-Brodsky (LB) conventions
[28] for the properties of the light-cone spinors. A one-

particle state is defined by jqi ¼ ffiffiffiffiffiffiffiffiffi
2qþ

p
byðqÞj0i. Each

n-particle Fock state jpþ
i ;p?ii is an eigenstate of Pþ and

P? and is normalized according to

hpþ
i ;p?i; 
ijp0þ

i;p
0
?i; 


0
ii ¼ 2pþ

i ð2�Þ3	ðpþ
i � p0þ

iÞ
� 	ð2Þðp?i � p0

?iÞ	
i;
0i :
(2.11)

The LFWFs  nðxj;k?jÞ can be expanded in terms of

n� 1 independent transverse coordinates b?j, j ¼
1; 2; . . . ; n� 1, conjugate to the relative coordinates k?i

 nðxj;k?jÞ ¼ ð4�Þðn�1Þ=2 Yn�1

j¼1

Z
d2b?j

� exp

�
i
Xn�1

k¼1

b?k � k?k
�
~ nðxj;b?jÞ; (2.12)

where
P
ib?i ¼ 0. The normalization is defined by

X
n

Yn�1

j¼1

Z
dxjd

2b?jj ~ nðxj;b?jÞj2 ¼ 1: (2.13)

III. GRAVITATIONAL FORM FACTORS OF
COMPOSITE HADRONS IN QCD

Matrix elements of the energy-momentum tensor ���

which define the gravitational form factors play an impor-
tant role in hadron physics. Since one can define ��� for
each parton, one can identify the momentum fraction and
contribution to the orbital angular momentum of each
quark flavor and gluon of a hadron. For example, the
spin-flip form factor Bðq2Þ, which is the analog of the
Pauli form factor F2ðQ2Þ of a nucleon, provides a measure
of the orbital angular momentum carried by each quark and
gluon constituent of a hadron at q2 ¼ 0: Similarly, the
spin-conserving form factor Aðq2Þ, the analog of the
Dirac form factor F1ðq2Þ, allows one to measure the mo-
mentum fractions carried by each constituent. This is the
underlying physics of Ji’s sum rule [29]: hJzi ¼ 1

2 ½Að0Þ þ
Bð0Þ�, which has prompted much of the current interest in
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the generalized parton distributions (GPDs) measured in
deeply virtual Compton scattering [30]. Measurements of
the GPDs are of particular relevance for determining the
distribution of partons in the transverse impact plane, and
thus could be confronted with AdS/QCD predictions which
follow from the mapping of AdS modes to the transverse
impact representation [3].

An important constraint is Bð0Þ ¼ P
iBið0Þ ¼ 0; i.e. the

anomalous gravitomagnetic moment of a hadron vanishes
when summed over all the constituents i. This was origi-
nally derived from the equivalence principle of gravity
[31]. The explicit verification of these relations, Fock state
by Fock state, can be obtained in the light-front quantiza-
tion of QCD in light-cone gauge [27]. Physically Bð0Þ ¼ 0
corresponds to the fact that the sum of the n orbital angular
momenta L in an n-parton Fock state must vanish since
there are only n� 1 independent orbital angular momenta
(2.5).

Gravitational form factors can also be computed in AdS/
QCD from the overlap integral of hadronic string modes
propagating in AdS space with a graviton field h�� which

acts as a source and probes the AdS interior. This has been
done very recently for the gravitational form factors of
mesons by Abidin and Carlson [32], thus providing restric-
tions on the GPDs.

Recent applications to the electromagnetic form factors
of hadrons [4,9,33–35] in the bottom-up and in the top-
down string framework [36] of the AdS/CFT correspon-
dence have followed from the original papers [37,38]. Here
we shall extend our previous results [3,4] for the holo-
graphic mapping of AdS current matrix elements to gravi-
tational form factors. If both quantities for the gravitational
form factors represent the same physical observable for
any value of the momentum transfer q2, then an exact
correspondence can be established between the AdSmodes
�ðzÞ and LFWFs of hadrons  n=H as in the case of the

electromagnetic form factors. To simplify the discussion,
we will consider the holographic mapping of matrix ele-
ments of the energy-momentum tensor of mesons, where
only one gravitational form factor is present, but the results
can be extended to other hadrons as shown in [32].

The QCD Lagrangian density is

LQCD ¼ � ði��D� �mÞ � 1

4
Ga
��G

a��; (3.1)

where D� ¼ @� � igsA
a
�T

a and Ga
�� ¼ @�A

a
� � @�A

a
� þ

gsc
abcAb�A

c
�, with ½Ta; Tb� ¼ icabcTc and a, b, c are SUð3Þ

color indices.
We can find a symmetric and gauge-invariant expression

for the energy-momentum tensor ���, the Hilbert energy-

momentum tensor, by varying the QCD action with respect
to the four-dimensional Minkowski space-time metric
g��ðxÞ

���ðxÞ ¼ � 2ffiffiffi
g

p 	SQCD
	g��ðxÞ ; (3.2)

where SQCD ¼ R
d4x

ffiffiffi
g

p
LQCD and g � j detg��j. The re-

sult is

��� ¼ 1

2
� ið��D� þ ��D�Þ � g�� � ði 6D�mÞ 

�Ga
�
G

a

� þ 1

4
g��G

a

�G

a
�: (3.3)

The first two terms in (3.3) correspond to the fermionic
contribution to the energy-momentum tensor and the last
two to the gluonic contribution. In terms of (3.3) the total
angular momentum operator J of the composite hadron can
be expressed in the gauge-invariant form

Ji ¼ 1

2
�ijk

Z
d3x½�0kxj ��0jxk�: (3.4)

In the semiclassical AdS/CFT correspondence there are
no quantum effects, and only the valence Fock state con-
tributes to the hadronic wave function. In this approxima-
tion we need to consider only the quark contribution to the
energy-momentum tensor. In the light-front gauge Aþ ¼ 0
the fermionic component �þþ is

�þþðxÞ ¼ i

2

X
f

� fðxÞ�þ@
$þ fðxÞ; (3.5)

where an integration by parts is carried out to write�þþ in
its Hermitian operator form. The sum in (3.5) extends over
all the types of quarks f present in the hadron. Notice that
the second term of the energy-momentum tensor (3.3) does
not appear in the expression for �þþ since the metric
component gþþ is zero in the light front as discussed in
Appendix A.
We will use light-front frame coordinates

P ¼ ðPþ; P�;P?Þ ¼
�
Pþ;

M2

Pþ ; ~0?
�
;

q ¼ ðqþ; q�;q?Þ ¼
�
0;
2q � P
Pþ ;q?

�
;

(3.6)

where q2 ¼ �Q2 ¼ �2q � P ¼ �q2
? is the spacelike

four-momentum squared transferred to the composite had-
ron. The gravitational form factor of a meson is defined in
terms of matrix elements of the ‘‘plus-plus’’ components of
the energy-momentum tensor evaluated at light-cone time
xþ ¼ 0. In the qþ ¼ 0 frame

hP0j�þþð0ÞjPi ¼ 2ðPþÞ2AðQ2Þ; (3.7)

where P0 ¼ Pþ q and the gravitational form factor AðQ2Þ
satisfies the momentum sum rule Að0Þ ¼ 1.
The expression for the operator �þþð0Þ in the particle

number representation follows from the momentum expan-
sion of the Dirac field  ðxÞ in terms of creation and
annihilation operators given by (2.9). Using the light-
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cone metric conventions given in Appendix A and the
results listed in Appendix A of [4] for the quark spinor
transitions, we find

�þþ ¼ 1

2

X
f;


Z dqþd2q?
ð2�Þ3

Z dq0þd2q0
?

ð2�Þ3 ðqþ þ q0þÞ

� fbfy
 ðqÞbf
ðq0Þ þ dfy
 ðq0Þdf
ðqÞg: (3.8)

The operator �þþ annihilates a quark (antiquark) with
momentum q0 (q) and spin projection 
 along the z direc-
tion and creates a quark (antiquark) with the same spin and
momentum q (q0).

The matrix element of the energy-momentum tensor
h P0 j�þþð0Þj Pi can be computed by expanding the initial
and final hadronic states in terms of its Fock components
using (2.3). The transition amplitude can then be expressed
as a sum of overlap integrals with diagonal �þþ-matrix
elements in the n-particle Fock-state basis. For each Fock
state, we label with i ¼ n the struck constituent quark with
light-front longitudinal momentum fraction xn ¼ x and
with j ¼ 1; 2; . . . ; n� 1 each spectator with longitudinal
momentum fraction xj. Using the normalization condition

(2.11) for each individual constituent and after integration
over the intermediate variables in the qþ ¼ 0 frame, we
find the expression for the gravitational form factor of a
meson [27]

Aðq2Þ ¼ X
n

Z
½dxi�½d2k?i�

Xn
f¼1

xf 
	
n=Hðxi;k0

?i; 
iÞ

�  n=Hðxi;k?i; 
iÞ; (3.9)

where the sum is over all the partons in each Fock state n.
The variables of the light-cone Fock components in the
final-state are given by k0

?i ¼ k?i þ ð1� xiÞq? for a

struck constituent quark and k0
?i ¼ k?i � xiq? for each

spectator. Notice that each type of parton contributes to the
gravitational form factor with struck constituent light-cone
momentum fractions xf, instead of the electromagnetic

constituent charge ef which appears in the electromagnetic

form factor. Since the longitudinal momentum fractions of
the constituents add to 1,

P
fxf ¼ 1, the momentum sum

rule is satisfied at q ¼ 0: Að0Þ ¼ 1; the formulae are exact
if the sum is over all Fock states n. Notice that there is a
factor ofNC from a closed quark loop where the graviton is
attached and a normalization factor of 1=

ffiffiffiffiffiffiffi
NC

p
for each

meson wave function; thus color factors cancel out from
the expression of the gravitational form factor.

In the light-front formalism matrix elements of local
operators are represented as overlaps of light-front wave
functions. In order to compare with AdS results it is
convenient to express the LF expressions in the transverse
impact representation since the bilinear forms may be ex-
pressed in terms of the product of light-front wave func-
tions with identical variables. We substitute (2.12) in the
formula (3.9). Integration over k? phase space gives us n�

1 delta functions to integrate over the n� 1 intermediate
transverse variables with the result

Aðq2Þ ¼ X
n

Yn�1

j¼1

Z
dxjd

2b?j
Xn
f¼1

xf exp

�
iq? � Xn�1

k¼1

xkb?k
�

� j ~ nðxj;b?j; 
jÞj2; (3.10)

corresponding to a change of transverse momentum xjq?
for each of the n� 1 spectators and is valid for any Fock
state n. The results can be summed over n to obtain an
exact representation.

A. Effective single-particle distribution

We can define Af=nðq2Þ which is the contribution to the

gravitational form factor from the struck parton f in Fock
state n. In terms of the n� 1 independent coordinates xk
and b?k, k ¼ 1; 2; . . . ; n, k � f we have

Af=nðq2Þ ¼
Y
k�f

Z
dxkd

2b?k
�
1� X

‘�f

x‘

�

� exp

�
iq? � X

m�f

xmb?m
�
j ~ nðxk;b?kÞj2k�f:

(3.11)

Following [3,4] we can write the gravitational form
factor in terms of an effective single-particle density [39]
in the light-front frame. Summing over Fock states
Afðq2Þ ¼ P

nAf=nðq2Þ, we have

Afðq2Þ ¼
Z 1

0
xdx
fðx;q?Þ; (3.12)

where Að0Þ ¼ P
fAfð0Þ ¼

P
fhxfi ¼ 1. The effective den-

sity 
fðx;q?Þ is given by


fðx;q?Þ ¼
X
n

Y
k�f

Z
dxkd

2b?k	
�
1� x� X

‘�f

x‘

�

� exp

�
iq? � X

m�f

xmb?m
�
j ~ nðxk;b?kÞj2k�f:

(3.13)

The integration is over the coordinates of the n� 1 spec-
tator partons, and x is the coordinate of the active quark
with longitudinal momentum x. We can also write the form
factor in terms of an effective single-particle transverse
distribution ~
fðx; ~�?Þ

Afðq2Þ ¼
Z 1

0
xdx

Z
d2 ~�?ei ~�?�q? ~
fðx; ~�?Þ; (3.14)

where ~�? ¼ P
k�fxkb?k is the x-weighted transverse po-

sition coordinate of the n� 1 spectators. The correspond-
ing transverse density is [3,4]
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~
fðx; ~�?Þ ¼
Z d2q?

ð2�Þ2 e
�i ~�?�q?
fðx;q?Þ

¼ X
n

Y
k�f

Z
dxkd

2b?k	
�
1� x� X

‘�k

x‘

�

� 	ð2Þ
�X
m�f

xmb?m � ~�?
�
j ~ nðxk;b?kÞj2k�f:

(3.15)

It is useful to integrate (3.14) over angle; we obtain

Aðq2Þ ¼ 2�
X
f

Z 1

0
dxð1� xÞ

�
Z
�d�J0

�
�q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
~
fðx; �Þ; (3.16)

where we have introduced the variable

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
x

1� x

r ��������X
k�f

xkb?k
��������; (3.17)

representing the x-weighted transverse impact coordinate
of the spectator system.

IV. GRAVITATIONAL FORM FACTORS
IN ADS/CFT

AdS coordinates are the d ¼ 4 Minkowski coordinates
x� and z, the holographic coordinate, which we label x‘ ¼
ðx�; zÞ. The metric of AdSdþ1 space-time is

ds2 ¼ R2

z2
ð���dx�dx� � dz2Þ; (4.1)

where the AdS radius is R. Fields propagating in five-
dimensional AdS space are represented by capital letters
such as �. Holographic modes in four-dimensional
Minkowski space are represented by �.

A. Gauge/Gravity semiclassical correspondence

The formal statement of the duality between a gravity
theory on (dþ 1)-dimensional anti-de Sitter AdSdþ1 space
and the strong coupling limit of a conformal field theory
(CFT) on the d-dimensional asymptotic boundary of
AdSdþ1 at z ¼ 0 is expressed in terms of the dþ 1 parti-
tion function for a field �ðx; zÞ propagating in the bulk

Zgrav½�ðx; zÞ� ¼ eiSeff ½�� ¼
Z

D½��eiS½��; (4.2)

where Seff is the effective action of the AdSdþ1 theory, and
the d-dimensional generating functional of the conformal
field theory in presence of an external source �0ðxÞ,

ZCFT½�0ðxÞ� ¼ eiWCFT½�0� ¼
�
exp

�
i
Z
ddx�0ðxÞOðxÞ

��
:

(4.3)

The functionalWCFT is the generator of connected Green’s
functions of the boundary theory and OðxÞ is a QCD local
interpolating operator. The precise relation of the gravity
theory on AdS space to the conformal field theory at its
boundary is [5,6]

Zgrav½�ðx; zÞjz¼0 ¼ �0ðxÞ� ¼ ZCFT½�0�; (4.4)

where the partition function (4.2) on AdSdþ1 is integrated
over all possible configurations � in the bulk which ap-
proach its boundary value �0. If we neglect the contribu-
tions from the nonclassical configurations to the gravity
partition function, then the functional WCFT of the four-
dimensional gauge theory (4.3) is precisely equal to the
classical (on-shell) gravity action (4.2)

WCFT½�0� ¼ Seff½�ðx; zÞjz¼0 ¼ �0ðxÞ�on-shell; (4.5)

evaluated in terms of the classical solution to the bulk
equation of motion. This defines the semiclassical approxi-
mation to the conformal field theory. In the limit z! 0, the
independent solutions behave as

�ðx; zÞ ! z��þðxÞ þ zd����ðxÞ; (4.6)

where � is the conformal dimension. The non-
normalizable solution �� is the boundary value of the
bulk field � which couples to a QCD gauge-invariant
operator O in the z! 0 asymptotic boundary, thus �� ¼
�0. The normalizable solution�þðxÞ is the response func-
tion and corresponds to the physical states [40]. The inter-
polating operatorsO of the boundary conformal theory are
constructed from local gauge-invariant products of quark
and gluon fields and their covariant derivatives, taken at the
same point in four-dimensional space-time in the x2 ! 0
limit. Their conformal twist-dimensions are matched to the
scaling behavior of the AdS fields in the limit z! 0 and
are thus encoded into the propagation of the modes inside
AdS space.
Integrating by parts and using the equation of motion for

a scalar field in AdS (as discussed below), the bulk con-
tribution to the action vanishes, and one is left with a
nonvanishing surface term in the ultraviolet boundary

S ¼ Rd�1lim
z!0

Z
ddx

1

zd�1
�@z�; (4.7)

which can be identified with the boundary functionalWCFT.
Substituting the leading dependence (4.6) of � near z ¼ 0
in the ultraviolet surface action (4.7) and using the func-
tional relation

	WCFT

	�0

¼ 	Seff
	�0

; (4.8)

it follows that �þðxÞ is related to the expectation value of
O in the presence of the source �0 [40]

h0jOðxÞj0i�0
��þðxÞ: (4.9)

The exact relation depends on the normalization of the
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fields used [41]. The field �þ thus acts as a classical field,
and it is the boundary limit of the normalizable string
solution which propagates in the bulk.

B. Gravity action

The action for gravity coupled to a scalar field inAdSdþ1

space is

S ¼
Z
ddþ1x

ffiffiffi
g

p �
1

�2
ðR� 2�Þ þ g‘m@‘�

	@m�

��2�	�
�
; (4.10)

where R is the scalar curvature, � is the dþ
1-dimensional Newton constant, and � is a dþ
1-dimensional mass. The action is written as a sum of
two terms S ¼ SG þ SM, where SG

SG ¼ 1

�2

Z
ddþ1x

ffiffiffi
g

p ðR� 2�Þ; (4.11)

describes the dynamics of the gravitational fields g‘m and
determines the AdS background. The dynamics of all other
fields, the matter fields, is included in SM. In the present
discussion the matter content is represented by � and the
action

SM ¼
Z
ddþ1x

ffiffiffi
g

p ðg‘m@‘�	@m���2�	�Þ; (4.12)

describes a pion mode which propagates in AdS space.
The variation of the action with respect to the metric

tensor gives Einstein’s equations in the presence of a bulk
cosmological constant �:

R ‘m � 1

2
g‘mR��g‘m ¼ 0: (4.13)

AdS space is a maximally symmetric space with Riemann
tensor Rik‘m

R ik‘m ¼ � 1

R2
ðgi‘gkm � gimgk‘Þ: (4.14)

By contracting Rik‘m we obtain the Ricci tensor Rik ¼
g‘mR‘imk,

Rik ¼ � d

R2
gik: (4.15)

Thus AdS space is an Einstein manifold. By further con-
tracting the Ricci tensor R ¼ gikRik ¼ gi‘gkmRik‘m, we

obtain the scalar curvature ofAdSdþ1 spaceR ¼ � dðdþ1Þ
R2 ,

a constant negative curvature. From the equation of motion
(4.13) we find the relation between the cosmological con-
stant and the AdSdþ1 radius

� ¼ �dðd� 1Þ
2R2

; (4.16)

thus � ¼ � 6
R2 for d ¼ 4.

Taking the variation of (4.12) with respect to � we find
the AdS wave equation for the pion mode

z3@z

�
1

z3
@z�

�
� @
@


��
�
�R

z

�
2
� ¼ 0: (4.17)

C. Interaction terms in the gravity action

The expression for the AdS matrix elements describing
the interaction of the matter fields in AdS space with an
external arbitrary source at the AdS asymptotic boundary
follows from the gauge-invariant definition of the energy-
momentum tensor

�‘mðx‘Þ ¼ � 2ffiffiffi
g

p 	SM
	g‘mðx‘Þ ; (4.18)

where g � j detg‘mj. In order to determine the precise form
of the transition amplitudes, we shall consider a small
deformation of the metric about its AdS background g‘m:
�g‘m ¼ g‘m þ h‘m; we then expand SM to first order in h‘m.
From (4.12) and (4.18)

SM½h‘m� ¼ SM½0� þ 1

2

Z
ddþ1x

ffiffiffi
g

p
h‘m�

‘m þOðh2Þ;
(4.19)

where we have used the relation �‘m	g‘m ¼ ��‘m	g
‘m

which follows from g‘m	g‘m ¼ �g‘m	g‘m. Thus, in the
weak gravitational approximation the coupling of an ex-
ternal graviton field h‘m to matter is given by the interac-
tion term (d ¼ 4)

SI ¼ 1

2

Z
d4xdz

ffiffiffi
g

p
h‘m�

‘m: (4.20)

From (4.12) and (4.18) we find the energy-momentum
tensor of the matter field �

�‘m ¼ @‘�
	@m�þ @m�

	@‘�

� g‘mð@n�	@n���2�	�Þ: (4.21)

Likewise, we can determine the AdS equation of motion
of the graviton field h‘m by substituting the modified
metric �g‘m ¼ g‘m þ h‘m into the gravitational action SG.
We find

SG½h‘m� ¼ SG½0� þ 1

4�2

Z
ddþ1x

ffiffiffi
g

p

�
�
@nh

‘m@nh‘m � 1

2
@‘h@

‘h

�
þOðh2Þ; (4.22)

where the trace h‘‘ is denoted by h. In deriving (4.22) we

have made use of the gauge invariance of the theory h0‘m ¼
h‘m þ @‘�m þ @m�‘ to impose the harmonic gauge condi-
tion @‘h

‘
m ¼ 1

2@mh. The action describing the dynamical

fields h‘m in the weak field approximation (d ¼ 4) is given
in the linearized form
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Sh ¼ 1

4�2

Z
d4xdz

ffiffiffi
g

p �
@nh

‘m@nh‘m � 1

2
@‘h@

‘h

�
;

(4.23)

resembling the treatment of an ordinary gauge field. The
total bulk action describing the coupling of gravity and
matter with an external graviton in the weak field approxi-
mation thus has two additional terms: S ¼ SG þ SM þ
Sh þ SI.

V. HADRONIC STATES AND TRANSITION
MATRIX ELEMENTS IN ADS/CFT

A physical hadron in four-dimensional Minkowski
space has four-momentum P� and invariant hadronic

mass states determined by the light-front eigenvalue equa-
tion HLFj Pi ¼ M2j Pi. On AdS space the physical
states are represented by normalizable modes

�Pðx; zÞ ¼ e�iP�x�ðzÞ; (5.1)

with plane waves along the Poincaré coordinates and a
profile function �ðzÞ along the holographic coordinate z.
The hadronic invariant mass P�P

� ¼ M2 for the string

modes (5.1) is found by solving the eigenvalue problem for
the AdS wave equation. Each light-front hadronic state
j Pi is dual to a normalizable string mode �Pðx; zÞ. To
compare a physical observable computed in light-front
QCD with the same observable computed in AdS space,
we must find a gauge-invariant prescription to relate physi-
cal states in both theories. In practice, one compares the
results of matrix elements of local operators on the gauge
theory side with the corresponding matrix element in the
AdS side. A consistent normalization on both sides of the
correspondence is determined by the normalization of
hadronic states to the energy-momentum tensor.

A. Normalization of hadronic states to the energy-
momentum tensor in AdS

We compute the expectation value of the energy-
momentum tensor �‘m along Minkowski coordinates.
For d ¼ 4

h�Pj��
�j�Pi ¼

Z
d4xdz

ffiffiffi
g

p
��
�: (5.2)

Substituting the plane-wave solution (5.1) in the expression
for the energy-momentum tensor (4.21) we find

hPj��
�jPi ¼ 2P�P

�; (5.3)

where we have extracted the overall factor ð2�Þ4	ð4ÞðP0 �
PÞ from the x-integration to compare with the light-front
QCD results. We chose the normalization

R3
Z ��1

QCD

0

dz

z3
j�ðzÞj2 ¼ 1; (5.4)

in the cutoff AdS space, consistent with the normalization

of AdS solutions to the total charge operator [4] described
in Appendix B. In obtaining (5.3) we have dropped the last
term in (4.21), a surface term which vanishes by choosing
appropriate boundary conditions.

B. Hadronic transition matrix elements in AdS/CFT

The matrix element of the energy-momentum tensor for
the hadronic transitionP! P0 follows from the interaction
term (4.20) describing the coupling of the pion mode with
the external graviton field propagating in AdS spaceZ

d4xdz
ffiffiffi
g

p
h‘mð@‘�	

P0@m�P þ @m�	
P0@‘�PÞ; (5.5)

where we have dropped the surface term in (4.21).
Since the energy-momentum tensor �‘m is gauge-

invariant, we may impose a more restricted gauge condi-
tion in order to simplify the calculations and use the
general covariance of the theory to obtain the final result.
We choose the harmonic-traceless gauge @‘h

‘
m ¼ 1

2@mh ¼
0 and we consider the propagation inside AdS space of a
graviton probe h‘m with metric components along
Minkowski coordinates hzz ¼ hz� ¼ 0. The set of linear-

ized Einstein equations from (4.23) reduce to the simple
form [32]

z3@z

�
1

z3
@zh

�
�

�
� @
@


h�� ¼ 0: (5.6)

To solve (5.6) we note that the boundary limit of the
graviton probe is a plane wave along the Poincaré
coordinates with polarization indices along the physical
transverse dimensions h��ðx; z! 0Þ ¼ ���e

�iq�x, where

q2 ¼ �Q2 < 0. As discussed in [32] in this particular
gauge, the graviton couples to the transverse and traceless
part of the energy-momentum tensor. We thus write

h��ðx; zÞ ¼ ���e
�iq�xHðq2; zÞ; (5.7)

with

Hðq2 ¼ 0; zÞ ¼ Hðq2; z ¼ 0Þ ¼ 1: (5.8)

Substituting h�� in (5.6) we find the wave equation describ-

ing the propagation of the external graviton inside AdS
space

½z2@2z � 3z@z � z2Q2�HðQ2; zÞ ¼ 0: (5.9)

Its solution subject to the boundary conditions (5.8) is

HðQ2; zÞ ¼ 1

2
Q2z2K2ðzQÞ; (5.10)

the result obtained by Abidin and Carlson [32].
We can now use the Minkowski space dependence of the

normalizable mode �Pðx; zÞ ¼ e�iP�x�ðzÞ in (5.5). We
find the transition amplitude

hP0j��
�jPi ¼ ðP�P0

� þ P�P
0�ÞAðQ2Þ; (5.11)
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where we have extracted the overall factor ð2�Þ4	ð4ÞðP0 �
P� qÞ from momentum conservation at the vertex from
integration over Minkowski variables. We find for AðQ2Þ

AðQ2Þ ¼ R3
Z dz

z3
�ðzÞHðQ2; zÞ�ðzÞ; (5.12)

with AðQ2 ¼ 0Þ ¼ 1. The gravitational form factor in AdS
is thus represented as the z-overlap of the normalizable
modes dual to the incoming and outgoing hadrons �P and
�P0 with the non-normalizable mode HðQ2; zÞ dual to the
external graviton source [32]; this provides the form of the
gravitational transition matrix element analogous to the
electromagnetic form factor in AdS [37]. At small z the
string modes scale as �� z�. At large enough Q, the
important contribution to (5.12) is from the region near z�
1=Q, AðQ2Þ ! ð1=Q2Þ��1, and the ultraviolet pointlike
behavior responsible for the power law scaling [42,43] is
recovered.

VI. LIGHT-FRONT MAPPING OF STRING
AMPLITUDES

The gravitational form factor (5.12) represents the cou-
pling of the graviton to the entire hadron in AdS, indepen-
dent of the number n of its constituents. Since (5.12) gives
Að0Þ ¼ 1, it implicitly includes the sum over the coupling
of the graviton to all n massless constituents. The gravita-
tional coupling, like a number operator, sums over all
particles. Similarly, the electromagnetic current sums
over constituents, but weighted by their fractional charge.
To simplify the discussion we will establish the connection
of the AdS/CFT results for the gravitational form factor
and the light-front results for the lowest Fock state n ¼ 2
using the effective single-particle distribution discussed in
Sec. III A. This is particularly useful for extending the
results to arbitrary n, subject to the requirement that one
normalizes the hadronic matrix element of the energy-
momentum tensor so that Að0Þ ¼ 1.

For n ¼ 2, there are two terms which contribute to the
light-front result in the f-sum in (3.16). Exchanging x$
1� x in the second integral we find

An¼2ðq2Þ ¼ 4�
Z 1

0
dxð1� xÞ

�
Z
�d�J0

�
�q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
j~
n¼2ðx; �Þj2; (6.1)

where �2 ¼ xð1� xÞb2
?. It is simple to prove that if ~
 is a

symmetric function of x and 1� x then

2�
Z 1

0
dxð1� xÞ

Z
�d�j~
n¼2ðx; �Þj2 ¼ 1

2
; (6.2)

and thus Aðq2Þ satisfies the sum rule Að0Þ ¼ 1.
To compare with the light-front QCD results we express

the bulk-to-boundary propagator HðQ2; zÞ (5.10) for the
graviton probe using the Hankel-Nicholson integral repre-

sentation (Appendix A of Ref. [4])

HðQ2; zÞ ¼ 4Q4
Z 1

0

tJ0ðztÞ
ðt2 þQ2Þ3 dt: (6.3)

Introducing a new variable x ¼ Q2

t2þQ2 we find

HðQ2; zÞ ¼ 2
Z 1

0
xdxJ0

�
zQ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
; (6.4)

and thus

AðQ2Þ ¼ 2R3
Z 1

0
xdx

Z dz

z3
J0

�
zQ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
j�ðzÞj2: (6.5)

We can now compare the above expression with the
light-front expression (6.1), and can identify the spectator
density function appearing in the light-front formalism
with the corresponding AdS density

~
ðx; �Þ ¼ R3

2�

x

1� x

j�ð�Þj2
�4

: (6.6)

Extension to arbitrary n follows from the x-weighted defi-
nition of the transverse impact variable of the n� 1 spec-

tator system given by (3.17): � ¼ ffiffiffiffiffiffiffi
x

1�x
p jPn�1

j¼1 xjb?jj.
Equation (6.6) holds for all momentum transfer Q2 and

gives the same relation between string modes�ð�Þ inAdS5
and the QCD transverse charge density ~
ðx; �Þ obtained
previously by mapping the electromagnetic current matrix
elements [4]. The variable � , 0 
 � 
 ��1

QCD, represents a

measure of the transverse separation between pointlike
constituents, and it is also the holographic variable z.
In the case of a two-parton system the correspondence

between the string amplitude �ðzÞ in AdS space and the

QCD light-front wave function ~ ðx;b?Þ follows from
(6.6). For two partons the transverse density (3.15) has
the simple form

~
 n¼2ðx; �Þ ¼ j ~ ðx; �Þj2
ð1� xÞ2 ; (6.7)

and a closed form solution for the two-constituent bound
state light-front wave function is obtained

j ~ ðx; �Þj2 ¼ R3

2�
xð1� xÞ j�ð�Þj2

�4
; (6.8)

with �2 ¼ xð1� xÞb2
?. For a two-parton system the light-

front mapping can also be carried out directly from (3.10).
This is done in Appendix C, where the consistency with the
LF mapping results from electromagnetic current matrix
elements is also pointed out.

A. Holographic light-front Hamiltonian and
Schrödinger equation

The above analysis provides an exact correspondence
between the holographic variable z and an impact variable
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� which measures the transverse separation between point-
like constituents within a hadron; we can identify � ¼ z.
The mapping of z from AdS space to � in light-front frame
allows the equations of motion in AdS space to be recast in
the form of a light-front Hamiltonian equation [26] with
eigenvalues given in terms of the hadronic eigenmass M2

HLFj�i ¼ M2j�i; (6.9)

a remarkable result which allows the discussion of the
AdS/CFT solutions in terms of light-front equations in
physical 3þ 1 space-time.

Factoring out the plane-wave dependence of the had-
ronic mode �Pðx; zÞ ¼ e�iP�x�ðzÞ and substituting in
(4.17) we find

½z2@2z � ðd� 1Þz@z þ z2M2 � ð�RÞ2��ðzÞ ¼ 0; (6.10)

the wave equation describing the propagation of a scalar
mode in AdS. The allowed values of � are determined by
requiring that asymptotically the dimensions become sepa-
rated by integers according to the spectral relation
ð�RÞ2 ¼ �ð�� dÞ and the stability condition dictated
by the Breitenlohner-Freedman bound ð�RÞ2 � �d2=4
for a scalar field [44]. We find ð�RÞ2 ¼ �4þ L2 for
� ¼ 2þ L and d ¼ 4. Thus the stability bound requires
L2 � 0.

By substituting

�ð�Þ ¼
�
�

R

��3=2
�ð�Þ (6.11)

in the AdS scalar wave equation (6.10) we find an effective
Schrödinger equation as a function of the weighted impact
variable � [3,4]�

� d2

d�2
þ Vð�Þ

�
�ð�Þ ¼ M2�ð�Þ; (6.12)

with � d2

d�2
the light-front kinetic energy operator and con-

formal potential

Vð�Þ ! � 1� 4L2

4�2
; (6.13)

an effective relativistic two-particle light-front wave equa-
tion for mesons defined at xþ ¼ 0. Its eigenmodes deter-
mine the hadronic mass spectrum.
In the transverse impact holographic representation with

holographic light-front wave functions �ð�Þ ¼ h�j�i, the
LC eigenvalue equation thus reads

h�jHLCj�i ¼ M2h�j�i; (6.14)

with

h�jHLCj�i ¼
�
� d2

d�2
� 1� 4�2

4�2

�
h�j�i; (6.15)

in the conformal limit. The light-front modes �ð�Þ ¼
h�j�i are normalized according to

h�j�i ¼
Z
d�jh�j�ij2 ¼ 1; (6.16)

and represent the probability amplitude to find n-partons at
transverse impact separation � ¼ z. Its eigenvalues are
determined by the boundary conditions�ðz ¼ 1=�QCDÞ ¼
0 and are given in terms of the roots of Bessel functions:
ML;k ¼ �L;k�QCD. The normalizable modes are

�L;kð�Þ ¼
ffiffiffi
2

p
�QCD

J1þLð�L;kÞ
ffiffiffi
�

p
JLð��L;k�QCDÞ�ð� 
 ��1

QCDÞ:
(6.17)

The lowest stable state L ¼ 0 is determined by the
Breitenlohner-Freedman bound. Higher excitations are
matched to the small z asymptotic behavior of each string
mode to the corresponding conformal dimension of the
boundary operators of each hadronic state. The AdS metric
ds2 (1.1) is invariant if x2

? ! 
2x2
? and z! 
z at equal

light-front time xþ ¼ 0. The effective wave equation
(6.12) has the Casimir representation L2 corresponding to
the SOð2Þ group of rotations in the transverse light-front
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FIG. 1 (color online). AdS/QCD predictions for the light-front wave functions of a meson in the hard-wall model: (a) n ¼ 0, L ¼ 0;
(b) n ¼ 0, L ¼ 1; (c) n ¼ 1, L ¼ 0.
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plane. Indeed, the Casimir operator for SOðNÞ � SN�1 is
LðLþ N � 2Þ. This shows the natural holographic con-
nection to the light front. The fundamental light-front
equation of AdS/CFT has the appearance of a

Schrödinger equation, but it is relativistic, covariant, and
analytically tractable.

A closed form of the light-front wave functions ~ ðx;b?Þ
for a two-parton bound state follows from (6.8)

~ L;kðx;b?Þ ¼
�QCDffiffiffiffi

�
p

J1þLð�L;kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

JLð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp jb?j�L;k�QCDÞ�

�
b2
? 
 ��2

QCD

xð1� xÞ
�
: (6.18)

The resulting wave function depicted in Fig. 1 displays
confinement at large interquark separation and conformal
symmetry at short distances, reproducing dimensional
counting rules for hard exclusive amplitudes and the con-
formal properties of the LFWFs at high relative momenta
[42,43].

For the soft-wall model [15] we can obtain the basis set
of light-front wave functions by comparing the QCD ex-
pression for the gravitational form factor (3.16) with the
corresponding expression for the AdS form factor, where
the graviton probe propagates in the distorted metric. In the
large Q limit we can identify the light-front transverse
density with the corresponding AdS density, with identical
results as obtained for the mapping of the electromagnetic
form factor in [4].

VII. CONCLUSIONS

Light-front holography is one of the most remarkable
features of AdS/CFT. It allows one to project the functional
dependence of the wave function �ðzÞ computed in the
single AdS fifth dimension to the hadronic frame-
independent light-front wave function  ðxi;b?iÞ in 3þ 1
physical space-time. The variable z maps to �ðxi;b?iÞ. As
we have discussed, this correspondence is a consequence
of the fact that the metric ds2 for AdS5 at fixed light-front
time � is invariant under the simultaneous scale change
x2
? ! 
2x2

? in transverse space and z2 ! 
2z2. The trans-
verse coordinate � is closely related to the invariant mass
squared of the constituents in the LFWF and its off-
shellness in the light-front kinetic energy, and it is thus
the natural variable to characterize the hadronic wave
function. In fact � is the only variable to appear in the
light-front Schrödinger equations predicted from AdS/
QCD. These equations for both meson and baryons give
a good representation of the observed hadronic spectrum,
especially in the case of the soft-wall model. The resulting
LFWFs also have excellent phenomenological features,
including predictions for the electromagnetic form factors
and decay constants.

It is interesting to note that the form of the nonperturba-
tive pion distribution amplitude ��ðxÞ obtained from in-
tegrating the q �q valence LFWF  ðx;k?Þ over k? has a
quite different x behavior than the asymptotic distribution
amplitude predicted from the PQCD evolution [45] of the

pion distribution amplitude. The AdS prediction ��ðxÞ ¼

ffiffiffi
3

p
f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

has a broader distribution than expected
from solving the Efremov-Radyushkin-Brodsky-Lepage
(ERBL) evolution equation in perturbative QCD. This
observation appears to be consistent with the results of
the Fermilab diffractive dijet experiment [46], the mo-
ments obtained from lattice QCD [9], and pion form factor
data [47].
Nonzero quark masses are naturally incorporated into

the AdS predictions [9] by including them explicitly in the

LF kinetic energy
P
i
k2
?iþm2

i

xi
. Given the nonperturbative

LFWFs one can predict many interesting phenomenologi-
cal quantities such as heavy quark decays, generalized
parton distributions, and parton structure functions. The
AdS/QCD model is semiclassical and thus only predicts
the lowest valence Fock-state structure of the hadron
LFWF. In principle, the model can be systematically im-
proved by diagonalizing the full QCD light-front
Hamiltonian on the AdS/QCD basis.
Another interesting application is hadronization at the

amplitude level. In this case one uses light-front time-
ordered perturbation theory for the QCD light-front
Hamiltonian to generate the off-shell quark and gluon T-
matrix helicity amplitudes such as eþe� ! �	 ! X. If at
any stage a set of color-singlet partons has light-front
kinetic energy

P
ik

2
?i=xi <�2

QCD, then one coalesces the

virtual partons into a hadron state using the AdS/QCD
LFWFs. A similar approach was used to predict antihy-
drogen formation from virtual positron-antiproton states
produced in �pA collisions [48].
The hard-wall AdS/QCD model resembles bag models

where a boundary condition is introduced to implement
confinement. However, unlike traditional bag models, the
AdS/QCD model is frame-independent. An important
property of bag models is the dominance of quark inter-
change as the underlying dynamics of large-angle elastic
scattering. This agrees with the survey of two-hadron ex-
clusive reactions [49]. In addition the AdS/QCD model
implies a maximal wavelength for confined quarks and
gluons and thus a finite IR fixed point for the QCD
coupling.
We originally derived the light-front holographic map-

ping by matching the exact expression for current matrix
elements in AdS space with the corresponding exact ex-
pression for the electromagnetic current matrix element
using light-front theory in physical space-time. In this
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paper we have shown that one obtains the identical holo-
graphic mapping using the hadronic matrix elements of the
energy-momentum tensor. This is a highly nontrivial test of
the consistency of the light-front holographic mapping.

Our analysis also allows one to predict the individual
quark and gluon contributions to the gravitational form
factors Aðq2Þ and Bðq2Þ: Thus we can predict the momen-
tum fractions for quarks q and gluons g, Aq;gð0Þ ¼ hxq;gi,
and orbital angular momenta Bq;gð0Þ ¼ hLq;gi carried by

each quark flavor and gluon in the hadron with sum rulesP
q;gAq;gð0Þ ¼ Að0Þ ¼ 1 and

P
q;gBq;gð0Þ ¼ Bð0Þ ¼ 0. The

last sum rule corresponds to the vanishing of the anoma-
lous gravitational moment which is true Fock state by Fock
state [27] in light-front theory.

The mathematical consistency of light-front holography
for both the electromagnetic and gravitational hadronic
transition matrix elements demonstrates that the mapping
between the single AdS space dimension z and the trans-
verse light-front variable � , which is a function of the
multidimensional coordinates of the partons in a given
light-front Fock state xi;b?i at fixed light-front time �, is
a general principle. The holographic mapping from�ðzÞ to
the light-front wave functions of relativistic composite
systems provides a new tool for extending the AdS/CFT
correspondence to theories such as QCD which are not
conformally invariant.
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APPENDIX A: METRIC CONVENTIONS

1. Light-cone metric and Minkowski space

The Minkowski metric written in terms of light-front
coordinates is

d�2 ¼ dxþdx� � dx2
? � dz2; (A1)

with timelike and spacelike components xþ ¼ x0 þ x3 and
x� ¼ x0 � x3 respectively. We write contravariant four-
vectors such as x� as

x� ¼ ðxþ; x�; x1; x2Þ ¼ ðxþ; x�;x?Þ: (A2)

Scalar products are

x � p ¼ x�p
� ¼ g��x

�p�

¼ xþpþ þ x�p� þ x1p
1 þ x2p

2

¼ 1

2
ðxþp� þ x�pþÞ � x? � p?; (A3)

with front-form metrics

g�� ¼
0 1

2 0 0
1
2 0 0 0
0 0 �1 0
0 0 0 �1

0
BBB@

1
CCCA; (A4)

and

g�� ¼
0 2 0 0
2 0 0 0
0 0 �1 0
0 0 0 �1

0
BBB@

1
CCCA: (A5)

A covariant vector such as @� is

@� ¼ ð@þ; @�; @1; @2Þ ¼ ð@þ; @�; ~@?Þ: (A6)

Thus @þ ¼ 2@� and @� ¼ 2@þ.

2. AdS space

AdS coordinates are the Minkowski coordinates x‘ and z
labeled x‘ ¼ ðx‘; zÞ. The AdSdþ1 metric is

ds2 ¼ g‘mdx
‘dxm ¼ R2

z2
ð���dx�dx� � dz2Þ; (A7)

with conformal metrics

g‘m ¼ R2

z2

1 0 0 0
0 �1 0 0

0 0 . .
.

0
0 0 0 �1

0
BBB@

1
CCCA; (A8)

and

g‘m ¼ z2

R2

1 0 0 0
0 �1 0 0

0 0 . .
.

0
0 0 0 �1

0
BBB@

1
CCCA: (A9)

The AdS metric is conveniently written g‘m ¼ R2

z2
�‘m and

g‘m ¼ z2

R2 �
‘m, where �‘m has diagonal components

(1;�1; � � � ;�1). The metric determinant g ¼ jg‘mj is g ¼
ðR2

z2
Þdþ1.

APPENDIX B: NORMALIZATION OF HADRONIC
STATES TO THE CHARGE OPERATOR IN ADS

We compute the expectation value of the electromag-
netic current J‘

J‘ ¼ ið�	@‘���@‘�
	Þ; (B1)
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along Minkowski coordinates for a hadronic state
�Pðx; zÞ ¼ e�iP�x�ðzÞ in AdS5 space

h�PjJ�j�Pi ¼
Z
d4xdz

ffiffiffi
g

p
J�: (B2)

Substituting the hadronic plane-wave solution we obtain

hPjJ�jPi ¼ 2P�; (B3)

where we have extracted the overall factor ð2�Þ4	ð4ÞðP0 �
PÞ from the x-integration to compare with the light-front
QCD results described in [4]. We use the normalization

R3
Z ��1

QCD

0

dz

z3
j�ðzÞj2 ¼ 1; (B4)

in the cut-off AdS space. The total charge operator is a
diagonal operator in the AdS hadronic representation.

APPENDIX C: TWO-PARTON EXAMPLE

The mapping of AdS transition amplitudes to light-front
QCD transition matrix elements is much simplified for
two-parton hadronic states. It further illustrates important
technical aspects for extending the results to the n-parton
case. We describe in this appendix the actual two-parton
mapping for the electromagnetic and gravitational transi-
tion amplitudes.

1. Electromagnetic form factor

The Drell-Yan-West expression for the electromagnetic
form-factor in impact space [3,4]

Fðq2Þ ¼ X
n

Yn�1

j¼1

Z
dxjd

2b?j
X
q

eq exp

�
iq? � Xn�1

k¼1

xkb?k
�

� j ~ nðxj;b?jÞj2; (C1)

is written as a sum of overlap integrals of light-front wave
functions of the j ¼ 1; 2; . . . ; n� 1 spectator constituents.
We have included explicitly in Eq. (C1) the contribution
from each active constituent q with charge eq. The formula

is exact if the sum is over all Fock states n.
For definiteness we shall consider a two-quark �þ va-

lence Fock state ju �di with charges eu ¼ 2
3 and e �d ¼ 1

3 . For

n ¼ 2, there are two terms which contribute to the q-sum
in (C1). Exchanging x$ 1� x in the second integral we
find (eu þ e �d ¼ 1)

F�þðq2Þ ¼
Z 1

0
dx

Z
d2b?eiq?�b?ð1�xÞj ~ u �d=�ðx;b?Þj2;

(C2)

with normalization Fþ
� ðq ¼ 0Þ ¼ 1. Integrating over angle

we find

F�þðq2Þ ¼ 2�
Z 1

0

dx

xð1� xÞ

�
Z
�d�J0

�
�q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
j ~ u �d=�ðx; �Þj2; (C3)

where �2 ¼ xð1� xÞb2
?. Notice that by performing an

identical calculation for the �0 meson the result is
F�0ðq2Þ ¼ 0 for any q, as expected from C-charge con-
jugation invariance.
We now compare this result with the electromagnetic

form-factor in AdS space [3,4]:

FðQ2Þ ¼ R3
Z dz

z3
JðQ2; zÞj��þðzÞj2; (C4)

where FðQ2 ¼ 0Þ ¼ 1 and the bulk-to-boundary propaga-
tor JðQ2; zÞ ¼ zQK1ðzQÞ describes the propagation of the
external electromagnetic current inside AdS. Using the
integral representation of JðQ2; zÞ

JðQ2; zÞ ¼
Z 1

0
dxJ0

�
�Q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
; (C5)

we can write the AdS electromagnetic form factor as

FðQ2Þ ¼ R3
Z 1

0
dx

Z dz

z3
J0

�
zQ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
j��þðzÞj2: (C6)

Comparing with the expression for the electromagnetic
form factor in light-front QCD (C3) for arbitrary values

of Q, we find the relation between the pion LFWF ~ and
the hadronic string mode �� [3,4]

j ~ u �d=�ðx; �Þj2 ¼
R3

2�
xð1� xÞ j��ð�Þj2

�4
; (C7)

where we identify the transverse light-front variable � , 0 

� 
 �QCD, with the holographic variable z.

2. Gravitational form factor

The light-front expression for the helicity-conserving
gravitational form factor in impact space is (3.10)

Aðq2Þ ¼ X
n

Yn�1

j¼1

Z
dxjd

2b?j
X
f

xf exp

�
iq? � Xn�1

k¼1

xkb?k
�

� j ~ nðxj;b?jÞj2; (C8)

which includes the contribution of each struck parton with
longitudinal momentum fraction xf and corresponds to a

change of transverse momentum xjq for each of the j ¼
1; 2; . . . ; n� 1 spectators. For n ¼ 2, there are two terms
which contribute to the f-sum in (C8). Exchanging x$
1� x in the second integral we find

A�ðq2Þ ¼ 2
Z 1

0
xdx

Z
d2b?eiq?�b?ð1�xÞj ~ q �q=�ðx;b?Þj2:

(C9)
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Using the light-front wave function normalizationZ 1

0
dx

Z
d2b?j ~ ðx;b?Þj2 ¼ 1; (C10)

it is simple to prove that if  is a symmetric function of x
and 1� x the first x-momentZ 1

0
xdx

Z
d2b?j ~ ðx;b?Þj2 ¼ 1

2
; (C11)

and thus A�ðq2Þ satisfies the sum rule A�ð0Þ ¼ 1.
Integrating (C9) over angle we find

A�ðQ2Þ ¼ 4�
Z 1

0

dx

ð1� xÞ
Z
�d�J0

�
�q

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
� j ~ q �q=�ðx; �Þj2; (C12)

where �2 ¼ xð1� xÞb2
?.

We now consider the expression for the hadronic gravi-
tational form factor in AdS space (5.12)

AðQ2Þ ¼ R3
Z dz

z3
HðQ2; zÞj��ðzÞj2; (C13)

where AðQÞ is normalized to one at Q ¼ 0 andHðQ2; zÞ ¼
1
2Q

2z2K2ðzQÞ describes the propagation of the external

graviton inside AdS space. Using the integral representa-
tion of HðQ2; zÞ (6.4)

HðQ2; zÞ ¼ 2
Z 1

0
xdxJ0

�
zQ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
; (C14)

the AdS gravitational form factor can be expressed as

AðQ2Þ ¼ 2R3
Z 1

0
xdx

Z dz

z3
J0

�
zQ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

x

s �
j��ðzÞj2:

(C15)

Comparing with the QCD light-front gravitational form
factor (C12) we find (� ¼ z)

j ~ q �q=�ðx; �Þj2 ¼ R3

2�
xð1� xÞ j��ð�Þj2

�4
; (C16)

which is identical to the result (C7) obtained from the
mapping of the pion electromagnetic transition amplitude.
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